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Abstract

We introduce econometric methods to perform estimation and inference on the permanent and
transitory components of the stochastic discount factor (SDF) in dynamic Markov environments.
The approach is nonparametric in that it does not impose parametric restrictions on the law
of motion of the state process. We propose sieve estimators of the eigenvalue-eigenfunction
pair which are used to decompose the SDF into its permanent and transitory components, as
well as estimators of the long-run yield and the entropy of the permanent component of the
SDF, allowing for a wide variety of empirically relevant setups. Consistency and convergence
rates are established. The estimators of the eigenvalue, yield and entropy are shown to be
asymptotically normal and semiparametrically efficient when the SDF is observable. We also
introduce nonparametric estimators of the continuation value under Epstein-Zin preferences,
thereby extending the scope of our estimators to an important class of recursive preferences.
The estimators are simple to implement, perform favorably in simulations, and may be used
to numerically compute the eigenfunction and its eigenvalue in fully specified models when

analytical solutions are not available.
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1 Introduction

Dynamic asset pricing models link the prices assets with sources of risk, the payoff horizon, and the
preferences of economic agents. A large and growing literature in macroeconomics and asset pricing
has shown how to extract information about the long-run valuation implications of a model by
analyzing the permanent and transitory components of the stochastic discount factor (SDF).! The
permanent-transitory decomposition of the SDF provides a powerful and robust means for investi-
gating the connection between macroeconomic fundamentals, asset returns, and agents’ preferences.
Despite this recent activity, econometric methods for performing estimation and inference on the

permanent and transitory components of the SDF have not yet been well developed.

We introduce econometric methods for performing estimation and inference on features of the
permanent and transitory components of the SDF in discrete-time Markov environments. The
estimators are nonparametric in that we do not impose no parametric restrictions on the law of
motion, or “dynamics”, of the Markov state process. This approach is in the spirit of generalized
method of moments (GMM) (Hansen, 1982). One very attractive feature of GMM is that it allows
important structural parameters of a model to be estimated without fully specifying the data
generating process. Similar to GMM, our estimators may be used to extract information about
the long-run pricing implications of a model without fully specifying the dynamics of the state
process. To date, researchers have typically imposed simple parametric models in order to obtain
analytical formulas for terms related to the permanent and transitory components. In contrast,
economic theory is vague as to how the dynamics of the state process should be modeled. This
nonparametric approach avoids potential distortion of the long-run implications which may arise
due to misspecification of simple parametric models for the dynamics. This approach also permits
researchers to use data to investigate the long-run valuation implications of different preferences

without having to specify the dynamics and SDF in a way that makes analytical solution feasible.

Hansen and Scheinkman (2009) show that the permanent and transitory components of the SDF
may be extracted by studying a positive eigenfunction and eigenvalue of a pricing operator. Their
long-run pricing approximation shows that the positive eigenfunction characterizes the state depen-
dence of the price of long-horizon assets and its eigenvalue encodes the yield on long-term bonds.
The eigenvalue is also related to the entropy of the permanent component of the SDF, which is a
measure of the persistence and dispersion of the SDF. Alvarez and Jermann (2005) derive bounds
for the entropy of the permanent component as a function of returns relative to long-term bonds
and estimate the bounds from historical returns data. Dual to their approach, we show how to
estimate the entropy of the permanent component of the SDF obtained under different, possibly
counterfactual, preference specifications using historical data on the state. Our estimators may be

used in conjunction with the Alvarez and Jermann (2005) bounds to establish whether different

'Prominent examples include Alvarez and Jermann (2005), Hansen and Scheinkman (2009), Hansen (2012), Bakshi
and Chabi-Yo (2012), and Backus, Chernov, and Zin (2014).



preference specifications can generate a sufficiently large entropy of the permanent component of

the SDF to rationalize historical return premia.

The central focus of this paper is nonparametric sieve estimation of the positive eigenfunction,
its eigenvalue, the long-run yield, and the entropy of the permanent component. This approach
is inspired by earlier work of Chen, Hansen, and Scheinkman (2000) on nonparametric estimation
of diffusion processes. Sieve methods are useful in this context as they reduce an intractable,
infinite-dimensional eigenfunction problem to a low-dimensional matrix eigenvector problem which
is then easily estimated from time series data on the state.? The estimators are particularly easy to
implement: there is no simulation, optimization, or numerical integration. The estimators may also
be used to numerically compute the long-run implications of fully specified asset pricing models for

which analytical solutions are unavailable.

The scope of this paper is confined to stationary, discrete-time environments so as to simplify the
econometric analysis. We present identification conditions for the positive eigenfunction in sta-
tionary discrete-time environments to complement those Hansen and Scheinkman (2009) provide
for possibly nonstationary, continuous-time environments. The identification conditions are weaker
than other nonparametric identification conditions for positive eigenfunctions which have been de-
rived recently using similar operator methods (see Chen, Chernozhukov, Lee, and Newey (2014) and
references therein). Following earlier work by Hansen and Scheinkman (1995) on Markov processes,
we study a “time-reversed” version of the pricing operator.? Existence of a positive eigenfunction
of the time-reversed operator is one of the identification conditions. We also present a version of
the long-run pricing approximation of Hansen and Scheinkman (2009) which is formulated in terms

of the positive eigenfunctions of the forward- and reverse-time pricing operators.

We establish consistency and convergence rates of the estimators of the forward- and reverse-
time positive eigenfunctions, the eigenvalue, the long-run yield, and the entropy of the permanent
component of the SDF, allowing for a variety of modeling setups. When specialized to the case in
which the SDF is observable, the estimators of the eigenvalue, long-run yield, and entropy of the

permanent component are shown to be asymptotically normal and semiparametrically efficient.

Certain SDF's contain components that depend on forward-looking expectations and are therefore
not directly observable when we model the dynamics nonparametrically. For example, the SDF
obtained under Kreps and Porteus (1978), Epstein and Zin (1989), and Weil (1990) recursive
preference specifications depends on the continuation value function of future consumption which
is unobservable to the econometrician when the dynamics are modeled nonparametrically. To extend

the ambit of our estimators to models with recursive preferences, we also introduce nonparametric

%I am grateful to a referee for suggesting an alternative kernel-based approach in which (i) the Markov transition
density is estimated nonparametrically and plugged into the pricing operator, then (ii) the estimator is recast as a
n X m matrix eigenvector problem using similar reasoning as in Darolles, Fan, Florens, and Renault (2011) (where n
is the sample size). A comparison of the relative merits of the two approaches is beyond the scope of this paper.

3Note, however, that we do not require the state process to be time reversible.



sieve estimators of the continuation value of future consumption under Epstein-Zin preferences. The
continuation-value estimators may be plugged in to the sieve eigenfunction/eigenvalue estimators
to nonparametrically estimate the positive eigenfunction, eigenvalue, long-run yield and entropy of
the permanent component under counterfactual preference parameters. We show, via simulations,
that these quantities may be estimated to a high degree of accuracy under Epstein-Zin preferences
despite the fact that a nonparametric estimate of the continuation value is first plugged in to the
eigenfunction/eigenvalue estimators. The continuation value estimators may also be used as an
alternative to discretization methods (e.g. Tauchen and Hussey (1991)) to numerically solve for the

continuation value and SDF in fully specified models when a solution is not available analytically.

The estimators are applied to extract the permanent and transitory components consistent with
historical data on consumption and corporate earnings under both constant relative risk aversion
(CRRA) preferences and Epstein-Zin preferences with unit elasticity of intertemporal substitution.
We find that the two preference specifications generate virtually indistinguishable permanent com-
ponents. Coherently with the well-documented shortcomings of the C-CAPM, neither preference
specification can explain the historically high return on equities relative to long-term bonds under
reasonable values of the risk aversion and time preference parameters. The Epstein-Zin specifica-
tion has some success at explaining the level of historical long-term yields, but cannot explain the

volatility of returns on long-term bonds.

The theoretical contributions of this paper have broader application to nonparametric identifica-
tion and estimation. First, other quantities of interest, such as a habit formation component in a
semiparametric C-CAPM (Chen et al., 2014) and marginal utility in nonparametric Euler equations
(Lewbel, Linton, and Srisuma, 2011; Escanciano and Hoderlein, 2012), may be written as positive
eigenfunctions of nonselfadjoint operators. Our estimators provide a computationally simple means
of estimating these other models in a representative agent setting. In contrast, implementation of
the kernel-based estimator of Lewbel et al. (2011) requires nonparametrically estimating condi-
tional densities, a numerical integration step, and then solving a high-dimensional eigenfunction
problem. The estimators and large-sample theory presented herein may be extended to study sieve

estimation of these other models in a heterogeneous agent setting using mirco-level data.

Second, the derivation of the large sample properties of the estimators is nonstandard as the
eigenfunction-eigenvalue pair are defined implicitly by an unknown, nonselfadjoint operator. The
literature on nonparametric eigenfunction estimation to date has focused almost exclusively on the
selfadjoint case (see Chen et al. (2000) and Gobet, Hoffmann, and Reif3 (2004) for sieve estimation
and Darolles, Florens, and Renault (1998), Darolles, Florens, and Gourieroux (2004), and Carrasco,

Florens, and Renault (2007) for a kernel approach).* A notable exception is the working paper Lew-

“Darolles et al. (1998), Darolles et al. (2004), and Carrasco et al. (2007) estimate the singular value decomposition
(SVD) of a possibly nonselfadjoint conditional expectation operator. The SVD is obtained as the eigendecomposition
of two composite operators formed as the product of the operator and its adjoint. The composite operators are
selfadjoint even when the conditional expectation operator is nonselfadjoint.



bel et al. (2011) who establish asymptotic normality of kernel-based eigenfunction and eigenvalue
estimators for nonparametric Euler equations. Our derivation of the large-sample theory is rather
different from theirs because with sieves the dimension of the function space is expanding with the

sample size.

The paper is organized as follows. Section 2 presents the setting and briefly reviews SDF de-
composition. Section 3 presents identification and existence conditions and a long-run pricing ap-
proximation. Section 4 describes the estimators and derives their large-sample properties. Section
5 outlines nonparametric continuation value estimation under recursive preferences and presents
the simulations and empirical application. Section 6 concludes. A Supplementary Appendix con-
tains a discussion of the connection between our identification conditions and those in Hansen and
Scheinkman (2009), verification of the identification conditions for common parametric models,

further results on estimation, and all proofs.

2 SDF decomposition

This section reviews briefly the relationship between the positive eigenfunction, the long-term
implications of asset pricing models as exposited by Hansen and Scheinkman (2009), and related
work by Alvarez and Jermann (2005), Hansen (2012), and Backus et al. (2014).

Consider a discrete-time environment such that at each date ¢t € {0, 1, ...} the random vector X; of
state variables summarizes all relevant information for assigning values to future state-contingent
payoffs. We assume that the state process {X;} on X C R? is a strictly stationary and ergodic, time-
homogeneous, first-order Markov process defined on a complete probability space (2, F,{F:},P),
where Fy = o(Xy, Xy—1,...) is the o-algebra generated by the history {..., X;—1, X;}. We follow
Alvarez and Jermann (2005) and Backus et al. (2014) and assume a stationary environment whereas

Hansen and Scheinkman (2009) allow for possibly non-stationary environments.

We further assume there exists a pricing kernel process { M, } such that M, is adapted to F; for each
t, and for which M, = M;M,(6;) where 6, is the shift operator that moves the time subscript
forward by t units (see Hansen and Scheinkman (2009)).% At each date ¢, the price assigned to a
claim to Z4y, payable at the future date t + n, is given by

Mt+n
E Z X . 1
i 2| X 1)
It is convenient to write M
t+1
]\/[: = m(X¢, Xeg1) (2)

for some time-homogeneous, non-negative function m : X x X — R which will be referred to as the

5We refer to M; as the pricing kernel and M1 /M, as the SDF following Alvarez and Jermann (2005).



SDF, and the random variable m(X;, X;y1) will be referred to as the date-t SDF.6

Hansen and Scheinkman (2009) show that, by restricting (1) to payoffs of the form Z;,, = ¥(Xi4n)
for ¢ : X — R, we may define a collection {M,, : n > 1} of linear operators of the form

MtJrn
M,

Mp(z) =E [ Y(Xtn)

Xt:x]

on a space of payoff functions . As a consequence of the multiplicative functional and Markov

structure, the factorization M,, = M holds for each n > 1, where the pricing operator M is
My (z) = E[m(Xe, Xi41)p(Xit1)[ Xy = 2]

using the notation (2). Thus M,,1) may be calculated by iteratively applying M to v for n times.

A function ¢ is an eigenfunction of {M,, : n > 1} with eigenvalue p if

Mn¢ = pn¢ (3)

for each n > 1. If, in addition, the eigenfunction ¢ is positive, then ¢ is referred to as the principal
eigenfunction, its eigenvalue p as the principal eigenvalue, and the pair (p,¢) as the principal
eigenpair.” As a consequence of the factorization M,, = M™, the pair (p, ¢) are the principal eigenpair
if and only if

Mo = po (4)

where ¢ is positive.

