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Abstract

This paper proposes an asymptotically valid permutation test for a testable implication of

the identification assumption in the regression discontinuity design (RDD). Here, by testable

implication, we mean the requirement that the distribution of observed baseline covariates should

not change discontinuously at the threshold of the so-called running variable. This contrasts to

the common practice of testing the weaker implication of continuity of the means of the covariates

at the threshold. When testing our null hypothesis using observations that are “close” to the

threshold, the standard requirement for the finite sample validity of a permutation does not

necessarily hold. We therefore propose an asymptotic framework where there is a fixed number

of closest observations to the threshold with the sample size going to infinity, and propose

a permutation test based on the so-called induced order statistics that controls the limiting

rejection probability under the null hypothesis. In a simulation study, we find that the new test

controls size remarkably well in most designs. Finally, we use our test to evaluate the validity of

the design in Lee (2008), a well-known application of the RDD to study incumbency advantage.

KEYWORDS: Regression discontinuity design, permutation tests, randomization tests, induced
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1 Introduction

The regression discontinuity design (RDD) has become widespread in recent years to retrieve causal

treatment effects; see Lee and Lemieux (2010) and Imbens and Lemieux (2008) for exhaustive

surveys. A unique element of the design is the discontinuous treatment rule. This rule allocates a

binary treatment when an observed predetermined variable, termed the running variable, crosses a

known threshold. The design allows the researcher to identify causal effects at the threshold under

a weak continuity assumption; shown by Hahn et al. (2001). Moreover, the RDD is commonly

compared to a local randomized experiment, which further strengthens its internal validity; see

Lee (2008). This credible identification strategy along with the abundance of discontinuous rules

in practice is probably the main reason that has made the RDD increasingly popular in empirical

applications - see, for recent examples, Zimmerman (2014) for test score discontinuities, Card et al.

(2008) for time discontinuities, and Dell (2010) for geography discontinuities.

The identification assumption in the RDD states that individuals have imprecise control over

the running variable, which translates into the distribution of observed baseline covariates and

unobserved individual characteristics to be continuous in the running variable. However, due to the

public knowledge of the threshold, agents may have the ability to sort precisely around the threshold

in many applications, and this in turn invalidates the basic requirement for the RDD design to

deliver valid estimates (see Urquiola and Verhoogen, 2009, for an explicit example using class size

constraints as a discontinuity). It is thus important to try and verify the validity of the assumption

to ensure credibility of the estimates. Yet, our ability to perform a test is fundamentally limited as

the identification condition involves a statement about the distribution of observed and unobserved

characteristics. A natural alternative in such context is to focus on a testable implication of the

identification condition, which is simply a statement on the distribution of observed covariates.

More specifically, in the absence of sorting we would expect the distribution of the covariates

to vary smoothly at the threshold; see Lee (2008) and Section 2 for a formalization. It is then

potentially possible to construct a test for this hypothesis, and a rejection would therefore indicate

a failure of the identification assumption. As a matter of fact, a weaker implication of continuity of

means at the threshold is instead commonly tested in empirical work. Another popular test that

is indicative of sorting is the one proposed by McCrary (2008). This test uses the density of the

running variable to examine if there is a disproportionate mass of individuals on one side of the

threshold, which represents an alternative implication of the identification assumption.

In this paper we propose an approximate permutation test for a testable implication of the

identification assumption in the RDD. We test the hypothesis of continuity of the distribution

of the covariates at the threshold by using an approximate permutation test based on induced

order statistics. This test provides certain benefits, over current tests, due to the novel asymptotic

framework we propose for its validity. First, our permutation test controls the asymptotic null
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rejection probability under fairly mild conditions, and delivers finite sample validity under stronger,

but yet plausible, conditions. Second, our test is more powerful against some alternatives than

tests based on the difference in means at either side of the threshold, which appears to be common

practice in applied work. Third, our test is arguably simple to implement as it only involves

computing empirical cdf’s with a fixed number of observations closest to the threshold, a tuning

parameter in our framework. This contrasts with existing alternatives that require local linear

estimation and delicate bandwidth choices.

The framework for our test is based on the simple intuition that observations close to the thresh-

old are approximately randomly assigned to either side of it when the null hypothesis holds. This

allows us to permute these observations to conduct an approximately valid test. By approximate

test, we mean that the justification for its validity is asymptotic in nature and exploits the fact that

the invariance inherently required for permutation tests may not hold in finite samples but it does

hold in the limit experiment, as the sample size grows. To be specific, the asymptotic framework

we use consists of a fixed number of closest observations to the threshold with the sample size going

to infinity. These asymptotics are intended to capture a situation where the number of effective

observations close to the threshold is small relative to the sample size. Formally, we exploit the

framework, with novel additions, from Canay, Romano and Shaikh (2014), which first developed

the insight of approximating randomization tests in this manner. Further, in an important inter-

mediate stage, we use induced order statistics, c.f. Bhattacharya (1974), to frame our problem and

develop some insightful results of independent interest.

Despite the many differences, this paper is fundamentally related to the numerous testing

procedures present in the RDD. Conceptually, the paper is most closely related to Shen and Zhang

(2014), which tests the hypothesis of equal outcome distributions at the threshold. This test,

similar to common practice, uses an asymptotic framework that depends on a bandwidth parameter

that vanishes with sample size. In contrast to ours, such a framework requires the number of

effective observations used in estimation to become large as the sample size grows so that critical

values of some asymptotic distributional approximation can be used. For further examples using

this asymptotic approach see Calonico et al. (2014) for robust confidence interval, Imbens and

Kalyanaraman (2012) for optimal bandwidth choice, and Frandsen et al. (2012) for quantiles. In

addition, our framework is considerably different from the traditional finite sample one pursued in

Cattaneo et al. (2015), which performs randomization inference in the RDD.

The structure of the paper is organized as follows. Section 2 introduces the notation and the

hypotheses of interest. Section 3 describes our permutation test based on a fixed number of closest

observations and highlights how it does not directly map into the framework of Canay et al. (2014).

Section 4 presents the formal properties of the new test. To study the finite sample properties our

test, we perform simulations in Section 5. In particular, we compare our test to the one proposed

by Shen and Zhang (2014). In Section 6, we implement our test to reevaluate the validity of the
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design in Lee (2008), a familiar application of the RDD to study incumbency advantage.

2 Setup and Notation

Assume there are random variables ({Y (a)}a∈A,W,Z) ∼ Q ∈ Q and let {({Yi(a)}a∈A,Wi, Zi) :

1 ≤ i ≤ n} be a random sample from Q. The response function Y (·) is a mapping from treatment

assignments taking values in A = {0, 1} to outcomes in R. We refer to the vector of observed char-

acteristics (W,Z) ∈ W ×Z, as covariates or pretreatment variables. The unobserved heterogeneity

is denoted by U . The observed outcome Y from the experiment is given by

Yi = Yi(1)Ai + Yi(0)(1−Ai) , (1)

where the assignment of the treatment is deterministic and specifically follows a discontinuous rule,

Ai = I{Zi ≥ 0} .

The discontinuous assignment rule above allows us to identify the average treatment effect at

the threshold by basically comparing marginal individuals just above and below it. Formally, Hahn

et al. (2001) established that continuity of E[Y (1)|Z] and E[Y (0)|Z] at the threshold is sufficient to

identify the average treatment at the threshold; a similar reasoning also holds for other parameters

of interest at the threshold.

Despite the continuity assumption appearing weak, Lee (2008) states two practical limitations.

First, it is difficult to determine whether the assumption is plausible as it is not a description of

a treatment-assigning process. Second, the assumption is fundamentally untestable. Motivated

by these limitations, Lee (2008, Proposition 2) shows that an alternative identification condition,

which requires that the cdf of Z conditional on (W,U) is continuously differentiable in Z at Z = 0,

translates into the following simple condition:

Assumption 2.1. P{W ≤ w,U ≤ u|Z = z} is continuous at z = 0 for all w and u.

