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Abstract

An incomplete model of English auctions with symmetric independent private values, similar

to the one studied in Haile and Tamer (2003), is shown to fall in the class of Generalized

Instrumental Variable Models introduced in Chesher and Rosen (2014). A characterization of

the sharp identified set for the distribution of valuations is thereby obtained and shown to refine

the bounds available until now.

Keywords: English auctions, partial identification, sharp set identification, generalized in-

strumental variable models.

1 Introduction

The path breaking paper Haile and Tamer (2003) (HT) develops bounds on the common distribution

of valuations in an incomplete model of an open outcry English ascending auction in a symmetric

independent private values (IPV) setting.

One innovation in the paper was the use of an incomplete model based on weak plausible

restrictions on bidder behavior, namely that a bidder never bids more than her valuation and never

allows an opponent to win at a price she is willing to beat. An advantage of an incomplete model is

that it does not require specification of the mechanism relating bids to valuations. Results obtained

using the incomplete model are robust to misspecification of such a mechanism. The incomplete

model may be a better basis for empirical work than the button auction model of Milgrom and

Weber (1982) sometimes used to approximate the process delivering bids in an English open outcry

auction.
∗We gratefully acknowledge financial support from the UK Economic and Social Research Council through a

grant (RES-589-28-0001) to the ESRC Centre for Microdata Methods and Practice, and from the European Research
Council (ERC) grant ERC-2012-StG-312474. We thank Phil Haile for comments. We have benefited from feedback
given by seminar participants at Chicago, Yale, and Cornell, as well as participants at a 2015 Seoul National University
and CeMMAP conference on Advances in Microeconometrics. Any errors are our own.
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On the down side the incomplete model is partially, not point, identifying for the primitive

of interest, namely the common conditional probability distribution of valuations given auction

characteristics. HT derive bounds on this distribution and shows how to use these to make inferences

about the distribution and about interesting features that are functionals of the distribution such

as the optimal reserve price.

The question of the sharpness of those bounds was left open in HT. In this paper we resolve

this question. We consider a slightly simplified version of the model in HT and show that the

model falls in the class of Generalized Instrumental Variable (GIV) models introduced in Chesher

and Rosen (2014), (CR). We obtain a characterization of the sharp identified set for the auction

model by applying the general characterization for GIV models given in CR. We show that there

are bounds additional to those given in HT and in numerical calculations demonstrate that they

can be binding.

The characterization of the sharp identified set of valuation distributions comprises a dense

system of infinitely many inequalities restricting not just the value of the distribution function

via pointwise bounds on its level but also restricting its shape as it passes between the pointwise

bounds.

Partial identification has been usefully applied to address other issues in auction models since

HT. Tang (2011) and Armstrong (2013) both study first-price sealed bid auctions. Tang (2011)

assumes equilibrium behavior but allows for a general affi liated values model that nests private

and common value models. Without parametric distributional assumptions model primitives are

generally partially identified, and he derives bounds on seller revenue under counterfactual reserve

prices and auction format. Armstrong (2013) studies a model in which bidders play equilibrium

strategies but have symmetric independent private values conditional on unobservable heterogene-

ity, and derives bounds on the mean of the bid and valuation distribution, and other functionals

thereof. Aradillas-Lopez, Gandhi, and Quint (2013) study second price auctions that allow for cor-

related private values. Theorem 4 of Athey and Haile (2002) previously showed non-identification

of the valuation distribution in such models, even if bidder behavior follows the button auction

model equilibrium. Aradillas-Lopez, Gandhi, and Quint (2013) impose a slight relaxation of the

button auction equilibrium, assuming that transaction prices are determined by the second highest

bidder valuation. They combine restrictions on the joint distribution of the number of bidders and

the valuation distribution with variation in the number of bidders to bound seller profit and bidder

surplus.

The restrictions of the HT model we study are set out in Section 2. In Section 3 GIV models

are introduced and the auction model is placed in the GIV context. The sharp identified set for

the auction model is characterized in Section 4 and the inequalities that feature in this characteri-

zation are explored in Section 5. A numerical example is presented in Section 6 and calculation of

approximations to identified sets of parameters in a parametric model is given in Section 7. Section
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8 concludes.

2 Model

We study open outcry English ascending auctions with a finite number of bidders, M , which may

vary from auction to auction. The model is a slight simplification of the model studied in HT in

that there is no reserve price and the minimum bid increment is zero. These conditions simplify

the exposition and are easily relaxed.1

The final bid made by each bidder is observed. Each auction is associated with a value, z, of an

observable variable Z. In some applications the number of bidders, M , could be an element of Z.

The mth largest value in an M element list of numbers x = (x1, . . . , xM ) or random variables

X = (X1, . . . , XM ) will be denoted by xm:M andXm:M , respectively. For example, xM :M = max(x).

Restriction 1. In an auction with M bidders, the final bids and valuations are realizations of

random vectors B = (B1, . . . , BM ) and V = (V1, . . . , VM ) such that for all m = 1, ...,M , Bm ≤ Vm
almost surely.

Restriction 2. In every auction the second highest valuation, VM−1:M , is no larger than the

highest final bid, BM :M . That is, VM−1:M ≤ BM :M almost surely.

Restriction 3. There are independent private values conditional on auction characteristics Z = z

such that the valuations of bidders are identically and independently continuously distributed with

conditional distribution function given Z = z denoted by Fz(·).

Restriction 4. Conditional on auction characteristics Z = z, bids (B1, . . . , BM ) are exchangeable.

Auctions are characterized by a bid vector B, a vector of valuations V , the number of bidders

M , and auction characteristics Z. B, V,M,Z are presumed to be realized on a probability space

(Ω,A,P) with sigma algebra A endowed with the Borel sets on Ω. Valuations V are not observed.

Observations of (B,Z,M) across auctions render the joint distribution of these variables identified.

The goal of our identification analysis is to determine what this joint distribution reveals about

Fz(·). In the remainder of the paper, inequalities involving random variables, such as those in

Restrictions 1 and 2 and those stated in Lemma 1 below are to be understood to mean these

inequalities hold P almost surely.
Restrictions 1 and 2 are the HT restrictions on bidder behavior. Restriction 3 focuses our analy-

sis to the independent private values paradigm. Restriction 4 additionally imposes that bids are

symmetric given auction characteristics z. Restrictions 1-3 were imposed by HT while Restriction

4 was not. In Theorem 1 we present bounds on Fz(·) that refine those of HT using only Restrictions
1These conditions are also imposed in Appendix D of HT in which the sharpness of identified sets is discussed. As

was the case in HT, with a reserve price r our analysis applies to the distribution of valuations truncated below at r.
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1-3. The bounds are shown to be sharp if, additionally, Restriction 4 holds, or if the researcher

only has data on bid order statistics.

The following inequalities involving the order statistics of B and V set out in Lemma 1 are a

consequence of Restrictions 1 and 2. The proof of the lemma, like all other proofs, is provided in

Appendix A.