Alvarez and Jermann (2005) decompose the pricing kernel into its permanent and transitory com-
ponents M and M, respectively. Their decomposition is M; = M M where E,[M/|] = M
and where M /M, = Ri11 0 is the gross return from ¢ to ¢ + 1 on a risk-free bond with infinite
maturity. Hansen and Scheinkman (2009) show that, in Markov environments, the permanent and
transitory components of the pricing kernel are M = p~tM;¢(X;) and M = p'¢(X;)~! and the

permanent and transitory components of the SDF are

ME M ¢(Xpa)

MP P My ¢(Xy) (%)
ML, 9(Xy)

Mmr p¢(Xt+1) ©)

for each date t € {0,1,...}. The martingale property of the permanent component may be used to

51f the SDF depends on additional variables, then m(X¢, Xt+1) may be interpreted as the conditional expectation
of the SDF with respect to (X, X¢+1) (Hansen and Scheinkman, 2013).

"Under the identification conditions presented below, p will be the largest eigenvalue of M and ¢ will be the unique
positive eigenfunction of M (in an appropriately chosen parameter space).



define a distorted conditional expectation IE, where

P
Mt+n
P
Mt

E[)(Xy1n)| Xy = 2] :=E [ Y(Xeqn)

Xt:$:| .

Hansen and Scheinkman (2009) provide a set of stochastic stability conditions for continuous-time

environments under which

U

E[Y)(Xein)| X: = —>/ Hlw) (7)

for some probability measure ¢.8 The measure ¢ will, in general, be different from the unconditional
distribution of X;. Further, Hansen and Scheinkman (2009) show that (7) implies

p "M (Xy) — (/ 1/’;‘ >¢(Xt) (8)

as n — oo. Equation (8) makes precise the sense in which p captures the yield on long-horizon assets
and ¢ captures state dependence of the prices of long-horizon assets. In particular, y := —logp
may be interpreted as the yield on a bond with infinite maturity. We derive a version of (8) for
stationary, discrete time environments under different conditions from Hansen and Scheinkman
(2009) (see Theorem 3.3). We show that ¢ in stationary environments is characterized by ¢ and a

positive eigenfunction ¢* of a time-reversed pricing operator.

Alvarez and Jermann (2005), Hansen (2012) and Backus et al. (2014) study the entropy of a SDF
and its permanent and transitory components. Recall that the entropy of a positive random variable
Z is defined as L(Z) = logE[Z] — E[log Z]. In stationary, discrete-time environments, the entropy

of the permanent component of the SDF takes the convenient form

(i) = oms i ()] )

whenever E[log ¢(Xy)] is finite, which we assume hereafter.

Alvarez and Jermann (2005) derive the bound

Mk,
L(357) 2 Bllog Rusi] ~ Ellog R ] (10)
where Ry is the gross return from ¢ to ¢+1 on a generic asset. The inequality (10) complements the
Hansen and Jagannathan (1991) bound in that it restricts the size of the permanent component of

the SDF as a function of observed asset prices. The entropy bound (10) has a short-term counterpart,

8The stochastic stability conditions in Hansen and Scheinkman (2009) are for continuous-time environments. See
Appendix A for a version of their conditions for discrete-time environments. Appendix A also shows the relation
between the conditions imposed in the present paper and the discrete-time version of Hansen and Scheinkman’s
(2009) stochastic stability conditions.



namely

M,
L( ]\Zl> > E[log Ry+1] — Eflog Ryt1,4] (11)

where R;;1 s denotes the gross return from ¢ to ¢t + 1 on the risk-free asset. Alvarez and Jermann
(2005) also derive bounds on the size of the transitory component and conditional versions of (10).
Bakshi and Chabi-Yo (2012, 2014) refine the bounds of Alvarez and Jermann (2005) and derive

revealing bounds for the entropy of the square of the permanent component of the SDF.

The permanent component of the SDF is invariant under a certain transformations of the pricing
kernel. As argued by Bansal and Lehmann (1997), Hansen (2012) and Backus et al. (2014), models
may generate different short-term asset pricing implications but behave very similarly over long
horizons. Following Hansen (2012), we may construct alternative pricing kernel processes {M;}

with X
. t
M} = Mtf*(Xo)

foreacht € {0,1,...} where f* is a positive function. For example, M; could be the C-CAPM pricing

(12)

kernel and f* may capture internal or external habit persistence. Crucially, this modification of { M}
does not alter its long-run pricing implications: both {M, } and {M;'} have the same permanent
component (and therefore the same entropy of the permanent component of the SDF), the same
principal eigenvalue p, and the same long-run yield (see Hansen (2012) and Backus et al. (2014)).
By analyzing the permanent component of the SDF for a single model we can, therefore, make
inferences about a much broader class of models. In particular, the long-term pricing implications
of many models with habit persistence and models with a limiting type of recursive preferences are

identical to the long-term pricing implications the C-CAPM.

3 Identification, existence, and long-run pricing

3.1 Identification

Multiplicity of positive eigenfunctions is an issue without further restrictions on the parameter
space for ¢ (i.e. the space of functions to which ¢ is assumed to belong). Hansen and Scheinkman
(2009) do not restrict the parameter space ex ante. Instead, they apply Markov process theory to
derive a set of stochastic stability conditions for possibly non-stationary, continuous-time environ-
ments. Their stability conditions imply that the positive eigenfunction which is germane to their
long-run approximation is unique, even though there may exist multiple positive eigenfunctions. In
contrast, we follow Alvarez and Jermann (2005) and Backus et al. (2014) and confine our analysis
to stationary, discrete-time environments. Under stationarity there is a natural way to restrict the
parameter space for ¢. Restricting the parameter space in this manner allows alternative identifica-
tion conditions to be derived using operator theory. Our identification result shows that there is at

most one positive eigenfunction in the parameter space. A long-run approximation result (Theorem



3.3) shows that this positive eigenfunction is indeed germane to the long-run approximation. The
link between our regularity conditions are summarized below and discussed in greater detail in

Appendix A.

9

Following previous work on stationary continuous-time Markov processes,” a natural parameter

space in which to consider identification is the space LP(X, 2", Q) with 1 < p < oo where X C R?
is the support of the state process, 2 is the Borel o-algebra on X, and @ is the stationary (i.e.
unconditional) distribution of the state process. Note that we use do not require that {X;} be

embeddable by a continuous-time process. Let LP denote the space LP(X, 2", Q).

Assumption 3.1 M : LP — L? is a bounded linear operator of the form

M () = /X Kua(, 9 () dQ(y)

for some measurable Kpg : X X X — R.

When the joint density fo 1(x¢, z¢41) of (X¢, X¢41) exists and the unconditional density f(x¢) of X;

exists and is positive, then

_ foalzy)
) = iy )

Boundedness of Ml may be verified using the Schur test.

Assumption 3.2 (a) Ky(z,y) >0 a.e.-|Q ® Q]; and

(b) forall S € Z with 0 < Q(S) < 1 we have

/X\s (/s Ku(z, ) dQ(w)) dQ(y) > 0.

Let ¢ be such that p~! 4+ ¢~ = 1 and let L7 denote the space L(X, 2, Q). Following earlier work
by Hansen and Scheinkman (1995) on continuous-time Markov processes, define the time-reversed

pricing operator M* : L1 — L9 as
M) (z) = E[m(Xo, X1)¥(Xo)| X1 = 7]

for ¢ € LY.

9See Hansen and Scheinkman (1995), Florens, Renault, and Touzi (1998), and Chen, Hansen, and Scheinkman
(2009) who study continuous-time Markov processes. In contrast, we deal with general discrete-time Markov processes.



Assumption 3.3 There exists ¢ € LP, ¢* € LY and a constant p such that

Mo = po
M*(ﬁ* _ p¢*

with ¢, ¢* > 0 a.e.-[Q].

Assumption 3.1 is a mild condition which places some basic structure on M and ensures that M* is
well defined. Assumption 3.2(a) is included mainly for completeness, and is trivially satisfied when
fo1(zy, x441) and f(xy) exist and are positive. Assumption 3.2(b) is a direct extension of the irre-
ducibility criterion in the Perron-Frobenius theorem for matrices. The stronger “strict positivity”
condition K (z,y) > 0 a.e.-[Q®Q)] implies Assumption 3.2 but is stronger than needed for identifica-
tion and existence. Assumption 3.3 merely requires that both M and its time-reversed counterpart
M* have positive eigenfunctions corresponding to the same eigenvalue p. This condition is verified
directly for three parametric models in Appendix B, namely exponentially affine and exponentially

quadratic SDFs, and a model with recursive preferences with stochastic volatility.

Theorem 3.1 Let Assumptions 8.1, 3.2 and 3.8 hold. Then:

(a) if ¢ € LP is a positive eigenfunction of M then % is constant a.e.-[Q)]

(b) if ¢* € LY is a positive eigenfunction of M* then gg)) is constant a.e.-[Q)

(c) p is the unique eigenvalue of M with a positive eigenfunction.

To summarize the connection between Assumptions 3.1-3.3 and Hansen and Scheinkman (2009),
Assumption 3.2 is analogous to their positivity and irreducibility conditions (their Assumptions
7.1 and 7.3). Assumption 3.3 and the maintained assumption of stationarity are sufficient for
existence of an invariant distribution for the distorted conditional expectations (their Assumption
7.2). Assumption 3.3 is altogether different from their Harris recurrence condition (their Assumption
7.4). Harris recurrence, together with their other assumptions, implies convergence of the distorted
conditional expectations which they use to achieve identification. We instead assume existence of
¢* which does not imply convergence of the distorted conditional expectations (cf. Theorem 3.3).

Appendix A provides a more detailed comparison of the two sets of identification conditions.

A similar result to part (a) of Theorem 3.1 is reported in a preliminary draft of Hansen and
Scheinkman (2009) from 2005.'% In their earlier draft, the parameter space is a LP space defined

by an arbitrary measure and the environment is again formulated in continuous time. They impose

1See http://www.cirano.qc.ca/realisations/grandes_conferences/methodes_econometriques/hansen.pdf,
dated November 24, 2005.

10



different positivity and irreducibility conditions on the (continuous-time) semigroup of pricing op-
erators and assume that the semigroup and dual semigroup both have positive eigenfunctions ¢
and ¢* corresponding to the same eigenvalue.'' Their identification result establishes uniqueness

of ¢ but does not establish uniqueness of ¢*.

Escanciano and Hoderlein (2012), Chen et al. (2014), and Christensen (2014) have used related
function-analytic methods to derive identification conditions of positive eigenfunctions of various
operators. Each of these papers impose various positivity or irreducibility conditions on the operator
and assume either that the operator is compact (Escanciano and Hoderlein, 2012; Chen et al.,
2014) or power compact (Christensen, 2014). Theorem 3.1 does not require compactness or power
compactness of M to nonparametrically identify ¢ and ¢*. Compactness or power compactness of M
is a stronger sufficient condition for Assumption 3.3 (see Theorem 3.2 below). Further, Assumption

3.3 is simple to verify for common parametric models (see Appendix B).

In certain cases M may not be represented as an integral operator with measurable kernel. This
includes when X; is formed by stacking a rth-order Markov process into a first-order process and
certain in habit formation models when X; includes r lags of consumption growth. Nevertheless,
M, might be represented as an integral operator with measurable kernel for some n > r. Theorem

3.1 can then be applied with M, in place of M to achieve identification of ¢ and ¢*.!2

3.2 Existence

We now use Perron-Frobenius theory to establish existence of positive eigenfunctions ¢ € LP and
¢* € L% of the forward and reverse-time pricing operators M and M*. In contrast, Hansen and
Scheinkman (2009) use Markov process theory to provide a constructive proof for the existence
of ¢ without restricting the space ex ante. Appendix A discusses the connection between their

existence conditions and the existence conditions presented here.
Assumption 3.4 M, is compact for somen > 1.

Assumption 3.4 is weaker than requiring M to be compact (which corresponds to taking n = 1).
There exist different sufficient conditions for Assumption 3.4 for different choices of p. Consider
L?, which will be the space of interest for estimation. Iterated kernels may be calculated via the

recurrence relation

K (2,9) = /X’Céfu”‘%,u)/cM(uay) dQ(u)

"'Note that ¢* has the interpretation of an eigenfunction of the time-reversed operator only when {X;} is stationary
and its stationary distribution @ is used to define the L? space.

127f M has multiple positive eigenfunctions then M,, must also have multiple positive eigenfunctions. Thus, unique-
ness of positive eigenfunctions of M,, implies uniqueness of positive eigenfunctions of M.
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with ICI(MlI)(a:, y) = Km(z,y). If there exists n > 1 for which

/ / K (2,4) dQ(x) dQ(y) < oo (13)
X JX

then M, is Hilbert-Schmidt and therefore compact (see Carrasco et al. (2007)).13 Assumption 3.4
is satisfied for L' if there exists n > 1 such that M,, maps L' into L" for some r > 1; moreover,
Assumption 3.4 is satisfied for LP with 1 < p < oo if there exists n > 1 such that M,, maps LP
into L> (Schaefer, 1974, p. 337). In what follows, we say that the eigenvalue p is simple if it has a
unique eigenfunction (up to scale) and we say that p is isolated if there exists a neighborhood of p

such that p is the unique element of the spectrum of M belonging to the neighborhood.