This assumption, referred to as local randomization assumption, has a clear behavioral inter-

pretation. It allows individuals to have imprecise control over the running variable, yet restricts

deterministic sorting around the threshold. In addition, a test can be constructed to empirically

assess this assumption. Although it cannot be tested directly due to the presence of the unobserv-

able U , we can instead evaluate the implication of continuity of the distribution of the observed

predetermined variables W at the threshold Z = 0. See Lee (2008) and Lee and Lemieux (2010) for

a further exposition of this assumption and an interpretation of it in terms of a locally randomized

experiment.
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In this paper we propose a test for this null hypothesis of continuity in the distributions of the

predetermined variables W at the threshold Z = 0. There are certain elements of our hypothesis

of interest that are worth emphasizing. First, it is testing an implication of Assumption 2.1 that

integrates out the unobserved random variable U . It is however superior, in terms of power, to

the weaker one of continuity in means that practitioners commonly test. Specifically, our test will

be more powerful against a class of alternatives consisting of different distributions with equal

means. Second, our hypothesis is also conceptually different to one of interest in the popular

manipulation test proposed in McCrary (2008). This test exploits another implication of the

identification assumption proposed by Lee (2008); that is, the continuity of the unconditional

density of Z at the threshold.

To formalize the testing problem, let X(n) = {(Yi,Wi, Zi) : 1 ≤ i ≤ n} ∼ Pn ∈ Pn denote

the observed data, where Pn is a set of distributions on a sample space Xn. To better understand

the test we propose in this paper, it is useful to represent the covariates W using the potential

outcomes notation. To this end, let the observed covariate W taking values in W be

Wi = Wi(1)Ai +Wi(0)(1−Ai) , (2)

where Ai = I{Zi ≥ 0} as before, so that Wi = Wi(0) if Zi < 0 and Wi = Wi(1) if Zi ≥ 0. We

denote by H0(w|z) the conditional on Z = z cdf of W (0) and by H1(w|z) the conditional on Z = z

cdf of W (1). Using this notation, the researcher is interested in testing

H0 : Pn ∈ Pn,0 versus H1 : Pn ∈ Pn \Pn,0 , (3)

where

Pn,0 = {Pn ∈ Pn : H0(w|0) = H1(w|0) for all w ∈ W} ,

is the subset of distributions such that the conditional distribution of W is continuous at the

threshold Z = 0.

Remark 2.1. The testing problem in (3) is motivated with aim of verifying the validity of the

identification assumption. However, conceptually, the test proposed in this paper can be used to

perform distributional inference on the outcome at the threshold as in Shen and Zhang (2014). In

our simulations in Section 5, we compare the performance our test to the one proposed in Shen

and Zhang (2014) in the context of the testing problem in (3).

3 A permutation test based on induced ordered statistics

The test we propose is based on 2q values of {Wi : 1 ≤ i ≤ n}, such that q of those are associated

with the q closets values of {Zi : 1 ≤ i ≤ n} to the right of the threshold, and the remaining q are

associated with the q closet values of {Zi : 1 ≤ i ≤ n} to the left of the threshold. The number
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of observations, q, on either side of the threshold is a tuning parameter in our framework, and our

asymptotics are intended to approximate a situation where there are few observations “close” to

the threshold on either side. In other words, we consider a framework where q is fixed and n→∞.

To be precise in the construction of our test, denote by

Zn,(1) ≤ Zn,(2) ≤ · · · ≤ Zn,(n) (4)

the order statistics of the sample {Zi : 1 ≤ i ≤ n} and by

Wn,[1],Wn,[2], . . . ,Wn,[n] (5)

the corresponding values of the sample {Wi : 1 ≤ i ≤ n}, i.e., Wn,[j] = Wk if Zn,(j) = Zk for

k = 1, . . . , n. The random variables in (5) are called induced order statistics or concomitants of

order statistics, see David and Galambos (1974); Bhattacharya (1974).

In order to construct our test statistic, we first take the q closest values in (4) to the right of

zero and the q closest values to the left of zero. We denote these ordered values by

Z−n,(q) ≤ · · · ≤ Z
−
n,(1) < 0 and 0 ≤ Z+

n,(1) ≤ · · · ≤ Z
+
n,(q) , (6)

respectively, and the corresponding induced values in (5) by

W−n,[q], . . . ,W
−
n,[1] and W+

n,[1], . . . ,W
+
n,[q] . (7)

Note that while the values in (6) are ordered, those in (7) are not necessarily ordered.

Using the representation in (2), the random variables (W−n,[1], . . . ,W
−
n,[q]) are viewed as an inde-

pendent sample ofW (0) conditional on Z being “close” to zero from the left, while (W+
n,[1], . . . ,W

+
n,[q])

are viewed as an independent sample of W (1) conditional on Z being “close” to zero from the right.

We therefore use each of these two samples to compute empirical cdfs as follows,

Ĥ−n (w) =
1

q

q∑
j=1

I{W−n,[j] ≤ w} and Ĥ+
n (w) =

1

q

q∑
j=1

I{W+
n,[j] ≤ w} . (8)

Finally, letting

Sn = (Sn,1, . . . , Sn,2q) = (W−n,[1], . . . ,W
−
n,[q],W

+
n,[1], . . . ,W

+
n,[q]) , (9)

denote the pooled sample of induced order statistics, we can define our test statistic as

T (Sn) =

∫ ∞
−∞

(Ĥ−n (w)− Ĥ+
n (w))2dH̄n(w) , (10)

where H̄n(w) = (1/2)Ĥ−n (w) + (1/2)Ĥ+
n (w). The statistic T (Sn) in (10) is the usual Cramér Von

Mises test statistic, see Hajek et al. (1999, p. 101).
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We propose to compute the critical values of our test by a permutation test as follows. Let G

denote the set of all permutations π = (π(1), . . . , π(2q)) of {1, . . . , 2q} and let

Sπn = (Sn,π(1), . . . , Sn,π(2q)) ,

be the permuted vector Sn in (9) according to π. Let M = |G| be the cardinality of G and denote

by

T (1)(Sn) ≤ T (2)(Sn) ≤ · · · ≤ T (M)(Sn)

the ordered values of {T (Sπn) : π ∈ G}. For α ∈ (0, 1), let k = dM(1− α)e and define

M+(Sn) = |{1 ≤ j ≤M : T (j)(Sn) > T (k)(Sn)}|

M0(Sn) = |{1 ≤ j ≤M : T (j)(Sn) = T (k)(Sn)}| . (11)

Using this notation, the proposed test is given by

φ(Sn) =


1 T (Sn) > T (k)(Sn)

a(Sn) T (Sn) = T (k)(Sn)

0 T (Sn) < T (k)(Sn)

, (12)

where

a(Sn) =
Mα−M+(Sn)

M0(Sn)
.

It is important to understand that the test in (12) is not necessarily level α ∈ (0, 1) in finite

samples, and the justification for using this test relies on asymptotic arguments that we describe

in Section 4. To see why this is the case, note that under the null hypothesis in (3) it is not

necessarily true that the distribution of Sn is invariant to permutations of {1, . . . , 2q} - which is

required for the finite sample validity of a permutation test, see Lehmann and Romano (2005).

The lack of invariance in finite samples lies behind the fact that the random variables in Sn are not

draws from H0(w|0) and H1(w|0), but rather from H0(w|Z−n,(j)) and H1(w|Z+
n,(j)), j ∈ {1, . . . , q}.

Under the null hypothesis in (3), these two distributions are not necessarily the same and therefore

permuting the elements of Sn may not keep the joint distribution unaffected. However, if each of

these conditional cdfs are continuous in Z, it follows a sample from H0(w|Z−n,(j)) exhibits a similar

behavior to a sample from H0(w|0), at least for n sufficiently large. This insight of approximating

randomization tests when the randomization hypothesis does not hold in finite samples, but is

satisfied in the limit, was first developed by Canay et al. (2014) in a context where the group

of transformations G was essentially sign-changes. In this paper we show that such insight can

be applied to permutations tests under a set of conditions that capture the fact that several test

statistics for our problem, including the one in (10), are discontinuous and do not satisfy the no-ties

condition required in Canay et al. (2014).
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To see this last point more clearly, it is convenient to write the test statistic in (10) using

an alternative representation. This representation may be also more convenient for implementing

the test in practice, and it makes some of the arguments used in the proof of Theorem 4.2 more

transparent. Let

Rn,i =

2q∑
j=1

I{Sn,j ≤ Sn,i} , (13)

be the rank of Sn,i in the pooled vector Sn in (9). Let R∗n,1 < R∗n,2 < · · · < R∗n,q denote the

increasingly ordered ranks Rn,1, . . . , Rn,q corresponding to the first sample (i.e., first q values) and

R∗n,q+1 < · · · < R∗n,2q denote the increasingly ordered ranks Rn,q+1, . . . , Rn,2q corresponding to the

second sample (i.e., last q values). Letting

T ∗(Sn) =
1

q

q∑
i=1

(R∗n,i − i)2 +
1

q

q∑
j=1

(R∗n,q+j − j)2 (14)

it follows that

T (Sn) =
1

q
T ∗(Sn)− 4q2 − 1

12q
,

see Hajek et al. (1999, p. 102). The expression in (14) immediately shows two properties of the

statistics T (s). First, T (s) is not a continuous function of s as the ranks make discrete changes

with s. Second, T (s) = T (s′) whenever s and s′ share the same ranks, which immediately follows

from the definition of T ∗(s). This last property is what makes rank test statistics violate the no-ties

condition in Canay et al. (2014).

