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Abstract

In the practice of program evaluation, choosing the covariates and the functional form of the

propensity score is an important choice that the researchers make when estimating treatment

effects. This paper proposes a data-driven way of averaging the estimators over the candidate

specifications in order to resolve the issue of specification uncertainty in the propensity score

weighting estimation of the average treatment effects for treated (ATT). The proposed averaging

procedures aim to minimize the estimated mean squared error (MSE) of the ATT estimator in a

local asymptotic framework. We formulate model averaging as a statistical decision problem in

a limit experiment, and derive an averaging scheme that is Bayes optimal with respect to a given

prior for the localization parameters. Analytical comparisons of the Bayes asymptotic MSE show

that the averaging estimator outperforms post model selection estimators and the estimators

in any of the candidate models. Our Monte Carlo studies confirm these theoretical results

and illustrate the size of the MSE gains from averaging. We apply the averaging procedure to

evaluate the effect of the labor market program analyzed in LaLonde (1986).

Keywords: Treatment effects, Propensity score, Model averaging, Limit experiment.

JEL Classification: C13, C21, C52.

∗We thank Debopam Bhattacharya, Irene Botosaru, Xiaohong Chen, Christian Hansen, Yuichi Kitamura, Frank

Kleibergen, Michael Lechner, Simon Lee, Richard Smith, and Frank Windmeijer for valuable comments and discus-

sions. We thank an associate editor and three referees for their thorough reading and constructive comments on

an earlier draft. We also thank the seminar participants at AMES 2013, University of Bristol, University of British

Columbia, Brown University, the Cemmap/PEPA workshop on Program Evaluation, University of Groningen, Uni-

versity of Sankt Gallen, Tilburg University, Toulouse School of Economics, and Yale Econometrics Lunch for their

helpful comments. All remaining errors are ours. Financial support from the ESRC through the ESRC Centre for

Microdata Methods and Practice (CeMMAP) (grant number RES-589-28-0001) is gratefully acknowledged.
†Department of Economics, University College London. Email: t.kitagawa@ucl.ac.uk.
‡Department of Economics, Simon Fraser University. Email: cmuris@sfu.ca.

1



1 Introduction

A large body of empirical research in economics is concerned with the estimation of the causal

impact of various social programs. When the exposure to or participation in the policy program is

not randomized, researchers often use observational data in conjunction with the assumption that

treatment assignment is random once a set of observable pre-treatment covariates is conditioned

on (unconfoundedness). Several semi-parametric procedures that rely on the unconfoundedness as-

sumption have been proposed, including propensity score matching (Rosenbaum and Rubin (1983)

and Heckman, Ichimura, and Todd (1998)); covariate matching (Abadie and Imbens (2006)); re-

gression (Imbens, Newey, and Ridder (2005)); propensity score weighting (Hirano, Imbens, and

Ridder (2003)); and a combination of the latter two (Hahn (1998)). Imbens (2004) provides an

excellent review on these methods.

A common concern that arises when using such estimators is that the researcher has to choose

which covariates to include as confounders, and which functional form specification is used in

modeling the propensity score or/and the outcome equations. The literature on semiparametric

estimation has been rather silent on a formal treatment of this practical issue. As a result, empirical

researchers using these methods rarely provide formal justification for the chosen specification in

reporting the estimation results.

In order to solve this practical issue of specification uncertainty in causal inference, this paper

proposes a method to construct a best causal effect estimator by averaging the estimators obtained

in different candidate specifications. We focus on the average treatment effect for the treated (ATT)

as the estimand of interest, and consider the averaging the propensity score weighting estimators.

Building on the idea of frequentist model averaging proposed by Hjort and Claeskens (2003) and

Hansen (2007), our model averaging procedure aims to construct a point estimator for ATT in the

form of a weighted average of the ATT estimators in the candidate models, where the weights are

optimally chosen in a data-driven way to minimize the mean squared error (MSE) of the averaged

estimator.

The model averaging procedure proposed in this paper proceeds as follows. As an input of

the procedure, the researcher provides a most complicated specification (largest model) of the

propensity score in the following parametric form,

Pr (D = 1|X) = G
(
W (X)′ γ

)
,

where D = 1 (treated) or D = 0 (control) is an indicator of the treatment status; X is the set

of all conditioning covariates considered by the researcher; W (X) is a vector of functions of the

pre-treatment covariates X that can contain interactions and nonlinear transformations of X; and

G (·) is a known link function such as the logit function. Candidate models to be averaged are
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given as submodels of the most complicated specification, where each submodel corresponds to

a subset vector of W (X) to be included in propensity score estimation. We assume that the

unconfoundedness assumption holds for the full set of covariates X, and that the ATT parameter is

identified and consistently estimated by a
√
n-asymptotically normal estimator in this largest model.

We assume that the candidate specifications are locally misspecified in the sense that the true

values of coefficients γ are in a n−1/2-neighborhood of zero with a radius governed by a localization

parameter δ. This local misspecification framework leads to a useful approximation of the MSE of an

averaging estimator as a function of δ. Since δ remains unknown even in large samples, the optimal

averaging weights depend crucially on how the non-vanishing uncertainty about the localization

parameters is dealt with. We pose the problem of choosing optimal weights as a statistical decision

problem in the limit Gaussian experiment (see e.g. Chapter 7 of van der Vaart (1998)). We then

derive the optimal weights in the sense of a Bayes decision in the limit experiment with respect to

a prior for the localization parameters. Our approach to the optimal averaging weights leads to

a weighting scheme that is different from the plug-in based procedure and the inverse-FIC based

weights of Hjort and Claeskens (2003), in which the treatment of the localization parameters, to

the best of our knowledge, lacks a decision-theoretic optimality argument.

As an estimator for the ATT in each candidate model, we employ the normalized propensity

score weight (hereafter NPW) estimator (Imbens (2004)). The NPW estimator for the ATT has

several attractive features compared with the naive propensity score weighted estimator (as in

Wooldridge (2002), equation 18.22). The NPW estimator has a smaller asymptotic variance than

the simple ATT estimator when a parametric specification for the propensity score is employed. The

NPW estimator is simple to implement, and there is evidence from simulation studies that suggests

that the finite sample performance of the NPW estimator is excellent (see Busso, DiNardo, and

McCrary (2014)). The main reason that we focus on the ATT rather than the average treatment

effect for the whole population (ATE) closely relates to the fact that the semiparametric efficiency

bound for the ATT can be improved if knowledge on a specification of the propensity score is

available, see Hahn (2004); Chen, Hong, and Tarozzi (2008); and Graham, de Xavier Pinto, and

Egel (2011). Using the local asymptotic approximation, the NPW estimator for the ATT in the

parsimonious specification can have a smaller asymptotic variance than in the largest model due

to the gain in the efficiency bound for the ATT by having a parsimonious specification for the

propensity score. The parsimonious model, on the other hand, can be biased due to the local

misspecification. As a result, there is a bias-variance trade-off in the ATT estimation,1 which the

averaging weights aim to optimally balance out.

1This bias-variance trade-off is not available in the propensity score weighted estimation for ATE as shown in

Section 2 below.
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We conduct Monte Carlo studies in order to examine the finite sample performance of the pro-

posed procedures. Our Monte Carlo results show that the model averaging estimator outperforms

in terms of MSE the NPW estimators in any of the candidate models including the MSE minimiz-

ing one. In our Monte Carlo specifications, this MSE gain from averaging relative to a correctly

specified largest model is about 10% for a large range of localization parameter values. To illustrate

the use of our model averaging procedure, we apply it to the data set used by LaLonde (1986) to

evaluate a job-training program in the United States.

1.1 Related Literature

The averaging procedure proposed in this paper contributes to the growing literature of frequentist

model averaging. The frequentist model averaging that targets to minimize the MSE for a parameter

of interest is pursued by Hjort and Claeskens (2003) in general parametric models. This paper

extends their model averaging framework to the context of semiparametric estimation of causal

effect. In the least squares regression context, frequentist model averaging with the MSE criterion

of the entire regression function (integrated MSE) is analyzed by Hansen (2007, 2014a), Wan,

Zhang, and Zou (2010), and Hansen and Racine (2012), Liu and Okui (forthcoming), among others.

Magnus, Powell, and Prüfer (2010) propose a way of designing a prior in the Bayesian model

averaging based on the frequentist considerations of the mean squared errors. See also Hjort and

Claeskens (2008) for an overview of model averaging and further references. DiTraglia (2013) and

Sueishi (2013) extend the parametric framework of Hjort and Claeskens (2003) to semiparametric

models defined by a set of moment conditions, and develop the focused information criterion (FIC)-

based model averaging for generalized method of moment estimators, with primary applications to

linear instrumental variable models. Liu (2013) proposes a novel procedure for conducting inference

for FIC in linear models. Lu (2013) considers averaging semiparametric estimators for the ATE

or ATT in a manner similar to the frequentist model averaging of Hjort and Claeskens (2003),

where the estimator in each model uses nonparametrically estimated regression or propensity score

functions with a different set of conditioning covariates. In contrast to the approach of Lu (2013),

our approach concerns not only a choice of covariates, but also a functional form specification of the

propensity scores. Since averaging results in shrinking the estimator in the largest model toward the

estimators in smaller models, the averaging estimator can be interpreted as a shrinkage estimator,

which has a long history in statistics since James and Stein (1961). Using a local asymptotic

framework in a general parametric model, Hansen (2014b) proposes a shrinkage estimator that

uniformly dominates the maximum likelihood estimator in the largest model. Cheng, Liao, and Shi

(2015) show the uniform dominance property of the shrinkage estimator in the context of generalized
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method of moments. In contrast to the shrinkage analysis that generally focuses on estimation of

multi-dimensional parameters, the parameter of interest in the current context is one-dimensional.

Model averaging can be seen as a generalization of model selection, since the latter restricts

the averaging weights to ones and zeros. In this regard, the MSE performance of the averaging

procedure outperforms any of the model selection procedure that relies on the same MSE criterion

as our procedure, e.g., model selection based on FIC proposed by Claeskens and Hjort (2003) in

parametric models. FIC-based model selection in semiparametric models are considered in Hjort

and Claeskens (2006), Claeskens and Carroll (2007), and Zhang and Liang (2011), among others.

Vansteelandt, Bekaert, and Claeskens (2012) propose a FIC-based variable selection procedure for

the average treatment effect as a focused parameter in a parametric context. Millimet and Tcher-

nis (2009) provide some simulation evidence in favor of selecting parsimonious models. When the

propensity scores and/or the outcome regression equations are nonparametrically estimated, the

problem of specification choice is reduced to the problem of selecting smoothing parameters such as

the kernel bandwidth or the number of terms in series regression. To our knowledge, Ichimura and

Linton (2001) and Imbens et al. (2005) are the only works that discuss the choice of smoothing pa-

rameters with explicitly aiming to minimize the MSE of the ATE estimator. Compared with their

approach, our approach is “less non-parametric”, in the sense that our approach imposes a para-

metric restriction on the propensity score in the largest model. In practical terms, our parametric

restriction is convenient to deal with multidimensional covariates. Also, the proposed procedure

does not require a preliminary nonparametric estimate of unknown functions (cf. Ichimura and

Linton (2001)). Our approach, however, relies on a user-specified largest model, and is not free

from the arbitrariness concern in the choice of largest model. A similar concern would also arise in

the procedure of Imbens et al. (2005), in which a choice of basis functions as well as their ordering

are important inputs specified by the user.

The l1-penalized likelihood procedure (Lasso) proposed by Tibshirani (1996) is a powerful tool in

the variable selection context, especially when the number of candidate regressors is large. Belloni,

Chernozhukov, and Hansen (2013) recently develop the so-called double-selection lasso method

for covariate selection and post-selection inference for estimation of various treatment effects in the

presence of high-dimensional covariates. Our model averaging approach to covariate selection differs

from their Lasso approach in terms of the scope of applications and the notion of optimality that

these procedures aim to achieve asymptotically. First, our averaging procedure mainly concerns the

situations where the number of regressors is much smaller than the sample size, while with employing

the sparsity restrictions, the Lasso approach can effectively handle situations where the number of

regressors is equal to even larger than the sample size. Second, optimality of our averaging hinges

on a decision theoretic optimality in a limit Gaussian experiment, while theoretical justification of
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the Lasso-based covariate selection approach invokes the oracle property. In addition, as one of

their remarkable contributions, Belloni et al. (2013) demonstrate that post-selection inference with

their Lasso procedures yields a uniformly valid inference procedure for ATE and ATT. See also

Farrell (2013), who derives uniformly valid inference procedures in a similar setup.

Our derivation of the optimal averaging weights solves a Bayes optimal statistical decision in a

limit normal experiment, which is different from Hjort and Claeskens’s proposal to base the weights

on plug-in estimators. In econometrics, decision-theoretic analyses in limit experiments have been

conducted in various contexts; see Hirano and Porter (2009) for the treatment choice problem, and

Song (2014) for the point estimation problem for interval-identified parameters.

1.2 Plan of the Paper

In Section 2, we introduce the local misspecification framework for ATE and ATT estimation, and

derive the asymptotic MSEs for the NPW estimators of the candidate models. We also examine the

bias-variance trade-off between large and parsimonious models through the analytical expression of

the asymptotic MSEs. In Section 3, we propose our optimal averaging procedure that minimizes the

Bayes risk (a weighted average of MSE) criterion in the limit experiment. The results of our Monte

Carlo studies are provided in Section 4. Section 5 applies our averaging procedure to LaLonde’s

(1986) data set on the National Supported Work Demonstration job-training program. Section 6

concludes. All proofs of the propositions and auxiliary lemmas are collected in Appendix A.