Theorem 3.2 Let Assumptions 8.1, 3.2 and 3.4 hold. Then:

(a) there exist positive eigenfunctions ¢ and ¢* satisfying Assumption 3.3

(b) p is simple, isolated, and the largest real eigenvalue of M.

It follows from Theorems 3.1 and 3.2 that ¢ and ¢* exist and are identified under Assumptions 3.1,
3.2 and 3.4. A similar existence result to part (a) was presented in a 2005 preliminary version of
Hansen and Scheinkman (2009). There, they assumed that the spectral radius of M was positive
and that their (continuous-time) semigroup of operators had an element which was compact. Their
latter compactness condition is a continuous-time counterpart to Assumption 3.3. The further
properties of p that we establish in part (b) of Theorem 3.2 are essential to our derivation of the
large-sample theory. A similar proposition was derived under different positivity and irreducibility

conditions in Christensen (2014).

3.3 Long-run pricing

We now derive a version of the long-run pricing approximation of Hansen and Scheinkman (2009)
under a slight strengthening of the identification and existence conditions. To do so, we replace

Assumption 3.2 with the following condition.
Assumption 3.5 Ky(z,y) >0 a.e.-[Q ® Q].

We impose the normalizations E[¢(Xo)P] = 1 and E[¢p(X)¢*(Xo)] = 1 and define the operator
(6® ¢*) : LP — LP by
(69 6@ = 6(0) | ¢ wvtn) dQ).

13Gimilar Hilbert-Schmidt conditions have been used recently by Darolles et al. (2011), Escanciano and Hoderlein
(2012), Connor, Hagmann, and Linton (2012), and Chen et al. (2014) to study nonparametric identification and/or es-
timation in other contexts. In these other applications the Hilbert-Schmidt condition is used to establish compactness
of the operator whereas here we use it to establish power compactness.
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Theorem 3.3 Let Assumptions 3.1, 3.4, and 3.5 hold. Then there exists ¢ > 0 such that

sup / 0" ML(x) — (6 ® 60| dQ(x) = O(e™™)
X

PeLP:E[|p(Xo)[P]<1

as n — oQ.

Theorem 3.3 establishes convergence of p~"M,, uniformly in LP norm, with the approximation error
vanishing exponentially in the payoff horizon n. A similar proposition (without the exponential rate
of convergence) was reported in a 2005 preliminary draft of Hansen and Scheinkman (2009). There,
they assumed directly that the distorted conditional expectations converged do an unconditional
expectation characterized by ¢, ¢*, and the arbitrary measure used to define the L? space. Here,
we instead show that convergence obtains under a very slight strengthening of the conditions of
Theorem 3.2.

Theorem 3.3 is similar to the various long-run approximation results presented in Section 7 of

Hansen and Scheinkman (2009) which imply

praita) = ([ 5 6w ote) (14)

for some probability measure <. In general, possibly non-stationary environments it not clear how

to calculate the measure <. In stationary environments, however, Theorem 3.3 shows that

u

M) ( / wéﬁ(uw*(U) d@(u)) o(z). (15)

Comparing (14) and (15), we see that the Radon-Nikodym derivative of ¢ with respect to @ is

d¢(x)
dQ(z)

Therefore, in stationary, discrete-time environments the measure ¢ is characterized by the distri-

= ¢(x)¢*(z).

bution @ and the normalized positive eigenfunctions of M and M*.

Remark 3.1 The preceding analysis could equally be applied to study valuation with a stochastic
growth component as in Hansen, Heaton, and Li (2008), Hansen and Scheinkman (2009), Hansen
(2012), Lettau and Wachter (2007, 2011), and others. Assuming the reference growth process from
time t to t+1 is G(X¢, X¢11) for some measurable G : X x X — R and existence of fo1 and f, the
stochastic growth operator S and the valuation-with-stochastic-growth operator T have kernels

= 72/) x an T = 7:[/ T m(x

respectively.
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4 Estimators and large-sample theory

This section introduces the nonparametric estimators of p, ¢, ¢*, the long-run yield, and the entropy

of the permanent component of the SDF and describes the large-sample properties of the estimators.

Sieve methods work by projecting the infinite-dimensional eigenfunction problem (4) onto a sub-
space spanned by finitely many known basis functions. This finite-dimensional approximation means
that, at the cost of introducing some bias, the eigenfunction problem (4) can be rewritten as a low-
dimensional matrix eigenvector problem. The matrices are estimated from a time series of data
on {X;},'* from which the estimators of p, ¢, and related quantities are easily calculated. The
estimators may also be used to numerically compute for p, ¢, and related quantities fully specified

models for which analytical solutions are unavailable.

The estimators introduced below build on previous work by Chen et al. (2000) and Gobet et al.
(2004) who applied sieve methods to nonparametrically estimate eigenfunctions of the selfadjoint
conditional expectation operator associated with a stationary, scalar diffusion process. However,
in our context the operator M will typically be nonselfadjoint. This introduces several additional
technicalities. First, if M is selfadjoint then the problem of estimating the time-reversed positive
eigenfunction ¢* disappears because, in that circumstance, ¢ = ¢*. Thus our results on estimating
time-reversed eigenfunctions are new. Second, if M is selfadjoint then p and ¢ solve an infinite-
dimensional maximization problem (by the Courant-Fischer minimax theorem); this is not so for
the nonselfadjoint case. Therefore, we apply perturbation methods, rather than extremum estimator
asymptotics, to derive the large-sample theory. Our convergence rates for estimators of p and ¢
are obtained by modifying some arguments in Gobet et al. (2004); the convergence rates for the
estimator of ¢* and the derivation of the asymptotic distribution and efficiency bounds of the

parametric estimators are all new.

For the remainder of this section we use L? as the parameter space for ¢ and ¢* because it is
endowed with the inner product (1, 12) = E[t)1(Xo)w2(Xo)].

4.1 Sieve approximation

Let bx1,...,bxx € L? be a dictionary of linearly independent basis functions (polynomials, splines,
wavelets, Fourier series, etc) and let Bx denote the closed linear span of bkq,...,bxr. We now

construct an approximation of (4) in the space Bx. Any function ¢ € Bg may be written as

¥(z) = b (2) ex (¢)

14 As discussed below, the convergence rate calculations may be applied to study models with latent state variables
despite our maintained assumption of an observable state vector.

14



where b5 (2) = (bg1(x), ..., bxr(x)) is a vector of basis functions and cx (v)) € R is a vector of

coefficients. Define the Gram matrix
G = ED"(X0)b™ (Xo)'] (16)

which is K x K, symmetric, and positive definite. The sieve space By is isometrically isomorphic

to R endowed with the inner product (u,v) + u'G v under the isometry 1 — c (1)) because

Ef1(Xo)12(Xo)] = cx (1) Grek (12)

for all ¥, € Bg.

To describe the finite-dimensional approximation of (4), let IIx : L? — By denote the orthogonal

projection onto Bg. Consider the eigenfunction problem

(IIxkM)ox = pr K (17)

where pg is the largest real eigenvalue of IIxM. This problem will be well defined for all K
sufficiently large under Assumptions 4.1 and 4.2(a) below: pg will be positive and simple and will
therefore have a unique eigenfunction ¢x. Since ¢ € By we may write ¢ = b (x)'cx where

cx = c(¢K) is a vector of coefficients. Also define the K x K matrix
My = E[b™ (Xo)m(Xo, X1)b5 (X1)]. (18)

To simplify notation, let M = Mg and G = G hereafter. The approximate eigenvalue problem

(17) may then be rewritten as
b (2) G Megk = preb™ (2)ek

or, equivalently,

G 'Mck = prex
where pg is the largest real eigenvalue of G;(IM x and cg is its eigenvector. Similar logic leads us
to approximate ¢*(z) by ¢ (z) = b¥ (z)'c}; where

—1 ! % *
G M'cy = prck

(here we use the superscript “+” to denote that b’ (z)c is the eigenfunction of the adjoint of ITxM
with respect to By rather than L?; see Appendix C). Moreover, py is the largest real generalized

eigenvalue of the pair (M, G) and ck and cj; are its right- and left eigenvectors:

Mcxg = prGeg (19)
M = prcilG.
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Display (19) provides the basis for numerical computation of p, ¢, and ¢* in models for which
analytical solutions are unavailable. For such models, the matrices M and G may be computed
directly, via simulation or numerical integration, from which the approximate solutions pg, ¢x and
¢} for p, ¢ and ¢* can be recovered by solving (19). Lemma C.1 in Appendix C provides bounds
on the approximation errors px — p, ¢x — ¢, and gzﬁf( — @*.

4.2 Estimators

To estimate p, ¢ and ¢* we replace M and G in (19) by estimators M and (A}, where G is positive

definite and symmetric. We then solve

(20)

Sz

N

|
¥

where p is the maximum real eigenvalue of G~ !M. The estimator of ¢ is gg(ac) = b¥ ()¢ and the
estimator of ¢* is ¢* (x) = b (z)'¢*. Under Assumptions 4.1, 4.2, and 4.3(a) below, with probability

approaching one, p will be positive and simple and so its eigenvectors ¢ and ¢* will be unique.'®
Given a time series of data {Xo, X1,...,X,}, we estimate G using
=
— (X)b™ (X3 21
= z; )b (X)) (21)

We consider three possibilities for estimating M.

Case 1: SDF is observable First, consider the case in which the one-period SDF m(Xy, Xy41)
is known. This is the case for the C-CAPM under CRRA preferences in which m(X;, Xy11) =
m(Xe, Xit1;6,7) = ﬁG;jl with fixed 5 and -, provided Giy; = G(X, X¢41) for some measur-
able function G. Other examples include the SDFs obtained under the external habit preference
specifications of Abel (1990) and Gali (1994). As the SDF is observable, we may estimate M using

I
—

— 15
M=) b B(X)m(Xy, Xip )05 (X)) (22)
t

Il
o

Case 2: SDF has unobservable components There exist several popular asset pricing models
in which components of the SDF depend implicitly on the law of motion of { X;}. For these models
the functional form of m is unknown when we model the dynamics nonparametrically. Nevertheless,

our estimators can still be applied provided an estimate of the unobservable component is first

15When G~'M has no real positive eigenvalues or when its maximum real eigenvalue is not positive and simple,
then we can simply take p = 1 and set ¢(z) = ¢*(z) = 1 for all z without altering the convergence rates or limiting
distribution of the estimators.
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“plugged in” to the SDF. For example, under Epstein-Zin preferences the SDF depends implicitly
on the continuation value of future consumption which is unobservable when the dynamics of
the state are modeled nonparametrically. In Section 5 we introduce a procedure to estimate the
continuation value from a time series {Xo, X1,..., X, } using sieve methods. By plugging in the
estimated continuation value v, we can form a time series m (X, Xiy1) = m(Xy, Xi41;0) for ¢ =

0,1,...,n — 1. Our estimator of M in this case is

|
—

n

—~ 1 =N
M= — bR (X)m( Xy, Xi)b5 (Xig1) (23)
t

Il
o

Models with internal habit formation also have an unobservable forward-looking expectation in the
marginal utility of consumption. It is not clear how to nonparametrically estimate this forward-
looking component from data on the state alone. In the absence of such an estimator, the procedure
introduced in this paper cannot be used to study internal habit formation models under counter-

factual preference parameters.

Case 3: SDF is estimated The third case we consider is that in which the econometrician
wishes to extract p, ¢, and related quantities from a SDF that has been estimated from data on
both X; and asset returns over the period t = 0,...,n. This is different from Case 2 in two respects.
First, the data used for estimation includes both data on the state and returns, whereas Case 2 only
uses data on the state. Second, here the parameters in the estimated SDF are those that are implied
by the returns data. In contrast, the approach taken in Case 2 allows us to estimate components

of the SDF that are consistent with given, possibly counterfactual, preference parameters.

The method by which m is extracted is not important for our purposes. All that we require is
that the researcher may evaluate m(Xy, X;41) for each date t = 0,...,n — 1. If so, then M may
be estimated as in (23). For example, conventional moment-based methods such as GMM, mini-
mum distance (such as the estimator for internal habit formation models introduced in Chen and
Ludvigson (2009)), or empirical likelihood may be used to estimate the SDF from moment restric-
tions based on the Euler equation. Procedures based on options data, such the extended method
of moments (Gagliardini, Gourieroux, and Renault, 2011) or nonparametric state-price density es-
timators (Ait-Sahalia and Lo, 1998), could also be used. This approach allows researchers to use
sieve methods to recover the permanent component of the SDF implicit in option prices without
discretizing the state space (cf. Ross (2014)).

It remains to introduce estimators for the long-run yield y and entropy of the permanent component
L(]WfH /MF) which, for simplicity, we denote by L. Coherently with the formulae y = —log p and
L =log p — Ellog m(Xy, X1)], we estimate y using

y=—logp (24)
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and we estimate L using
n—1

~ 1
L=1logp— - Z logm(X¢, Xi11) (25)
t=0

in Case 1, and
n—1

~ 1 R
L=logp— - Z log m(X¢, X¢41) (26)
t=0

in Cases 2 and 3.

4.3 Consistency and convergence rates

We first state three basic assumptions which are used to develop the large-sample theory. The first
is an identifying assumption, the second relates to the approximation properties of the sieve, and

the third relates to the convergence properties of the matrix estimators.