Remark 3.1. When M is too large the researcher may use a stochastic approximation to φ(Sn)

without affecting the properties of our test. More formally, let

Ĝ = {π1, . . . , πB} , (15)

where π1 = {1, . . . , 2q} is the identity permutation and π2, . . . , πB are i.i.d. Uniform(G). Theorem

4.2 in the next section remains true if, in the construction of φ(Sn), G is replaced by Ĝ.

Remark 3.2. The test in (12) is possibly randomized. In case one prefers not to randomize, note

that the non-randomized test that rejects if T (Sn) > T (k)(Sn) is asymptotically level α by Theorem

4.2. In our simulations, this test has rejection probability under the null hypothesis only slightly

less than α when M is not too small.

Remark 3.3. The formal results we present in the next section are not restricted to the Cramér

Von Mises test statistic in (10) and apply to other rank statistics satisfying our assumptions, e.g.,

the Kolmogorov Smirnov statistics. We restrict our discussion to the statistic in (10) for simplicity

of exposition.
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4 Main Results

In this section we derive the asymptotic properties of the test φ(Sn) in (12) using an asymptotic

framework where q is fixed and n → ∞. These asymptotics are intended to capture a situation

where there are few observations that are “close” to the threshold Z = 0 on either side. We do

this in two parts. We first derive a result on the asymptotic properties of induced order statistics

in (7) that may be of independent interest and provides an important milestone in proving the

asymptotic validity of our test. We then use this intermediate result and use arguments similar to

those in Canay et al. (2014) to prove our main theorem.

4.1 A result on induced order statistics

Consider the order statistics in (4) and the induced order statistics in (5). As in the previous

section, denote the q closest values in (4) to the right of zero and the q closest values to the left of

zero by

Z−n,(q) ≤ · · · ≤ Z
−
n,(1) < 0 and 0 ≤ Z+

n,(1) ≤ · · · ≤ Z
+
n,(q) ,

respectively, and the corresponding induced values in (5) by

W−n,[q], . . . ,W
−
n,[1] and W+

n,[1], . . . ,W
+
n,[q] .

This representation implies that Wi = Wi(0) if Zi < 0 and Wi = Wi(1) if Zi ≥ 0, and therefore it

follows that W−n,[j] = Wn,[j](0) and W+
n,[j] = Wn,[j](1), by construction. Recall that H0(w|z) is the

conditional on Z = z cdf of W (0) and H1(w|z) the conditional on Z = z cdf of W (1). To prove

the main result in this section we make the following assumptions.

Assumption 4.1. The random variable Z has a continuous distribution with cdf F and density f

such that f(z) > 0 for all z in a neighborhood of zero.

Assumption 4.2. The conditional cdfs H0(w|z) and H1(w|z) are continuous functions of z.

Theorem 4.1. Let Assumptions 4.1 and 4.2 hold. Then,

Pr


q⋂
j=1

{W−n,[j] ≤ w
−
j }

q⋂
j=1

{W+
n,[j] ≤ w

+
j }

 = Πq
j=1H0(w

−
j |0) ·Πq

j=1H1(w
+
j |0) + o(1) , (16)

as n→∞, for any (w−1 , . . . , w
−
q , w

+
1 , . . . , w

+
q ) ∈ R2q.

Theorem 4.1 states that the joint distribution of the induced order statistics are asymptot-

ically independent, with the first q random variables having limit distribution H0(w|0) and the

last q random variables having limit distribution H1(w|0). The proof relies on the fact the
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induced order statistics Sn = (W−n,[q], . . . ,W
−
n,[1],W

+
n,[1], . . . ,W

+
n,[q]) are conditionally independent

given (Z1, . . . , Zn), with conditional cdfs

H0(w|Z−n,(q)), . . . ,H0(w|Z−n,(1)), H1(w|Z+
n,(1)), . . . ,H1(w|Z+

n,(q)) .

The result then follows by showing that Z−n,(j) = op(1) and Z+
n,(j) = op(1) for all j = 1, . . . , q, and

invoking standard properties of weak convergence.

Theorem 4.1 plays a fundamental role in the proof of Theorem 4.2 in the next section. It is the

intermediate step that guarantees that, under the null hypothesis in (3), we have

Sn
d→ S = (S1, . . . , S2q) , (17)

where (S1, . . . , S2q) are i.i.d. with cdf H0(w|0) = H1(w|0). This implies that Sπ
d
= S for all π ∈ G,

which means that the limit random variable S is indeed invariant to permutations. In addition

to Assumptions 4.1 and 4.2, we also require that the random variable W is either continuous or

discrete to prove the main result of the next section.

Assumption 4.3. The scalar random variables W (0) and W (1) are continuously distributed con-

ditional on Z = 0.

Assumption 4.4. The scalar random variables W (0) and W (1) are discretely distributed with

m ∈ N points of support.

We note that Theorem 4.1 does not require either Assumption 4.3 or 4.4. We however use each

of these assumptions as a primitive condition of Assumptions 4.5 and 4.6 below, which are the

high-level assumptions we use to prove the asymptotic validity of the permutation test in (12) for

the scalar case. For ease of exposition, we present the extension to the case where W (0) and W (1)

are vectors of possibly continuous and discrete random variables in Appendix C.

4.2 Asymptotic validity under approximate invariance

In this section, we present our theory of permutation tests under approximate invariance. The

treatment in this section employs the asymptotic framework developed by Canay et al. (2014),

but with two important differences. First, our arguments illustrate a concrete case in which the

framework in Canay et al. (2014) can be used for the group of permutations as opposed to the

group of sign-changes. The result in Theorem 4.1 provides a fundamental step in this direction.

Second, we adjust the arguments in Canay et al. (2014) to accommodate rank test statistics, which

happen to be discontinuous and do not satisfy the so-called no-ties condition in Canay et al. (2014).

We do this by exploiting the specific structure of rank test statistics, together with the requirement

that the limit random variable S is either continuously or discretely distributed. We formalize our

requirements for the continuous case in the following assumption.
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Assumption 4.5. If Pn ∈ Pn,0 for all n ≥ 1, then

(i) Sn = Sn(X(n))
d→ S under Pn.

(ii) Sπ
d
= S for all π ∈ G.

(iii) S is an absolutely continuous random variable taking values in S ⊆ R.

(iv) T : S → R is invariant to rank, i.e., it only depends on the order of the elements in

(S1, . . . , S2q).

Assumption 4.5 states the high-level conditions that we use to show the asymptotic validity of

the permutation test we propose in (12) and formally state in Theorem 4.2 below. The assumption

is also written in a way that facilitates the comparison with the conditions in Canay et al. (2014). In

the particular testing problem we consider in this paper, Assumption 4.5 follows from Assumptions

4.1-4.3, which may be easier to interpret and impose clear restrictions on the primitives of the

model. To quickly see this, note that Theorem 4.1, and the statement in (17) in particular, imply

that Assumptions 4.5.(i)-(ii) follow from Assumptions 4.1-4.2. In turn, Assumption 4.5.(iii) follows

directly from Assumption 4.3. Finally, Assumption 4.5.(iv), as explained in Section 3, holds for

several rank test statistics and for the test statistic in (10) in particular. We formalize all these

results in Theorem 4.2, which shows that the permutation test defined in (12) leads to a test that

is asymptotically level α whenever Assumption 4.5 holds.

We next formalize our requirements for the discrete case in the following assumption.

Assumption 4.6. If Pn ∈ Pn,0 for all n ≥ 1, then

(i) Sn = Sn(X(n))
d→ S under Pn.

(ii) Sπ
d
= S for all π ∈ G.

(iii) S and Sn are discrete random variables taking values in S ⊆ R with |S| = m for all n ≥ 1.

Parts (i) and (ii) of Assumption 4.6 coincide with parts (i) and (ii) of Assumption 4.5 and,

accordingly, follow from Assumptions 4.1-4.2. Assumption 4.6.(iii) accommodates a case not allowed

by Assumption 4.5.(iii), which required S to be absolutely continuous. This is important as many

covariates are discrete in applications; see Section 6. Note that here we also require the random

variable Sn to be discrete, as opposed to the continuous case. However, Assumption 4.6 does not

impose any requirement on the test statistic T : S → R.