2 Estimation of Causal Effects with Locally Misspecified Propen-

sity Scores

Let {(Yi, Di, X
′
i) : i = 1, . . . , n} be a size n random sample where an observation consists of a scalar

observed outcome Yi ∈ R, a binary treatment status Di ∈ {0, 1}, and a (column) vector of covariates

Xi ∈ X. Suppose that we have L predetermined covariates available for every individual in the

sample, X ′i = (Xi1, . . . , XiL). Each covariate can be either discrete or continuous. We denote

the potential outcomes corresponding to each treatment status as Yi (1) and Yi (0). The observed

outcome Yi satisfies Yi = DiYi (1) + (1−Di)Yi (0). The population average treatment effect (ATE)

and the average treatment effect for treated (ATT) when (Y (1), Y (0), D,X) ∼ P are denoted by

τATE = EP (Y (1)− Y (0)) and τATT = EP (Y (1)− Y (0)|D = 1), respectively.

The starting point of our averaging procedure is to specify a most complicated specification for

the propensity score function, which we refer to as the largest model. Let W (X) ∈ RK be a vector

of regressors with length K that is to be included in the propensity score estimation in the largest

model. W (X) includes an intercept and may contain interactions and nonlinear transformations
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of X. In the subsequent asymptotic analysis, we will not let its dimension K grow with the sample

size. In practical terms, the fixed dimension of W (X) means that the number of regressors in

the largest model is specified to be relatively small compared to the sample size. We will use a

short-hand notation, Wi = W (Xi) , as far as no confusion arises.

Each candidate specification for the propensity score corresponds to a subvector of W (X) used

in the propensity score estimation. We index by S a selection of covariates of W . The number of

covariates included in specification S is denoted by |S|. We denote the set of candidate specifications

byM and the number of models in it by |M|. The setM does not have to exhaust all the possible

subset vectors of W (X). For example, some regressors can be included in all the specifications if

they are believed to be important in predicting treatment status. Let S = ∩{S : S ∈M} be the

set of covariates that appear in every candidate model. We assume that |M| is fixed and does

not grow with the sample size. The subset of covariates to be excluded from S is indexed by its

complement, Sc. Hence, Sc is the set of covariates that are excluded in some candidate model.

The next set of assumptions characterizes sequences of data generating processes {Pn,δ : n = 1, 2, . . . }.
It will form the basis for our local asymptotic analysis, and for the limiting experiment that gives

rise to our optimal averaging procedure.

Assumption DGP:

(i) (Unconfoundedness) The joint distribution of (Y (1) , Y (0) , D,X) satisfies

Pn,δ(Y (1) , Y (0) , D,X) = P0(Y (1) , Y (0) |X) · Pn,δ(D|X) · P0(X), (2.1)

where P0(Y (1) , Y (0) |X) is the conditional distribution of potential outcomes given the full

set of covariates X and P0(X) is the marginal distribution of X, which are independent of n.

(ii) (Propensity score specification) Pn,δ(D|X) depends on the sample size and Pn,δ(D = 1|X =

x) = G
(
W (x)′ γn

)
, γn ∈ RK with a known monotone and twice continuously differentiable

link function G (·).

(iii) (Localized parameter sequence) γn = γ0 + n−1/2δ, where γ0 ∈ RK is a benchmark centering

value of the coefficient vector and δ ∈ RK is the localization parameter.

(iv) (Local misspecification) Entries of γ0 are zero if the corresponding regressors in W are excluded

in some candidate specification in M.

Following Claeskens and Hjort (2003), we specify the data generating processes to be drifting with

n. Note that the only drifting component is the propensity score and the other parts of the data
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generating process do not change with n.2 Decomposition (2.1) assumes unconfoundedness (selec-

tion on observables) of the treatment assignment with the full set of covariates, i.e., (Y (1), Y (0))

is statistically independent of D conditional on X.

Assumption DGP (ii) states that the propensity score has a parametric single index specification

with a known link function. The literature on semiparametric estimation of average causal effects

commonly introduces nonparametric propensity scores (e.g., Hahn (1998), Hirano et al. (2003)),

while we restrict our analysis to the case with parametric propensity scores. This assumption may

appear restrictive at a theoretical level, but does not bind much in empirical practice, since, with

a finite number of observations, implementation of nonparametric estimation of propensity score

using series estimation can be seen as estimating the propensity score parametrically with a rich

and flexible specification of the regressor vector. In such a context, what Assumption DGP (ii)

essentially excludes are cases with a number of series terms comparable with the sample size.

Assumption DGP (iii) introduces a drifting sequence of parameters with localization parameters

δ. Assumption DGP (iv) implies that the largest true model shrinks to the parsimonious submodels

where only a subset of W (X) is used in the propensity score estimation. In this sense, the smaller

models are locally misspecified and the value of localization parameters δ measures the degree of

misspecification in terms of the coefficient values. The joint distribution of (Y (1) , Y (0) , D,X)

when γ is set at γ0 (i.e., δ = 0) is denoted by P0.

Assumption DGP (i) implies that the ATE parameter does not depend on n, τATE0 ≡ EP0(Y (1)−
Y (0)), whereas the ATT parameter does, τATTn ≡ EPn(Y (1) − Y (0)|D = 1), since the marginal

distribution of D depends on γn. Under unconfoundedness, the ATE and ATT parameters satisfy

the following moment conditions: at every n,

EPn,δ

[
DiYi

G
(
W (x)′ γn

) − (1−Di)Yi
1−G (W ′iγn)

− τATE0

]
= 0,

EPn,δ

[
DiYi
Qn
− G (W ′iγn) (1−Di)Yi

Qn (1−G (W ′iγn))
− τATTn

]
= 0.

where EPn,δ is the expectation with respect to the data generating process Pn,δ defined in (2.1) and

Qn ≡ Pn,δ (D = 1).

Let γ̂ be the maximum likelihood estimator for γn obtained from the parametric binary regres-

sion based on Assumption DGP (ii), and Q̂ = 1
n

∑n
i=1Di. The normalized propensity score weight

(NPW) estimators for the ATE and ATT in the largest model are

τ̂ATE =
n∑
i=1

(
Di

G (W ′i γ̂)
Yi

/
n∑
i=1

Di

G (W ′i γ̂)
− (1−Di)

(1−G (W ′i γ̂))
Yi

/
n∑
i=1

(1−Di)

(1−G (W ′i γ̂))

)
, (2.2)

2We can allow the potential outcome distribution and the marginal distribution of X to drift with the sample size

without affecting the analytical results and the model selection/averaging procedures in this paper. However, for the

sake of parsimony of the exposition, we will leave them independent of n in what follows.
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τ̂ATT =
n∑
i=1

(
DiYi∑n
i=1Di

− G (W ′i γ̂) (1−Di)

(1−G (W ′i γ̂))
Yi

/
n∑
i=1

G (W ′i γ̂) (1−Di)

(1−G (W ′i γ̂))

)
, (2.3)

where the summation terms in the denominators guarantee that the weights that multiply the

observed outcomes sum up to one.

The |S| × 1 subvectors of W and γ corresponding to the selected covariates in model S are

denoted by WS and γS , respectively. We define the |S| ×K matrix πS such that pre-multiplying

a K × 1 vector by πS yields the subvector corresponding to selection S, i.e., πSW = WS and

πSγ = γS hold. Given a selection of covariates S, let τ̂ATES and τ̂ATTS be the NPW-ATE and

NPW-ATT estimators when WS is included in the estimation of the parametric propensity score,

i.e.,

τ̂ATES =
n∑
i=1

 Di

G
(
W ′S,iγ̂S

)Yi/ n∑
i=1

Di

G
(
W ′S,iγ̂S

) − (1−Di)(
1−G

(
W ′S,iγ̂S

))Yi/ n∑
i=1

(1−Di)(
1−G

(
W ′S,iγ̂S

))
 ,

τ̂ATTS =
n∑
i=1

 DiYi∑n
i=1Di

−
G
(
W ′S,iγ̂S

)
(1−Di)(

1−G
(
W ′S,iγ̂S

)) Yi

/
n∑
i=1

G
(
W ′S,iγ̂S

)
(1−Di)(

1−G
(
W ′S,iγ̂S

))
 ,

where γ̂S is the maximum likelihood estimator for γS obtained in the first stage propensity score

regression of Di on WS,i.
3

In addition to Assumption DGP, we impose the following regularity conditions on the sequence

of DGPs to ensure
√
n−local asymptotic normality of the estimators:

Assumption REG: (Regularity conditions and overlap) Let Γ ⊂ RK be the parameter space for

γ.

(i) Γ is compact and γ0 is in the interior of Γ.

(ii) Let l(Z, γ) denote the one-observation log likelihood for γ in the first stage propensity score

estimation, where Z = (Y,D,W (X)). The largest model and the candidate submodels are

globally identified in the sense that, for every ε > 0, there exists constant λε > 0 such that

EPn,δ [l(Z, γn)] > sup
γ∈Γ:‖γ−γn‖>ε

EPn,δ [l(Z, γ)] + λε

3As an alternative to the NPW estimator in model S, we may consider an overidentified GMM estimator. For

instance, using the moment conditions mATT
i (θ) to be defined in Section 3 and an optimal choice of weighting matrix

Σ, a GMM estimator for τATT in model S minimizes
(

1
n

∑
mATT
i (θ)

)′
Σ−1

(
1
n

∑
mATT
i (θ)

)
subject to γSc = 0.

Although this GMM estimator leads to improvement of asymptotic variance, its computation is not as simple as the

NPW estimator considered here. We therefore do not consider such overidentified GMM estimators in our analysis.
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and

EPn,δ
[
l(Z, γ̃Sn )

]
> sup

γ∈ΓS :‖γ−γ̃Sn‖>ε
EPn,δ [l(Z, γ)] + λε

hold for all n and S ∈ M, where ΓS is the constrained parameter space for γ in model S,

ΓS = {γ ∈ Γ : γSc = 0}, and γ̃n,S is the pseudo-true value in model S defined by γ̃n,S =

arg maxγ∈ΓS EPn,δ [l(Z, γ)]. The limiting information matrix for γ,

Iγ ≡ EP0

[
g(W ′γ0)

G(W ′γ0)(1−G(W ′γ0))
WW ′

]
is bounded and nonsingular.

(iii) Let g(a) ≡ d
daG(a) and denote the Euclidean metric ofW by ‖W‖. EP0

[
supγ∈Γ

g(W ′γ)
G(W ′γ) ‖W‖

]
<

∞ and EP0

[
supγ∈Γ

g(W ′γ)
1−G(W ′γ) ‖W‖

]
<∞.

(iv) Let W k, k ∈ {1, . . . ,K} be the k-th element of W and[WW ′]kl, k, l ∈ {1, . . . ,K}, be the

(k, l)-element of matrix W (X)W (X)′. There exist open neighborhood N of γ0 and λ > 0

such that

EP0

[
sup
γ∈N

∣∣∣∣ Y1

G(W ′γ)

∣∣∣∣2+λ
]
<∞, EP0

[
sup
γ∈N

∣∣∣∣ Y0

1−G(W ′γ)

∣∣∣∣2+λ
]
<∞,

EP0

[
sup
γ∈N

∣∣∣∣ Y1Wk

G(W ′γ)2

∣∣∣∣1+λ
]
<∞, EP0

[
sup
γ∈N

∣∣∣∣ Y0Wk

[1−G(W ′γ)]2

∣∣∣∣1+λ
]
<∞,

EP0

[
sup
γ∈N

∣∣∣∣ [WW ′]kl
[G(W ′γ)(1−G(W ′γ))]2

∣∣∣∣1+λ
]
<∞, for all k, l ∈ {1, . . . ,K} .

Assumption REG (iii) and (iv) imply the overlap condition, 0 < G(W (x)′γ) < 1 for almost

every x ∈ X , which is necessary for identification of ATE. The
√
n-asymptotic normality requires

the additional conditions that restrict the tails of the marginal distribution ofW and the distribution

of the propensity scores near zero and one in case G(·) asymptotes to zero and one. Imposing these

overlap conditions is standard in the literature, although the limited overlap can be a concern in

empirical applications (see Crump, Hotz, Imbens, and Mitnik (2008) and Khan and Tamer (2010)

for further discussion.)

Let EP0 (·) and V arP0 (·) be the expectation and variance at probability law P0. In what follows,

T
Pn,δ→ c, or, equivalently, T − c = oPn,δ (1) means that the statistic T converges in probability to c

along {Pn,δ}, i.e., limn→∞ Pn,δ (|T − c| > ε) = 0 for any ε > 0. We use T
Pn,δ
 N (µ.Σ) to mean that

the statistic (vector) T converges in distribution along {Pn,δ} to a normal distribution with mean

10



µ and covariance matrix Σ, i.e, Pn,δ(T ≤ s)→ Φµ,Σ(s) as n→∞ for all s ∈ Rdim(T ), where Φµ,Σ(·)
is the cumulative distribution function of N (µ.Σ). In addition, the following notation is used:

G = G
(
W ′γ0

)
, g = g

(
W ′γ0

)
=
dG (z)

dz

∣∣∣∣
z=W ′γ0

, Q = P0 (D = 1) .