Lemma 1. Let Restrictions 1-3 hold. Then for all m and M

Bm:M ≤ Vm:M (2.1)

BM :M ≥ VM−1:M . (2.2)

In similar manner to HT, our identification analysis is based on the restrictions (2.1) and (2.2)

on bid and valuation order statistics.

3 Generalized Instrumental Variable models

This auction model falls in the class of Generalized Instrumental Variable (GIV) models introduced

in Chesher and Rosen (2014).

We consider M -bidder auctions for some particular value of M and use the results in CR to

characterize the sharp identified set of valuation distributions delivered by a joint distribution ofM

ordered final bids. In cases where M is not included as an element of Z, so that Fz(·) is restricted
to be invariant with respect to M , the intersection of the sets obtained with different values of

M gives the identified set of valuation distributions in situations in which there is variation in the

number of bidders across auctions.

A GIV model places restrictions on a process that generates values of observed endogenous

variables, Y , given exogenous variables Z and U , where Z is observed and U is unobserved. The

variables (Y, Z, U) take values on RY ZU which is a subset of a suitably dimensioned Euclidean

space.

GIV models place restrictions on a structural function h : RY ZU → R which defines the admis-
sible combinations of values of Y and U that can occur at each value z of Z which has support RZ .
Admissible combinations of values of (Y, U) at Z = z are zero level sets of this function, as follows.

L(z;h) = {(y, u) : h(y, z, u) = 0}

For each value of U and Z we can define a Y -level set

Y(u, z;h) ≡ {y : h(y, z, u) = 0}

which will be singleton for all u and z in complete models but not otherwise.
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GIV models place restrictions on such structural functions and also on a collection of conditional

distributions

GU |Z ≡ {GU |Z(·|z) : z ∈ RZ}

whose elements are conditional distributions of U given Z = z obtained as z varies across the

support of Z. GU |Z(S|z) denotes the probability that U ∈ S conditional on Z = z under the law

GU |Z .

In the context of the auction model the observed endogenous variables, Y , are the ordered final

bids, thus.2

Ym ≡ Bm:M , m ∈ {1, . . . ,M}

It is convenient to write the ordered valuations as functions of uniform order statistics. To this

end let

Ũ ≡
(
Ũ1, ..., ŨM

)
, Ũm ≡ Fz (Vm) , m ∈ {1, . . . ,M} , U ≡

(
Ũ1:M , . . . , ŨM :M

)
.

The components of Ũ are thus identically and independently distributed uniform variates on the unit

interval. The components of U order those of Ũ from smallest to largest, with mth component Um
the mth order statistic of Ũ . Moreover, by strict monotonicity of Fz, Um = Fz (Vm:M ), equivalently

Vm:M = F−1
z (Um). Independence of the components of Ũ implies that the distribution of U is

uniform with constant density on its support RU , which is that part of the unit M -cube where
U1 ≤ U2 ≤ · · · ≤ UM .3

The restrictions (2.1) and (2.2) of Lemma 1 can be written as

∀m, Ym ≤ Vm:M = F−1
z (Um) and YM ≥ VM−1:M = F−1

z (UM−1)

and, on applying the increasing function Fz(·), they are as follows.

∀m, Fz(Ym) ≤ Um and Fz(YM ) ≥ UM−1 (3.1)

A GIV structural function which expresses these restrictions is as follows.

h(Y, z, U) =

M∑
m=1

max((Fz(Ym)− Um) , 0) + max((UM−1 − Fz(YM )) , 0) (3.2)

Thus we have cast the auction model as a GIV model in which the structural function h is a

known functional of the collection of conditional valuation distributions {Fz (·) : z ∈ Z}. We use
2To simplify notation plain subscripts “m”rather than order statistic subscripts “m : M”are used for the elements

of Y , and shortly, U .
3See Section 2.2 in David and Nagaraja (2003). The support of the order statistics U in the unit M -cube has

volume 1/M ! so the constant value of the density is M !.
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the notation F to denote a collection of such conditional distribution functions. The restrictions

of the auction model on the distribution of (U,Z) are: (i) U and Z are independently distributed

and (ii) the distribution of U , denoted GU , is the joint distribution of the order statistics of M

independent uniform variates. This is uniform on the part of the unit M -cube in which U1 ≤ U2

≤ · · · ≤ UM .

4 Characterizing the identified set of valuation distributions

Central to the GIV analysis in CR are the U -level sets of the structural function defined as follows.

U(y, z;h) = {u : h(y, z, u) = 0}

For a given value of z this set comprises the values of u that can give rise to a particular value y of

Y .

In some econometric models this set is a singleton - the classical linear model is a leading exam-

ple. There are many econometric models in which U -level sets are not singleton. Examples include

models for discrete outcomes and models with more sources of heterogeneity than endogenous

outcomes.

In the auction model the U -level sets are:

U(y, z;h) =

{
u :

(
M∧
m=1

(um ≥ Fz(ym))

)
∧ (Fz(yM ) ≥ uM−1)

}
(4.1)

it being understood that for all m, um ≥ um−1.4 These are not singleton sets. Figure 1 illustrates

for the 2 bidder case.5 The U -level set U((y′1, y
′
2), z;h) is the blue rectangle below the 45◦ line.

Applying Theorem 4 of CR, the identified set of valuation distribution functions Fz (·) comprises
the set of distribution functions Fz(·) such that for all sets S in a collection of test sets Q(h, z) the

following inequality is satisfied almost surely

GU (S) ≥ P [U(Y,Z;h) ⊆ S|Z = z] . (4.2)

The collection of test sets Q(h, z) is defined in Theorem 3 of CR. It comprises certain unions of the

members of the collection of U -level sets U(y, z;h) obtained as y takes values in the conditional

support of Y given Z = z.6 The following theorem, proven in the Appendix, provides the formal

4 If there was a minimum bid increment ∆, then (4.1) would have Fz(yM + ∆) in place of Fz(yM ).
5The 2 bidder graphs shown in Figures 1 - 4 can be interpreted as projections of U -level sets for the M bidder

case, regarding u2 (u1) as the value of the largest, UM , (second largest, UM−1) uniform order statistic.
6 In general the collection Q(h, z) contains all sets that can be constructed as unions of sets, (4.1), on the support

of the random set U(Y,Z;h). In particular models some unions can be neglected because the inequalities they deliver
are satisfied if inequalities associated with other unions are satisfied. There is more detail and discussion in CR14.
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result.

Theorem 1. Let F be restricted to F. In the independent private values auction model in which

Restrictions 1-3 hold, the set

F∗ ≡ {F ∈ F : for all closed S ⊆ RU , GU (S) ≥ P [U(Y,Z;h) ⊆ S|Z] a.s. P} , (4.3)

comprises bounds on the collection of conditional distributions {Fz (·) : z ∈ Z}.
If, in addition, either Restriction 4 holds or only the order statistics of the bids are observable

rather than the bids themselves, then these these bounds are sharp.