In what follows, we let || - || denote the L? norm when applied to functions and the L? operator
norm, given by || A|| = sup{|| A% : ¥ € L%, ||¢|| = 1}, when applied to linear operators A : L? — L2.
We also let || - ||g denote the vector and matrix norms on R¥ induced by G, i.e., [[v]|% = v'Gv for

vectors and ||A|g = sup{||Av||q : v € RE | |v||g = 1} for matrices.
Assumption 4.1 Assumptions 3.1, 3.2, and 3.4 hold for the space L?.

Assumption 4.2 (a) [[IIxM — M| = o(1);
(b) k¢ — ¢l = Ok ); and

(¢) [Mx¢* —¢*|| = O(0k)-

Assumption 4.3 (a) |[G™'M — G~ 'M|/g = 0,(1);

(b) [(G™'M — G™"M)ck e = Op(nnk); and

(¢) I(GTIM' = GT'M)cie/lIckllelle = Op(n;, k)
Assumption 4.1 guarantees existence and identification of the positive eigenfunctions ¢ and ¢* in
the space L?. Assumption 4.1 also guarantees that p is isolated and simple. These two properties are
used extensively in the derivation of the large sample theory. Assumption 4.1 can be replaced with

the higher-level assumption that ¢ and ¢* exist and correspond to an isolated, simple eigenvalue p

where p is the maximum eigenvalue of M.
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Assumption 4.2(a) is a condition on how well the range of M can be approximated over the sieve
space Bx. This assumption necessarily requires that M is compact,'® as has been assumed previ-
ously in the literature on sieve estimation of eigenfunctions (see, e.g., Gobet et al. (2004)). If M is
not compact but My is compact for some £ > 2, then one can apply the estimators to M, in place
of M; consistency and convergence rates of p, ¢ and ¢* would then follow directly from Theorem
4.1. Assumption 4.2(b)(c) are conditions on how well ¢ and ¢* may be approximated by elements
of By . Values for d; and 07 are known for common choices of sieve under standard smoothness

assumptions (see Chen (2007)).

Assumption 4.3(a) requires that the estimator G—'M converges to G™'M in the matrix norm
induced by G. This condition imposes a restriction on the maximum rate at which K can grow
with n, which will be determined by both the choice of sieve and the weak dependence properties
of the data. When m is a function of other estimators (of, say, an unobservable component as in
Case 2 or unknown parameters as in Case 3) then Assumption 4.3(a) also places restrictions on
the rate at which the first-stage estimators must converge. Sufficient conditions for Assumption
4.3 are presented in Appendix C. Finally, Assumptions 4.2(a) and 4.3(a) imply 0,07 = o(1) and
MK 77;27[{ = o(1), respectively. The purpose of introducing the terms ¢, 07, N, 1o and 17;;7[( is to

obtain more refined convergence rates for ¢ and ¢*.

The following Theorem, which is the main result of this section, establishes consistency and con-
vergence rates of the estimators. Recall that for Theorem 3.3 we have normalized ¢ and ¢* so that
E[¢(X0)?] = 1 and E[¢p(Xo)¢*(Xo)] = 1. As eigenfunctions are only normalized up to scale, we also
impose the normalizations E[(Z(XO)Q] =1 and E[(Z(Xo)q/bg* (Xo)] = 1.

Theorem 4.1 Let Assumptions 4.1, 4.2 and 4.3 hold. Then:

() |p = pl = Op(0k + 1K)
(5) 16 = 6ll = Op(3x + )
(c) llo*/llo*Il = ¢*/l¢* [l = Op(d% + 715 x)-
Remark 4.1 Theorem 4.1 does note require that G and M be estimated as in (21), (22), and (23).

In fact, Theorem 4.1 holds for estimators p, 5 and 5* calculated from any estimators G and M of

G and M provided G is positive definite and symmetric and G and M satisfy Assumption 4.3.

Remark 4.2 Theorem 4.1 may be used to estimate eigenvalues and eigenfunctions of the stochastic
growth and valuation-with-stochastic growth operators S and T (see Remark 3.1) by replacing M with
S = E[bX(X0)G (X0, X1)b% (X1)] and T = [bF (X0)G (X0, X1)m(Xo, X1)bX (X1)'], respectively.

'S An operator is compact if and only if it is the limit (in operator norm) of a sequence of operators with finite-
dimensional range (Carrasco et al., 2007, Theorem 2.29). Each IIxM has range Bx where dim(Bg) = K < co.
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Theorem 4.1 is a direct consequence of Lemmas C.1 and C.2 which derive separately the convergence
rates of the bias and variance terms. The bias calculations in Lemma C.1 may be used to bound the
finite-dimensional approximation error when the estimators are used to numerically compute p, ¢,
and ¢* in fully-specified models. Theorem 4.1 exhibits the usual bias-variance tradeoff encountered
in nonparametric estimation. The terms d,- and 0%, which represent the bias terms, will typically
be decreasing in K because ¢ and ¢* will be approximated over increasingly rich subspaces as K
increases. On the other hand, increasing K means that more parameters in G and M need to be
estimated, which introduces additional sampling error. Therefore, the variance terms 7, ;- and 7,
will typically be increasing in K and decreasing in n. Note that Conclusions (a) and (b) of Theorem
4.1 hold under Assumptions 4.1, 4.2(a)(b), and 4.3(a)(b).

Remark 4.1 suggests that preceding Theorem might be applied to models with latent state variables.
Fully nonparametric model with latent variables are not well identified. Yet certain latent processes
possess enough structure that a filter or similar device may be used to estimate the latent time
series from a related, observable time series. For such processes it might be possible to construct G
and M from the estimate of the latent data. Consistency and convergence rates would then follow

from Theorem 4.1 so long as Assumption 4.3 could be verified.
Corollary 4.1 Let Assumptions 4.1, 4.2(a)(b) and 4.3(a)(b) hold. Then:

(a) [y —y| = Op(‘SK +77n,K)'

If, in addition,

n—1

n~' Y logm(Xy, Xe41) — Eflog m(Xo, X1)] = Op(ny )
=0

in Case 1, or
n—1

nt Z log M(X¢, Xt41) — Ellog m(Xo, X1)] = Op(n}; 1)
=0

in Cases 2 or 3, then:
(b) |L — L[| = Oy(dk +m,, ¢ + 1% 1¢)-

To further investigate the theoretical properties of the estimators, we now derive the convergence
rate of ¢ in Case 1, where G and M are as in (21) and (22), under standard conditions from
the statistics literature on optimal convergence rates. Although the following conditions are not
particularly appropriate in an asset pricing context, the result is informative about the convergence

properties of ¢ relative to conventional nonparametric estimators.

Corollary 4.2 Let Assumptions 3.1, 3.2 and the following conditions hold: (i) X C R? is compact,

rectangular and has nonempty interior; (i) Q has density f which is continuous and strictly positive
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on X; (iii) M is a bounded operator from L? into a Hélder space AP°(X) of smoothness py > 0
(see Section 2.3.1 of Chen (2007)); (iv) ¢ € AP(X) with p > po; (v) E[|m(Xo, X1)|"]V/" < oo for
some 2 < r < oo; (vi) Bi is a spanned by (a tensor product of) polynomial splines of degree
v > p with uniformly bounded mesh ratio (see Chapter 12 of Schumaker (2007)); and (vii) {X:} is

exponentially rho-mizing. Then:

(a) Assumptions 4.1 and 4.2(a)(b) hold with 6 = O(K~P/%), and Assumption 4.3(a)(b) holds
with 1, ¢ = O(KT+2/20 [ /n) provided K@ +2)/7 /n = o(1)

(b) Hgfb\— ol = Op(nQ’"PJr_(gi”)d) when K =< n2fp+r<g+’">d and p > d/2.

The convergence rate obtained in Corollary 4.2 when r = oo (i.e. m is bounded) is n=?/(2P+d)_ This
rate is the same as the optimal L? convergence rate for nonparametric regression estimators with
ii.d. data when the unknown regression function belongs to AP(X) and conditions (i) and (ii) of
Corollary 4.2 hold (see, e.g., Stone (1982)).

4.4 Asymptotic normality

We now establish to asymptotic normality of p, i and L in Case 1. The limit theory is derived via
a novel sieve perturbation expansion because the usual derivation for extremum estimators cannot
be applied. For the sake of brevity, we focus on Case 1 (observable SDF) with G and M as in
(21) and (22). In Cases 2 and 3 the limiting distribution will depend on how the unobservable
components or unknown parameters in m are estimated in the first stage, as is typical of two-step
plug-in estimators. Appendix C presents a general expansion for p, from which the asymptotic

distribution of the estimators may be derived on a case-by-case basis.

For Case 1, we derive the representation

n—1

Vn(p—p) = 7n tz_; VYp(Xt, Xit1) +0p(1) (27)
where ¥, (x,y) = ¢*(z)m(z,y)o(y) — po* (x)P(x). Expression (27) shows that p behaves asymptot-
ically like a sample average even though p is a highly nonlinear function of G and M. Conveniently,
{1, (X¢, Xi41), Fi} is a martingale difference sequence. Thus, the asymptotic distribution of p fol-
lows from (27) by a martingale central limit theorem. Rather than assuming a specific type of weak
dependence in order to derive (27), we instead impose a high-level assumption regarding the rate
at which the estimation and approximation errors vanish. This assumption can be verified using

the results in Appendix C for different weak dependence conditions.

Let G~1/2 denote the inverse of the positive definite square root of G and let b¥ (z) = G—1/2p% (z)
denote the orthogonalized vector of basis functions. Coherently with (21) and (22), define the
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orthogonalized estimators
n—1

1 ~ ~
G’ = HZbK()Q)bK(Xt)’
t=0

—~

n—1
= -

M° = 52 ™ (X)m (X, X1 )b (Xiga)'
=0

Note that E[G°] = I (the K x K identity matrix) and define M° = E[ﬁo] Let 7, x1 and 7, i 2
be such that |G — I|| = Op(7n, k1) and Hﬁo — M?|| = Op(7n,K,2) where, without confusion, we

let || - || denote the matrix spectral norm (largest singular value). Define
1 n—1
T = = 3 {0k (Xm(Xe, Xer)ore(Xen) — prca (KX)o (Xe) =X, Xen) }
=0

where ¢ and ¢} are normalized so that E[¢x(Xo)?] = 1 and E[¢px(Xo)¢5(Xo)] = 1. Let V, =
E[4,(Xo, X1)?] and V,, = p~2V,, which will be the asymptotic variances of p and 7, respectively.
Also define ¥ (z,y) = p~ ", (z,y) — logm(z, y) + E[log m(Xo, X1)] and let V;, denote the long-run
variance of {¢r (X, X¢11)}. Finally, let a V b := max{a, b}.

Assumption 4.4 (a) 6 = o(n"V/?);
(0) (i V in,i1) X (g1 Vil i 2) = o(n™?);
(¢) T = op(n~'/?);
(d) V, is positive and finite; and

(e) n~1/? ?:_01 U (Xe, Xe41) —a N(0, VL) where Vi, is positive and finite.

Assumption 4.4(a) is an undersmoothing condition which ensures that the approximation bias p—pg
vanishes sufficiently quickly that it does not distort the limiting distribution. Assumption 4.4(b)(c)
ensures the higher-order terms in (27) are op(1); sufficient conditions for Assumption 4.4(b) under
different weak dependence assumptions are presented in Appendix C. Note that the summands in
Tn,K have expectation zero, and that ¢, qb}r( and pg are converging to ¢, ¢*, and p by Lemma C.1.
Assumption 4.4(d) ensures the estimators have a non-degenerate limiting distribution and finite
asymptotic variance.!” Parts (a)-(d) of Assumption 4.4, together with the earlier assumptions, are
sufficient to derive the asymptotic distribution of p and 7. An analogous expansion to (27) holds
for I with 1, (Xt, X¢41) in place of 9,(X¢, Xyq1). However, {¢1(X¢, X¢11), F¢} is not necessarily
a martingale difference sequence. Therefore we make the high-level Assumption 4.4(e) in order to

derive the asymptotic distribution of L.

'"This is made to rule out certain pathological cases. For instance, if m(z,y) = /m for all z,y then then p = m,
¢ =1, and ¢* = 1 which yields ¥, (z,y) = 0 for all z,y.
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Theorem 4.2 Let Assumptions 4.1, 4.2, 4.3, and 4.4 hold. Then (27) holds and:

(a) Vn(p—p) —a N(0,V))
(b) Vn(y —y) —a N(0,V,)

(¢) V(L — L) =4 N(0, V).

Variance estimators of V,, V,, and V7, are presented in Appendix C, together with the asymptotic

distributions of ¢-statistics for p, § and L .

We conclude this section by deriving the semiparametric efficiency bounds for Case 1. To derive
the efficiency bound we require a further technical condition (Assumption D.1), which is deferred

to the Appendix.

Theorem 4.3 Let Assumptions 4.1, 4.2, 4.3, 4.4, and D.1 hold. Then:

(a) the semiparametric efficiency bounds for p, y and L are V,, Vi, and Vi, respectively

(b) p, y and L are semiparametrically efficient.