µ1 (X) = EP0 [Y (1) |X] , µ0 (X) = EP0 [Y (0) |X] , ∆µ (X) = µ1 (X)− µ0 (X) ,

µ0 = EP0(Y (0)), α0 = EP0 [Y (0) |D = 1] , τATT0 = EP0 [Y (1)− Y (0) |D = 1] ,

σ2
1 (X) = V arP0 (Y (1) |X) , σ2

0 (X) = V arP0 (Y (0)|X) ,

h =
D −G

G (1−G)
gW ,

where h ∈ RK is the K × 1 score vector in the first stage maximum likelihood estimation for γ

evaluated at γ = γ0, i.e., EP0 (h) = 0 holds. The following proposition derives the asymptotic

distribution of the NPW estimators for each submodel.

Proposition 2.1 Suppose Assumptions DGP and REG. For each S ∈M, let hS be a subvector of

the score vector h defined by

hS ≡ πSh =
(D −G (W ′γ0))g (W ′γ0)

G (W ′γ0) (1−G (W ′γ0))
WS .

At the data generating process P0, we define L {h1|h2} as the linear projection of a random vari-

able h1 onto a random vector h2 and L⊥ {h1|h2} as its orthogonal complement, i.e., L {h1|h2} =

EP0 (h1h
′
2)EP0 (h2h

′
2)−1 h2 and L⊥ {h1|h2} = h1 − L {h1|h2} .

The limiting distributions of τ̂ATES and τ̂ATTS along {Pn,δ} are

√
n
(
τ̂ATES − τATE

) Pn,δ
 N

(
0, ω2

ATE,S

)
+ biasATE,S (δ)

√
n
(
τ̂ATTS − τATTn

) Pn,δ
 N

(
0, ω2

ATT,S

)
+ biasATT,S (δ) ,

where

ω2
ATE,S = SEBATE + EP0

[
L⊥
{
D −G
G

(
µ1(X)− τATE0 − µ0

)
+
D −G
1−G

(µ0(X)− µ0)

∣∣∣∣hS}2
]
,

(2.4)

biasATE,S (δ) = EP0

[
L⊥
{
D −G
G

(
µ1(X)− τATE0 − µ0

)
+
D −G
1−G

(µ0(X)− µ0)

∣∣∣∣hS}h′Sc] δSc .
(2.5)
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ω2
ATT,S = SEBATT,S +

1

Q2
EP0

[
L⊥
{

(D −G)

[
∆µ (X)− τATT0 +

1− 2G

1−G
(µ0(X)− α0)

]∣∣∣∣hS}2
]
,

(2.6)

biasATT,S (δ) =
1

Q
EP0

[
L⊥
{(

D −G
1−G

)
[µ0 (X)− α0]

∣∣∣∣hS}h′Sc] δSc . (2.7)

where SEBATE is the semiparametric efficiency bound for τATE obtained by Hahn (1998),

SEBATE = EP0

[
σ2

1 (X)

G
+
σ2

0 (X)

1−G
+
(
∆µ (X)− τATE0

)2]
,

and SEBATT,S is the semiparametric efficiency bound for τATT obtained by Graham, de Xavier

Pinto, and Egel (2012) under the a priori restriction that the propensity score is parametric and

the relevant regressors are WS, i.e., P (D = 1|X) = G(W ′SγS),

SEBATT,S = EP0

[(
G

Q

)2{σ2
1 (X)

G
+
σ2

0 (X)

1−G
+
(
∆µ (X)− τATT0

)2}]
+

1

Q2
EP0

[
L
{

(D −G)
[
∆µ (X)− τATT0

]
|hS
}2
]
. (2.8)

Proof. See Appendix A.

Before discussing the analytical insights from this proposition, it is worth clarifying the moti-

vation of the local asymptotic analysis in the current context. The goal of our analysis is to obtain

an estimator that optimally balances out the finite sample bias-variance trade-off across small to

large models. For this purpose, a sequence of DGPs (specified in Assumption DGP) is used as a

device for deriving a class of δ-indexed sampling distributions of the NPW estimators, in which the

variance and bias approximations of the estimators appear at the same stochastic order.4 Since

consistent estimation of δ is not feasible, a value of δ that gives accurate MSE approximation in

a given situation remains unknown even in large n. Accordingly, unless one model dominates the

others uniformly over δ, a data-driven way of averaging the models involves a non-trivial step of

handling the uncertainty of δ. We discuss this in detail in Section 3.

The following remarks summarize some useful analytical insights about the bias-variance trade-

offs in the NPW estimators.

Remark 2.1 The variance of the submodel NPW-ATE estimator (2.4) consists of the semipara-

metric efficiency bound for ATE derived by Hahn (1998), which does not depend on S, and the

4If we consider a type of asymptotics where n increases to infinity with a fixed DGP, we would obtain a nonzero

bias of a submodel estimator τ̂S that always has a larger stochastic order than the variance irrespective of the size

of misspecification. Such asymptotics may provide a poor approximation for the finite sample MSEs for submodels

that are only slightly misspecified.
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variance of the residuals from a certain linear projection onto hS, the score vector of the parametric

propensity score estimation with regressor vector WS. The fact that the dimension of hS is equal

to the dimension of WS implies that the variance of the residuals is monotonically decreasing in

S, implying that the asymptotic variance of τ̂ATES monotonically decreases as more regressors are

included. The bias term in (2.5) is zero in the largest model. Therefore, for every δ including δ = 0,

the largest model is optimal in terms of the asymptotic MSE. This somewhat counter-intuitive result

is in line with the well-known “propensity score paradox”5 discussed in e.g. Hirano, Imbens, and

Ridder (2003), Graham, de Xavier Pinto, and D. Egel (2012).

Remark 2.2 In contrast to the asymptotic variance for the ATE, the asymptotic variance of

the submodel NPW-ATT estimator (2.6) is non-monotonic in S. Since SEBATT,S depends on

S through the variance of the linear projection of (D −G)
[
∆µ (X)− τATT0

]
onto hS, SEBATT,S

weakly monotonically increases as more regressors are included in the propensity score, i.e., SEBATT,S ≤
SEBATT,S′ whenever S ⊂ S′. As in the ATE case, the second term of (2.6), which captures the

inefficiency of the NPW-ATT estimators relative to the semiparametric variance bound, monoton-

ically decreases with the dimension of WS whenever S ⊂ S′. As a whole, whether including more

regressors in the propensity score inflates the variance of τ̂ATTS depends on which of the two effects

(inflation of SEBATT,S versus the reduction of relative inefficiency) dominates.6

As in the ATE case, the bias term shown in (2.7) is given by an inner product of δSc and the

correlation vector of hSc with a certain linear projection residual. Clearly, the bias of a submodel

NPW estimator is zero if δSc is the zero vector. Even when δSc is a nonzero vector, the bias of a

submodel NPW estimator can become zero if these two vectors are orthogonal. This implies that,

depending on the value of the local misspecification parameters, we can reduce the bias of a submodel

NPW estimator by dropping some covariates that are useful for predicting treatment status. Thus,

there is no general monotonic relationship available between the squared bias and the number of

included regressors.

Remark 2.3 As shown by the relative inefficiency terms in (2.4) and (2.6), the NPW estimators

are not semiparametrically efficient even when the propensity score specification in the submodel

5The propensity score paradox states that even when the knowledge of propensity score specification is available,

using estimated propensity scores leads to a smaller asymptotic variance of the propensity score weighted ATE

estimator. In the context of variable selection, this means even though some covariates do not appear in the true

propensity score, including them in the propensity score estimation improves the variance of the subsequent propensity

score weighted ATE estimator as far as they help to predict the potential outcomes.
6In the special case where the treatment effects are homogeneous, i.e., ∆µ(X) = τATT0 for allX, the first component

in the variance expression SEBATT,S no longer depends on S, so that adding more regressors never inflates the

variance of the NPW-ATT estimator. In contrast, if treatment effects are heterogeneous, a smaller model can have

an NPW estimator with a smaller variance than that of bigger models.
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is correct. Estimation methods that lead to semiparametrically efficient ATE and ATT estimators

with the finite number of moment conditions are known in the literature. For instance, Graham et

al. (2011) propose the Auxiliary-to-Study Tilting (AST) estimator for the ATT that can achieve

SEBATT,S under the assumption that µ1(X) and µ0(X) are linear in a prespecified set of covariate

vector used in the tilting step. The current local asymptotic analysis can be applied to the AST

estimators, and the model averaging for the AST estimators can be developed along the same line

of analysis given in the next section.

3 Frequentist Model Averaging for ATT Estimation

As discussed in Remark 2.2, the presence of treatment effect heterogeneity (i.e., ∆µ(X) is not a

constant) lead to nontrivial variance-bias trade offs between the small and large models when we

approximate the MSEs of the NPW-ATT estimators using a local asymptotic framework. As a

result, an optimal selection of regressors that minimizes the MSE of τ̂ATTS can be a proper subset

of the regressors in the largest model. In contrast, such a bias-variance trade-off does not arise for

the ATE-NPW estimator (see Remark 2.1). For this reason, our development of model averaging

procedure focuses exclusively on the ATT.

Consider an estimator for the ATT of the following averaging form,

τ̂ATTavg =
∑
S∈M

ĉS τ̂
ATT
S , (3.1)

where ĉ ≡ (ĉS : S ∈M) is an |M|× 1 vector of data-dependent weights assigned to each candidate

model which satisfies
∑

S∈M ĉS = 1.7 By allowing some ĉS to be negative. we obtain optimal

weights as an interior solution with a closed-form expression, and we can potentially lower the

asymptotic MSE of τ̂ATTavg compared to the case where the weights are constrained to be non-

negative.

3.1 Bayes Asymptotic Risk and Optimal Averaging

To facilitate the presentation, we formulate the NPW-ATT estimation by the following set of

moment conditions (see also Busso et al. (2014)):

EPn,δ
[
mATT
i (θn)

]
= 0,

7As an alternative class of averaging estimators, one could consider the NPW-ATT estimator with averaged

propensity scores plugged in. Analyzing optimal averaging weights for this class of estimators is beyond the scope of

this paper.
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mATT
i (θ) ≡


(Di−G(W ′iγ))

G(W ′iγ)[1−G(W ′iγ)]
g (W ′iγ)Wi[

Di + (1−Di)

(
G(W ′iγ)

1−G(W ′iγ)

)] (
Yi − τATTDi − α

)[
Di + (1−Di)

(
G(W ′iγ)

1−G(W ′iγ)

)] (
Yi − τATTDi − α

)
Di

 ,

where θn =
(
γ′n, αn, τ

ATT
n

)′
and αn = EPn,δ(Y (0)|D = 1). Let

MATT ≡ EP0

[
∂

∂θ′
mATT
i (θ)

∣∣∣∣
θ=θ0

]
,

ΣATT ≡ EP0

[
mATT
i (θ0) mATT

i (θ0)′
]
,

which, under Assumptions DGP and REG, we can consistently estimate by

M̂ATT =
1

n

n∑
i=1

∂

∂θ′
mATT
i

(
θ̂
)
,

Σ̂ATT =
1

n

n∑
i=1

mATT
i

(
θ̂
)

mATT
i

(
θ̂
)′
,

where θ̂ =
(
γ̂′, α̂, τ̂ATT

)′
is the estimator for θ in the largest model (Lemma A.2 in Appendix A).

Using the selection matrix,

ΛS
(|S|+2)×(K+2)

=


πS O

1

O 1


the asymptotic variance and the squared bias terms of

√
n
(
τ̂ATTS − τATTn

)
can be written as

ω2
ATT,S = the final element in the bottom row of (3.2)(

ΛSM
ATTΛ′S

)−1
ΛSΣATTΛ′S

(
ΛS(MATT )′Λ′S

)−1
,

bias2
ATT,S (δ) = b′SδScδ

′
ScbS , (3.3)

b′S = the first |Sc| elements of the row vector in the bottom row of(
ΛSM

ATTΛ′S
)−1

ΛSM
ATTΛ′Sc .

By plugging in M̂ATT and Σ̂ATT , we obtain consistent estimators for ω2
ATT,S and bS , while the

squared bias term involves the square of the local misspecification parameters δScδ
′
Sc , for which a

consistent estimator is not available.

Let t̂ be a |M| × 1 column vector consisting of
{√

n
(
τ̂ATTS − τATTn

)
: S ∈M

}
and δ̂Sc =

√
nπSc (γ̂ − γ0) =

√
nγ̂Sc , where πScγ0 = 0 follows by Assumption DGP (iv). By noting that
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the bias expression of (2.7) can be written as b′SπScπ
′
ScδSc , we can express the asymptotic distri-

bution of
(
δ̂Sc , t̂

)
as(

δ̂Sc

t̂

)
Pn,δ
 

(
∆Sc

Zτ

)
∼ N

((
δSc

BδSc

)
,

(
Ω11 Ω12

Ω21 Ω22

))
, (3.4)

where B is a |M| × |Sc| matrix, whose row vector corresponding to model S is b′SπScπ
′
Sc .

8 The

covariance matrix Ω ≡

(
Ω11 Ω12

Ω21 Ω22

)
is the limit covariance matrix of

(
−πScI−1

γ 0 0

T

)
mATT
i (θ0) ,

where T is a |M|×(K + 2) matrix with each row vector corresponding to model S being the bottom

row vector of −
(
ΛSM

ATTΛ′S
)−1

ΛS . Accordingly, Ω11 = πScI−1
γ π′Sc is a submatrix of I−1

γ .