In the Theorem above F is a collection of families of conditional distribution functions that

embody the researcher’s prior information on the distribution functions Fz (·). In a nonparametric
auction model F would comprise the class of all strictly increasing cumulative distribution functions

for each z ∈ Z. If parametric restrictions are imposed then F may index the distributions Fz (·)
with a finite dimensional parameter vector.

The Theorem states that the collection of such F satisfying (4.2) for all closed sets S ⊆ RU
comprises bounds on the collection of possible valuation distributions conditional on auction char-

acteristics z. If, additionally, bids are exchangeable, or if only the distribution of bid order statistics

conditional on Z = z is identified from the data, rather than the distribution of bids, then these

bounds are sharp and (4.3) delivers the identified set.

In CR we characterize a sub-family of closed sets on RU , denoted Q(h, z) such that if (4.2) holds

for all S ∈ Q(h, z), then it must also hold for all closed S ⊆ RU . In Section 5 below we consider
the form of inequalities generated by particular sets S, and then consider their identifying power
in the examples of Sections 6 and 7.

Given a test set S the probability mass GU (S) on the left hand side of (4.2) is calculated as

M ! times the volume of the set S.7

The set U(Y,Z;h) in (4.2) is a random set (Molchanov (2005)) whose realizations are U -level

sets as set out in (4.1). Its conditional probability distribution given Z = z is determined by the

probability distribution of Y given Z = z. In the auction setting this is the conditional distribution

of ordered final bids in auctions with Z = z. The probability on the right hand side of (4.2) is a

conditional containment functional. It is equal to the conditional probability given Z = z that Y

lies in the set A(S, z;h) where

A(S, z;h) ≡ {y : U(y, z;h) ⊆ S}.
7This is so because the joint distribution of the uniform order statistics is uniform on the part of the unit M -cube

in which u1 ≤ u2 ≤ · · · ≤ uM , with density equal to M !.
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When S is a U -level set, say U(y′, z;h) with y′ ≡ (y′1, . . . , y
′
M ), there is

A(U(y′, z;h), z;h) =

{
y :
(
yM = y′M

)
∧
(
M−1∧
m=1

(
ym ≥ y′m

))}
(4.4)

it being understood that for all m, ym ≥ ym−1.

Figures 2 and 3 show that the effect of changing the value y′M (which produces the magenta

colored rectangles in these Figures) is to produce a new level set that is not a subset of U(y′, z;h),

hence the equality in (4.4).

Figure 4 shows that the effect of increasing the value y′M−1 is to produce a new level set that is

a subset of U(y′, z;h), hence the weak inequalities in (4.4).

If Y is continuously distributed the equality in (4.4) causes the probability P[U(Y, Z;h) ⊆
U(y′, z;h)|Z = z] to be zero and the inequality (4.2) does not deliver an informative bound when

S = U(y′, z;h). So, when bids are continuously distributed, amongst the unions of U -level sets in a

collection Q(h, z), nontrivial bounds are only delivered by unions of a collection of level sets whose

members have values of the maximum bid YM ranging over a set of values of nonzero measure.

We proceed to consider particular unions of this sort, as follows.

U(y′, y′′M , z;h) ≡
⋃

yM∈[y′M ,y′′M ]

U((y′1, . . . , y
′
M−1, y

′
M ), z;h), y′′M ≥ y′M

Such unions are termed contiguous unions of U -level sets.8

The region in RU occupied by such a contiguous union is

U(y′, y′′M , z;h) =

{
u :

(
M∧
m=1

(
um ≥ Fz(y′m)

))
∧
(
Fz(y

′′
M ) ≥ uM−1

)}

it being understood that, for all m, um ≥ um−1. Figure 5 illustrates for the 2 bidder case. The

contiguous union is the region under the 45◦ line outlined in blue - a rectangle with its top left

hand corner removed.

The probability mass placed on this region by the distribution of the uniform order statistics

is:

GU
(
U(y′, y′′M , z;h)

)
= M !

∫ 1

Fz(y′M )

∫ min(uM ,Fz(y′′M ))

Fz(y′M−1)

∫ uM−1

Fz(y′M−2)
· · ·
∫ u2

Fz(y′1)
du. (4.5)

8A simple U -level set as in (4.1) is obtained on setting y′M = y′′M . When YM is not continuously distributed this
member of Q(h, z) may deliver nontrivial bounds.
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The set of values of Y that deliver U -level sets that are subsets of U(y′, y′′M , z;h) is

A(U(y′, y′′M , z;h), z;h) =

{
y :
(
y′M ≤ yM ≤ y′′M

)
∧
(
M−1∧
m=1

(
ym ≥ y′m

))}

it being understood that y1 ≤ · · · ≤ yM . This region is indicated by the shaded area in Figure 5.9

The conditional containment functional on the right hand side of (4.2) is calculated as follows.

P[U(Y, Z;h) ⊆ U(y′, y′′M , z;h)|z] = P

[(
y′M ≤ YM ≤ y′′M

)
∧
(
M−1∧
m=1

(Ym ≥ y′m)

)∣∣∣∣∣ z
]

(4.6)

This is a probability that can be estimated using data on values of ordered bids while the

probability GU (U(y′, y′′M , z;h)) is determined entirely by the chosen values of y′, y′′M , z and the dis-

tribution function of valuations, Fz, whose membership of the identified set is under consideration.

For any choice of Fz a list of values of (y′, y′′M ) delivers a list of inequalities on calculating (4.2)

and if one or more of the inequalities is violated the candidate valuation distribution Fz is outside

the identified set.

The inequalities that arise for particular choices of (y′, y′′M ) are now explored. The first choices

to be considered deliver the inequalities in HT, then other choices are considered which deliver

additional inequalities.

5 Inequalities defining the identified set

5.1 Valuations stochastically dominate bids

With y′′M = +∞ and

y′ = (−∞,−∞, . . . ,−∞, v︸︷︷︸
position n

, v, . . . , v)

the containment functional probability (4.6) is:

P[U(Y,Z;h) ⊆ U(y′, y′′M , z;h)|z] = P[Yn ≥ v|z],

the probability mass placed by the distribution GU on the contiguous union, (4.5), is

GU
(
U(y′, y′′M , z;h)

)
= P[Un ≥ Fz(v)] = P[Vn ≥ v|z;Fz]

9The shaded area shows values of Fz(y1) and Fz(y2) that give rise to U -level sets that are subsets of U(y′, y′′M , z;h).

9



and so the condition (4.2) delivers the following inequalities.10

∀n,∀v : P[Vn ≤ v|z;Fz] ≤ P[Yn ≤ v|z]

These inequalities hold for a valuation distribution function Fz if and only if under that distribution

there is the stochastic ordering of order statistics of bids and valuations required by the restriction

(2.1).