We now formalize our main result in Theorem 4.2, which shows that the permutation test

defined in (12) leads to a test that is asymptotically level α whenever either Assumption 4.5 or

Assumption 4.6 hold. In addition, the same theorem also shows that Assumptions 4.1-4.4 are

sufficient primitive conditions for the asymptotic validity of our test.
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Theorem 4.2. Suppose X(n) ∼ Pn ∈ Pn and consider the problem of testing (3). Let Sn : Xn → S,

T : S → R and G : S → S be such that either Assumption 4.5 or Assumption 4.6 holds. Then, for

any α ∈ (0, 1), φ(Sn) defined in (12) satisfies

EPn [φ(Sn)]→ α (18)

as n → ∞ whenever Pn ∈ Pn,0 for all n ≥ 1. Moreover, if T : S → R is the Cramér Von Mises

test statistic in (10) and Assumptions 4.1-4.2 and 4.3 hold, then Assumption 4.5 also holds and

(32) follows. Additionally, if instead Assumptions 4.1-4.2 and 4.4 hold, then Assumption 4.6 also

holds and (32) follows.

Remark 4.1. Theorem 4.2 implies that the proposed test is asymptotically similar, i.e., has limiting

rejection probability equal to α if Pn ∈ Pn,0 for all n ≥ 1. Although this property is not necessarily

shared by the non-randomized version of our test, see Remark 3.2, we find in our simulations that

the randomized and non-randomized versions of our test deliver similar rejection probabilities under

the null hypothesis in all designs.

Remark 4.2. Earlier work on the asymptotic behavior of randomization tests includes Hoeffding

(1952), Romano (1989), Romano (1990), and more recently, Chung and Romano (2013). The ar-

guments in these papers involve showing that the “randomization distribution” (see, e.g., Chapter

15 of Lehmann and Romano, 2005) settles down to a fixed distribution as |G| → ∞. Our asymp-

totic framework follows that in Canay et al. (2014), where |G| is fixed and the “randomization

distribution” will generally not settle down at all.

Remark 4.3. An asymptotically valid p-value for the test φ(Sn) defined in (12) can be computed

as

p̂ = p̂(Sn) =
1

|G|
∑
π∈G

I{T (Sπn) ≥ T (Sn)} . (19)

We report these p-values in Section 6. The same construction is also valid when M = |G| is large

and the researcher uses a stochastic approximation that replaces G with Ĝ, see Remark 3.1.

Remark 4.4. Theorem 4.2 shows the validity of the test in (12) when the scalar random variable

W is either discrete or continuous. However, the test statistic in (10) and the test construction in

(12) immediately apply to the case where W is a vector consisting of a combination of discrete and

continuously distributed random variables. In Appendix C we show the validity of the test in (12)

for the vector case, which is a result we use in the empirical application of Section 6.

5 Monte Carlo Simulations

In this section, we illustrate the finite sample performance of our procedure for the testing problem

in (3). We use the following designs to generate the sequence of random variables.

12
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Figure 1: Model A
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Figure 2: Model B
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Figure 3: Model C

Model A: Following Shen and Zhang (2014), let

W = 9.81− 0.14 · Z − 0.05 · Z2 + 0.02 · Z3 + U ,

where Z ∼ B(2, 2) − 1 and U ∼ N (0, 0.22). We use this design to highlight a model where the

permutation hypothesis holds only approximately. The arguments for the validity of our test in

this case are asymptotic.

Model B: Let

W =


15 + 2.0 · (Z − 0.5) + U if Z ≥ 0.25

15 + 2.0 · (−0.25) + U if − 0.25 < Z < 0.25

15 + 2.0 · Z + U if Z ≤ −0.25

,

where Z ∼ B(2, 2) − 1 and U ∼ N (0, 0.22). We use this design to highlight a model where the

permutation hypothesis holds true in a neighborhood around the threshold. In this case, our test

provides exact finite sample validity when all the observations used fall inside this neighborhood.

Model C: Let

W =


15 + 2.5 · (Z − 0.5) + 4 · (Z − 0.5)2 + U if Z ≥ 0.25

15 + 2.5 · (−0.25) + 4 · (−0.25)2 + U if − 0.25 < Z < 0.25

15 + 2.5 · Z + 4 · Z2 + U if Z ≤ −0.25

,

where Z ∼ B(2, 2)−1 and U ∼ N (0, 0.22). This design is an extension of the previous one allowing

for a quadratic function.

Model D: Following an adapted version of the design from Imbens and Kalyanaraman (2012),

let

W =

0.52 + 0.84 · Z − 3.00 · Z2 + 7.99 · Z3 − 9.01 · Z4 + 3.56 · Z5 + U if Z ≥ 0

0.52 + 1.27 · Z + 7.18 · Z2 + 20.21 · Z3 + 21.54 · Z4 + 7.33 · Z5 + U if Z < 0
,
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Figure 4: Model D
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Figure 5: Model P
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Figure 6: Model Q

where Z ∼ B(2, 2) − 1 and U ∼ N (0, 0.252). We use this design to demonstrate the asymptotic

performance of our test in a somewhat difficult case. It specifically illustrates the limitations of the

asymptotic framework of most tests used in the RDD; see Kamat (2015) for a formal treatment

of these limitations.

Model P: Following Shen and Zhang (2014), let

W =

9.79− 0.90 · Z + 0.28 · Z2 + 0.86 · Z3 + 0.56 · Z4 + U if Z ≥ 0

9.87 + 0.15 · Z − 0.54 · Z2 − 2.42 · Z3 − 1.82 · Z4 + U if Z < 0
,

where Z ∼ B(2, 2) − 1 and U ∼ N (0, 0.22). We use this design to examine the power of our test

as the functional forms are different on either side of the threshold.

Model Q: Following Shen and Zhang (2014), let

W =

9.81− 0.14 · Z − 0.05 · Z2 + 0.02 ·X3 + 2 · U if Z ≥ 0

9.81− 0.14 · Z − 0.05 · Z2 + 0.02 ·X3 + 1 · U if Z < 0
,

where Z ∼ B(2, 2)−1 and U ∼ N (0, 0.22). The motivation for this design is twofold. First, similar

to the previous design it examines how our test performs in terms of power. Second, it highlights

a model where our test is expected to be more powerful than the common practice of testing the

continuity of means.

We compare the performance of our test to the one proposed by Shen and Zhang (2014), termed

SZ. This test uses a Kolmogorov Smirnov type test statistic and traditional asymptotic arguments

that involve a bandwidth parameter going to zero. To be specific, SZ rejects the null at 5%

significance level when

A
(
N · f̃/2

)2
sup
z

∣∣∣H̃−n (w)− H̃+
n (w)

∣∣∣ > 1.3581 , (20)

where A is constant based on the choice of kernel, f̃ is the estimated density of Z at zero using

the whole sample, and H̃−n (w) and H̃+
n (w) are estimated cdfs of W at Z = 0 using local linear
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n Perm NR Perm SZ

25 50 0.5 · n 25 50 0.5 · n h∗ hSZ h∗∗

500 4.80 6.90 4.80 4.80 6.90 4.80 3.30 3.85 4.70

A 1000 5.15 5.25 5.25 5.15 5.25 5.25 3.70 4.65 4.90

5000 5.15 5.40 8.05 5.15 5.40 8.05 4.30 5.10 5.75

6500 5.05 5.00 8.55 5.05 5.00 8.55 4.75 5.70 5.40

500 4.50 4.00 4.50 4.45 4.00 4.45 3.10 3.95 7.90

B 1000 5.15 4.65 4.65 5.15 4.65 4.65 4.20 3.85 4.85

5000 5.15 5.35 4.90 5.15 5.30 4.90 4.05 4.55 4.80

6500 5.00 4.70 4.55 5.00 4.70 4.55 4.25 4.25 4.60

500 4.50 4.00 4.50 4.45 4.00 4.45 3.15 4.00 4.90

C 1000 5.15 4.65 4.65 5.15 4.65 4.65 3.40 3.55 5.20

5000 5.15 5.35 4.90 5.15 5.30 4.90 4.15 5.00 5.45

6500 5.00 4.70 4.55 5.00 4.70 4.55 4.45 4.45 5.30

500 31.65 92.80 31.65 31.55 92.80 31.55 7.95 12.45 18.25

D 1000 13.20 54.70 54.70 13.20 54.65 54.65 13.45 20.90 28.15

5000 5.70 8.55 99.55 5.70 8.55 99.55 16.10 29.65 44.40

6500 5.50 6.05 100.00 5.50 6.05 100.00 15.55 29.25 44.45

Table 1: Rejection probabilities under the null hypothesis

estimators. Shen and Zhang (2014) propose using a rule of thumb bandwidth hSZ derived from

Imbens and Kalyanaraman (2012). To measure robustness against bandwidth choice, we also report

rejection probabilities for 0.75 · hSZ and 1.25 · hSZ .