To establish optimality of averaging weights, define the following class of averaging weights that

depend on data through δ̂Sc =
√
nγ̂Sc and

(
B̂, Ω̂

)
, consistent estimators for (B,Ω):

C ≡

{
ĉ = c(δ̂Sc , B̂, Ω̂) :

∑
S∈M

cS(δ̂Sc , B̂, Ω̂) = 1, c(·, ·, ·) is continuous a.e.

}
. (3.5)

Note that C does not exhaust the universe of data-dependent averaging weights, since it excludes

those that depend on data additionally through
(
τ̂ATTS : S ∈M

)
.9 We suppress the second and

third arguments of c(δ̂Sc , B̂, Ω̂) if the estimators
(
B̂, Ω̂

)
are replaced by the limiting true value

(B,Ω), i.e., c(δ̂Sc) ≡ c(δ̂Sc , B,Ω). We consider the asymptotic trimmed mean-squared error as a

performance criterion of averaging procedure ĉ ∈ C,

R∞(ĉ, δ
Sc

) ≡ lim
ζ→∞

lim inf
n→∞

EPn,δ
[
min

{
n(τ̂ATTavg − τATTn )2, ζ

}]
= lim

ζ→∞
lim inf
n→∞

EPn,δ

[
min

{
(
√
nc(δ̂Sc , B̂, Ω̂)′t̂)2, ζ

}]
,

where the second argument δ
Sc

of R∞(·, ·) signifies that when ĉ is restricted to C, the asymptotic

MSE depends on the underlying data generating process only through the localization parameter

δ
Sc

.10 The trimming is employed to circumvent the technical step of establishing uniform integra-

bility of the sampling distribution of n(τ̂ATTavg −τATTn )2. Next, we rank the performance of averaging

8The proof of Proposition 2.1 given in Appendix A yields the convergence in distribution of the joint distribution

of δ̂Sc and {
√
n (τ̂S − τn) : S ∈M}.

9Adopting the shrinkage estimators of the form considered in Hansen (2014b) to the current context, we can

consider the weights that depend on data additionally through (τ̂ATTS − τ̂ATT ). Investigation of optimal averaging

weights over a larger class of weights than C is out of scope of this paper.
10Our framework can be extended to different risk criteria such as the trimmed mean absolute deviation criterion.

An advantage of the mean squared error criterion considered here is availability of a closed-form expression of the

optimal averaging weights as shown below.
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weights by a weighted average of the asymptotic MSEs with respect to a prior distribution for δ
Sc

,

µ(δ
Sc

),

RBayes∞ (ĉ) ≡
ˆ
R∞(ĉ, δ

Sc
)dµ(δ

Sc
).

We hereafter refer to this criterion as Bayes asymptotic MSE.11 Given true (B,Ω), let C(B,Ω) ⊂ C
be the subset of averaging weights such that ĉ = c(δ̂Sc , B̂, Ω̂) is continuous a.e. in δ̂Sc when (B̂, Ω̂)

is set at true (B,Ω). Lemma A.3 in Appendix A shows that for ĉ ∈ C(B,Ω), the Bayes asymptotic

risk can be expressed as

RBayes∞ (ĉ) ≡
ˆ
E∆Sc |δSc

[
c
(
∆Sc

)′
K
(

∆Sc , δSc
)

c
(
∆Sc

)]
dµ(δ

Sc
). (3.6)

where E∆Sc |δSc
(·) is the expectation with respect to the sampling distribution ∆Sc ∼ N (δSc ,Ω11),

and K
(

∆Sc , δSc
)

is an |M| × |M| symmetric and positive semidefinite matrix,

K
(

∆Sc , δSc
)

= Ω22 − Ω21Ω−1
11 Ω12 (3.7)

+
(
B − Ω21Ω−1

11

) (
δ
Sc
−∆Sc

)(
δ
Sc
−∆Sc

)′ (
B − Ω21Ω−1

11

)′
+
(
B − Ω21Ω−1

11

) (
δ
Sc
−∆Sc

)
∆′ScB

′ +B∆Sc

(
δ
Sc
−∆Sc

)′ (
B − Ω21Ω−1

11

)′
+B∆Sc∆

′
ScB

′.

Minimization of the Bayes asymptotic MSE (3.6) in c(·) leads to the Bayes optimal averag-

ing weights c∗ (·) in the limiting experiment, where the unknown object is δSc and ∆Sc serves as

a sufficient statistic for it. Following the standard approach of limiting experiment analysis, we

construct the finite sample analogue of c∗
(
∆Sc

)
by replacing the true (B,Ω) with their consistent

estimators and ∆Sc with δ̂Sc . We hereafter refer to the procedure that uses the thus-constructed

averaging weights as Bayesian Limit Experiment (BayesLE) averaging. The next proposition pro-

vides a closed-form expression of c∗
(
∆Sc

)
and shows that its finite sample analogue minimizes the

Bayes asymptotic MSE.

Proposition 3.1 Suppose Assumptions DGP and REG hold. Let µ
(
δSc
)

be a proper prior, and

let Kpost

(
∆Sc

)
be the posterior expectation of K

(
∆Sc , δSc

)
when ∆Sc ∼ N (δSc ,Ω11),

Kpost

(
∆Sc

)
≡ EδSc |∆Sc

[
K
(

∆Sc , δSc
)]
.

11Note that our definition of the Bayes risk in the limit experiment takes the average of the asymptotic risk instead

of taking the limit of the average finite sample risk as considered in Hirano and Porter (2009) in the context of

treatment choice.
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(i) If Kpost

(
∆Sc

)
is nonsingular almost surely in ∆Sc, the Bayes optimal model averaging weight

in the limiting experiment, c∗ (·) ≡ arg minc(·)
´
E∆Sc |δSc

[
c
(
∆Sc

)′
K
(

∆Sc , δSc
)

c
(
∆Sc

)]
dµ(δ

Sc
),

is unique almost surely in ∆Sc, and is given by

c∗
(
∆Sc

)
=
[
1′Kpost

(
∆Sc

)−1
1
]−1 [

Kpost

(
∆Sc

)−1
1
]
, (3.8)

where 1 is the vector of ones with length |M|.
(ii) Let K̂

(
∆Sc , δSc

)
be the sample analogue of K

(
∆Sc , δSc

)
, where (B,Ω) is replaced by(

B̂, Ω̂
)

. Denote by K̂post

(
∆Sc

)
the posterior expectation of K̂

(
∆Sc , δSc

)
when the likelihood is

∆Sc ∼ N (δSc , Ω̂11) and a prior for δSc is µ
(
δSc
)
. Then,

c∗
(
δ̂Sc , B̂, Ω̂

)
=

[
1′K̂post

(
δ̂Sc
)−1

1

]−1 [
K̂post

(
δ̂Sc
)−1

1

]
satisfies RBayes∞ (ĉ) ≥ RBayes∞

(
c∗
(
δ̂Sc , B̂, Ω̂

))
for all ĉ ∈ C(B,Ω).

Proof. See Appendix A.

If µ
(
δSc
)

is specified to be conjugate normal with mean φ and variance Φ, then the conjugate

normal posterior, δ
Sc
|∆Sc ∼ N

(
δSc ,

(
Ω−1

11 + Φ−1
)−1
)

, yields

Kpost

(
∆Sc

)
= Ω22 − Ω21Ω−1

11 Ω12

+
[(
B − Ω21Ω−1

11

)
δSc + Ω21Ω−1

11 ∆Sc
] [(

B − Ω21Ω−1
11

)
δSc + Ω21Ω−1

11 ∆Sc
]′

(3.9)

+
(
B − Ω21Ω−1

11

) (
Ω−1

11 + Φ−1
)−1 (

B − Ω21Ω−1
11

)′
.

By plugging in B̂ and Ω̂ and replacing ∆Sc by δ̂Sc , we obtain K̂post

(
δ̂Sc
)

and the formula of

c∗
(
δ̂Sc , B̂, Ω̂

)
shown Proposition 3.1 (ii) computes the averaging weights that minimizes the Bayes

asymptotic MSE.

The main reason that Proposition 3.1 assumes a proper prior is to guarantee that the Bayes

asymptotic MSE is finite. In practice, requiring the researcher to have a proper prior may be

restrictive if she/he does not have a credible prior opinion for δSc , or if she/he wishes to apply

a non-informative prior for the purpose of reporting a default averaging estimate. If we specify

µ
(
δSc
)

to be uniform (the Jeffreys prior for Gaussian means), then Kpost

(
∆Sc

)
is still well defined.

Kpost

(
∆Sc

)
= Ω22 − Ω21Ω−1

11 Ω12 +
(
B − Ω21Ω−1

11

)
Ω11

(
B − Ω21Ω−1

11

)′
+B∆Sc∆

′
ScB

′, (3.10)

Furthermore, the posterior risk has a well defined minimizer, given by (3.8), even if the resulting
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Bayes asymptotic MSE (3.6) is unbounded.12 We recommend using the uniform prior, unless the

user has a strong prior opinion about the value of δ for the covariates. In our Monte Carlo studies

and empirical application, we examine performance of the BayesLE-averaging estimator with the

uniform prior.

Remark 3.1 Hjort and Claeskens (2003, Sec. 5.4) propose the following way of obtaining weights.

Given δ
Sc

and weight vector c, the asymptotic MSE of the averaging estimator is written as

c′E∆Sc |δSc

[
K
(

∆Sc , δSc
)]

c = c′
(

Ω22 −BδSc δ′ScB
′
)

c. The weights proposed by Hjort and Claeskens

minimize the asymptotically unbiased estimator of the MSE in the limiting experiment,

cHC
(
∆Sc

)
= arg min

c
c′
(

Ω22 −B
(

∆Sc∆
′
Sc − Ω11

)
B′
)

c,

where ∆Sc∆
′
Sc−Ω11 is an unbiased estimator for δ

Sc
δ′
Sc

. The solution to this minimization problem

is given by

cHC
(
∆Sc

)
=

[
1′
(

Ω22 +B
(

∆Sc∆
′
Sc − Ω11

)
B′
)−1

1

]−1 [(
Ω22 +B

(
∆Sc∆

′
Sc − Ω11

)
B′
)−1

1

]
.

Note that cHC
(
∆Sc

)
can be shown to differ from the BayesLE-averaging weights resulting from

(3.9) for any of the conjugate normal priors as well as the weights corresponding to the uniform

prior.13

Remark 3.2 Model selection is a special case of averaging where the feasible weights are re-

stricted to stepwise constant functions with their range restricted to
{
e1, . . . , e|M|

}
, where em,

m = 1, . . . , |M|, is the m-th column vector of |M| × |M| identity matrix. Let us denote a

class of model selection procedures that select a set of covariates on the basis of (δ̂Sc , B̂, Ω̂) by

Csel =
{

ĉ = c(δ̂Sc ˆ, B, Ω̂) : c(δ̂Sc ˆ, B, Ω̂) ∈
{
e1, . . . , e|M|

}
for all (δ̂Sc , B̂, Ω̂)

}
. By noting that with

non-singular K̂post

(
δ̂Sc
)

, c∗
(
δ̂Sc , B̂, Ω̂

)
derived in Proposition 3.1 is unique and never takes a cor-

ner solution, we can conclude that the optimal model averaging obtained in Proposition 3.1 strictly

outperforms any of the model selection procedure in Csel ∩ C(B,Ω) in terms of Bayes asymptotic

MSE.

12One way to justify this averaging scheme would be to claim that the averaging weights corresponding to the

uniform prior are obtained by a limit of the Bayes optimal weights with respect to a sequence of proper priors.

Specifically, by noting that Kpost (∆Sc) of (3.9) converges to (3.10) as the prior variance matrix diverges to infinity,

the optimal averaging weights under the uniform prior can be obtained as the limit of the Bayes optimal weights

along a sequence of conjugate priors with diverging prior variances.
13Establishing the existence of a prior for δSc that supports cHC(∆Sc) as Bayes optimal in the limit experiment is

left for future research.
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Corollary 3.1 Under the assumptions of Proposition 3.1, RBayes∞ (ĉ) > RBayes∞
(
c∗
(
δ̂Sc , B̂, Ω̂

))
holds for any ĉ ∈ Csel ∩ C(B,Ω).

The Monte Carlo studies shown in Section 4 below compares the MSE performances of BayesLE-

averaging and the model selection procedure that selects a set of covariates based on the Bayes

asymptotic risk. We find the MSE comparisons are consistent with the theoretical prediction of

this corollary.

3.2 Post-averaging Inference

The optimality argument of BayesLE-averaging proposed in Proposition 3.1 concerns point esti-

mation and has little to say about how to proceed to interval estimation. This section presents a

construction of confidence intervals based on the sampling distribution of the averaging estimator

by adopting the two-stage confidence procedure proposed by Claeskens and Hjort (2008). The

proposed confidence intervals guarantee nominal coverage, although their coverage probability can

be conservative.

Let (1−β) ∈ (0, 1) be a nominal coverage probability and let β1, β2 > 0 satisfy β1+β2 = β. Given

a value of localization parameter δSc , the weak convergence of
√
n(δ̂′Sc , t̂

′)′ shown in (3.4) implies

that the averaging estimator of Proposition 3.1 converges to
√
n(τ̂ATTavg − τATTn )

Pn,δ
 c∗(∆Sc)Zτ .