The marginal distribution of the nth order statistic of M identically and independently dis-

tributed uniform variates is Beta(n,M + 1 − n).11 Let Q(p;n,M) denote the associated quantile

function. The restrictions placed on valuation distributions by the inequality (4.2) and the test sets

under consideration in this Section are, written in terms of uniform order statistics:

∀n,∀v : P[Un ≤ Fz(v)] ≤ P[Yn ≤ v|z]

which can be written as follows.

∀v : Fz(v) ≤ min
n
Q(P[Yn ≤ v|z];n,M) (5.1)

This continuum of pointwise upper bounds must hold for all valuation distribution functions in the

identified set. This is the bound given in Theorem 1 of HT.

Figures 6 and 7 show the contiguous unions of U -level sets (the regions bordered in blue)

delivering these inequalities for 2 bidder auctions. The regions shaded blue indicate the values of

(Fz(y2), Fz(y1)) that deliver U -level sets that are subsets of a contiguous union.

5.2 The highest bid stochastically dominates the second highest valuation

With y′′M = v and y′ = (−∞,−∞, . . . ,−∞) the containment functional probability (4.6) is:

P[U(Y,Z;h) ⊆ U(y′, y′′M , z;h)|z] = P [YM ≤ v|z] ,

the probability mass placed by the distribution GU on the contiguous union, (4.5), is

GU
(
U(y′, y′′M , z;h)

)
= P[UM−1 ≤ Fz(v)] = P[VM−1 ≤ v|z;Fz]

so, with this choice of (y′, y′′M ), the condition (4.2) delivers the following inequalities.

∀v : P[VM−1 ≤ v|z;Fz] ≥ P[YM ≤ v|z] (5.2)

10The notation P[Vn ≤ s|z;Fz] serves to remind that Vn is an order statistic of valuations which are identically and
independently distributed with conditional distribution function Fz.
11See Section 2.3 in David and Nagaraja (2003). The density function of this Beta random variable is proportional

to un−1(1− u)M−n.
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These inequalities hold for a valuation distribution function Fz if and only if under that distribution

the second highest valuation is stochastically dominated by the highest bid as required by the

restriction (2.2).

All valuation distribution functions in the identified set must satisfy:

∀v : P[UM−1 ≤ Fz(v)] ≥ P [YM ≤ v|z]

which is (5.2) rewritten in terms of a uniform order statistic, equivalently12

∀v : Fz(v) ≥ Q(P [YM ≤ v|z] ;M − 1,M). (5.3)

This is the bound given in Theorem 2 of HT when the minimum bid increment considered there is

set equal to zero.13

Figure 8 shows, outlined in blue, the contiguous unions of U -level sets delivering this inequality.

The shaded region indicates the values of (Fz(y2), Fz(y1)) that deliver U -level sets that are subsets

of this contiguous union.

5.3 Contiguous unions depending on a single value of y

In the two cases just considered contiguous unions of U -level sets are determined by (y′, y′′M ) in

which a single value, v, of Y appears. The inequalities they deliver place a continuum of pointwise

upper and lower bounds on the value of the valuation distribution function, Fz(v), at a value v.

When Y is continuously distributed these are the only contiguous unions determined by a single

value that deliver nontrivial inequalities.

5.3.1 Bids continuously distributed

To see that this is so, first suppose that y′′M takes some finite value v as in Section 5.2. We must

have y′M < v otherwise the containment functional is zero if Y is continuously distributed. The

only possible value for y′M that does not introduce a second finite value is −∞ and since y′m ≤ y′M
for all M we arrive at the case considered in Section 5.2.

Now suppose a single finite value v determines the vector y′. The only feasible value for y′′M
is +∞ because we must have y′′M > y′M to obtain a nontrivial inequality with Y continuously

12There is another expression:

GU

(
U(y′, y′′M , z;h)

)
= M !

∫ 1

0

∫ min(uM ,Fz(s))

0

∫ uM−1

0

· · ·
∫ u2

0

du

= MFz(s)
M−1 − (M − 1)Fz(s)

M ,

and the following inequalities for all s: MFz(s)
M−1 − (M − 1)Fz(s)

M ≥ P [YM ≤ s|z].
13With a positive minimum bid increment ∆, YM is replaced by YM + ∆.
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distributed. Since the elements of y′ must be ordered we arrive at the case considered in Section

5.1.

5.3.2 Bids not continuously distributed

When Y is not continuously distributed the case with y′′M = v and

y′ = (−∞,−∞, . . . ,−∞, v︸︷︷︸
position n

, v, . . . , v)

may deliver a nontrivial inequality when n = M , but not when n < M .

With n = M there is14

GU
(
U(y′, y′′M , z;h)

)
= P[UM ≥ Fz(v) ≥ UM−1]

= MFz(v)M−1(1− Fz(v))

P[U(Y,Z;h) ⊆ U(y′, y′′M , z;h)|z] = P [YM = v|z]

and the condition (4.2) delivers the following inequalities.

∀v : MFz(v)M−1(1− Fz(v)) ≥ P [YM = v|z]

With n < M , GU (U(y′, y′′M , z;h)) is zero because, in the set U(y′, y′′M , z;h) under considera-

tion, UM−1 = Fz(v) and UM−1 is the second largest uniform order statistic which is continuously

distributed. When Y is not continuously distributed the probability

P[U(Y,Z;h) ⊆ U(y′, y′′M , z;h)|z] = P

[
M∧
m=n

YM = v

∣∣∣∣∣ z
]

(5.4)

may be positive in which case the inequality (4.2) is violated whatever candidate distribution Fz is

considered.

This violation for any Fz arises because a nonzero probability (5.4) with n < M cannot occur

under the restrictions of the model. This is so because if for some v, YM−1 = YM = v with nonzero

probability then under the restrictions of the model the second largest valuation, VM−1:M , is equal

14The expression for GU (U(y′, y′′M , z;h)) is obtained as:

P[UM ≥ Fz(v) ≥ UM−1] = M !

∫ 1

Fz(v)

∫ Fz(v)

0

∫ uM−1

0

. . .

∫ u2

0

du

= M !

∫ 1

Fz(v)

∫ Fz(v)

0

uM−2M−1
(M − 2)!

duM−1duM

which delivers the result as stated.

12



to v with nonzero probability which violates the requirement that valuations are continuously

distributed.

5.4 Contiguous unions depending on two values of y

The bounds (5.1) and (5.3) are the bounds developed in HT. We now show that valuation distri-

bution functions in the identified set are subject to additional restrictions. To do this we turn to

inequalities delivered by the containment functional inequality (4.2) applied to test sets S which
are contiguous unions of U -level sets characterized by two values of Y .

There are just two types of contiguous union of U -level sets that are determined by two values

of Y , v1 and v2.

5.4.1 Case 1

In this case: y′′M = +∞ and, with v1 ≥ v2,

y′ = (−∞, . . . ,−∞, v2︸︷︷︸
position n2

, . . . , v2, v1︸︷︷︸
position n1

, . . . , v1).