We also report rejection probabilities for an equality of means test for model Q. The test is

performed using Calonico et al. (2014) and bandwidth is chosen using Imbens and Kalyanaraman

(2012), termed CCT and hIK respectively. The bandwidth choice for the bias estimate was also

taken to be hIK .

Table 1 reports the size results and Table 2 the power results of our test along with SZ.

The test is conducted at a 5% significance level. 2,000 Monte Carlo simulations and 999 random

permutations are performed. We use varying sample sizes of n ∈ {500, 1000, 5000, 6500}, where the

final one is motivated by our empirical application in Section 6. Results for both the randomized

and non randomized (NR) version of our permutation test are tabulated. Finally, we report three

values of the tuning parameter q,

q ∈ {25, 50, 0.05 · n} , (21)

where the first two are fixed and the last one grows at rate n. The latter is not allowed by our

asymptotic framework, and so we include it here as a robustness check.
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n Perm NR Perm SZ CCT

25 50 0.05 · n 25 50 0.05 · n h∗ hSZ h∗∗ hIK

500 24.15 38.25 24.15 24.00 38.25 24.00 16.70 23.65 30.10 –

P 1000 25.70 42.55 42.55 25.65 42.55 42.55 31.20 39.65 49.35 –

5000 24.10 44.15 98.25 24.10 44.15 98.25 80.60 89.15 93.35 –

6500 25.35 47.80 99.35 25.20 47.80 99.35 88.15 95.40 97.35 –

500 17.00 48.35 17.00 16.95 48.35 16.95 11.65 16.60 22.70 6.15

Q 1000 17.70 47.30 47.30 17.60 47.30 47.30 27.35 39.45 51.05 5.00

5000 19.25 49.70 100.00 19.25 49.70 100.00 97.60 99.80 99.95 4.85

6500 18.75 49.10 100.00 18.70 49.10 100.00 99.55 100.00 100.00 5.25

Table 2: Rejection probabilities under the alternative hypothesis

There are a number of important features that arise from a visual inspection of Table 1. First,

across all designs our permutation test seems to be more robust to the choice of q than SZ is to the

choice of bandwidth. In fact, in most designs the null rejection probability of our test is closer to

the nominal level than those of SZ. Second, models B and C illustrate that when the conditional

cdf of W is continuous at Z = 0 and also in a neighborhood of Z = 0, our test works very well

across the board and for all values of q, including 0.05 ·n. Finally, model D is a difficult case where

the conditional mean of W exhibits a high first-order derivative at the threshold, see Figure 4. Even

for such a difficult model (see Kamat, 2015, for a formal treatment of why this case is expected to

introduce size distortions in finite samples) we can see that the permutation test controls size well

for n sufficiently large, as long as q is fixed, as it is the case in the asymptotic framework of Section

4. This, however, does not happen for the SZ test, where the rejection probabilities could reach

44% even when n = 6500. This last design also serves to illustrate that choosing q really big (note

that q = 325 when n = 6500) does not necessarily deliver a test with good size controls. However,

even for q = 100 (not reported), the rejection probabilities under the null in model D get close to

5% for n = 6500, which is again a case consistent with our asymptotic framework.

The power results in Table 2 also provide several important insights. First, it clearly highlights

that the asymptotic power of our test depends on q. A higher choice of q results in higher power

for any sample size. Second, model Q demonstrates that our test is more powerful than testing

equality of means, which as expected, continues to give rejection probabilities of 5%. Third, it

shows that allowing the choice of q to grow with sample size can result in power comparable to

SZ, which uses traditional asymptotic arguments. However, this would come as possible sacrifice

in size control and so it illustrate the size-power trade-off involved in the choice of q.

We conclude this section by noting that the new permutation test seems to deliver a better size

control than test SZ, and improved power over simply testing the equality of means. However, its

power could be lower than that of test SZ in some designs and some sample sizes. In the next
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section we show that out test can have non-trivial power in empirically relevant settings.

6 Empirical Application

In this section we reevaluate the validity of the design in Lee (2008), which has been used to illus-

trate recent methodological advancements in RDD; see Imbens and Kalyanaraman (2012). In this

influential application of RDD, Lee studies the benefits of incumbency on electoral outcomes using

a discontinuity constructed with the insight that the party with the majority wins. Specifically, the

running variable Z is the difference in vote shares between Democrats and Republicans in time t.

The assignment rule then takes a threshold value of zero that determines the treatment of incum-

bency to the Democratic candidate, which is used to study their election outcomes in time t+1. Re-

quired for the application of our test, five predetermined variables are present that contain electoral

information on the Democrat runner and the opposition in time t−1 and t. These variables in partic-

ular are already determined by the time of the election in t. One of these variables is continuous and

the remaining are discrete. The total number of observations is 6,559 with 2,740 below the threshold.

The dataset is publicly available at http://economics.mit.edu/faculty/angrist/data1/mhe.

The predetermined variables consist of past electoral outcomes for the Democrat runner and

opposition such as vote share, election wins and experience. It is easy to justify that these vari-

ables determine the quality of the candidates and hence might have discontinuously higher values

for the incumbents. However, as noted in Section 2, application of RDD requires the conditional

distribution of the perdetermined unobservables and observables to be continuous at the thresh-

old. To verify this claim, Lee examines the implication if there are discontinuities in means of

the predetermined variables. Local linear regressions are performed with observations in different

margins around the threshold. To account for the discrete covariates, conditional probabilities are

first estimated and then used in the local linear regression. It is worth emphasizing that this step

is not present in our test, which allows for discrete covariates; see Section 4.2. The estimates and

graphical illustration of the conditional means are used to conclude that there are no discontinuities

at the threshold and the design is valid. Here, we frame the validity of the design in terms of the

hypotheses in (3) and use the newly developed permutation test to the covariates in the dataset.

Table 3 reports the p-values of our test applied to the different covariates, where the number

of random permutations performed are 999, as explained in Remark 3.1. Application of our test

requires a choice of q that denotes the number of closest observations used from either side of

the threshold. For the robustness of our conclusion, we report results for a range of choices of

q ∈ {25, 50, 100} that are consistent with the values we reported in Section 5. Our results show

that the null hypothesis of continuity of the conditional distributions of the covariates at the

threshold is rejected for several of the covariates at 5% significance level, in contrast to the results

reported by Lee (2008). Table 3 additionally reports the maximum neighborhood of Z used (i.e., the
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Variable q

25 50 100

Democrat vote share election t− 1 2.40 0.80 7.11

Democrat win election t− 1 0.10 0.40 2.00

Democrat political experience t 6.61 0.80 0.30

Opposition political experience t 4.60 3.80 3.50

Democrat electoral experience t 14.11 15.12 6.51

Opposition electoral experience t 52.15 14.21 3.50

All covariates 24.12 20.12 20.92

Neighbourhood of observations [-0.0043,0.0036] [-0.0100,0.0087] [-0.0193,0.0174]

Table 3: Test results with p-value (in %) for covariates in Lee (2008)

(a) q = 25

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

N
u
m
b
e
r
o
f
o
b
s
e
r
v
a
t
i
o
n
s

W value

(b) q = 50
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(c) q = 100
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——– W observations with Z ≥ 0 ——– W observations with Z < 0

Figure 7: Histograms for Democrat vote share election t− 1 values for the two samples determined

by Z, the margin of victory in election t

maximum and minimum value of the 2q closest order statistics) to highlight the size of the window

around the threshold that we effectively use. To better understand our results, we graphically

illustrate in Figure 7 the distribution of the two samples for the continuous covariate Democrat

vote share election t − 1. A visual inspection of the difference in the two distributions suggests

that for candidates close to the threshold, the incumbents might have discontinuously higher vote

share in the past election. This reasoning is statistically confirmed by our test. Finally, when we

test the null hypothesis that the distribution of the entire vector of covariates does not change

discontinuously at the threshold (row labeled All covariates), then the p-values are above 20% for

all values of q, leading to no rejections of this joint null hypothesis.
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7 Concluding Remarks

In this paper we propose an asymptotically valid permutation test for a testable implication of the

identification assumption in the regression discontinuity design (RDD). The asymptotic framework

for our test is based on the simple intuition that observations close to the threshold are approx-

imately randomly assigned to either side of it when the null hypothesis holds. This allows us

to permute these observations to conduct an approximately valid test. Formally, we exploit the

framework, with novel additions, from Canay et al. (2014), which first developed the insight of

approximating randomization tests in this manner. Our results also represent a novel application

of induced order statistics to frame our problem, and we present a result about induced order

statistics that may be of independent interest.