Based on this asymptotic distribution, let CIATT1−β1
(∆Sc , Zτ |δSc) be an interval estimator for ATT

that satisfies Pr
(
τATT0 ∈ CIATT1−β1

(∆Sc , Zτ |δSc)
)

= 1− β1. Since random variable c∗(∆Sc)Zτ is easy

to simulate, it is straightforward to numerically approximate CIATT1−β1
(∆Sc , Zτ |δSc).

The two step confidence procedure proceeds as follows. In the first step, we construct a confi-

dence set (ellipsoid) for δSc with confidence level (1− β2) by inverting the likelihood ratio test,

CS1−β2 ≡
{
δSc : (δ̂Sc − δSc)′Ω̂−1

11 (δ̂Sc − δSc) ≤ χ2
1−β2

(dim(δSc))
}
,

where χ2
1−β2

(dim(δSc)) is the (1−β2)-th quantile of the χ2-statistic with degree of freedom equal to

the dimension of δSc . In the second step, we construct a confidence interval for ATT, CIATT1−β (δ̂Sc , t̂),

by taking the union of CIATT1−β1
(δ̂Sc , t̂|δSc) over δSc ∈ CS1−β2 . It can be shown that the asymptotic

coverage probability of CIATT1−β (δ̂Sc , t̂) is bounded from below by 1 − β irrespective of the value of

δ, and hence the confidence intervals for ATT are asymptotically uniformly valid at least over the

class of propensity scores that meet Assumptions DGP (i)-(ii) and REG. See Appendix A for a

proof of these claims. In the empirical application presented below, we implement this two-step

procedure by taking the union of CIATT1−β1
(δ̂Sc , t̂|δSc) over randomly sampled values of δSc ∈ CS1−β2 .
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Parameter Description Benchmark value

n Number of observations 100

K Number of regressors 3

β1 Outcome equation coefficient of X1 0.5

β2 Outcome equation coefficient of Xk, k > 1 0.5/(K − 1)

γ Selection equation coefficient 1

σu Conditional st. dev. outcome equation 2

Table 1: Parameters for the simulations in Section 4, and their benchmark values.

4 Monte Carlo Study

In this section, we perform a simulation experiment to study the behavior of the averaging estimator

proposed in Section 3. We show that a bias-variance trade-off exists between a small and a large

models for the NPW-ATT estimator, and find MSE gains for the model averaging estimator.

We will use a model with treatment outcome Y (1) = u1, control outcome

Y (0) = −β1X1 − β2

K∑
k=2

Xk + u0,

and selection equation P (D = 1|X) = G
(
γ
K

∑K
k=1Xk

)
, where G is the logistic function. The

outcome equation error terms (u0, u1) are generated from a zero mean normal distribution. The

regressors are generated, independently of those error terms, from a multivariate normal distribution

with mean 0, standard deviation 1, and pairwise covariance 0.5.

The design parameters and their benchmark values are listed in Table 4. We let the first

regressor, X1, be more important than the remaining regressors by letting its regression coefficient

β1 be larger than the coefficient of each of the remaining regressors, β2. We have normalized the

sum of the regression coefficients to 1, so that the covariate X1 accounts for a share β1 of the model,

and the other regressors share the remaining 1− β1 equally. In the benchmark design, each of the

regressors (X2, X3) are only half as important as the first one. As a result, the first regressor X1 is

very important, and should probably be included in estimation, but there may be some advantage

from leaving out X2 or X3.

Note that the parameters n, K, and γ affect the bias-variance trade-off. Increasing the value of

K increases the number of coefficients that have to be estimated, but reduces the bias of leaving out

a single regressor since the coefficient for each regressor, β2 = (1− β1) / (K − 1), decreases in K.

The selection equation coefficient γ controls the strength of the selection effect, which is assumed
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to be the same for all regressors. Increasing γ increases the bias of leaving out a regressor, and

affects regressor overlap. We investigate the role of these parameters in detail in the sensitivity

analysis below.

For our simulation design, the average treatment effect is 0. By using the properties of our

design, it can be shown that the average treatment effect on the treated E (Y (1)− Y (0)|D = 1) =

E (X|D = 1)β does not depend on the design parameters (n, β1, σu) but depends on the number

of regressors, K, and on γ, which governs the relationship between the regressors and the treatment

indicator.

The model averaging estimator depends on estimators of the matrices B and Ω in equation

(3.4). Estimators for B and Ω are obtained from the full model using sample analog estimators

that were shown to be consistent in Appendix A. Note that the different submodel estimators are

highly correlated. Therefore, the inversion of Kpost can be problematic. For this reason, we will

regularize Kpost before inversion, using the approach in Carrasco et al. (2007). Results for each

model are based on 10000 replications.

We will refer to the model with all regressors as the “full model”, and tothe model that only

includes X1 and a constant term as the “small model”. On top of the submodel estimators, we

report the following three estimators: (1) the infeasible “Best submodel” estimator, which is the

submodel estimator with the lowest MSE across simulations; (2) the “BayesLE-averaging” estimator

with improper uniform µ(δSc) based on all 2K − 1 or 2K−1 − 1 submodel estimators; and (3) the

“Selection” estimator, which chooses the estimator with the lowest estimated MSE.14

Results for the benchmark simulation design. The results for the benchmark simulations

can be found in Table 4. Given a number of regressors K, we either consider the 2K−1−1 submodels

that include a constant term and the important regressor X1, or we consider all 2K − 1 submodels.

The former corresponds to the more realistic situation that a researcher has some idea about what

the important regressors are, but is unsure about including a number of less important control

regressors.

Several findings are worth noting. First, note that all the estimators that leave out the relevant

regressor X1 are severely biased due to omitting the important regressor. Second, there is a clear

bias-variance trade-off: the small model (only X1) outperforms the full model (all regressors).

Third, the full model estimator has the lowest bias. Fourth, the BayesLE-averaging estimator

seems to have the best overall performance in terms of MSE. In particular, it outperforms the

selection estimator, and it achieves the MSE of the best submodel. Finally, the performance of the

selection procedure deteriorates slightly by the inclusion of poorly performing models (i.e. models

14The selection estimator is obtained by solving minc∈Csel c
′EδSc |∆Sc

[
K̂ (∆Sc , δSc) |∆Sc = δ̂Sc

]
c, where

K̂ (∆Sc , δSc) is as defined in Proposition 3.1 (ii).
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Submodels with X1 All submodels

Estimator Bias SD MSE Bias SD MSE

Small:{X1} −0.162 0.471 0.249 −0.162 0.471 0.249

{X1, X2} −0.065 0.502 0.256 −0.065 0.502 0.256

Full:{X1, X2, X3} −0.016 0.522 0.273 −0.016 0.522 0.273

{X1, X3} −0.064 0.501 0.255 −0.064 0.501 0.255

{X2} N/A N/A N/A −0.244 0.472 0.282

{X2, X3} N/A N/A N/A −0.121 0.502 0.267

{X3} N/A N/A N/A −0.244 0.474 0.284

Best submodel −0.162 0.471 0.249 −0.162 0.471 0.249

BayesLE-averaging −0.075 0.493 0.249 −0.125 0.481 0.247

Selection −0.036 0.524 0.275 −0.055 0.526 0.280

Table 2: Simulation results for the benchmark setup.

without X1), whereas including these poorly performing models leads to a slight improvement the

performance of the averaging estimator. The results in Table 4 suggest that the averaging procedure

is robust against the inclusion of poorly performing models.

Sensitivity analysis. We now conduct a sensitivity analysis to check whether the conclusions

from the simulation results are robust to changes in the design parameters, and to investigate the

role of regressor overlap. The results are presented in Figures 1 and 2. Unless otherwise mentioned,

we fix parameter values to their benchmark values in Table 4. We let n = 100 (left column) and

n = 300 (right column), and we let K = 3 (top row) and K = 6 (bottom row). For each scenario,

we plot the results as a function of γ, the regression coefficient in the selection equation.15

We report results for the full model estimator (based on all covariates), for the small model

estimator (based on X1 only) and for two BayesLE-averaging estimators. The first one (“All”) is

based on all 2K − 1 submodel estimators that include X1. The second one (“Nested”) combines

estimators from nested models only. By a nested model, we refer to a model with combinations of

regressors that can include Xk only if they include Xk−1. For example, for the case K = 3, the

researcher considers three submodel estimators: one based on including X1; one based on including

X1 and X2; and one that uses all regressors. We use 20000 draws for each set of simulation design

parameter values.

We first consider the bias for the estimators (Figure 1). The solid line corresponds to the true

15 We evaluate results at γ ∈ {0, 0.1, 0.2, · · · , 1.9, 2}. For values of γ > 2, overlap becomes so poor (see Table 3)

that alternative estimation procedures should be considered.
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Figure 1: Results for sensitivity analysis: bias. Solid line corresponds to the true value of the ATT,

τ0. We plot the simulated expected value of three estimators. Left column n = 100; right column:

n = 300. Top row: K = 3; bottom row: K = 6.

24



●
● ●

●

●

●
●

●
●

● ●

●

●
●

●

●

● ●

●

●

●0.8

0.9

1.0

0.0 0.5 1.0 1.5 2.0
γ

re
la

tiv
e 

M
S

E

●

●

●

●

●

●

● ●

●

●

0.8

0.9

1.0

0.0 0.5 1.0 1.5 2.0
γ

re
la

tiv
e 

M
S

E

●

● ●
●

●

● ●

●

●

●

●

●

●

●

●

BayesLE (All)

Small model

BayesLE (Nested)

0.8

0.9

1.0

0.0 0.5 1.0 1.5 2.0
γ

re
la

tiv
e 

M
S

E

● ●
●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

0.8

0.9

1.0

0.0 0.5 1.0 1.5 2.0
γ

re
la

tiv
e 

M
S

E

Figure 2: Results for sensitivity analysis: mean squared error. The mean squared error is relative

to that of the full model (dashed). We plot the simulated relative mean squared error for three

estimators. Left column n = 100; right column: n = 300. Top row: K = 3; bottom row: K = 6.
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K γ P (p (X) ≥ 0.9|D = 1) P (p (X) ≥ 0.95|D = 1) P (p (X) ≥ 0.99|D = 1)

3 0.5 0.131 0.038 0.001

3 1 0.476 0.332 0.113

3 2 0.732 0.645 0.456

6 0.5 0.388 0.250 0.064

6 1 0.669 0.573 0.375

6 2 0.832 0.800 0.664

Table 3: Probability of exceeding certain propensity score values for the treatment group, for

various values of K and γ.

value of the ATT, which is increasing in γ . First, note that the full model estimator (dashed line)

is not unbiased. Comparing the left column (n = 100) to the right column (n = 300), suggests

that this is a finite sample bias. The bias is increasing in γ, which is likely to be a result of the

decrease in regressor overlap (see Table 3). Second, note that the bias for the small model is

always bigger than the bias of the full model estimator. The bias of the BayesLE-averaging (“All”)

procedure is in between that of the small and full model estimators. We do not present the bias

for BayesLE-averaging (“Nested”), as it is very similar to that of BayesLE-averaging (“All”).

Next, we consider the relative mean squared error of the small model estimator and the BayesLE-

averaging estimators relative to the full model estimator (Figure 2). First, note that the BayesLE-

averaging procedures outperforms the full model estimator for the full range of the parameter space

considered in our simulations. Second, note that the relative MSE of the small model estimator

is non-monotonic. This is related to the two effects that changing γ has in our simulation design.

Increasing γ (i) increases the bias of leaving out regressors, (ii) decreases overlap, which makes

it more favorable to consider subsets of regressors. Third, note that increasing the number of

regressors improves the relative performance of the small model estimator and for the BayesLE-

averaging estimators. Increasing the number of observations decreases the relative performance.

This is not surprising, because increasing n effectively changes the value of the misspecification

parameter δ. Finally, we point out that the value of the mean squared error of the full model

estimator is monotonically increasing in γ (not shown in Figure 2).

5 Empirical application

In this section, we apply the methods discussed in Sections 2 and 3 to the data set analyzed

in LaLonde (1986) and Dehejia and Wahba (1999). In the context of model selection with l1-
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Variable Description Always in? Treated CPS-1

age Age (years) Yes 25.82 33.23

education Years of schooling Yes 10.35 12.03

black 1 if black Yes 0.84 0.07

re74 1974 earnings ($) No 2096 14017

re75 1975 earnings ($) Yes 1532 13651

hispanic 1 if hispanic No 0.06 0.07

married 1 if married Yes 0.19 0.71

age2 - Yes

re752 - No

Observations 185 15992

Table 4: Variables and transformation in our application. Column “Always in?” denotes whether

we choose to include these covariates in the propensity score specification for each submodel. The

last two columns report the sample means for the observations with Di = 1 and Di = 0, respectively.

penalty, this data set is also analyzed by Farrell (2013). These papers estimate the impact of the

National Supported Work Demonstration (NSW) on earnings. The NSW was implemented as a field

experiment. Candidates were randomized across treatment and control groups. Those who were

assigned to the treatment group benefited from work experience, and some counseling. Due to the

experimental implementation, the difference in post-intervention earnings of treatment and control

groups is an unbiased estimator for the average effect of the NSW program on earnings. LaLonde

shows that linear regression, fixed effects, and selection models fail to reproduce the experimental

estimate, using as control group the members of the Panel Study on Income Dynamic (PSID) and

the Current Population Survey (CPS). Dehejia and Wahba (DW) show that estimates obtained

using propensity score methods are closer to the experimental estimate.