The containment functional probability (4.6) is

P[U(Y, Z;h) ⊆ U(y′, y′′M , z;h)|z] = P

[
M∧

m=n1

Ym ≥ v1 ∧
n1−1∧
m=n2

Ym ≥ v2

∣∣∣∣∣ z
]

while (4.5) delivers

GU
(
U(y′, y′′M , z;h)

)
= P

[
M∧

m=n1

Um ≥ Fz(v1) ∧
n1−1∧
m=n2

Um ≥ Fz(v2)

]
which, plugged into (4.2) delivers inequalities which must be satisfied by all valuation distribution

functions in the identified set for all n2 < n1 ≤M and all v1 ≥ v2.

As an example, the inequalities obtained with n1 = M and n2 = M − 1 for which

y′ = (−∞, . . . ,−∞, v2, v1)

are as follows.

∀v1 ≥ v2 : 1− Fz(v1)M −MFz(v2)M−1 +MFz(v1)Fz(v2)M−1

≥ P [YM ≥ v1 ∧ YM−1 ≥ v2|z] (5.5)

13



These inequalities must be satisfied by all valuation distribution functions Fz in the identified set.

5.4.2 Case 2

In this case: y′′M = v1 and, with v1 > v2,

y′ = (−∞, . . . ,−∞, v2︸︷︷︸
position n

, . . . , v2).

The containment functional probability (4.6) is

P[U(Y, Z;h) ⊆ U(y′, y′′M , z;h)|z] =

P

[
(v2 ≤ YM ≤ v1) ∧

(
M−1∧
m=n

(Ym ≥ v2)

)∣∣∣∣∣ z
]

while (4.5) delivers

GU
(
U(y′, y′′M , z;h)

)
= P

[(
M∧
m=n

Um ≥ Fz(v2)

)
∧ (Fz(v1) ≥ UM−1)

]

which, plugged into (4.2) delivers inequalities which must be satisfied by all valuation distribution

functions in the identified set for all n ≤ M and all v1 > v2. As an example, the inequalities

obtained with n = M − 1 are as follows.

∀v1 > v2 : Fz(v1)M −MFz(v1)Fz(v2)M−1 + (M − 1)Fz(v2)M

+M(1− Fz(v1))(Fz(v1)M−1 − Fz(v2)M−1) ≥

P [v1 ≥ YM ≥ v2 ∧ YM−1 ≥ v2|z] (5.6)

5.4.3 Discussion

The inequalities presented in this Section, of which (5.5) and (5.6) are examples, may not be

satisfied by all valuation distributions which satisfy the HT bounds (5.1) and (5.3). Section 6

presents numerical calculations for two examples in which one or both of the new inequalities are

binding.

The new bounds place restrictions on pairs of coordinates that can be connected by distribution

functions in the identified set.

Contiguous unions of U level sets that are determined by n values of Y place restrictions on

n-tuples of coordinates that can be connected by valuation distribution functions in the identified

14



set, and n can be as large as M + 1.

There are also test sets which are unions of contiguous unions which are not themselves contigu-

ous unions, so there are potentially restrictions on collections of many more thanM+1 coordinates

that can be connected by valuation distribution functions in the identified set.

6 Bounds in numerical examples

This Section presents graphs of the bounds for two particular joint distributions of ordered bids in

2 bidder auctions. Details of the calculations and the valuation distributions employed are given in

an Annex. In both cases the bid and valuation distributions satisfy the conditions of the auction

model. The Figures show survivor functions, F̄z(v) = 1−Fz(v), and bounds on survivor functions.

Figure 9 shows in blue the HT bounds (5.1) and (5.3) on the valuation survivor function for

Example 1. The valuation survivor function employed in the example is drawn in red. It is the

survivor function of a random variable which is a mixture of two lognormal distributions.

In Figure 10 two valuation values are selected, v1 = 14 and v2 = 5 and the upper and lower

bounds on F̄z(v) are marked by black circles at these two values. Figure 11 shows a unit square

within which we can plot possible values of (F̄z(14), F̄z(5)). In this Figure the HT bounds are

shown as a blue rectangle. Since F̄z(14) ≤ F̄z(5) the pair of ordinates must lie above the 45◦ line,

drawn in orange. The new inequality (5.5) requires ordinate pairs (F̄z(14), F̄z(5)) to lie above the

magenta line which first falls and then increases. This line lies below the blue rectangle and the

inequality (5.5) delivers no refinement in this case. The new inequality (5.6) requires ordinate pairs

to lie above the red, increasing, line which does deliver a refinement.

Figure 11 shows that valuation survivor functions in the identified set cannot take relatively low

values at v = 5 and relatively high values at v = 14. Survivor functions satisfying the pointwise

bounds on their ordinates (5.1) and (5.3) that are relatively flat over this range are excluded from

the identified set.

In Example 2 the valuation distribution function is a mixture of normal distributions. This

is drawn in red in Figure 12 with bounds drawn in blue. Figure 13 shows two selected valuation

values, v1 = 12.5 and v2 = 11.5. The blue rectangle in Figure 14 shows the pointwise bounds on the

ordinates (F̄z(12.5), F̄z(11.5)) which must lie above the orange 45◦ line since the survivor function

is decreasing. The new bounds (5.5) and (5.6) deliver respectively the magenta and red lines in 14.

Ordinate pairs (F̄z(12.5), F̄z(11.5)) of survivor functions in the identified set must lie above both

lines. In this example both of the new inequalities serve to refine the pointwise bounds (5.1) and

(5.3).

15



7 Identified sets in a parametric model

The two-bidder example considered in this Section employs a parametric model which restricts the

distribution of valuations to be lognormal, LN(µ, σ2) where µ and σ2 are the mean and variance of

log valuations. Identified sets for θ ≡ (µ, σ) are calculated using a probability distribution of ordered

bids obtained under the bidding mechanism employed in Example 1 in Section 6 as described in

Annex A, but with the probability distribution of valuations simply lognormal, LN(0, 1) rather

than mixed lognormal as is used in the calculations reported in Section 6.

The probabilities on the right hand sides of inequalities (5.1), (5.3), (5.5) and (5.6) are calculated

from 108 simulated two bidder auctions.

The sharp identified set for θ is defined by an uncountable infinity of inequalities. We employ a

finite number chosen as follows. A sequence of values of valuations V ≡ {v1, . . . , vN} is generated
as a standard lognormal, LN(0, 1), quantile function applied to N values { 1

N+1 ,
2

N+1 , . . . ,
N
N+1}.

For a candidate value of θ the two pointwise inequalities (5.1) and (5.3) are calculated at these N

values and the new two-coordinate inequalities (5.6) and (5.5) are calculated at each vi > vj with

(vi, vj) ∈ V.
We also consider three-coordinate inequalities obtained using contiguous unions with y′′M = v1

and, with v1 ≥ v2 ≥ v3,

y′ = (−∞, . . . ,−∞, v3, v2).