Theorem 4.3 provides further theoretical justification for using sieve methods to nonparametrically

estimate p, ¢, and related quantities.

5 Simulation and empirical application

The empirical performance of the proposed estimators is explored first in a simulation and then in
an empirical application. In both illustrations we assume the SDF is determined by a representative
agent and consider two specifications of the agent’s preferences over future consumption, namely
time-separable CRRA preferences and a recursive preference specification following Kreps and
Porteus (1978), Epstein and Zin (1989) and Weil (1990). To implement the estimators with recursive
preferences, we first introduce a new approach for nonparametrically estimating the continuation
value (CV) of future consumption from a time series of data on {X,;}. By estimating the CV
directly, rather than using a proxy for the return on the aggregate wealth portfolio, we avoid any
potential issues related to imperfect proxies which may arise if, for example, human capital and
other intangible/non-tradable assets are significant components of aggregate wealth. The simulation
results below show that the estimated CV can be plugged in to the SDF in order to estimate p, ¢,

and related quantities with a high degree of accuracy.
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5.1 Nonparametric continuation value estimation under recursive preferences

In this subsection we briefly describe an approach to nonparametrically estimate the continuation
value in models with Epstein-Zin recursive preferences when we do not place parametric restrictions
on the law of motion of {X;}. This procedure may also be used to numerically solve for the contin-
uation value and SDF in models for which analytical solutions are not available, as an alternative

to discretization-based methods (e.g. Tauchen and Hussey (1991)).

Under Epstein-Zin preferences, the quantity V4, which denotes the date-t utility of the representative

agent, is defined in terms of V;41 and current consumption Cy via the recursion

_1
1-0

1-6
Vi={(1-B)CH + BEV 17N |
where 1/6 is the elasticity of intertemporal substitution (EIS), 5 is the time discount parameter,
and ~ is the risk aversion parameter. Assume hereafter that consumption growth Gyiq := Ci41/Ch
is a measurable function of X;y; where {X;} is a strictly stationary first-order Markov process.
Hansen and Scheinkman (2012) show that, in this environment, the scaled continuation value V;/Cy
is of the form V;/C; =: V(X;) where V solves the fixed point equation

1-0y 195

Xt] o (28)

1—y
V(X)={ (1) +pE Cf“)

Ct

(Vi)

with V' > 0. We now show how (28) may be used to estimate the continuation value function

nonparametrically for given (6, 3,v) from a time series of data on {X;}.

In the remainder of this section we follow Tallarini (2000) and Hansen et al. (2008) focus on the case
6 = 1 so that (28) may be solved analytically for V. This allows us to evaluate the performance of
the estimators in the simulation exercise.!® Nevertheless, the following sieve methods may certainly
be used to estimate the continuation value when 6 % 1 by appropriately modifying the conditional

moment restriction (29) below.

When 6 = 1, the fixed point equation (28) becomes

v(Xy) = : f 5 log E[e(l—W)(U(Xtﬂ)-&-gtﬂ)|Xt]

where v(z) =log V(z) and ¢¢1+1 = log(C+1/Ct) (Hansen et al., 2008, Section III). This expression

18When 6 # 1 the CV is not known analytically so it would be difficult to evaluate the accuracy of our estimators
in simulations. One possible approach for doing so when 6 # 1 might be to consider a log-quadratic approximation to
the CV and SDF obtained under small perturbations of 6 from 1, as in Hansen et al. (2008) and Backus et al. (2014).
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for v may be rearranged to obtain the conditional moment restriction
E [6(1*7)(U(Xt+1)+9t+1)*%U(Xt) _ 1‘ Xt:| -0 (29)

upon which our estimator of v is based.

We now describe a sieve minimum distance (SMD) approach to nonparametrically estimate v given
B, v, and a time series of data on {X;} (see Ai and Chen (2003) and Chen and Pouzo (2012)
for background material on SMD estimation with i.i.d. data). Chen, Favilukis, and Ludvigson
(2013) have recently applied SMD methods to estimate models with recursive preferences.!” In
the SMD procedure, the function v is first approximated by a linear combination ZkK:ll ClkPK 1k
of K; basis functions pg,1,...,Pk,k,- The moment restriction (29) is used to form a criterion
function which is minimized with respect to the coefficients cj1,...,c1x,. To form the criterion
function, the conditional expectation in (29) is estimated by series regression on a second ba-
SiS Vi1, -+, VK, of dimension Ky with K; < Ka. Let pft(x) = (py1(2), ..., iy i, (7)), let
E2(2) = (Y1 (), ... K1 (), and let U = (52(Xy), ..., 9%2(X,,_1))". The estimator of the

conditional moment restriction (29) evaluated at X; = z and v(z) = c¢|p¥1 () is

n—1
i, er) = 9 (@) (W' /n) ! (i S a(xy) (o0 K)o = A ) 1)> .
t=0

Our estimator of v is ¥(z) = &, p1 (x) where

n—1

—~ .1 ~

c1 = arg qneal}&r}{l - ;u(Xh 61)2.
Approximating v and the conditional moment over the finite dimensional subspaces spanned by
DKi1,-- -, P K, and Y1, ..., YK, K, Introduces approximation bias. Increasing K; and Kp will
typically reduce the bias but will introduce additional sampling error as there will be more pa-
rameters to be estimated. Therefore, nonparametric estimation of ¢ will be subject to a similar
bias-variance tradeoff to that which is encountered in nonparametric estimation of p and ¢. The
theoretical properties ¥ could be derived by a time-series extension of Ai and Chen (2003) or Chen
and Pouzo (2012). However, the literature on SMD estimation has almost exclusively focused on

i.i.d. data to date so defer such an endeavor to future research.

The SDF obtained under Epstein-Zin preferences with § = 1 is of the form m(Xy, Xiy1) =
Bexp{—vgi+1 + (1 — y)v(Xi+1) — 17TAYU(Xt)}. Our estimator ¥ may be plugged in to this func-

9There are several important differences between the method introduced here and that in Chen et al. (2013). There,
they focus on the general case in which 6 # 1 and use time series data consumption and returns to estimate (V, 8, , 0)
nonparametrically using the conditional Euler equation. They also assume consumption growth is a function of a latent
univariate Markov state variable. Here we estimate v from data on {X.} for fixed, possibly counterfactual, values of
(8,7, 0) using the fixed-point equation (28) instead of the Euler equation. We require an observable state vector but
allow it to be of an arbitrary dimension.
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tional form to obtain

I—7..
5 B(X0)} - (30)

(Xt Xea1) = Bexp { = ygert + (1= )(Xepr) -

The matrix M can then be estimated as described in (23).

5.2 Simulation

The following Monte Carlo (MC) experiment investigates the performance of our estimators when
applied to a consumption-based asset pricing model under CRRA and Epstein-Zin preferences.
The state variable is simply taken as X; = g;, where g; denotes log consumption growth, which is

assumed to evolve as a Gaussian AR(1) process:

gi+1 — 1= K(gr — p) + o€y

where the e; are i.i.d. N(0,1) random variables. The parameters for the simulation are @ = 0.008,
k = 0.6, and ¢ = 0.01. The data are constructed to be somewhat representative of quarterly
U.S. real per capita growth in consumption of nondurables and services (for which x ~ 0.3 and
o ~ 0.005) but we make {g;} are twice as persistent (x = 0.60) to produce greater nonlinearity
in the eigenfunctions and twice as volatile (¢ = 0.01) to produce a more challenging estimation
problem. The parameters in the utility function are set to § = 0.994 and v = 10. For each design
we generate 1000 samples of length 400, 800, 1600, and 3200: the smallest sample size is roughly
the sample size with aggregate monthly or quarterly consumption data, whereas the larger sizes

are used to illustrate the convergence properties of the estimators.

To implement the estimators p, $, and $*7 we use G in (21) for both preference specifications and
use M in (22) for the CRRA design and M in (23) for the Epstein-Zin design with 7 from (30).
We also compute L using the estimators in (25) and (26) for CRRA and Epstein-Zin preferences,
respectively. A basis of dimension K = 8 is used for b® to approximate ¢ under both utility
specifications; for the recursive preference specification a sieve of dimension K7 = 6 is used for p/!
to approximate v and a sieve of dimension Ky = 12 for ©2 to estimate the conditional moment
in the SMD procedure. The simulations are performed for using Hermite polynomial sieves for b%,
p*

Hermite bases were centered and scaled by the sample mean and sample standard deviation of g,

, and %2 and again with B-Spline sieves for b¥, p1, and 2. As is standard practice, the

and the knots of the cubic B-spline sieve were placed at the empirical quantiles of the data. The
MC results were reasonably insensitive both to the choice of sieve and to the dimension of the
sieve space. Only the results for the Hermite polynomial sieve are presented below; the results for

B-spline sieves and the parameterization x = 0.3, o = 0.005 are presented in Appendix E.

For each simulation configuration we estimate ¢, ¢*, p, y, L; we also estimate v for the Epstein-Zin

design. To calculate the root mean square error (RMSE) for ngb, gg*, and v, for each replication we
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CRRA Epstein-Zin
n ¢ o ¢ o v

400 | 0.0097 0.0110 0.0196 0.0317 o0.1101

Bias 800 | 0.0035 0.0045 0.0098 0.0154 0.0443
1600 | 0.0034 0.0042 0.0056 0.0081 0.0264

3200 | 0.0009 0.0011 0.0024 0.0045 0.0068

400 | 0.0675 0.0799 0.0415 0.1325 0.2825

RMSE 800 | 0.0397 0.0492 0.0193 0.0879 0.1893
1600 | 0.0283 0.0342 0.0113 0.0645 0.1357

3200 | 0.0176 0.0212 0.0059 0.0416 0.0928

Table 1: Bias and RMSE of QAS and gg* under both preference specifications, and
bias and RMSE of ¥ under Epstein-Zin preferences. Results are obtained from 1000
replications of the MC design using the sample size shown and Hermite polynomial

bases for b, p&1 and %2 with K =8, K; = 6 and Ky = 12.

CRRA Epstein-Zin
n p y L p y L
400 | 0.0012 -0.0007 0.0011 0.0030 -0.0029 0.0007
Bias 800 | 0.0006 -0.0005 0.0004 0.0015 -0.0015 0.0004
1600 | 0.0004 -0.0003 0.0005 0.0010 -0.0010 0.0005
3200 | 0.0003 -0.0003 0.0001 0.0004 -0.0004 0.0001
400 | 0.0385 0.0288 0.0251 0.0151 0.0131 0.0141
RMSE 800 | 0.0103 0.0105 0.0061 0.0040 0.0039 0.0059
1600 | 0.0086 0.0086 0.0058 0.0049 0.0047 0.0059
3200 | 0.0050 0.0051 0.0025 0.0009 0.0009 0.0025
Table 2: Bias and RMSE of p, ¥ and L under both preference specifications.

Results are obtained from 1000 replications of the MC design using the sample size
shown and Hermite polynomial bases for b%, p%t and 42 with K = 8, K; = 6 and
Ky =12.

calculate the L? distance between the estimators and their population counterparts, then take the
average over the MC replications. To calculate the bias we take the average of the estimators across
the MC replications, then compute the L? distance between the average of the estimates across
MC replications and their population counterparts.?’ Similar calculations are performed for p, 7,
and L.

Results of the MC exercise are presented in Tables 1 and 2. Table 1 shows that ¢ and ¢* may be
estimated with small bias using a reasonably low-dimensional sieve, and that the sampling error
vanishes as the sample size increases. It is slightly surprising that the RMSEs for <Z under recursive
preferences are about one half of the RMSEs for QAS under CRRA preferences, even though with

recursive preferences the continuation value must be first estimated nonparametrically. In contrast,

29The use of the “bias” here is not to be confused with the bias term in the convergence rate calculations. There
“bias” measures how close ¢k and px are to ¢ and p. Here “bias” of an estimator refers to the distance between the
parameter and the average of its estimates across the MC replications.
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the bias for qAﬁ and (3* and the RMSE for qAS* is larger under recursive preferences than CRRA
preferences. The results in Table 1 show that ¥ is more difficult to estimate than (;AS and éﬁ\*, but may
be estimated with a reasonably small degree of bias in moderate samples. Appendix E presents
additional MC results under the parameterization x = 0.3 and ¢ = 0.005 which yields bias and
RMSEs about one third of the values presented in Table 1.

Table 2 presents similar results for p, ¥ and L. The bias and RMSEs of the estimators are all
reasonably small, and are decreasing in the sample size n. As with gg and QAS*, the RMSEs of p,
y and L under recursive preferences are smaller than under CRRA preferences even though the

continuation value is first estimated nonparametrically.

5.3 Empirical application

We now apply the methods developed in this paper to investigate the time-series properties and
asset pricing implications of the permanent and transitory components of the SDF under Epstein-
Zin preferences (with unit elasticity of intertemporal substitution) and CRRA preferences. As is well
known, the permanent component of the SDF under many external and internal habit formation
specifications is the same as the permanent component under CRRA preferences (Hansen, 2012;
Backus et al., 2014). Our analysis of the permanent component obtained under CRRA preferences
therefore extends to a much broader class of preferences. Two specifications of the state process
are used, namely X; = g, and X; = (g¢, get) where g, denotes the logarithm of real per capita

consumption growth and g.; denotes the logarithm of real per capita corporate earnings growth.