A detailed description of the program and the data can be found in the aforementioned papers.16

As in DW, we focus on the 185 observations on male participants in the treatment group for which

pre-intervention incomes in both 1974 and 1975 are available. The non-experimental control group

that we use is CPS-1.17 Propensity score covariates and summary statistics are given in Table 4.

The experimental estimate for this subset is $1672 (standard error: $637), after a regression

16The data is available from Rajeev Dehejia’s website. Last accessed: June 1, 2013. Location:

http://users.nber.org/∼rdehejia/nswdata2.html.
17LaLonde (p. 611) provides details on the CPS-1 sample. We prefer the CPS over the PSID because of the larger

sample size (n = 15992).
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Full model Small model

Variable SE γ̂ SE

age 0.64 0.64 0.62 0.08

education −0.19 0.03 −0.21 0.03

black 3.99 0.26 3.65 0.21

hispanic 1.59 0.41

married −1.40 0.24 −1.39 0.23

re74 −0.07 0.03

re75 −0.29 0.06 −0.27 0.03

age2/100 −1.06 0.14 −1.04 0.14

re752 1.52 0.87

n 14559 14559

Table 5: Estimates and standard errors for the propensity score parameters in the full and small

model. For the ease of comparison on the importance of each regressor, each coefficient estimate is

multiplied by the standard deviation of the regressor.

adjustment for age, education, and race.18 Using stratification and matching on the estimated

propensity score, DW’s adjusted estimates are $1774 (standard error: $1152) and $1616 (standard

error: $751), respectively. DW do not provide an in-depth discussion of how the covariates for the

propensity score were chosen, but they describe that their results are sensitive to excluding higher

order terms and to excluding 1974 earnings.

We consider the set of variables and transformations in Table 4. The treatment and control

groups have sizable differences in terms of their observable characteristics, so a difference in means

is unlikely to be unbiased for the average treatment effect. We consider a scenario with 8 submodels:

for each variable in (hispanic, married, re752), we are unsure whether it should be included in the

propensity score. The other six variables are always included. We use a logit form for the selection

equation. Finally, we trim the 10% of observations with the lowest estimated propensity scores.

Table 5 presents the output for the propensity score estimation in the full and the small model.

Clearly, omitting some of the covariates in the full model leads to biased estimation of γ, see for

example the changes in the coefficient estimate for education. On the other hand, the coefficients

are more precisely estimated in the small model.

Table 6 reports 90% confidence intervals for the experimental estimate, the full model estimate,

and the BayesLE-averaging estimate. For the BayesLE estimator, we use the two-step confidence

18The unadjusted estimate is $1794 with a standard error of $633.
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Method Estimate SE 90%-CI

Experimental 1672 637 [627, 2717]

Full model 1358 753 [123, 2593]

Bayes 1468 - [110, 2873]

Table 6: Estimates and confidence intervals for three procedures.

procedure described in Section 3.2 with β1 = β2 = 0.05. All confidence intervals are quite wide,

which is consistent with the findings in LaLonde and DW. Post-averaging inference leads to less

precise inference than using standard inference using the full model. We want to stress that the

objective of this paper is to come up with a point estimator that has good MSE performance. The

procedure we use is known to be conservative (Hjort and Claeskens, 2008, p. 211). A promising

development for improving this is Liu (2013).

6 Concluding Remarks

We proposed a model averaging procedure for normalized propensity score weighted estimation of

the ATT by extending the framework of the focused information criterion and frequentist model

averaging to the semiparametric estimation of ATT. The aim of these procedures is to construct the

most accurate estimator for ATT in terms of MSE, under the assumption that unconfoundedness

holds and that the propensity scores are correctly specified in a most complicated specification

provided by the user. The resulting procedure is easy to implement, and can offer a reference

estimate of the ATT in the presence of the uncertainty in propensity score specifications. Our Monte

Carlo evidence shows that the proposed procedure enjoys good MSE improvement compared to post-

model selection estimator as well as the estimators constructed in the candidate specification. We

therefore recommend empirical researchers to report the model averaged estimate in the presence

of specification uncertainty for propensity scores.

There are several issues and concerns that remain out of the scope of this paper. First, the

local asymptotic approximation becomes less precise as the number of regressors is large relative

to the sample size, so that the proposed procedures will not be suitable to a situation where

the most complicated specification has too many regressors. Second, the normal approximation

obtained via the local asymptotics will not be precise when the overlap condition is poorly satisfied.

Third, this paper mainly focusses on point estimation, and relies on existing idea to construct

conservative confidence intervals. It would be interesting to develop theory for the construction of

less conservative post-averaging inference. We leave these important issues for future research.
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Appendix

A Lemmas and Proofs

Following Busso et al. (2014), we formulate the NPW estimations for ATE and ATT by the

following system of just-identified moment conditions:

EPn,δ
[
mATE

(
Zi, θ

ATE
n

)]
= EPn,δ


(Di−G(W ′iγn))

G(W ′iγn)[1−G(W ′iγn)]
g (W ′iγn)Wi[

Di
G(W

′
i γn)

+ 1−Di
1−G(W ′iγn)

] (
Yi − τATE0 Di − µ0

)[
Di

G(W
′
i γn)

+ 1−Di
1−G(W ′iγn)

] (
Yi − τATE0 Di − µ0

)
Di

 = 0

EPn,δ
[
mATT

(
Zi, θ

ATT
n

)]
= EPn,δ


(Di−G(W ′iγn))

G(W ′iγn)[1−G(W ′iγn)]
g (W ′iγn)Wi[

Di + (1−Di)

(
G(W ′iγn)

1−G(W ′iγn)

)] (
Yi − τATTn Di − αn

)[
Di + (1−Di)

(
G(W ′iγn)

1−G(W ′iγn)

)] (
Yi − τATTn Di − αn

)
Di

 = 0.

(A.1)

where Zi ≡ (Yi, Di,W (Xi)) is a random vector of an observation whose probability law is induced by

Pn,δ defined in (2.1), and θATEn ≡
(
γn, µ0, τ

ATE
0

)′ ∈ RK+2 and θATTn ≡
(
γn, αn, τ

ATT
n

)′ ∈ RK+2 are

the parameter vectors solving the population moment conditions for the ATE and ATT, respectively.

Note that parameters µ0 and τATE0 in θATEn do not depend on n, since the distribution of potential

outcomes do not drift with n. The first K elements of the moment vectors mATE
(
Zi, θ

ATE
n

)
and mATT

(
Zi, θ

ATT
n

)
are the score vector from the propensity score estimation and are common

between the ATE and ATT moment conditions. The sample analogue of these moment conditions

yields the NPW estimators (2.2) and (2.3) in the largest model.

Let θATE0 ≡
(
γ′0, µ0, τ

ATE
0

)′
and θATT0 ≡

(
γ′0, α0, τ

ATT
0

)′
. We denote by θ̂ATE =

(
γ̂′, µ̂, τ̂ATE

)′
and θ̂ATT =

(
γ̂′, α̂, τ̂ATT

)′
the method of moment estimators in the largest model. For each selection

of covariates S ∈M, we define

γS = π′SπSγ +
(
I − π′SπS

)
γ0

θATE,S =
(
γS′, µ, τATE

)′
, θATT,S =

(
γS′, α, τATT

)′
where πS is the selection matrix defined in the main text. γS is a (K × 1) vector obtained by

replacing the elements of γ that are not included in S with their benchmark values γ0 (zeros by

Assumption DGP (iv)). In particular, for a sequence of DGPs {Pn,δ} satisfying Assumption DGP,
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we define

γSn = π′SπSγn +
(
I − π′SπS

)
γ0,

θATE,Sn =
(
γS′n , µ0, τ

ATE
0

)′
, θATT,Sn =

(
γS′n , αn, τ

ATT
n

)′
.

Let γ̂S be an (|S| × 1) vector of the MLE estimators obtained from the propensity score estimation

with regressors WS . Accordingly, define a (K × 1) vector

γ̂S = π′S γ̂S +
(
I − π′SπS

)
γ0.

Let mATE
n (θ) = 1

n

∑n
i=1 mATE(Zi, θ

ATE) and mATT
n (θ) = 1

n

∑n
i=1 mATT (Zi, θ

ATT ). Using ΛS

defined in the main text, the NPW estimators in model S solve the following (|S|+ 2)-dimensional

just-identifying sample moments,

ΛSmATE
n (θ̂ATE,S) = 0,

ΛSmATT
n (θ̂ATT,S) = 0,

with

θ̂ATE,S =
(
γ̂S′, µ̂S , τ̂

ATE
S

)′
, θ̂ATT,S =

(
γ̂S′, α̂S , τ̂

ATT
S

)′
,

where τ̂ATES and τ̂ATTS are the NPW estimators for ATE and ATT in model S shown in the main

text, and µ̂S and α̂S are the corresponding value of µ and α solving the moment conditions in

model S.

We first show a basic lemma that extends Lemma 4.3 of Newey and McFadden to a triangular

array of random variables involving estimated parameters.

Lemma A.1 Let Zi, i = 1, . . . , n, be i.i.d sequence of random vectors following Pn, n = 1, 2, . . . .

Let θn ≡ θ(Pn) be a sequence of parameter vectors corresponding to Pn. Let a(Z, θ) be a real-

valued function of an observation Z and parameter θ. Suppose θ̂ an estimator for θ satisfies∥∥∥θ̂ − θn∥∥∥ = oPn(1), and let {εn}be a converging sequence that satisfies Pn(
∥∥∥θ̂ − θn∥∥∥ ≤ εn) → 1

as n→∞. If (i) EPn

[
sup‖θ−θn‖≤εn |a(Z, θ)− a(Z, θn)|

]
→ 0 as n→∞, and (ii) there exists λ > 0

such that EPn

[
|a(Z, θn)|1+λ

]
<∞, then∣∣∣∣∣ 1n

n∑
i=1

a(Zi, θ̂)− EPn [a(Z, θn)]

∣∣∣∣∣ = oPn(1).
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Proof. By the triangular inequality,∣∣∣∣∣ 1n
n∑
i=1

a(Zi, θ̂)− EPn [a(Z, θn)]

∣∣∣∣∣ ≤
∣∣∣∣∣ 1n

n∑
i=1

a(Zi, θ̂)−
1

n

n∑
i=1

a(Zi, θn)

∣∣∣∣∣+

∣∣∣∣∣ 1n
n∑
i=1

a(Zi, θn)− EPn [a(Z, θn)]

∣∣∣∣∣ .
(A.2)

To show the first term in the right hand side converges, let us define event Ωn ≡
{∥∥∥θ̂ − θn∥∥∥ ≤ εn}

and random variable ∆n(Z) = sup‖θ−θn‖≤εn |a(Z, θ)− a(Z, θn)|. We then have for any η > 0,

Pn

(∣∣∣∣∣ 1n
n∑
i=1

a(Zi, θ̂)−
1

n

n∑
i=1

a(Zi, θn)

∣∣∣∣∣ > η

)

≤Pn

({∣∣∣∣∣ 1n
n∑
i=1

a(Zi, θ̂)−
1

n

n∑
i=1

a(Zi, θn)

∣∣∣∣∣ > η

}
∩ Ωn

)
+ Pn(Ωc

n)

≤Pn

({
1

n

n∑
i=1

∆n(Zi) > η

})
+ o(1)

≤EPn [∆n(Zi)] /η + o(1)

=o(1),

where the second like uses
∣∣∣ 1
n

∑n
i=1 a(Zi, θ̂)− 1

n

∑n
i=1 a(Zi, θn)

∣∣∣ ≤ 1
n

∑n
i=1 ∆n(Zi) on event Ωn, the

third line follows by the Markov inequality, and the last line follows from assumption (i).

Note that assumption (ii) implies EPn

[
|ak(Z, θn)− EPn [ak(Z, θn)]|1+λ

]
< ∞. Hence, the law

of large numbers for a triangular array of random variables (see e.g., Lemma 11.4.2 of Lehmann

and Romano (2005)) yields
∣∣ 1
n

∑n
i=1 ak(Zi, θn)− EPn [ak(Z, θn)]

∣∣ = oPn(1). Hence, the conclusion

follows.

The next lemma collects consistency and asymptotic normality results in our local asymptotic

analysis, which are useful to prove Proposition 2.1 and the claims given in Section 3 of the main

text.

Lemma A.2 Let {Pn,δ} ∈ P be a sequence of data generating processes indexed by localization

parameter δ. Under Assumptions DGP and REG in the main text, the following claims hold:

(i)
∥∥∥θ̂ATE − θATEn

∥∥∥ = oPn,δ (1) and
∥∥∥θ̂ATT − θATTn

∥∥∥ = oPn,δ (1).

(ii)
∥∥∥θ̂ATE,S − θATEn

∥∥∥ = oPn,δ (1) and
∥∥∥θ̂ATT,S − θATTn

∥∥∥ = oPn,δ (1) for every S ∈M.