A final important aspect we would like to highlight of our test is its simplicity. The test only

requires computing two empirical cdf’s for the induced order statistic, and does not involve kernels,

local polynomials, bias correction, or bandwidth choices. We are currently working on a STATA

package that will permit practitioners to effortlessly implement the test we propose in this paper.
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A Proof of Theorem 4.1

First, note that the joint distribution of the induced order statisticsW−n,[q], . . . ,W
−
n,[1],W

+
n,[1], . . . ,W

+
n,[q]

are conditionally independent given (Z1, . . . , Zn), with conditional cdfs

H0(w|Z−n,(q)), . . . ,H0(w|Z−n,(1)), H1(w|Z+
n,(1)), . . . ,H1(w|Z+

n,(q)) .

A proof of this result can be found in Bhattacharya (1974, Lemma 1). Now let A = σ(Z1, . . . , Zn)

be the sigma algebra generated by (Z1, . . . , Zn). It follows that

Pr


q⋂
j=1

{W−n,[j] ≤ w
−
j }

q⋂
j=1

{W+
n,[j] ≤ w

+
j }

 = E

Pr


q⋂
j=1

{W−n,[j] ≤ w
−
j }

q⋂
j=1

{W+
n,[j] ≤ w

+
j }
∣∣A



= E

Pr


q⋂
j=1

{Wn,[j](0) ≤ w−j }
q⋂
j=1

{Wn,[j](1) ≤ w+
j }|A




= E
[
Πq
j=1H0(w

−
j |Z

−
n,(j)) ·Π

q
j=1H1(w

+
j |Z

+
n,(j))

]
.

The first and second equalities follow from the law of iterated expectations and (2), and the last

equality follows from the conditional independence of the induced order statistics.

Let fn,(q−,...,q+)(zq− , . . . , zq+) denote the joint density of

Z−n,(q) ≤ · · · ≤ Z
−
n,(1) < 0 ≤ Z+

n,(1) ≤ · · · ≤ Z
+
n,(q) ,

so that we can write the last term in the previous display as∫ ∞
0

∫ zq+

0
· · ·
∫ z(q−1)−

0
Πq
j=1H0(w

−
j |zj−) ·Πq

j=1H1(w
+
j |zj+)fn,(q−,...,q+)(zq− , . . . , zq+)dzq− , . . . , dzq+ .

By Assumption 4.2, the integrand term

Πq
j=1H0(w

−
j |zj−) ·Πq

j=1H1(w
+
j |zj+)

is a bounded continuous function of (zq− , . . . , zq+). Suppose that the order statistics Z−n,(j) and

Z+
n,(q), for j ∈ {1, . . . , q}, converge in distribution to a degenerate distribution with mass at

(0, 0, . . . , 0). It would then follow from the definition of weak convergence (see van der Vaart,

1998, Lemma 2.2) that

lim
n→∞

E
[
Πq
j=1H0(w

−
j |zj−) ·Πq

j=1H1(w
+
j |zj+)

]
= E

[
Πq
j=1H0(w

−
j |0) ·Πq

j=1H1(w
+
j |0)

]
.

Hence, it is sufficient to prove that for any given j ∈ {1, . . . , q}, Z−n,(j) = op(1) and Z+
n,(q) = op(1).

We prove Z+
n,(q) = op(1) by complete induction, and omit the other proof as the result follows from

similar arguments.
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Take j = 1 and ε > 0 such that F+(ε) ∈ (0, 1), where

F+(z) = P{Zi ≤ z|Zi ≥ 0}

denotes the marginal cdf of Z conditional on it being non negative. Assumption 4.1 ensures that

such ε exists. Note that

1− F+
n,(1)(ε) ≡ Pr{Zn,(1) > ε} = Pr{Zi > ε for all i|Zi ≥ 0} = [1− F+(ε)]n → 0 , (22)

so that Zn,(1) = op(1). Now let F+
n,(j)(x) denote the cdf of Zn,(j), which is given by

F+
n,(j)(x) = Pr{Zn,(j) ≤ x}

= Pr{ at least j of the Zi are less than or equal to x|Zi ≥ 0}

=
n∑
i=j

(
n

i

)
[F+(x)]i[1− F+(x)]n−i

= F+
n,(j+1)(x) +

(
n

j

)
[F+(x)]j [1− F+(x)]n−j ,

so that we can write

1− F+
n,(j+1)(x) = 1− Fn,(j)(x)−

(
n

j

)
[F+(x)]j [1− F+(x)]n−j for j ∈ {1, . . . , q − 1} . (23)

It follows from (22) that 1 − F+
n,(1)(ε) → 0 for any ε > 0 as n → ∞. In order to complete the

proof we assume that 1 − F+
n,(j)(ε) → 0 for j ∈ {1, . . . , q − 1} and show that this implies that

1− F+
n,(j+1)(ε)→ 0. By (23) this is equivalent to showing that(

n

j

)
[F+(ε)]j [1− F+(ε)]n−j → 0 .

To this end, note that(
n

j

)
[F+(ε)]j [1− F+(ε)]n−j ≤ nj [1− F+(ε)]n−j =

[
e

j logn
n−j [1− F+(ε)]

]n−j
→ 0 , (24)

where the convergence follows after noticing that there exists N ∈ R such that e
j logn
n−j [1−F+(ε)] < 1

for all n > N and any j ∈ {1, . . . , q − 1}. The result follows.

B Proof of Theorem 4.2

Part 1.

Continuous case: Let {Pn ∈ Pn,0 : n ≥ 1} be given. By Assumption 4.5(i) and the Almost

Sure Representation Theorem (c.f van der Vaart, 1998, Theorem 2.19), there exists S̃n, S̃, and

U ∼ U(0, 1), defined on a common probability space (Ω,A, P ), such that

S̃n → S̃ w.p.1 ,
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S̃n
d
= Sn, S̃

d
= S, and U ⊥ (S̃n, S̃). Consider the permutation test based on S̃n, this is,

φ̃(S̃n, U) ≡

1 T (S̃n) > T (k)(S̃n) or T (S̃n) = T (k)(S̃n) and U < a(S̃n)

0 T (S̃n) < T (k)(S̃n)
.

Denote the randomization test based on S̃ by φ̃(S̃, U), where the same uniform variable U is used

in φ̃(S̃n, U) and φ̃(S̃, U).

Since S̃n
d
= Sn, it follows immediately that EPn [φ(Sn)] = EP [φ̃(S̃n, U)]. In addition, since S̃

d
=

S, Assumption 4.5(ii) implies that EP [φ̃(S̃, U)] = α by the usual arguments behind randomization

tests, see Lehmann and Romano (2005, Chapter 15). It therefore suffices to show

EP [φ̃(S̃n, U)]→ EP [φ̃(S̃, U)] . (25)

In order to show (33), let En be the event where the ordered values of {Sj : 1 ≤ j ≤ 2q} and

{Sn,j : 1 ≤ j ≤ 2q} correspond to the same permutation π of {1, . . . , 2q}, i.e., if Sπ(j) = Sk then

Sn,π(j) = Sn,k for 1 ≤ j ≤ 2q and 1 ≤ k ≤ 2q. We first claim that I{En} → 1 w.p.1. To see this,

note that Assumption 4.5(iii) and S̃
d
= S imply that

S̃(1)(ω) < S̃(2)(ω) < · · · < S̃(2q)(ω) (26)

for all ω in a set with probability one under P . Moreover, since S̃n → S̃ w.p.1, there exists a set

Ω∗ with P{Ω∗} = 1 such that both (34) and S̃n(ω) → S̃(ω) hold for all ω ∈ Ω∗. For all ω in this

set, let π(1, ω), . . . , π(2q, ω) be the permutation that delivers the order statistics in (34). It follows

that for any ω ∈ Ω∗ and any j ∈ {1, . . . , 2q − 1}, if S̃π(j,ω)(ω) < S̃π(j+1,ω)(ω) then

S̃n,π(j,ω)(ω) < S̃n,π(j+1,ω)(ω) for n sufficiently large . (27)

We can therefore conclude that

I{En} → 1 w.p.1 ,

which proves the first claim.