The containment functional probability (4.6) for these test sets is

P[U(Y,Z;h) ⊆ U(y′, y′′M , z;h)|z] = P [v1 ≥ YM ≥ v2 ∧ YM−1 ≥ v3| z]

while (4.5) delivers

GU
(
U(y′, y′′M , z;h)

)
= P [UM ≥ Fz(v2) ∧ Fz(v1) ≥ UM−1 ≥ Fz(v3)]

which is as follows.

GU
(
U(y′, y′′M , z;h)

)
= M(1− Fz(v1))(Fz(v1)M−1 − Fz(v3)M−1)

−MFz(v3)M−1(Fz(v1)− Fz(v2)) + (Fz(v1)M − Fz(v2)M )

These three-coordinate inequalities are calculated for each triple (vi, vj , vk) ∈ V with vi > vj > vk.

We compare outer regions of the identified set for θ obtained using (i) the pointwise bounds

of HT, (ii) the pointwise and two-coordinate bounds and (iii) the pointwise, two-coordinate and

three-coordinate bounds. Calculations were done using a 100× 100 grid of values of (µ, σ).

Figure 15 shows the sets obtained with N = 25. In this case there are 50 pointwise upper and

lower bounds (25 of each), 600 pairwise inequalities, 300 delivered by each of (5.5) and (5.6), and
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Table 1: Projections of identified sets: parameters and location measuures. The first row is obtained
using only pointwise bounds. The second row additionally employs two-coordinate inequalities and
the third row uses additionally three-coordinate inequalities

Inequalities µ σ E[V ] Median[V ] Mode[V ]

pointwise [−0.74, 0.53] [0.79, 2.01] [0.63, 1.97] [0.48, 1.70] [0.28, 1.28]

& two-coordinate [−0.74,0.32] [0.85, 2.01] [0.63,1.45] [0.48,1.38] [0.28,1.24]

& three-coordinate [−0.74, 0.32] [0.86,1.99] [0.63, 1.45] [0.48, 1.38] [0.28, 1.24]

2300 three-coordinate inequalities.15

The region colored blue is the set of values of (µ, σ) obtained using all 2950 inequalities. The

union of the regions colored pink and blue is the set obtained using just the pointwise bounds.

The region colored pink on the right of the picture (at higher values of µ) is the region excluded

by the 600 two-coordinate inequalities. The thin sliver colored pink on the left of the picture at

high values of σ is the region further excluded by the 2300 three-coordinate inequalities. On the

100 × 100 grid of values of (µ, σ) the pointwise HT bounds placed 1475 pairs in the identified

set. The two-coordinate inequalities exclude 203 of these pairs. The three-coordinate inequalities

exclude a further 7 values. None of the values excluded by the two-coordinate inequalities would

be excluded by the three-coordinate inequalities if these were considered alone.

Table 1 shows the projections of the sets for individual parameters, µ and σ, and identified

intervals for various measures of the location of the distribution of valuations. Values that change

on considering the two- and three-coordinate inequalities in addition to the pointwise bounds are

set out in bold font.

The approximate identified sets for the optimal reserve price and the maximal profit under

three values of marginal cost are shown in Table 2. The bounds on the optimal reserve price are

wide - this echoes the result found in HT. The new two-coordinate inequalities reduce the bounds

but not to a great extent. There is some slight further reduction on additionally considering the

three-coordinate inequalities. Values that change on considering the new inequalities are set out

in bold font. It is possible that the shape restrictions would have greater impact in auctions with

more than 2 bidders.

8 Concluding remarks

The incomplete model of English auctions studied in HT falls in the class of Generalized Instrumen-

tal Variable models introduced in CR. Results in CR characterize the identified set of structures

delivered by a GIV model. Applying the results to the auction model delivers a characterization of

15The number of three-coordinate inequalities generated by a sequence, V, of N distinct valuations is 1
6
N(N −

1)(N − 2).
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Table 2: Identified sets for optimal reserve price and maximised profit obtained using pointwise
bounds and additionally using two-coordinate inequalities and additionally using three-coordinate
inequalities

marginal cost (v0) inequalities optimal reserve price maximal profit

pointwise [1.07, 12.32] [0.31, 0.87]
0 & two-coordinate [1.07, 12.32] [0.31,0.77]

& three-coordinate [1.07,11.54] [0.31, 0.77]

pointwise [2.32, 16.63] [0.16, 0.65]
1 & two-coordinate [2.38, 16.63] [0.16, 0.65]

& three-coordinate [2.38,15.75] [0.16,0.64]

pointwise [3.54, 20.44] [0.10, 0.61]
2 & two-coordinate [3.66, 20.44] [0.10, 0.61]

& three-coordinate [3.66,19.48] [0.10,0.60]

the sharp identified set for that model.

The CR development of sharp identified sets uses results from random set theory. CR shows that

a structure, comprising a structural function h and distribution of unobservable random variables,

GU , is in the identified set of structures delivered by a model and distribution of observable random

variables if and only if GU is the distribution of a selection16 of the random U -level set delivered

by the structural function h and the distribution of observable values under consideration. The

identified set is then characterized using necessary and suffi cient conditions for this selectionability

property to hold.

The characterization given in CR and applied here to the auction model delivers a complete

description of the sharp identified set. This means that all structures admitted by the model that

can deliver the distribution of ordered bids, and only such structures, satisfy the inequalities that

comprise the characterization.

HT left the issue of the sharpness of their bounds as an open question.17 The approach adopted

in HT to determining sharpness is a constructive one, effectively searching for admissible bidding

strategies which deliver the distribution of final bids used to calculate the bounds for every distribu-

tion of valuations in a proposed identified set. As noted in HT18 this is diffi cult to carry through in

the auction model. Constructive proofs of sharpness have the advantage that they deliver at least

one of the many complete, observationally equivalent, specifications of the process under study.

However they are frequently hard to obtain. The method set out in CR and applied here has the

advantage that sharpness is guaranteed.

16A selection of a random set is a random variable that lies in the random set with probability one. A probability
distribution is selectionable with respect to a random set if there exists a selection of the random set which has that
probability distribution.
17See Section VIII of HT.
18See Appendix D of HT.
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Gentry and Li (2014) take a constructive approach to proof of sharpness of identified sets

in a model of auctions with selective entry. They produce pointwise bounds on the value of a

distribution function of valuations at each value of its argument and prove pointwise sharpness.

Taking the approach adopted here may lead to shape restrictions which lead to refinement of the

identified set of valuation distribution functions.

The new bounds for the auction model exploit information contained in the joint distribution of

ordered final bids unlike the pointwise bounds on the levels of valuation distributions which depend

only on marginal distributions of ordered bids. This new information is useful because the joint

distribution of ordered final bids is informative about the spacing of ordered bids which in turn is

informative about the shape of the valuation distribution.

The characterization of the sharp identified set in the English auction model involves a dense

system of inequalities. The inequalities restrict not only the level of the valuation distribution

function at each point in its support but also the shape of the function as it passes between the

pointwise bounds. In practice, with a finite amount of data and computational resource, some

selection of inequalities will be required. How to make that selection is an open research question.