(iii) Let MATE ≡ EP0

[
∂
∂θ′m

ATE
(
Z, θATE0

)]
and MATT ≡ EP0

[
∂
∂θ′m

ATT
(
Z, θATT0

)]
. Let θ̄ATE

and θ̄ATT be estimators for θATE and θATT that satisfy
∥∥θ̄ATE − θATEn

∥∥ = oPn,δ(1) and
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∥∥θ̄ATT − θATTn

∥∥ = oPn,δ(1), respectively. Then,∥∥∥∥∥ 1

n

n∑
i=1

∂

∂θ′
mATE

(
Zi, θ̄

ATE
)
−MATE

∥∥∥∥∥ = oPn,δ (1) ,

∥∥∥∥∥ 1

n

n∑
i=1

∂

∂θ′
mATT

(
Zi, θ̄

ATT
)
−MATT

∥∥∥∥∥ = oPn,δ (1) ,

(iv) Denote the variance-covariance matrices of mATE
(
Zi, θ

ATE
0

)
and mATE

(
Zi, θ

ATE
0

)
by ΣATE

and ΣATT , respectively. Let θ̄ATE and θ̄ATT be estimators for θATE and θATT as defined in

(iii).∥∥∥∥∥ 1

n

n∑
i=1

mATE
(
Zi, θ̄

ATE
)
mATE

(
Zi, θ̄

ATE
)′ − ΣATE

∥∥∥∥∥ = oPn,δ (1) ,

∥∥∥∥∥ 1

n

n∑
i=1

mATT
(
Zi, θ̄

ATT
)
mATT

(
Zi, θ̄

ATT
)′ − ΣATT

∥∥∥∥∥ = oPn,δ (1) ,

(v) 1√
n

∑n
i=1 mATE

(
Zi, θ

ATE
n

) Pn,δ
 N

(
0,ΣATE

)
and 1√

n

∑n
i=1 mATT

(
Zi, θ

ATT
n

) Pn,δ
 N

(
0,ΣATT

)
.

Proof. Since a proof for the ATT case is similar to the case of ATE, we only focus on proving the

claims of the ATE case for the sake of brevity. To prove (i), we first show that under the given

assumptions, ‖γ̂ − γn‖ = oPn,δ(1) holds. Let l(Zi, γ) be the one-observation likelihood for γ in the

largest model and ln(γ) = n−1
∑n

i=1 l(Zi, γ). To establish the uniform weak consistency of the

sample likelihood function along {Pn,δ}, i.e., supγ∈Γ

∣∣ln (γ)− EPn,δ [l(Z, γ)]
∣∣ = oPn,δ (1), consider

the mean value expansion of l(Z, γ) in γ and bounding from above the absolute derivative term by

a parameter-free envelope,

|l (Z, γ)− l (Z, γ̃)| ≤F̃ (W ) ‖γ − γ̃‖ for all γ, γ̃ ∈ Γ, where

F̃ (W ) =

{
sup
γ∈Γ

g(W ′γ)

G(W ′γ)
+ sup

γ∈Γ

g(W ′γ)

1−G(W ′γ)

}
‖W‖ (A.3)

Compactness of Γ and Assumption REG (iii) then imply that F (W ) ≡ F̃ (W )diam(Γ) is an inte-

grable envelope of the class of functions F = {|l (·, γ)− l (·, γ̃)| : γ ∈ Γ} with a fixed γ̃ with respect

to the L1(P0)-norm. Following the argument of Example 19.7 of van der Vaart (1998) and using

the fact that the covering number of a class of functions with radius r is bounded from above by

the bracketing number with radius 2r, the covering number of F is bounded from above by

N (ε ‖F‖ ,F , ‖ · ‖) ≤ κ
[

1

2ε

]K+2

<∞,
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for every ε > 0 and arbitrary semi-norm ‖·‖ defined on F , where κ is a constant that depends on

K and Γ. This leads to the bounded entropy number condition for F . Since F (W ) is integrable

uniformly over {Pn,δ}, i.e., EPn,δ [F (W )] = EP0 [F (W )] < ∞ for any {Pn,δ} by its construction,

Theorem 2.8.1 of van der Vaart and Wellner (1996) yields the desired uniform law of large numbers,

sup
γ∈Γ

∣∣ln (γ)− EPn,δ [l(Z, γ)]
∣∣ = oPn,δ (1) . (A.4)

Combined with compactness of Γ, continuity of EPn,δ [l (Z, γ)] in γ (implied by Assumption DGP

(ii)), and the global identification assumption about γn (Assumption REG (ii)), Theorem 2.1 of

Newey and McFadden (1994) leads to ‖γ̂ − γn‖ = oPn,δ(1).19

The estimator for (µ, τATE) in the largest model is

µ̂ =

(
1

n

n∑
i=1

1−Di

1−G(W ′i γ̂)

)−1(
1

n

n∑
i=1

(1−Di)Yi
1−G(W ′i γ̂)

)
, τ̂ATE =

(
1

n

n∑
i=1

Di

G(W ′i γ̂)

)−1(
1

n

n∑
i=1

DiYi
G(W ′i γ̂)

)
−µ̂.

Given‖γ̂ − γn‖ = oPn,δ(1), we apply Lemma A.1 to the sample averages in the numerator and de-

nominator of µ̂ separately. For a converging sequence {εn} such that Pn,δ(‖γ̂ − γn‖ ≤ εn) → 1,

let ∆n(Z) = sup‖γ−γn‖≤εn |
1−D

1−G(W ′γ) −
1−D

1−G(W ′γn) | and ā(W ) ≡ supγ∈N
1

1−G(W ′γ) , which is by

assumption REG (iv), integrable EPn,δ(ā(W )) = EP0(ā(W )) < ∞. For all large n such that

{γ : ‖γ − γn‖ ≤ εn} ⊂ N is true, EPn,δ(∆n(Z)) = EP0

[
(1−G(W ′γn)) sup‖γ−γn‖≤εn |

1
1−G(W ′γ) −

1
1−G(W ′γn) |

]
implies that the integrand of this expectation is bounded from above by integrable envelope 2ā(W )

and converges to zero pointwise at almost all W as n → ∞ by the continuity of G(·). The

dominated convergence theorem then implies EPn,δ(∆n(Z)) → 0 as n → ∞, which validates Con-

dition (i) of Lemma A.1 with a(Z, θ) = 1−D
1−G(W ′γ) . Condition (ii) of Lemma A.1 also holds by

Assumption REG (iv). Hence, Lemma A.1 shows
∣∣∣ 1
n

∑n
i=1

1−Di
1−G(W ′i γ̂)

− 1
∣∣∣ = oPn,δ(1). Following a

similar argument, Assumption REG ensures that Conditions (i) and (ii) of Lemma A.1 hold for

a(Z, θ) = (1−D)Y
1−G(W ′γ) , where an integrable envelope can be set at ā(Z) ≡ supγ∈Γ

(1−D)Y
1−G(W ′γ) . We

therefore obtain
∣∣∣ 1
n

∑n
i=1

(1−Di)Yi
1−G(W ′i γ̂)

− E(Y0)
∣∣∣ = oPn,δ(1), and by the continuous mapping theorem,

|µ̂− µ0| = oPn,δ(1). A similar argument applied to τ̂ATE leads to
∣∣τ̂ATE − τATE0

∣∣ = oPn,δ(1). Hence,∥∥∥θ̂ATE − θATEn

∥∥∥ = oPn,δ(1).

In order to show (ii), it suffices to verify
∥∥γ̂S − γn∥∥ = oPn,δ(1), since stochastic convergence of

the rest of parameters in θ̂ATE,S and θ̂ATT,S follows by the same argument as in the proof of claim

(i) of the current lemma. Consider∥∥γ̂S − γn∥∥ ≤ ∥∥γ̂S − γ̃Sn∥∥+
∥∥γ̃Sn − γSn∥∥+

∥∥γSn − γn∥∥ . (A.5)

19Theorem 2.1 of Newey and McFadden (1994) consider fixed DGP asymptotics. Their proof can be adjusted to

the case with a drifting sequence of DGPs.
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In what follows, we prove each term in the right hand side vanishes asymptotically. By (A.4), the

uniform law of large numbers of the sample log likelihood holds also over the constrained parameter

space ΓS = {γ ∈ Γ : γSc = 0}. Hence, combined with the compactness of the parameter space of

γ, continuity of the population log-likelihood, and the global identification of γ̃Sn in the constrained

parameter space ΓS lead to
∥∥γ̂S − γ̃Sn∥∥ = oPn,δ(1) by Theorem 2.1 of Newey and McFadden (1994).

Assumptions DGP (iii) implies that the third term in the right hand side of (A.5) is o (1). We show

by contradiction that the second term in the right hand side of (A.5) is o (1). Suppose for some

ε > 0,
∥∥γ̃Sn − γSn∥∥ > ε holds for all large n. Since

∥∥γSn − γn∥∥ = o(1) and EPn,δ [l(Z, γ)] is continuous

in γ, it holds EPn,δ [l(Z, γ
S
n )] = EPn,δ [l(Z, γn)] + o(1). Note that both γSn and γ̃Sn belong to ΓS , and

hence EPn,δ [l(Z, γ
S
n )] = EPn,δ [l(Z, γn)]+o(1) and

∥∥γ̃Sn − γSn∥∥ > ε contradict the global identification

assumption of γ̃Sn (Assumption REG (ii)). We hence conclude
∥∥γ̃Sn − γSn∥∥ = o(1).

To show (iii), consider the derivative matrix of the ATE moment conditions,

∂

∂θ′
mATE

(
Z, θATE

)
=


−g2+(D−G)(g′−g2+2g2G)

[G(1−G)]2
WW ′ 0 0[

−Dg
G2 + (1−D)g

(1−G)2

]
(Y − τATED − µ)W ′ −D

G −D
G −

1−D
1−G

−Dg
G2 (Y − τATED − µ) −D

G −D
G

 ,

where we omit the argument of G(W ′γ), g(W ′γ), and g′(W ′γ) ≡ d
dag(a)

∣∣
a=W ′γ

and notate them

by G, g, and g′, respectively. Having obtained ‖γ̂ − γn‖ = oPn,δ(1), the boundedness of g and g′

(Assumption DGP (ii)) and Assumption REG (iv) guarantee that every element in this deriva-

tive matrix satisfy the two conditions of Lemma A.1. Hence, by Lemma A.1, we conclude that∥∥ 1
n

∑n
i=1

∂
∂θ′m

ATE
(
Zi, θ̄

ATE
)
− EPn,δ

[
∂
∂θ′m

ATE (Z, θn)
]∥∥ = oPn,δ (1) holds. The convergence of

EPn,δ
[
∂
∂θ′m

ATE (Z, θn)
]

to MATE follows by the continuity of G(·), g(·), and g′(·), and an applica-

tion of the dominated convergence theorem.

To show (iv) consider,

mATE
(
Z, θATE

)
mATE

(
Z, θATE

)′
=


(D−G)2g2

G2(1−G)2WW ′
[
Dg
G2 (Y1 − E(Y1))− (1−D)g

(1−G)2 (Y0 − E(Y0))
]
W ′ Dg

G2 (Y1 − E(Y1))W ′

· D
G2 (Y1 − E(Y1))2 + 1−D

(1−G)2 (Y0 − E(Y0))2 D
G2 (Y1 − E(Y1))2

· · D
G2 (Y1 − E(Y1))2

 .

Bounded g(·) and Assumption REG (iv) guarantee conditions (i) and (ii) of Lemma A.1. Hence,

similarly to the proof of (iii), the conclusion is obtained by applying Lemma A.1.

To show (v), note that Assumption REG (iv) implies the Lindeberg condition for the ATE

moment conditions. Therefore, the Lindeberg-Feller central limit theorem for a triangular array of

random vectors leads to(
ΣATE
n

)−1/2

(
1√
n

n∑
i=1

mATE
(
Zi, θ

ATE
n

)) Pn N (0, IK+2) ,
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where ΣATE
n = EPn,δ

[
mATE

(
Z, θATEn

)
mATE

(
Z, θATEn

)′]
. Since ΣATE

n → ΣATE as n → ∞, the

desired conclusion follows.

Proof of Proposition 2.1. (ATE case) The NPW-ATE estimator in submodel S solves

0 = ΛSmATE
n

(
θ̂ATE,S

)
.

By the mean value expansion around θATEn , we have

0 = ΛSmATE
n

(
θATEn

)
+ ΛS

[
∂

∂θ′
mATE
n

(
θATE∗

)]
γ̂S − γn
µ̂S − µ0

τ̂ATES − τATE0



= ΛSmATE
n

(
θATEn

)
+ ΛS

[
∂

∂θ′
mATE
n

(
θATE∗

)]Λ′S


γ̂S − γn,S
µ̂S − µ0

τ̂ATES − τATE0

− Λ′Sc


γn,Sc − γ0,Sc

0

0


 ,

where θATE∗ is a convex combination of θ̂ATE,S and θATEn . Here, the second equality is obtained by

plugging in γ̂S = π′S γ̂S + π′Scγ0. By Lemma A.2 (ii),
∥∥θATE∗ − θATEn

∥∥ = oPn,δ (1). Lemma A.2 (iii)

then leads to ∂
∂θ′mn

(
θATE∗

)
−MATE = oPn,δ (1). By Lemma A.2 (v) and Assumption DGP (iii),

the asymptotic distribution of
√
n


γ̂S − γn,S
µ̂S − µ0

τ̂ATES − τATE0

 is obtained as

√
n


γ̂S − γn,S
µ̂S − µ0

τ̂ATES − τATE0



=−
(
ΛSM

ATEΛ′S
)−1

ΛS
(√
nmATE

n

(
θATEn

))
+
(
ΛSM

ATEΛ′S
)−1

ΛSM
ATEΛ′Sc


δSc

0

0

+ oPn,δ (1)

Pn,δ
 −

(
ΛSM

ATEΛ′S
)−1

ΛS ×N
(
0,ΣATE

)
+
(
ΛSM

ATEΛ′S
)−1

ΛSM
ATEΛ′Sc


δSc

0

0

 (A.6)

In order to compute the asymptotic variance of
√
n
(
τ̂ATES − τATE0

)
, we focus on the variance of the

bottom element of − (ΛSMΛ′S)−1 ΛSmATE
(
Zi, θ

ATE
0

)
. The expectation of the derivative matrix
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of the full moment conditions at P0 is given by

MATE = EP0

(
∂

∂θ′
mATE

(
Zi, θ

ATE
0

))

=


−EP0 (hh′) 0 0

EP0

[(
− g
G

(
µ1 (X)− τATE0 − µ0

)
+ g

1−G (µ0 (X)− µ0)
)
W ′
]
−2 −1

0′ −1 −1

 .