Data on consumption, corporate earnings, and population were sourced from the National Income
and Product Accounts (NIPA) tables and span the period 1947:Q1 to 2012:QQ4 (263 observations).
The consumption and earnings growth series are formed by taking seasonally adjusted consumption
of nondurables and services data (NIPA Table 2.3.5) and after tax corporate earnings (NIPA Table
1.12), deflating by the implicit price deflator for personal consumption expenditures (PCE; NIPA
Table 2.3.4), and then calculating per capita growth rates using the deflated series and population
data (NIPA Table 2.1). For data on the risk-free rate and market return, we take the 90-day
T-bill rate and value-weighted return on the combined NYSE/AMEX/NASDAQ index including
dividends (both from CRSP) and convert these series to real rates using the PCE deflator data.
We proxy the holding period return on a bond of infinite maturity by the quarterly return on the
30 year U.S. Treasury index (from CRSP) which we deflate using the PCE data. Finally, for GDP

data we use quarterly real seasonally adjusted data from the Federal Reserve.

The estimators p, gg, ngb*, v, 7, and L are implemented as described in the simulation exercise. We
use Hermite polynomial sieves of dimension K = 8, K; = 6, and Ky = 12 for b%, p&1 and X2
in the univariate case and a tensor-product sieves of dimension K = 16, K1 = 16, and Ky = 25
bK

for %, pf1 and %2 in the bivariate case. The following results were reasonably insensitive to the

choice of sieve dimension and basis.
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Figure 1: Time series of estimates of the logarithm of the SDF, its permanent com-
ponent (PC), and its transitory component (TC). Blue lines are the estimates ob-
tained under CRRA preferences and red lines are estimates obtained under Epstein-
Zin preferences with EIS = 1. Shaded bars denote NBER recession indicators. The
state variable is X; = g; and SDF parameters are § = 0.994 and v = 10.

For both preference and state process specifications, we construct time series of the SDF and
its permanent and transitory components by substituting the estimated p and gg (and m with
Epstein-Zin preferences) into the formulae for M, /M and M}, /M in (5) and (6). Time series
of the logarithm of My1/M;, ML ,/MF and MEL,/M] have been plotted in Figure 1 (for the
case X; = ¢¢) and Figure 2 (for the case X; = (g¢,ge,)').Both figures show that the permanent
components obtained under the two preference specifications are almost indistinguishable. The

Epstein-Zin SDF with EIS = 1 and 8 = 1 is of approximately the same form as (12), because

M1
M,

— V(Xt+1)1_’y

— V(Xt+1)1_’y
Hly(x,)(-/8

t+1 V(Xt)lf'y

— 8G ~ G
when /5 ~ 1. Reasoning as in Hansen (2012) and Backus et al. (2014) would then suggest that the
two SDF's should have similar permanent components. Nevertheless, it is perhaps surprising just
how indistinguishable the two permanent components are. In contrast, the time series of the SDF
under Epstein-Zin preferences is typically “rougher” than under CRRA preferences, and vice versa

for the trajectories of the transitory components.

Figures 1 and 2 also show that the both the SDF and its permanent component are countercyclical
whereas the transitory component is acyclical. The correlation between the log permanent com-

ponent series and log GDP growth is around -0.35 for both preference and state specifications.
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Figure 2: Time series of estimates of the logarithm of the SDF, its permanent com-
ponent (PC), and its transitory component (TC). Blue lines are the estimates ob-
tained under CRRA preferences and red lines are estimates obtained under Epstein-
Zin preferences with EIS = 1. Shaded bars denote NBER recession indicators. The
state variable is X; = (g, ge,¢+) and SDF parameters are 5 = 0.994 and v = 10.

In contrast, the correlation between the log transitory component series and log GDP growth is
approximately 0.01 with X; = G; and 0.06 when X; = (G, Ge,;)'. Further, the permanent and
transitory components are strongly negatively correlated (around -0.75 with CRRA preferences

and -0.6 with Epstein-Zin preferences).

We now turn to investigating whether the SDF and its permanent and transitory components are
compatible with historical returns data. The bounds (11) and (10) show that the entropy of the SDF
and the entropy of its permanent component must be at least as large as the return on assets relative
to short- and long-term (zero-coupon) bonds, respectively. The quarterly premium on the combined
market index relative to the 90-day T-bill rate and 30-year Treasury index were 1.83% and 1.54%,
respectively, over the sample period. We take these historical premia as benchmark entropy bounds,
though these bounds may be tightened further by including additional asset returns or returns on
growth-optimal portfolios. Table 3 shows that none of the preference or state specifications can
rationalize either benchmark premium despite the fact that v = 10 might be regarded as reasonably
large. Estimates of the entropy of the permanent component of the SDF are around 0.0030 for each
preference and state specification, which is roughly one fifth of the level required to explain the

premium of 1.54%. Table 3 also reports estimates of the entropy of the SDF, which we estimate by
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ME ML

Xeo| LW LR Var(GgE) o —logp
CRRA
gt 0.0015 0.0032 0.0012 0.0550
(0.0010,0.0020)  (0.0015,0.0050)  (0.0001,0.0023)  (0.0469,0.0631)
(9t Get) 0.0015 0.0026 0.0018 0.0557

(0.0010,0.0020)  (0.0009,0.0042) (0.0003,0.0034) (0.0475,0.0639)

Epstein-Zin, EIS= 1

gt 0.0025 0.0030 0.0001 0.0105
(0.0014,0.0036)  (0.0015,0.0044)  (—0.0004,0.0006)  (0.0093,0.0118)
(9t get) 0.0024 0.0028 0.0002 0.0107

(0.0013,0.0034)  (0.0014,0.0043)  (—0.0005,0.0008)  (0.0092,0.0122)

Table 3: Nonparametric estimates of the entropy of the SDF, the entropy of the
permanent component of the SDF, the variance of the transitory component of the
SDF, and the long-run yield, under CRRA preferences and Epstein-Zin preferences
(with EIS = 1 and continuation value estimated nonparametrically) using 5 =
0.994 and v = 10. 90% confidence intervals (CIs) are reported in parentheses. Cls
for L(Myi1/My), L(M[ /M), and long-run yield with CRRA preferences are
asymptotic Cls: for the long-run yield are computed as described in Appendix C,
CIs for L(M},,/M/") are computed as described in Appendix C using an OSLRV
estimator with a cosine basis of dimension 10; CIs for L(M;41/M;) are also formed
using an OSLRV estimator with a cosine basis of dimension 10. Remaining Cls
are computed using the bootstrap percentile method from 5000 replications of the
stationary bootstrap with expected block size 6.

its sample analogue

n—1 n—1
log (nfl Z m(Xy, Xt-l—l)) —n! Z log m(X¢, X41)
t=0 t=0

under CRRA preferences; under Epstein-Zin preferences we replace m in the above display by
m from (30). Estimated entropies of the SDFs are even smaller, at around 0.0015 (CRRA) and
0.0025 (Epstein-Zin). So although the Epstein-Zin specification can generate a larger SDF than the
CRRA specification, and therefore account for a larger (though still too small) premium relative to
the short-term risk-free rate, the permanent components of the SDFs under the two specifications
are of almost equal size. Both models are therefore unable to account for the historical return on
equities relative to long-term bonds under the parameterization v = 10 and 5 = 0.994. Repeating
the exercise with v = 20 yields estimates of L(M{,/M}") around 0.012 under both preference and
state specifications, which is still somewhat short of the benchmark. Moreover, this shortcoming
of the C-CAPM cannot be alleviated by adding internal or external habit formation in a way that

results in transitory modifications to the pricing kernel.

The estimated long-run yield reported in Table 3 for Epstein-Zin preferences is around 1.05%
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Figure 3: Nonparametric estimates of ¢ and ¢* (solid lines) obtained under CRRA
preferences and Epstein-Zin preferences (with EIS = 1 and continuation value esti-
mated nonparametrically) using 8 = 0.994 and v = 10 and X; = G;. Dashed lines
are parametric estimates obtained assuming log G; is a Gaussian AR(1) process.

per quarter which compares favorably with historical long-term yields. For instance, the historical
average real quarterly yield on the longest maturity (either 30 or 20 year) Treasury Constant
Maturity index over the period April 1953 to December 2012 is 0.78%.2! As expected, the estimated
long-run yield with CRRA preferences, at around 5% per quarter, is much higher than historical
long-term yields. Despite the relative success of the Epstein-Zin specification in matching the level

of long-term yields, it cannot match the volatility observed in historical yield data. The bound

Var(Mgd) > (1—- E[RHLOO]E[R;}LOODQ (31)

M Var(Ri41,00)

is a consequence of the identity M, /Mg;l = Rit1.00-22 Using the quarterly return on the 30 year
U.S. Treasury index as a proxy for R;41 0, our estimate of the right-hand side of (31) is 0.0031. Table
3 presents the sample variance of the estimated transitory component, from which it is apparent
that the volatility of the transitory component under Epstein-Zin preferences is roughly an order
of magnitude too small (at least to the extent that our proxy for long-term yields is representative

of the historical return on a bond of infinite maturity).

2!'Nominal Treasury Constant Maturity yields were taken from the Federal Reserve H-15 release and converted to
real yields using the PCE deflator.

22The bound (31) obtains by substituting M{ /M, = Rit1,00 into the bound for Var(Mg,,/M{) reported in
Proposition 2 of Bakshi and Chabi-Yo (2012).
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Figure 4: Time series of estimates of the logarithm of the SDF, its permanent
component (PC), and its transitory component (TC) obtained under Epstein-Zin
preferences with EIS = 1, 8 = 0.994, v = 10 and X; = (g, ge,t)’. Blue lines are
SDF, PC, and TC extracted nonparametrically. Red lines are corresponding SDF,
PC, TC with continuation value, p, and ¢ calculated assuming X; is a Gaussian
VAR(1) process. Shaded bars denote NBER recession indicators.

To examine how the nonparametric estimates compare with a parametric model for X;, p, ¢, ¢*,
the Epstein-Zin continuation value, and the quantities L(M;y1/M;), L(ME /MF), Var(M}L , /MT),
and — log p were estimated assuming X; is a Gaussian VAR(1) process. Figure 4 displays nonpara-
metric estimates of ¢ and ¢* for both preference specifications together with parametric estimates
assuming ¢; is a Gaussian AR(1) process. To obtain these estimates, for each preference specifi-
cation we calculate analytical formulae for the relevant quantities and then evaluate the formulae
at the quasi maximum likelihood estimates (QMLEs) of the VAR(1) parameters. Figure 3 shows
that the nonparametric estimates of ¢ and ¢* are steeper and more nonlinear than parametric
estimates for both CRRA and Epstein-Zin preferences. The parametric estimates of the entropy
of the permanent component (0.0027 with CRRA and EZ), the entropy of the SDF (0.0016 with
CRRA and 0.0029 with EZ) and the long-run yield (0.055 with CRRA and 0.0107 with EZ) are

similar to those obtained parametrically.

It is difficult to judge from Figure 4 just how the differences between the nonparametric and para-
metric estimates of ¢ translate to differences in the permanent and transitory component. Therefore,
Figure 4 plots time series of the logarithm of the SDF and its permanent and transitory components
obtained under the Epstein-Zin preference specification both nonparametrically and also assuming

the state evolves as a Gaussian VAR(1) process (with the continuation value, p and ¢ calculated
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analytically and evaluated at the QMLEs). The overall trajectories of the SDF and PC are similar
when obtained parametrically and nonparametrically, though the parametric trajectories appear
somewhat less rough. The transitory components are quite different when extracted parametrically
and nonparametrically, with the transitory component obtained parametrically appearing much too
smooth. Similar results are obtained with X; = ¢g;. With CRRA preferences the permanent com-
ponents extracted parametrically and nonparametrically are similar, and the parametric transitory

component is again more smooth than that which is obtained nonparametrically.

6 Conclusion

This paper introduces econometric methods for performing estimation and inference on the long-
term valuation implications of dynamic asset pricing models. We introduce nonparametric sieve
estimators of the positive eigenfunction and its eigenvalue, the long-run yield, and the entropy
of the permanent component of the SDF. We establish consistency and convergence rates of the
estimators allowing for a wide variety of empirically relevant setups, and establish asymptotic nor-
mality and efficiency of the estimators for the case in which the SDF is observed. To extend the
ambit of our estimators to an important class of recursive preferences, we introduce new non-
parametric estimators of the continuation value function in Markov environments. A simulation
exercise shows that the principal eigenpair and related quantities can be estimated with a high
degree of accuracy by plugging the nonparametric estimate of the continuation value function into
the eigenvalue/eigenfunction estimators. When applied to aggregate U.S. consumption and corpo-
rate earnings data, our estimators reveal that the permanent components of the SDF obtained
under Epstein-Zin preferences with unit EIS and under CRRA preferences are remarkably similar.
Neither preference specification is able to account for historical returns on equities relative to long-
term bounds under reasonable parameterizations. We also present identification conditions and a
long-run pricing approximation for stationary, discrete-time environments which complements the

analysis of Hansen and Scheinkman (2009) for general, continuous-time environments.