Placing bounds on functionals of the distribution of valuations such as optimal reserve price in

a nonparametric setting can be achieved using a flexibly parametrized parametric model and the

methods employed with the simple parametric lognormal model in Section 7. We think here in

terms of a sieve-like approximation to the distribution of valuations with coeffi cients constrained

by the bounds delivered by the GIV model of CR, bounds on functionals of the distribution being

obtained by projection.

In research in progress we pursue the development of sharp identified sets for the distribution of

valuations when the joint distribution of final bids is not exchangeable or when valuations maybe

be affi liated.
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A Proofs of results stated in the main text

Proof of Lemma 1. Consider a realization (b, v) of (B, V ). Under Restriction 1 the number of

elements of b with values greater than vm:M is at most M − m. Therefore in all realizations of
(B, V ), bm:M ≤ vm:M for all m and M , from which (2.1) follows immediately. The second result,

(2.2), follows directly from Restriction 2. �

Proof of Theorem 1. Let Restrictions 1-3 hold and let F = {Fz (·) : z ∈ Z} be an element
of the set defined in (4.3). From Theorem 4 of CR this is so if and only if for each M there

exists a random vector U∗ ≡ (U∗1 , ..., U
∗
M ) and a random vector Y ∗ = (Y ∗1 , ..., Y

∗
M ) on the same

probability space such that for almost every z ∈ RZ , we have that conditional on Z = z, (i) Y ∗ is

distributed FY |Z (·|z), the identified conditional distribution of ordered bids in the population, (ii)
the components of U∗ are distributed uniformly on that part of the M dimensional unit cube with

U∗1 ≤ · · · ≤ U∗M (iii) for all m = 1, ...,M , Y ∗m ≤ F−1
z (U∗m) and Y ∗M ≥ F−1

z

(
U∗M−1

)
almost surely.

This establishes that given knowledge of only the distribution of bid order statistics for almost

every z, FY |Z (·|z), but not the unordered bid distribution FB|Z (·|z), (4.3) comprises the identified
set for conditional valuation distributions {Fz (·) : z ∈ Z}.

Now suppose the conditional distributions FB|Z (·|z) are identified, a.e. z ∈ RZ . Knowledge of
FB|Z (·|z) also reveals knowledge of FY |Z (·|z), so the set defined in (4.3) constitutes valid bounds
on the valuation distribution. To complete the proof, it remains to show that this set is sharp if in

addition Restriction 4 holds, that is that bids are exchangeable given Z = z.

To do this we now show that conditions (i)-(iii) above imply that, for arbitrary choice of M ,

there exist random M -vectors of bids Bo and valuations V o satisfying Restrictions 1-4 such that

for each z ∈ RZ , (a) Bo ∼ FB|Z (·|z), (b) ∀m = 1, ...,M , Bo
m ≤ V o

m almost surely, and (c)

Bo
M :M ≥ V o

M−1:M almost surely. For the remainder of the proof we fix z at an arbitrary value in RZ
and proceed implicitly conditioning on Z = z. All distributions that follow are to be understood

to be conditional on Z = z, with the understanding that the steps can be repeated for any choice

of z ∈ RZ .
Let Ũ be a random M -vector with distribution equal to the distribution of M independent

Uniform(0, 1) variates. It follows from (i)-(iii) above that if random vector B∗ ∼ FB|Z (·|z), then
we have that

F ∗V %sd F ∗B, (A.1)

where %sd denotes first order stochastic dominance, and where F ∗B and F ∗V denote the distributions
of

B
∗ ≡ (B∗1:M , ..., B

∗
M :M ,−B∗M :M ) ,

and

V
∗ ≡

(
F−1
z

(
Ũ1:M

)
, ..., F−1

z

(
ŨM :M

)
,−F−1

z

(
ŨM−1:M

))
,
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respectively.

Let ΣB and ΣU be random vectors denoting the rank order of the elements of B∗ and Ũ ,

respectively, from smallest to largest. Let σ denote one of theM ! particular orderings of {1, ...,M}.
Because B∗ and Ũ are each exchangeable, the distribution of their order statistics is invariant

with respect to conditioning on any ordering of their components. Thus, the stochastic dominance

condition (A.1) extends to that of the conditional distributions of B
∗
and V

∗
conditional on ΣB = σ

and ΣU = σ, respectively. Thus we have that

F ∗V |ΣU=σ %sd F ∗B|ΣB=σ,

for all possible orderings σ. Conditional on ΣB = σ, B∗m:M = B∗σm , and conditional on ΣU = σ,

Ũm:M = Ũσm .

It then follows from Strassen’s (1965) Theorem, see also Lindvall (1999), that we can construct

random (M + 1)-vectors B
o
and V

o
on the same probability space as B∗ such that for each ordering

σ we have that conditional on ΣB = σ, B
o ≤ V o

almost surely, where

B
o ∼ F ∗B|ΣB=σ, V

o ∼ F ∗V |ΣU=σ, and

∀m = 1, ...,M : B
o
m:M = B

o

m
, V

o
m:M = V

o

m
.

The distributions of B
o
and V

o
are such that B

o
M+1 = −Bo

M and V
o
M+1 = −V o

M−1.

Now define random M -vectors Bo and Uo whose components m = 1, ...,M conditional on

ΣB = σ are given by:

Bo
m ≡ B

o
σm , Uom ≡ Fz

(
V
o
σm

)
,

and define V o as the random M -vector whose components are

V o
m ≡ F−1

Z (Uom) = V
o
σm , all m = 1, ...,M .

Therefore, by construction,

Bo d
= B∗|ΣB = σ, and Uo d

= Ũ |ΣU = σ.

The ordering of the elements of Bo and Uo are both σ implying that conditional ΣB = σ,

Bo ≤ V o almost surely. (A.2)

Also, by construction,

B
o
M+1 = −Bo

M :M ≤ V
o
M+1 = −F−1

Z

(
UoM−1:M

)
= −V 0

M−1:M almost surely,
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equivalently

V o
M−1:M ≤ Bo

M :M almost surely. (A.3)

Since the argument holds conditional on any ordering σ, (A.2) and (A.3) also hold unconditionally.

Finally, unconditional on the particular ordering σ, we have

Bo d
= B∗, and Uo d

= Ũ ,

since by exchangeablility of B∗ and Ũ , the probability of ΣB = σ is the same as that of ΣU = σ,

namely 1/M !. �

B Calculation of bid probabilities in Section 6

The probabilities used in the two examples in Section 6 were produced by simulation using 107

independent draws of identically distributed independent pairs of valuations from a valuation dis-

tribution and a fully specified stochastic mechanism that delivers final bids given valuations. Dis-

tribution functions of ordered bids and the various probabilities that appear in bounds are simply

calculated as proportions of simulated ordered bids that meet the required conditions. In the two

examples valuations have different distributions and bids are obtained from valuations in different

ways.