Hence,

ΛSM
ATEΛ′S =


−EP0 (hSh

′
S) 0 0

EP0

[(
− g
G

(
µ1 (X)− τATE0 − µ0

)
+ g

1−G (µ0 (X)− µ0)
)
W ′S

]
−2 −1

0′ −1 −1

 ,

(
ΛSM

ATEΛ′S
)−1

=


−EP0 (hSh

′
S)−1 0 0

−EP0

(
g

1−G (µ0 (X)− µ0)W ′S

)
EP0 (hSh

′
S)−1 −1 1

EP0

((
g
G

(
µ1 (X)− τATE0 − µ0

)
+ g

1−G (µ0 (X)− µ0)
)
W ′S

)
EP0 (hSh

′
S)−1 1 −2

 .

By noting

EP0

( g
G

(
µ1 (X)− τATE0 − µ0

)
W ′S

)
= EP0

(
D −G
G

(
µ1 (X)− τATE0 − µ0

)
h′S

)
and

EP0

(
g

1−G
(µ0 (X)− µ0)W ′S

)
= EP0

(
D −G
1−G

(µ0 (X)− µ0)h′S

)
,

we can express the bottom element of − (ΛSMΛ′S)−1 ΛSmATE
(
Zi, θ

ATE
0

)
as

− EP0

[(
D −G
G

(
µ1 (X)− τATE0 − µ0

)
+
D −G
1−G

(µ0(X)− µ0)

)
h′S

]
EP0

(
hSh

′
S

)−1
hS,i

−
(
Di

Gi
+

1−Di

1−Gi

)(
Yi − τATE0 Di − µ0

)
+ 2

(
Di

Gi
+

1−Di

1−Gi

)
(Yi − τDi − µ0)Di

=L⊥
{(

D −G
G

(
µ1 (X)− τATE0 − µ0

)
+
D −G
1−G

(µ0(X)− µ0)

)∣∣∣∣hS}+
Di

Gi
(Y1i − µ1 (Xi))

−
(

1−Di

1−Gi

)
(Y0i − µ0(Xi)) +

(
∆µ(Xi)− τATE0

)
.

These five terms are mean zero and mutually uncorrelated. The sum of their variances therefore

gives the asymptotic variance of
√
n
(
τ̂ATES − τATE0

)
.

Regarding the bias term, (A.6) shows that it is given by the bottom element of the second term
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in the right hand side, which is calculated as

− EP0

[(
D −G
G

(
µ1 (X)− τATE0 − µ0

)
+
D −G
1−G

(µ0(X)− µ0)

)
h′S

]
EP0

(
hSh

′
S

)−1
EP0

(
hSh

′
Sc
)
δSc

+ EP0

[(
D −G
G

(
µ1 (X)− τATE0 − µ0

)
+
D −G
1−G

(µ0(X)− µ0)

)
h′Sc

]
δSc

=EP0

[
L⊥
{(

D −G
G

(
µ1 (X)− τATE0 − µ0

)
+
D −G
1−G

(µ0(X)− µ0)

)∣∣∣∣hS}h′Sc] δSc .
(ATT case) The asymptotic distribution of the NPW-ATT estimator follows by replacing MATE

and ΣATE in (A.6) with MATT and ΣATT . Since

MATT =


−EP0 (hh′) 0 0

EP0

(
g

1−G (µ0 (X)− α0)W ′
)
−2Q −Q

0′ −Q −Q

 ,

(
ΛSM

ATTΛ′S
)−1

is obtained as

(
ΛSM

ATTΛ′S
)−1

=


−EP0 (hSh

′
S)−1 0 0

− 1
QEP0

(
g

1−G (µ0 (X)− α0)W ′S

)
EP0 (hSh

′
S)−1 −Q−1 Q−1

1
QEP0

(
g

1−G (µ0 (X)− α0)W ′S

)
EP0 (hSh

′
S)−1 Q−1 −2Q−1

 .

By noting identity EP0

(
g

1−G (µ0 (X)− α0)W ′S

)
= EP0

(
D−G
1−G (µ0 (X)− α0)h′S

)
, we can express

the bottom element of −
(
ΛSM

ATTΛ′S
)−1

ΛSmATT
(
Zi, θ

ATT
0

)
as

− 1

Q
EP0

(
D −G
1−G

(µ0 (X)− α0)h′S

)
EP0

(
hSh

′
S

)−1
hS,i

− 1

Q

[
Di + (1−Di)

(
Gi

1−Gi

)]
(Yi − τDi − α0)

+
2

Q

[
Di + (1−Di)

(
Gi

1−Gi

)]
(Yi − τDi − α0)Di

=− 1

Q
L

{(
D −G
1−G

)
[µ0 (X)− α0]

∣∣∣∣hS}+
Di

Q
(Yi − µ1 (X))− 1−Di

Q

Gi
1−Gi

(Yi − µ0 (X))

(A.7)

+

(
D −G
Q

)[
µ1 (X)− α0 +

G

1−G
(µ0 (X)− α0)− τ0

]
+
G

Q
(∆µ(X)− τ0) .

The first term of (A.7) admits the following decomposition,

− 1

Q
L

{(
D −G
1−G

)
[µ0 (X)− α0]

∣∣∣∣hS}
=

1

Q
L
{

(D −G)(∆µ(X)− τATT0 )|hS
}

− 1

Q
L

{
(D −G)

[
µ1 (X)− α0 +

G

1−G
(µ0 (X)− α0)− τATT0

]∣∣∣∣hS} .
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Hence, we can express (A.7) as

1

Q
L
{

(D −G)(∆µ(X)− τATT0 )|hS
}

+
1

Q
L⊥
{

(D −G)

[
µ1 (X)− α0 +

G

1−G
(µ0 (X)− α0)− τATT0

]∣∣∣∣hS}
+
Di

Q
(Yi − µ1 (X))− 1−Di

Q

Gi
1−Gi

(Yi − µ0 (X)) +
G

Q

(
∆µ(X)− τATT0

)
.

Since these five terms are mean zero and mutually uncorrelated, the sum of their variances gives

the asymptotic variance of
√
n
(
τ̂ATTS − τATTn

)
.

To compute the bias term, focusing on the bottom element of
(
ΛSM

ATTΛ′S
)−1

ΛSM
ATTΛ′Sc


δSc

0

0


leads to

− 1

Q
EP0

[
D −G
1−G

[µ0 (X)− α0]h′S

]
EP0

(
hSh

′
S

)−1
EP0

(
hSh

′
Sc
)
δSc

+
1

Q
EP0

[
D −G
1−G

[µ0 (X)− α0]h′Sc

]
δSc

=
1

Q
EP0

[{
D −G
1−G

[µ0 (X)− α0]− EP0

[
D −G
1−G

[µ0 (X)− α0]h′S

]
EP0

(
hSh

′
S

)−1
hS

}
h′Sc

]
δSc

=EP0

[
1

Q
L⊥
{(

D −G
1−G

)
[µ0 (X)− α0]

∣∣∣∣hS}h′Sc] δSc .

The next lemma proves the representation of the Bayes asymptotic MSE (3.6) given in the main

text.

Lemma A.3 Suppose Assumptions DGP and REG. Let (B̂, Ω̂) be consistent estimators for (B,Ω)

along {Pn,δ}. For any ĉ ∈ C(B,Ω), the Bayes asymptotic MSE can be represented as (3.6) in the

main text.

Proof. Fix δ
Sc

. Since (B̂, Ω̂)
Pn,δ→ (B,Ω) by the assumption and δ̂Sc

Pn,δ
 ∆Sc , for any ĉ ∈ C(B,Ω),

ĉ = c
(
δ̂Sc , B̂, Ω̂

)
Pn,δ
 c(∆Sc) holds by the continuous mapping theorem. Combined with the weak

convergence of t̂
Pn,δ
 Zτ (see equation (3.4) in the main text), the asymptotic MSE can be written

as

R∞(ĉ, δSc) = lim
ζ→∞

E∆Sc ,Zτ |δSc
[
min

{
(c(∆Sc)

′Zτ )2, ζ
}]

= E∆Sc |δSc

[
c(∆Sc)

′EZτ |∆Sc ,δSc

(
ZτZ

′
τ

)
c(∆Sc)

]
.
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The claim follows by noting

EZτ |∆Sc ,δSc

(
ZτZ

′
τ

)
=
[
BδSc + Ω21Ω−1

11

(
∆Sc − δSc

)] [
BδSc + Ω21Ω−1

11

(
∆Sc − δSc

)]′
+
(
Ω22 − Ω21Ω−1

11 Ω12

)
=K

(
∆Sc , δSc

)
.

Proof of Proposition 3.1. (i) Solving the Bayes optimal ĉ(·) with risk criterion (3.6) is equivalent

to solving for the posterior Bayes action ĉ(∆Sc) for every possible realization of ∆Sc . Hence, let

∆Sc be given, and consider minimizing the posterior risk for c
(
∆Sc

)
subject to the normalization

constraint,

min
c(∆Sc)

c
(
∆Sc

)′
EδSc |∆Sc

[
K
(
∆Sc , δSc

)]
c
(
∆Sc

)
,

s.t. c
(
∆Sc

)′
1 = 1,

If Kpost

(
∆Sc

)
= EδSc |∆Sc

[
K
(
∆Sc , δSc

)]
is nonsingular, this is a quadratic minimization problem

with a strictly convex objective function. It therefore has a unique solution and the standard

Lagrangian optimization procedure yields c∗
(
∆Sc

)
of the proposition. Note that with proper

µ
(
δSc
)
, the minimized Bayes asymptotic MSE is bounded, because by considering a weight vector

that assigns 1 to the largest model, we haveˆ
E∆Sc |δSc

[
c∗
(
∆Sc

)′
K
(

∆Sc , δSc
)

c∗
(
∆Sc

)]
dµ
(
δSc
)
5 ω2

largest

ˆ
dµ
(
δSc
)

= ω2
largest <∞,

where ω2
largest is the asymptotic variance of the NPW-ATT estimator in the largest model.

(ii) Let φ(· : δSc , Ω̂11) be the probability density function of the multivariate normal distribution

with mean δSc and covariance matrix Ω̂11. Note that K̂post(δ̂Sc) can be written as

K̂post(δ̂Sc) =

´
δSc

K̂(δ̂Sc , δSc)φ(δ̂Sc : δSc , Ω̂11)dµ(δSc)´
δSc

φ(δ̂Sc : δSc , Ω̂11)dµ(δSc)
.

By (3.7), K̂(δ̂Sc , δSc) is continuous in δ̂Sc and Ω̂11 in the neighborhood of true Ω11. The Gaussian

probability density function φ(δ̂Sc : δSc , Ω̂11) is also continuous in δ̂Sc and Ω̂11 in the neighborhood

of true Ω11. The dominating convergence theorem then shows that K̂post(δ̂Sc) is continuous in δ̂Sc

and Ω̂11 in the neighborhood of true Ω11. Therefore K̂post(δ̂Sc)
Pn,δ
 Kpost(∆Sc) and c∗(δ̂Sc , B̂, Ω̂)

Pn,δ
 

c∗(∆Sc) hold by the continuous mapping theorem. Hence, c∗
(
δ̂Sc , B̂, Ω̂

)
attains the lower bound

of the Bayes asymptotic MSE, RBayes∞
(
c∗
(
δ̂Sc , B̂, Ω̂

))
= inf ĉ∈C(B,Ω)R

Bayes
∞ (ĉ).

Proof of asymptotic validity of CIATT1−β (δ̂Sc , t̂).
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Let δ
Sc

be given. By the construction of CIATT1−β1
(·, ·|δSc) and the weak convergence of (δ̂

Sc
, t̂)

shown in ((3.4)), it holds

1− β1 = lim
n→∞

Pn,δ

(
τATTn ∈ CIATT1−β1

(δ̂
Sc
, t̂|δSc)

)
≤ lim

n→∞
Pn,δ

(
τATTn ∈ CIATT1−β1

(δ̂
Sc
, t̂|δSc), δSc ∈ CS1−β2

)
+ lim
n→∞

Pn,δ
(
δSc /∈ CS1−β2

)
≤ lim

n→∞
Pn,δ

(
τATTn ∈ CIATT1−β (δ̂

Sc
, t̂)
)

+ β2

where the third line follows by noting that on the event δSc ∈ CS1−β2 , the union confidence

intervals CIATT1−β (δ̂
Sc
, t̂) contain CIATT1−β1

(δ̂
Sc
, t̂|δSc). Hence, limn→∞ Pn,δ

(
τATTn ∈ CIATT1−β (δ̂

Sc
, t̂)
)
≥

1−β1−β2 = 1−β. The valid coverage does not depend on the value of δ nor a construction of the

sequences {Pn,δ}, and thereby the asymptotic coverage is uniformly valid over the class of DGPs

satisfying Assumptions DGP (i) - (ii) and REG.
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