We now prove (33) in two steps. First, we note that

EP [φ̃(S̃n, U)I{En}] = EP [φ̃(S̃, U)I{En}] . (28)

This is true because, on the event En, the rank statistics in (13) of the vectors S̃πn and S̃π coincide

for all π ∈ G, and by Assumption 4.5(iv), the test statistic T (S) only depends on the order of

the observations, leading to φ̃(S̃n, U) = φ̃(S̃, U) on En. Second, since I{En} → 1 w.p.1 it follows

that φ̃(S̃, U)I{En} → φ̃(S̃, U) w.p.1 and φ̃(S̃n, U)I{Ecn} → 0 w.p.1. We can therefore use (38) and

invoke the dominated convergence theorem to conclude that,

EP [φ̃(S̃n, U)] = EP [φ̃(S̃n, U)I{En}] + EP [φ̃(S̃n, U)I{Ecn}]

= EP [φ̃(S̃, U)I{En}] + EP [φ̃(S̃n, U)I{Ecn}]

→ EP [φ̃(S̃, U)] .
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This completes the proof of the first part of the statement of the theorem for the continuous case.

Discrete case: The proof for the discrete setting is similar to the continuous one with few

intuitive differences. We reproduce it here for completeness.

Let {Pn ∈ Pn,0 : n ≥ 1} be given. By Assumption 4.6(i) and the Almost Sure Representation

Theorem (c.f van der Vaart, 1998, Theorem 2.19), there exists S̃n, S̃, and U ∼ U(0, 1), defined on

a common probability space (Ω,A, P ), such that

S̃n → S̃ w.p.1 ,

S̃n
d
= Sn, S̃

d
= S, and U ⊥ (S̃n, S̃). Consider the permutation test based on S̃n, this is,

φ̃(S̃n, U) ≡

1 T (S̃n) > T (k)(S̃n) or T (S̃n) = T (k)(S̃n) and U < a(S̃n)

0 T (S̃n) < T (k)(S̃n)
.

Denote the randomization test based on S̃ by φ̃(S̃, U), where the same uniform variable U is used

in φ̃(S̃n, U) and φ̃(S̃, U).

Since S̃n
d
= Sn, it follows immediately that EPn [φ(Sn)] = EP [φ̃(S̃n, U)]. In addition, since S̃

d
=

S, Assumption 4.6(ii) implies that EP [φ̃(S̃, U)] = α by the usual arguments behind randomization

tests, see Lehmann and Romano (2005, Chapter 15). It therefore suffices to show

EP [φ̃(S̃n, U)]→ EP [φ̃(S̃, U)] . (29)

In order to show (29), let En be the event where S̃n = S̃. We first claim that I{En} → 1 w.p.1.

To see this, note that Assumption 4.6(iii), both S̃ and S̃n are discrete random variables taking

values in S with |S| = m. Moreover, since S̃n → S̃ w.p.1, there exists a set Ω∗ with P{Ω∗} = 1

such that S̃n(ω)→ S̃(ω) hold for all ω ∈ Ω∗. It follows that for any ω ∈ Ω∗ and any j ∈ {1, . . . , 2q},

S̃n,j(ω) = S̃j(ω) for n sufficiently large , (30)

which follows from the fact that both S and Sn are discretely distributed. We can therefore conclude

that

I{En} → 1 w.p.1 ,

which proves the first claim.

We now prove (29) in two steps. First, we note that

EP [φ̃(S̃n, U)I{En}] = EP [φ̃(S̃, U)I{En}] . (31)

This is true because, on the event En, S̃πn and S̃π coincide for all π ∈ G, leading to φ̃(S̃n, U) =

φ̃(S̃, U) on En. Second, since I{En} → 1 w.p.1 it follows that φ̃(S̃, U)I{En} → φ̃(S̃, U) w.p.1
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and φ̃(S̃n, U)I{Ecn} → 0 w.p.1. We can therefore use (31) and invoke the dominated convergence

theorem to conclude that,

EP [φ̃(S̃n, U)] = EP [φ̃(S̃n, U)I{En}] + EP [φ̃(S̃n, U)I{Ecn}]

= EP [φ̃(S̃, U)I{En}] + EP [φ̃(S̃n, U)I{Ecn}]

→ EP [φ̃(S̃, U)] .

This completes the proof for the discrete case and the first part of the statement of the theorem.

Part 2.

Let {Pn ∈ Pn,0 : n ≥ 1} be given and note that by Theorem 4.1 it follows that

Sn = (Sn,1, . . . , Sn,2q) = (W−n,[1], . . . ,W
−
n,[q],W

+
n,[1], . . . ,W

+
n,[q])

d→ (S1, . . . , S2q) ,

where (S1, . . . , S2q) are i.i.d. with cdf H(w|0) = H0(w|0) = H1(w|0). The conditions in Assumption

4.5.(i)-(ii) immediately follow as (S1, . . . , S2q)
d
= (Sπ(1), . . . , Sπ(2q)) for any π ∈ G. Assumption

4.5.(iii) follows the fact that (S1, . . . , S2q) are i.i.d. with cdf H(w|0), where H(w|0) is absolutely

continuous by Assumption 4.3. Similarly, Assumption 4.6.(iii) follows the fact that (S1, . . . , S2q)

are i.i.d. with cdf H(w|0), where H(w|0) is discretely distributed by Assumption 4.4.

We are left to prove that the test statistic in (10) satisfies Assumption 4.5.(iv). To show this,

note that T (S) as in (10) admits the alternative representation

T (S) =
1

q
T ∗(S)− 4q2 − 1

12q
,

where

T ∗(S) =
1

q

q∑
i=1

(R∗i − i)2 +
1

q

q∑
j=1

(R∗q+j − j)2 ,

R∗1 < R∗2 < · · · < R∗q denote the increasingly ordered ranks R1, . . . , Rq of the first q variables in S,

and R∗q+1 < · · · < R∗2q are the increasingly ordered ranks Rq+1, . . . , R2q of the last q values in S. It

follows immediately that this test statistic satisfies Assumption 4.5.(iv). This completes the proof

of the second part of the statement of the theorem.

C The multidimensional case

In this appendix we discuss the case where W (0) and W (1) are K-dimensional vectors. The test

statistic in (10) and the test construction in (12) immediately apply to this case where W is a
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vector consisting of a combination of discrete and continuously distributed random variables. Here

we show that the permutation test for this setting is also asymptotically valid. We first state the

primitive conditions required to prove this.

Assumption C.1. The random variable Z has a continuous distribution with cdf F and density f

such that f(z) > 0 for all z in a neighborhood of zero.

Assumption C.2. The conditional cdfs H0(w|z) and H1(w|z) are continuous functions of z.

Assumption C.3. The random vectors W (0) and W (1) have each component Wk(0) and Wk(1)

either continuously distributed or discretely distributed with mk ∈ N points of support.

Assumption C.1-C.2 are the same as Assumption 4.1-4.2, which are required for Theorem 4.1

to hold. Moreover, we note that Assumption C.3 is a stronger assumption than required and

our result in Theorem C.1 will also hold when only assuming certain components are absolutely

continuous conditional on Z = 0. However, we do require, similar to Assumption 4.4, that the

discrete components are discrete for all Z. We thus state Assumption C.3 as it is for expositional

purposes.

We formalize the high level assumptions required for the validity of the permutation test for

the vector case in the following assumption.

Assumption C.4. If Pn ∈ Pn,0 for all n ≥ 1, then

(i) Sn = Sn(X(n))
d→ S under Pn.

(ii) Sπ
d
= S for all π ∈ G.

(iii) S is a random vector such that each component Sk is either absolutely continuously distributed

taking values in Sk ⊆ R or discretely distributed taking values in Sk ⊆ R with |Sk| = mk.

For each discrete component, the corresponding Sn,k is also discretely distributed with the

same support for all n ≥ 1.

(iv) T : S → R is invariant to rank with respect to each absolutely continuous component, i.e.,

it only depends on the order of the elements of each continuous component.

The above assumption in essentially Assumption 4.5 and 4.6 applied individually to each com-

ponent of the vector. We now formalize our result for the vector case in Theorem C.1, which shows

that the permutation test defined in (12) leads to a test that is asymptotically level α whenever

Assumption C.4 holds. In addition, the same theorem also shows that Assumption C.1-C.3 are

sufficient primitive conditions for the asymptotic validity of our test.
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Theorem C.1. Suppose X(n) ∼ Pn ∈ Pn and consider the problem of testing (3). Let Sn : Xn → S,

T : S → R and G : S → S be such that Assumption C.4 holds. Then, for any α ∈ (0, 1), φ(Sn)

defined in (12) satisfies

EPn [φ(Sn)]→ α (32)

as n→∞ whenever Pn ∈ Pn,0 for all n ≥ 1. Moreover, if T : S → R is the Cramér Von Mises test

statistic in (10) and Assumptions C.1-C.3 hold, then Assumption C.4 also holds and (32) follows.