In Example 1 the valuation distribution is specified as a mixture of two log normal distributions,

one LN(0, 1) and the other LN(2.5, 0.52) with mixture weights respectively 0.3 and 0.7.19 In each

of the 107 simulated auctions two independent realizations of this mixture distribution are sampled

and sorted to deliver realizations of ordered valuations.

Independently distributed random variables, Θ1 and Θ2 with identical symmetric Beta distri-

butions, expected value 0.5 and standard deviation 0.06, are assigned to respectively the low and

high valuation bidders. A fair coin toss determines who bids first.

The first bidder bids 10% of her valuation. If this exceeds the valuation of the other bidder the

auction ends and the bid of the low valuation bidder is recorded as zero. Otherwise the auction

proceeds and in turn each bidder bids Θ times the bid on the table plus (1−Θ) times her valuation

with Θ equal to Θ1, respectively Θ2, for the low, respectively high, valuation bidder. The auction

ends when the bid of the high valuation bidder exceeds the valuation of the other bidder.

In Example 2 ordered valuations are produced as in Example 1 but with the distribution from

which the valuations are sampled specified as a mixture of normal distributions, one N(10, 1) the

other N(12.5, 0.52) with mixture weights 0.5 attached to each distribution. The final bid of a low

valuation bidder is calculated as their valuation minus an amount which is the absolute value of a

independent realization of a standard normal variable. The final bid of a high bidder is simulated as

19LN(µ, σ2) is a random variable whose logarithm is N(µ, σ2).
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a weighted average of the low and high valuations with the weight given by a realization of a uniform

variate with support on [0, 1]. The intention in example 2 is just to produce final bid distributions

which respect the stochastic dominance conditions of the model. Example 1 by contrast obtains

bid distributions by simulating bidding behavior.

24



Figure 1: The U -level set U((y′1, y
′
2), z;h) containing values of uniform order statistics, u2 ≥ u1,

that can give rise to order statistics of bids, (y′1, y
′
2). Fz is the distribution function of valuations.

As labelled this is for the 2 bidder case. In the M bidder case this shows a projection of a level set
with u2 (u1) denoting the largest (second largest) order statistic of M i.i.d. uniform variates.
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Figure 2: In blue the U -level set U((y′1, y
′
2), z;h) containing values of uniform order statistics,

u2 ≥ u1, that can give rise to order statistics of bids, (y′1, y
′
2). Fz is the distribution function of

valuations. In magenta the U -level set obtained as y′2 is reduced as shown by the arrow. This is
never a subset of the original U -level set outlined in blue. As labelled this is for the 2 bidder case.
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Figure 3: In blue the U -level set U((y′1, y
′
2), z;h) containing values of uniform order statistics,

u2 ≥ u1, that can give rise to order statistics of bids, (y′1, y
′
2). Fz is the distribution function of

valuations. In magenta the U -level set obtained as y′2 is increased as shown by the arrow. This is
never a subset of the original U -level set outlined in blue. As labelled this is for the 2 bidder case.
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Figure 4: In blue the U -level set U((y′1, y
′
2), z;h) containing values of uniform order statistics,

u2 ≥ u1, that can give rise to order statistics of bids, (y′1, y
′
2). Fz is the distribution function of

valuations. In magenta the U -level set obtained as y′1 is increased as shown by the arrow. This is
always a subset of the original U -level set. As labelled this is for the 2 bidder case.
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Figure 5: 2 bidder case. The contiguous union of level sets: U(y′, y′′2 , z;h) where y′ = (y′1, y
′
2), y′2

and y′′2 are values taken by the maximal order statistic of bids, Y2, and y′1 is a value taken by the
second largest order statistic of bids, Y1. In the labels, Fz is the distribution function of valuations.
The shaded area indicates the values of Y that give a U -level set which is a subset of the contiguous
union.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

u2

u 1

Fz(y2
'' )Fz(y2

' )

Fz(y1
' )

29



Figure 6: 2 bidder case. The triangular region outlined in blue is the contiguous union of level sets:
U(y′, y′′2 , z;h) where y′1 = y′2 = v and y′′2 = ∞. Fz is the distribution function of valuations. This
choice of y′ and y′′2 delivers the inequality requiring the second highest valuation to stochastically
dominate the second highest bid. The shaded area indicates the values of Y that give a U -level set
which is a subset of the contiguous union.
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Figure 7: 2 bidder case. The trapezoidal region outlined in blue is the contiguous union of level sets:
U(y′, y′′2 , z;h) where y′ = (−∞, v) and y′′2 =∞. Fz is the distribution function of valuations. This
choice of y′ and y′′2 delivers the inequality requiring the highest valuation stochastically dominates
the highest bid. The shaded area indicates the values of Y that give a U -level set which is a subset
of the contiguous union.
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Figure 8: 2 bidder case. The trapezoidal region outlined in blue is the contiguous union of level
sets: U(y′, y′′2 , z;h) where y′ = (−∞,−∞) and y′′2 = v. Fz is the distribution function of valuations.
This choice of y′ and y′′2 delivers the inequality requiring the highest bid stochastically dominates
the second highest valuation. The shaded area indicates the values of Y that give a U -level set
which is a subset of the contiguous union.
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Figure 9: Example 1. Upper and lower bounds (blue) on the valuation survivor function (red).
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Figure 10: Example 1. Upper and lower bounds (blue) on the valuation survivor function (red).
Two values of v, v1 = 14 and v2 = 5 are identified.
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Figure 11: Example 1. The blue rectangle shows upper and lower bounds on F̄z(v1) and F̄z(v2) at
v1 = 14 and v2 = 5. These ordinates of the valuation survivor function must lie above the 45◦ line
(orange). The new bounds require they lie above the magenta and red lines as well. Only the red
line delivered by inequality 5.6 is binding.
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Figure 12: Example 2. Upper and lower bounds (blue) on the valuation survivor function (red).
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Figure 13: Example 2. Upper and lower bounds (blue) on the valuation survivor function (red).
Two values of v are identified: v1 = 12.5 and v2 = 11.5.
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Figure 14: Example 2. The blue rectangle shows upper and lower bounds on F̄z(v1) and F̄z(v2) at
v1 = 12.5 and v2 = 11.5. These ordinates of the valuation survivor function must lie above the 45◦

line (orange). The new bounds (5.5) and (5.6) require they lie above the magenta and red lines as
well.
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Figure 15: Outer regions for lognormal valuation distribution parameters µ and σ (mean and
standard deviation of log valuations). The union of the two filled regions (blue and pink) is the
identified set obtained using the HT pointwise upper and lower bounds. The lower pink region is
excluded by the inequalities (5.5) and (5.6) and the upper pink region is excluded by new inequalities
involving three values of V . This leaves just the filled blue region as the approximate identified set.
The green dot marks the value of (µ, σ) used to generate the probability distribution of valuations
employed in this example.
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