The present paper may be extended along several dimensions. First, one natural extension is to
models with latent state variables. Second, the identification conditions and estimators may be
applied to study identification and estimation of other semi/nonparametric models. Third, results
of the simulation and empirical application under Epstein-Zin preferences were obtained assuming
unit EIS. Further work is required to investigate the performance of the estimators and empirical
findings under alternate elasticities of intertemporal substitution and state process specifications.
Finally, the estimators may also be applied to study valuation with a baseline stochastic growth

component.
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Supplementary Appendix to

Nonparametric Stochastic Discount Factor Decomposition

Timothy M. Christensen

December 10, 2014

This appendix contains material to support the paper “Nonparametric Stochastic Discount Factor
Decomposition”. Appendix A presents further details on the relation between the identification
and existence conditions in Section 3 and the identification and existence conditions in Hansen and
Scheinkman (2009). Appendix C contains further results on nonparametric estimation of positive
eigenfunctions. Appendix B presents formulae for p, ¢ and ¢* for three parametric specifications
in the literature, thereby verifying Assumption 3.3 for these models. The proofs of all results in
the main text and this supplement are presented in Appendix D. Finally, Appendix E presents

additional Monte Carlo results.

A Further discussion of identification and existence conditions

A.1 Identification

To establish identification of ¢, Hansen and Scheinkman (2009) impose a set of stochastic stabil-
ity conditions under which there is at most one positive eigenfunction that is germane to their
long-run approximation. We now present a version of their stochastic stability conditions that are
tailored to discrete-time environments and discuss the connection between their conditions and
the identification conditions in the present paper. Some of the identification conditions in Hansen
and Scheinkman (2009) pertain to the generator of the semigroup of conditional expectation op-
erators IEHXt = ] under the change of conditional probability induced by M/ . In discrete-time
environments both multiplicative functionals and semigroups are indexed by non-negative integers.
Therefore, the “generator” in discrete-time is just the single-period distorted conditional expecta-
tion operator ¢ — E[i)(X1)|Xo = ].

The following are Assumptions 6.1, 7.1, 7.2, 7.3, and 7.4 of Hansen and Scheinkman (2009) tailored

to discrete-time environments (so here the time index ¢ takes values in the set {0,1,...}).

Assumption A.1 (a) {M} :t >0} is a multiplicative martingale;

(b) {M;:t >0} is a strictly positive process with probability 1;



(c) there ezists a probability measure ¢ such that

[BweIxo = ol dito) = [w()a¢

for all bounded measurable ¢ : X — R;

(d) for any A € X with {(A) >0,

for allx € X; and

(e) for any A € Z" with S(A) > 0,

P (ZXA(Xt) = oo'Xo = x) =1
t=1

for all x € X, where the probability IF’(-]XO = x) is absolutely continuous with respect to P
(where P is given by P(A) = JE[(MF /ME)xa|Xo = 2] dS(x) for each A € F;) conditioned
on Xg = x when restricted to F; for each t > 0.

We now discuss the relation between Assumption A.1 (i.e. Hansen and Scheinkman’s (2009) as-

sumptions in a discrete-time setting) and Assumptions 3.1, 3.2 and 3.3 in the present paper.

Part (a) is satisfied by our construction of the permanent component, and part (b) is analogous to
the condition Ky(z,y) > 0 a.e-[Q ® Q] in Assumption 3.2.

For part (c), let ¢ and ¢* be as in Assumption 3.3 and normalize ¢* such that E[¢(X)¢o*(Xo)] = 1.
Under this normalization we can define a probability measure < by {(A) = E[¢(X0)¢* (Xo)xa(Xo)]
for all A € 2. We then have:

[EvCxe=dacw) = [B]p . x)

p~'E [¢*(Xo0) (M(¢2))(Xo))]
—11@[(( ¢*)(X1))o
X1)o ( 1)Y(X1)

:/¢ ) dé(

Therefore, Assumption A.1(c) is satisfied under Assumption 3.3 and our maintained assumption

Xo = ] o) () dQ(x)

B
=
B

(
)

of stationarity. A similar derivation is reported for continuous-time semigroups in an preliminary
2005 draft of Hansen and Scheinkman (2009), but there the stationary distribution @ is replaced

by an arbitrary measure.



For part (d), note that {(A) > 0 implies QQ(A) > 0 under our construction of ¢. Therefore, S(A) > 0

implies ¢xa is positive on a set of positive () measure. Moreover, by definition of E we have:

Z XA(Xt)
t=1

onx] = ¢( ZptMt oxa)(z)

1
o(x) 4

>

Z)\ tMt (oxn) ()

for any A > p. Assumption 3.2(b) is necessary and sufficient M to be irreducible and, by definition
of irreducibility of M, Y72 A™'M;(dxa)(z) > 0 a.e-[Q] holds for A > p (Schaefer, 1999, p. 317).

9

Therefore, Assumption 3.2(b) implies Assumption A.1(d), up to the qualification “a.e.-[Q]”.

Part (e) is a Harris recurrence condition which does not translate clearly in terms of the operator
M or the kernel K. When combined with existence of an invariant measure and irreducibility
(Assumption A.1(c) and (d), respectively), it ensures both uniqueness of ¢ as the invariant measure

for the distorted expectations as well as ¢-ergodicity, i.e.,

o] [i,

¢(x)

(Xn)
$(Xn)

lim sup ‘E[
0 0<y<¢

é(x)' =0 a.e-[¢] (32)

as n — 00, where the supremum is taken over all measurable ¢ such that 0 < ¢ < ¢ (Meyn and
Tweedie, 2009, Proposition 14.3.1).

The result (32) is a discrete-time version of Proposition 7.1 in Hansen and Scheinkman (2009),
which they use to establish identification of ¢. Our identification conditions alone are not enough
to obtain a convergence result like (32) (cf. Theorem 3.3). On the other hand, the conditions in
the present paper assume existence of ¢* whereas no positive eigenfunction of the adjoint of M
is guaranteed under the conditions in Hansen and Scheinkman (2009). Indeed, for non-stationary
environments it is not even clear how to restrict the class of functions appropriately to define an
adjoint (for instance, Hansen and Scheinkman (2009) do not appear to restrict ¢ to belong to a
Banach space). This suggests the Harris recurrence condition is of a very different nature from

Assumption 3.3.

A.2 Existence

Hansen and Scheinkman (2009) establish existence of ¢ in possibly non-stationary, continuous-time
environments by appealing to the theory of ergodic Markov processes. Equivalent conditions for
discrete-time environment are now presented and compared with our identification conditions. As
with the identification conditions, we use analogues of generators and resolvents for discrete-time

semigroups where appropriate.



Assumption A.2 (a) there exists a function V : X — R with V > 1 and a finite constant a > 0
such that MV (x) < aV(x) for allx € X

(b) there exists a measure v on (X, Z") such that Fxa(z) > 0 for any A € & with v(A) > 0,
where F is given by
1) Me (V) (2)
Fy(a) = Y a (D=0
2

fora>a

(c) the operator G given by

=D AN UF-sov)y)(@)
t=0

is bounded on the space of bounded functions where s : X — R is a non-negative function
such that [ s( ( ) > 0 such that Fw z) [(u w) for all >0 (s exists by part
(b)), (s® 1/) z) [P(u) dv(u), and )\ belongs to the spectrum of TF.

Hansen and Scheinkman (2009) show that ¢ := VGs is a positive eigenfunction of M. Let us now

consider how these existence conditions compare with the existence conditions in the present paper.

Part (b) is satisfied under Assumption 3.2 with v = @ whenever a > (M) where (M) denotes
the spectral radius of M. By positivity and irreducibility of M (cf. Assumption 3.2(a) and (b),
respectively), if A € 2" with Q(A) > 0 then

> aTMU(Vxa) (@) = D a " Mixa(z) >0 ae-[Q)]

where the first inequality is by positivity and the second is by irreducibility. It follows that Fx(x) >
0 a.e.-[Q]. This verifies part (b) (up to the qualification “a.e.-[Q]”).

On the other hand, parts (a) and (c) of Assumption A.2 seem quite different from the conditions of
Theorem 3.1. For instance, the conditions of Theorem 3.2 do not presume existence of the function
V but impose a power compactness condition. Hansen and Scheinkman (2009) do not restrict the
function space for M ex ante so there is no notion of a bounded or power-compact operator on
the space to which ¢ belongs. The requirement that G be bounded (or the sufficient conditions for
this provided in Hansen and Scheinkman (2009)) do not seem to translate clearly in terms of the

operator M or the kernel Kyy.



B Verification of the identification conditions in some parametric

models

B.1 Exponentially affine SDF

Let Xy denote the IV x 1 vector of state variables each period. Let €11 denote a N x 1 vector of
N(0, I) shocks that are independent of X;. Assume X; evolves according to

Xt+1 = AXt + O€t4+1 (33)

where all the eigenvalues of the N x N matrix A lie within the unit circle, and ¥ := o0’ is positive
definite. We also assume the SDF is of the form

m(Xy, Xi11) = g exp {allXt + 01206t+1} (34)

where ag € R and oy, as € RY. If log consumption growth is an affine function of X; then this SDF
specification is obtained, e.g., under Epstein-Zin preferences with unit EIS (Hansen et al., 2008)

and also under CRRA preferences.

Lemma B.1 Let {X;} follow (33) and let the SDF be as in (34). Then: Assumption 3.1 holds for
all LP spaces with 1 < p < 0o; Assumption 3.3 holds with

b(z) = Byexp{ai(l - A) 'z}
0'(&) = Biexp{[afVA +abZ](I - A) 'V la)
p = agexp{}(af(I - A)™ +ah)S((I — A) ey +an)}.

for positive constants 3, and 35, where V = ijo AIXAY; and Assumption 3.5 holds (and therefore
Assumption 3.2 also holds). Note that ¢ € LP and ¢* € L1 for all 1 < p,q < co.

B.2 Exponentially quadratic SDF

Here we maintain the dynamic specification (33) but now assume that the stochastic discount factor

is of the form

m (X, Xi+1) = apexp {o/lXt + ahoerrr + X1 Xy + X£F206t+1} (35)

where ag, a1, and ay are as in the exponentially affine case, I'y € RV*V

is symmetric with —I';
non-nonnegative definite, and I'y € RV*Y | This specification has been used as a reduced-form SDF
to examine the term structure of equity (see, e.g., Lettau and Wachter (2007, 2011)) and in the

extensive literature on affine term structure models. In what follows, we impose the “essentially



affine” restriction I'y + $I,XT% = 0 (Duffee, 2002) because of the extensive use of this restriction

in the literature.?3

Lemma B.2 Let {X;} follow (33), let the SDF be as in (35) with Ty + $T,XT% = 0, and let all
eigenvalues of A’ +T'9X lie inside the unit circle. Then: Assumption 3.1 holds for all LP spaces with
1 < p < oo; Assumption 3.8 holds with

$(x) = Byexp{of +ahSTH[I — A - XI5 a}
¢*(x) = pBjexp {Bikx - m’B*m}
p = agexp{3(af +ab(I—A))I—-A—-XTH) 18I — A —T9%) Hoq + (I — A)as)}

for positive constants B, and 3, where

1 . N —1
B* — 2((;(A+EF’2)JZ(A/+F2Z)J) _V—1>
Br = (I-SD Y Hag+SD (a1 — Aaw))

with D = SXS'+ V1 42B* S =AY 4Ty, and V = ijo AT A : and Assumption 3.5 holds
(and therefore Assumption 3.2 also holds). Note that ¢ € LP for all 1 < p < oo and ¢* € L1 for all
q € (1,q) where ¢ =sup{q > 1:¢B* + %Vfl is positive definite}.

The “stability condition” requiring all eigenvalues of A’ 4+ I'sX¥ to lie inside the unit circle implies

that (i) B* is the unique solution of the discrete-time algebraic Riccati equation
oB* =2l vl _§@eB* +Vl4+5n8))ts (36)

and (ii) ¢* € LY for some ¢q > 1. If the stability condition fails then there may be multiple B* solving
(36) and therefore multiple ¢* solving M*¢* = p¢*. However, none of these ¢* would belong to L4
for any ¢ > 1 because the stability condition is also a necessary condition for positive definiteness
of ¢B* + %Vfl for any ¢ > 1 (see the proof of Lemma B.2).

B.3 Recursive preferences and stochastic volatility

The previous two examples assumed the state process was linear. We now show Assumption 3.3

is easily verified for a nonlinear example. We assume that the log consumption growth process for

gt = log(Cy/Cy_1) is:
_ 1/2
giv1 = (1 —=kK)g+ kg + avt/ €41

(37)
V41 = ARG(Cva‘va(Sv)

23The essentially affine condition can be relaxed but the analysis becomes substantially more complicated.



where €;41 is an independent N(0,1) random variable and ARG(c,, ¢y, dy) is an autoregressive
gamma (ARG) process of order 1 which is parameterized by (¢,, ¢y, 0,) (see Gourieroux and Jasiak
(2006) for details). The ARG process is a discrete-time version of the familiar continuous-time

square root process. The state vector is Xy = (g¢, v¢)"

We assume that m(Xy, X;41) is of the form
1/2
m(X¢, Xiy1) = agexp {Oélgt+1 + vy + azvpyy + 0t4UUt/ 6t+1} (38)

where a; = —1, and where as = ag = 0 when o = 0. This SDF is obtained under Epstein-Zin
preferences with EIS = 1 by following Appendix H of Backus et al. (2014).