C.1 Proof of Theorem C.1

Part 1.

Let {Pn ∈ Pn,0 : n ≥ 1} be given. By Assumption C.4(i) and the Almost Sure Representation

Theorem (c.f van der Vaart, 1998, Theorem 2.19), there exists S̃n, S̃, and U ∼ U(0, 1), defined on

a common probability space (Ω,A, P ), such that

S̃n → S̃ w.p.1 ,

S̃n
d
= Sn, S̃

d
= S, and U ⊥ (S̃n, S̃). Consider the permutation test based on S̃n, this is,

φ̃(S̃n, U) ≡

1 T (S̃n) > T (k)(S̃n) or T (S̃n) = T (k)(S̃n) and U < a(S̃n)

0 T (S̃n) < T (k)(S̃n)
.

Denote the randomization test based on S̃ by φ̃(S̃, U), where the same uniform variable U is used

in φ̃(S̃n, U) and φ̃(S̃, U).

Since S̃n
d
= Sn, it follows immediately that EPn [φ(Sn)] = EP [φ̃(S̃n, U)]. In addition, since S̃

d
=

S, Assumption C.4(ii) implies that EP [φ̃(S̃, U)] = α by the usual arguments behind randomization

tests, see Lehmann and Romano (2005, Chapter 15). It therefore suffices to show

EP [φ̃(S̃n, U)]→ EP [φ̃(S̃, U)] . (33)

Before we show (33), we introduce the additional notation to easily refer to the different com-

ponents of the vectors Sj and Sn,j . Let the first Kc elements of Sj and Sn,j for j ∈ {1, . . . , 2q}
denote the absolutely continuous components, where each component is denoted by Sck,j and Scn,k,j
for 1 ≤ k ≤ Kc. Let the remaining subvector Sdj and Sdn,j of dimension Kd = K − Kc for

j ∈ {1, . . . , 2q} denote the discrete component of Sj and Sn,j , and (s∗1, . . . , s
∗
m) denote its points of

support. Using this notation, we can partition Sj and Sn,j as (Scj , S
d
j ) and (Scn,j , S

d
n,j), respectively.

In order to show (33), let En be the event where the following holds. First, the ordered values

of each continuous component {Sck,j : 1 ≤ j ≤ 2q} and {Scn,k,j : 1 ≤ j ≤ 2q} correspond to the

same permutation πk of {1, . . . , 2q} for 1 ≤ k ≤ Kc, i.e., if Sck,πk(j) = Sck,l then Scn,k,πk(j) = Scn,k,l
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for 1 ≤ j, l ≤ 2q and 1 ≤ k ≤ Kc. Second, the discrete subvectors {Sdj : 1 ≤ j ≤ 2q} and

{Sdn,j : 1 ≤ j ≤ 2q} coincide, i.e., Sdj = Sdn,j for 1 ≤ j ≤ 2q.

We first claim that I{En} → 1 w.p.1. To see this, note that Assumption C.4(iii) and S̃
d
= S

imply that for all ω in a set with probability one under P we have for each continuous component

k of S that

S̃ck,(1)(ω) < S̃ck,(2)(ω) < · · · < S̃ck,(2q)(ω) , (34)

and for the discrete subvector of S̃ that

S̃dj (ω) = s∗l , (35)

for 1 ≤ j ≤ 2q and some 1 ≤ l ≤ m. Moreover, since S̃n → S̃ w.p.1, there exists a set Ω∗ with

P{Ω∗} = 1 such that (34), (35) and S̃n(ω) → S̃(ω) hold for all ω ∈ Ω∗. For all ω in this set,

let πk(1, ω), . . . , πk(2q, ω) be the permutation that delivers the order statistics in (34) for the kth

continuous component. It follows that for any ω ∈ Ω∗ and any j ∈ {1, . . . , 2q − 1}, if for any

continuous component k we have S̃ck,πk(j,ω)(ω) < S̃ck,πk(j+1,ω)(ω) then

S̃cn,k,πk(j,ω)(ω) < S̃cn,k,πk(j+1,ω)(ω) for n sufficiently large , (36)

and moreover, if for the discrete subvector we have S̃dj (ω) = s∗l then

S̃dn,j(ω) = s∗l for n sufficiently large , (37)

which follows from the fact that both {Sdj : 1 ≤ j ≤ 2q} and {Sdn,j : 1 ≤ j ≤ 2q} are discretely

distributed. We can therefore conclude that

I{En} → 1 w.p.1 ,

which proves the first claim.

We now prove (33) in two steps. First, we note that

EP [φ̃(S̃n, U)I{En}] = EP [φ̃(S̃, U)I{En}] . (38)

This is true because, on the event En, the following two hold. First, for each continuous component

the rank statistics in (13) of the vectors S̃c,πn,k and S̃c,πk coincide for 1 ≤ k ≤ Kc and for all π ∈ G.

Then we have by Assumption C.4(iv) that the test statistic T (S) only depends on the order of the

elements of each continuous component. Second, the discrete subvectors S̃d,πn and S̃d,π coincide for

all π ∈ G. These two properties in turn result in, on the event En, T (S̃πn) equaling T (S̃π) for all

π ∈ G, which leads to φ̃(S̃n, U) = φ̃(S̃, U) on En.

Then for the second step in proving (33), since I{En} → 1 w.p.1 it follows that φ̃(S̃, U)I{En} →
φ̃(S̃, U) w.p.1 and φ̃(S̃n, U)I{Ecn} → 0 w.p.1. We can therefore use (38) and invoke the dominated
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convergence theorem to conclude that,

EP [φ̃(S̃n, U)] = EP [φ̃(S̃n, U)I{En}] + EP [φ̃(S̃n, U)I{Ecn}]

= EP [φ̃(S̃, U)I{En}] + EP [φ̃(S̃n, U)I{Ecn}]

→ EP [φ̃(S̃, U)] .

This completes the proof of the first part of the statement of the theorem for the multidimensional

case.

Part 2.

Let {Pn ∈ Pn,0 : n ≥ 1} be given and note that by Theorem 4.1 it follows that

Sn = (Sn,1, . . . , Sn,2q) = (W−n,[1], . . . ,W
−
n,[q],W

+
n,[1], . . . ,W

+
n,[q])

d→ (S1, . . . , S2q) ,

where (S1, . . . , S2q) are i.i.d. with cdf H(w|0) = H0(w|0) = H1(w|0). The conditions in Assumption

C.4.(i)-(ii) immediately follow as (S1, . . . , S2q)
d
= (Sπ(1), . . . , Sπ(2q)) for any π ∈ G. Assumption

C.4.(iii) also follows immediately by Assumption C.3. Finally, to show Assumption C.4.(iv) we

first demonstrate that the test statistic in (10) admits an alternate representation. By Assumption

C.3, let without loss of generality the first Kc components be absolutely continuous and the rest

be discrete. Denote by Sdi the discrete subvector of Si and by

Rk,i =

2q∑
j=1

I{Sck,j ≤ Sck,i} ,

the rank of the kth continuous component of Si for 1 ≤ i ≤ 2q and 1 ≤ k ≤ Kc. Finally, the test

statistic can be rewritten in the following alternate representation

T (S) =
1

2q

2q∑
j=1

1

q

q∑
i=1

[
I{Sdi ≤ Sdj }

Kc∏
k=1

1{Rk,i ≤ Rk,j}

]
− 1

q

2q∑
i=q+1

[
I{Sdi ≤ Sdj }

Kc∏
k=1

{Rk,i ≤ Rk,j}

]2

.

The above representation follows from first rewriting

I{Si ≤ Sj} = I{Sdi ≤ Sdj }
Kc∏
k=1

I{Sck,i ≤ Sck,j} ,

and then noticing that for 1 ≤ k ≤ Kc

I{Sck,i ≤ Sck,j} = I{Rk,i ≤ Rk,j} .

This representation illustrates that for the absolutely continuous components the test statistic only

depends on their individual orderings. It then follows immediately that this test statistic satisfies

Assumption C.4.(iv). This completes the proof of the second part of the statement of the theorem

for the multidimensional case.
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