To solve for p, ¢, and ¢* we conjecture solutions that are exponentially affine in X; = (g, v¢)
because the characteristic function of the ARG process is exponentially affine. Further, to solve for
¢* we use the fact that {v;}{2__ is time reversible, and that {g;}2

is time reversible because it a scalar linear process with Gaussian innovations.

. o
_ oo conditioned on {v;}2_

Lemma B.3 Let {X:} follow (37) and let the SDF be as in (38). Then:

¢(g,v) = PByexp {ﬁg + Bzv}

11—k
#'(9,0) = Brexp{ |12 +aul+r)]g+ fv )
p = agexp{aig— d,log(l — (a3 + f2)cy)}

solve Mo = po and M*¢p* = po*, where

(1+ (€ —ag)ey — o) — \/(1 + (€ — a3)cy — pu)? — 4ey (€ — as3é + ppa3)

2¢cy
B = Pataz—¢§
1 2 (e73] 2
& = 052+§U <H+a4>

and By, and 5 are positive constants.

C Additional results on estimation

In this section we derive convergence rates of the bias and variance terms, supplementary results

useful for verification of Assumption 4.3, and some additional results related to inference.



C.1 Bias and variance calculations

Before presenting the results, it is worth emphasizing the distinction between qb}r( and ¢7-. Recall
that ¢)(z) = b (x)'c} is the eigenfunction corresponding to px of the adjoint of IIxM with
respect to the subspace By . Let ¢} denote the eigenfunction corresponding to px of the adjoint
of TIxM with respect to the space L? (these quantities are uniquely defined for all K sufficiently
large under Assumptions 4.1 and 4.2(a)). That is,

E[¢x (Xo)IIkMi(Xo)] = prE[¢)(Xo)¥(Xo)]
El¢j (Xo)UxMir (Xo)] = prE[ok(Xo)vr (Xo)]

for all ¢ € L? and vk € Bg. It follows that Il ¢} = qﬁ}r{. Lemma C.1 below shows that ¢7 and

qb;“( converge to ¢* at the same rate.

As eigenfunctions are only identified up to sign and scale, for the remainder of this section we
impose the scale normalizations ||¢| = 1, ||¢k]| = 1, HQEH =1, (¢,¢0") =1, (¢g, 0)) = 1, and
<$, 5*) = 1, and the sign normalizations (¢, ¢x) > 0, (¢*, ¢}.) > 0, (¢*, qﬁ}} >0, and ((Z*, qﬁ}} > 0.

The following Lemma provides convergence rates for the bias terms. These rates bound the approx-
imation error introduced when the infinite-dimensional eigenfunction problem (4) is approximated

by the matrix eigenvector problem (19).

Lemma C.1 Let Assumptions 4.1 and 4.2(a) hold. Then there erists K € N such that for all
K>K:

(a) pk is real and simple
(b) oK is the unique eigenfunction of IIxM corresponding to the eigenvalue pg

(¢c) (IIgM)* has a unique eigenfunction ¢y, corresponding to the eigenvalue pr .
If, in addition, Assumption 4.2(b) holds:

(d) lpx —p|l = O(dK)

(e) llox — ol = O(dk).

Further, if Assumption 4.2(c) also holds:

(f) N5 /N5l = ¢*/ll¢*Illl = O(6%)
(h) llog/ okl — ¢*/l1o* Il = O (%)



With Lemma C.1 in hand it remains to derive convergence rates for the variance terms.

Lemma C.2 Let Assumptions 4.1, 4.2(a), and 4.3(a) hold. Then with probability approaching one:

(a) p is real and simple
(b) ¢ € RX is the unique eigenvector of G'M corresponding to the eigenvalue p

(c) ¢ € RE is the unique eigenvector of G- M/ corresponding to the eigenvalue p.
If, in addition, Assumption 4.3(b) holds:

(d) 1p = px| = Op(1n.K)

(¢) 16— oxcll = Op(tnic)-

Further, if Assumption 4.3(c) also holds:

(1) 16 /16" 1l = &5/ 63l = Op (i)

C.2 Convergence results for matrix estimators

We now provide some sufficient conditions for Assumption 4.3 in Cases 1, 2, and 3. We derive
the results assuming {X,} is either beta-mixing or rho-mixing because many popular models for
macroeconomic or financial time series imply this form of weak dependence. Examples include
copula-based Markov models (Chen, Wu, and Yi, 2009; Beare, 2010) and discretely sampled Markov
diffusion processes (Chen, Hansen, and Carrasco, 2010). The results presented below for beta-mixing
data use an exponential inequality for sums of weakly-dependent random matrices derived by Chen

and Christensen (2014); the results for rho-mixing data adapt arguments in Gobet et al. (2004).

We first present sufficient conditions for Assumption 4.3 in Case 1, for G and M in (21) and
(22). Let b (z) = G;/ 2pK () denote the orthonormalized vector of basis functions, where G;(I/ 2
denotes the inverse of the positive definite square root of Gx. Let £x = sup, ||b% (x)|| denote the
usual measure of roughness of the sieve basis functions and let A\ = 1/ \/m denote the

reciprocal of the square root of the minimum eigenvalue of G.

Lemma C.3 Let {X;} be strictly stationary and exponentially beta-mizing, let E[|m(Xo, X1)|"] <
oo for some 2 <r < oo, and let Eg Ak (logn)/y/n = O(1). Then:

(a) [GT'M ~ G~ Mg = Op((&xch) 2/ (logn)/v/n)
(b) Assumption 4.3(b)(c) holds with n,, ;o =n;, o = O((Ex i) 27 (logn) //n).

9



Lemma C.4 Let {X;} be strictly stationary and exponentially rho-mizing and let E[|m(Xo, X1)|"] <

oo for some 2 <r < oco. Then:

(a) [GT'M — GM||g = O,((€xAx)"T2/"VK //n)

(b) Assumption 4.3(b)(c) holds with n,, ;o =n;, o = O((Ex i) T2/ /).
We now present sufficient conditions for Cases 2 and 3 using G and M in (21) and (23).

Lemma C.5 Let {X.} be strictly stationary and exponentially beta-mizing, let E[|m(Xo, X1)|"] <
0o for some 2 <r < oo, let (& :L:_Ol(fﬁ(Xt,XHl) — m(X¢, Xi41))2)? = Op(vn) where v, = o(1),
and let Eg A (logn)/v/n = o(1). Then:

(a) |GM — G 'M||g = Op((ExAr) 2/ (log n) //1 + Ex Arcvn)

(b) Assumption 4.3(b)(c) holds with n,, ;o =n;, ;o = O((Ex M) 2" (logn) [/ + Ex Ak vn).

Lemma C.6 Let {X,} be strictly stationary and exponentially rho-mizing, let E[|m(Xo, X1)|"] < 0o
for some 2 <r < oo, let (£ ?gol(ﬁ%(Xt,XtH) —m(Xy, Xi11))2)? = Op(vy) where vy, = o(1), and

let gV E [/ = o(1). Then:

(a) |G™'M — G'"M||g = Op((ExAx) 2" VE /i + Exc Arcim)

(b) Assumption 4.3(b)(c) holds with n,, 1 =0}, = O((ExAi) ™2 )\ /0 + Ec A kvn).

Remark C.1 Lemmas C.5 and C.6 show that the mean-square convergence rate of m to m, namely
Un, affects the convergence rates of the eigenfunction estimators. With all else being equal, if v, — 0
at a slower rate then 0, i and n,, o will be larger for given K (see parts (b) of Corollaries C.5 and
C.6). Moreover, larger v, means that K will have to increase more slowly with with the sample
size to verify Assumption C.1, which means dx and 03 will vanish more slowly as n increases.

Consequently, the convergence rates of the estimators p, <$ and quﬁ* will be slower.

C.3 Sieve perturbation expansion

The following result shows that, to first order, p — px behaves as a linear functional of M — 0 K(A}.
This result is used to derive the limiting distribution of p, y and L in Theorem 4.2, and may be
applied to derive the asymptotic distribution of p, ¥ and L in Cases 2 and 3. To introduce the
following result, let M, GO, and M° by obtained by pre- and post-multiplying M, G and M by
G2 (where G~ /2 denotes the inverse of the positive definite square root of G).
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Lemma C.7 Let ||6'w° —I|| = Op(Mn, k1) and Hﬁo — M°|| = Op(7n,K2) where My k1 = o(1), and
let Assumptions 4.1, 4.2 and 4.3 hold. Then:

p—pPK = C%(M - PKG)CK + Op((nn,K 4 ﬁn,K,l)(ﬁn,K,l \ ﬁn,K,2)) .

C.4 Asymptotic inference in Case 1

We now turn to providing estimators of the asymptotic variances V,, V,,, and V7, in Case 1. The rates
of convergence in Theorem 4.1 are for estimators under the scale normalization E[QE(X(])Q] =1 and
E[¢* (Xo)$(X0)] = 1. In practice the measure @ is unknown so these normalizations are infeasible.
Therefore, we let ggf and gg*f denote $ and qg* renormalized under the empirical measure, i.e.
n Yy ¢ (X)2 =1 and n~! Z?:_()l o! (X)) (X;) = 1. Our estimator of V, is

—_

n—

= 3 (B (XmlXe, Xee)d (Xewn) — 55 (X037 (%))

t=0

:\*—‘

and our estimator of Vj, is ‘A/y = ﬁ2\7p. Estimating V7, involves estimating a long-run variance. We
use an orthogonal series long-run variance (OSLRV) estimator of Phillips (2005) in conjunction with
fixed-bandwidth asymptotics as in Chen, Liao, and Sun (2012).24 Let {h; : j > 0} be a continuously
differentiable orthonormal basis for L2[0, 1] (the space of measurable functions on [0, 1] that are
square-integrable with respect to Lebesgue measure), such as a cosine or Legendre polynomial basis.
Let hg = 1 so that fo u)du = 0 for each j > 1. For each j =1,...,J, define

(t - 1) Yr(Xt, X41)

' M

where
D1 (Xe, Xer1) = 10 (Xe)m(Xe, X))o (Xer1) — 07 (X))o (Xi) — (log m(Xe, Xev1) — Imy,)

and Im,, =n"! Yoo log m (X, Xi41). Our estimator for V7, is

J
~ 1 ~
VLJ:J;Aj. (39)

In what follows we use “fixed-bandwidth asymptotics” in that we keep J fixed as n — oco. As a
result, we will obtain \/ﬁ‘A/E }/ Z(E — L) —4 t; rather than the usual N(0,1) limit obtained with

consistent long-run variance estimation.

24 A considerable literature has shown that asymptotic inference with consistent kernel-based truncated-lag esti-
mators can suffer size and power distortions in finite samples, and has proposed fixed-bandwidth asymptotics as a
remedy (see, e.g., Kiefer, Vogelsang, and Bunzel (2000); Jansson (2004); Miiller (2007)).
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To simplify notation, let ¢; := ¢(Xy), let my 441 := m (X, Xi41), and so on.

Assumption C.1 (a) each of E[¢}>mo1pod1], E[Qﬁ(’?maldﬁ], and E[¢§2¢3] are finite;
(6) ExAx (167 = ¥V 167 = 6]) = 0,(1);

(c) there exists a neighborhood Nk of (¢, ¢*) such that (qgf, qg*f) € Ni wpal and for which

o 3o (EEY) 66— 521~ Bl — £l = op(a)

(ff )GNKt 0

and

sup Z i (t J,Z 1>{mt 11 (dFbrr1 — f7 frrn) — Elmoa (o501 — fi f1)]} = op(n'/?);

(ff )ENKt 0

(d) n= 30000 hi(HE) (¢ime e 01 — Elggmond]) = op(1); and

(e) for any (vo,v1,...,v;)" € R/t we have
er () {5 (s <)) = () (5 < o)
=0 —o j=0 - V20 "
where wo, w1, . .. ,wp—1 are i.i.d. N(0,Vr) random variables.

Assumption C.1(a) ensures the individual terms in V, are well defined. Assumptions C.1(c)(e)
are versions of Assumption 5.2(i)(iv) of Chen et al. (2012); C.1(e) is weaker than assuming a
functional central limit theorem applies. Assumption C.1(c)(d)(e) may be verified under specific

weak dependence assumptions.

Theorem C.1 Let Assumptions 4.1, 4.2, 4.8, 4.4 and C.1(a)(b) hold. Then:

(@) Vo= Vy and /¥, /(5= p) —a N(0,1)

(b) Vy = Vy and /aVy (G — ) —a N(0,1).
If, in addition, Assumption C.1(c)(d)(e) holds, then:

(C) J‘/}L’J/VL —d X?] and \/ﬁ‘/};}m(i — L) —aty.

12



D Proofs

D.1 Proof of results in the main text

If T is a bounded linear operator on a Banach space B we define its spectrum o (T) as the complement
in C of the set of all z € C for which the resolvent operator R(T, z) := (T — zI)~! is a bounded
linear operator on B. We also let r(T) := sup{|z| : z € o(T)} denote the spectral radius of T.

Proof of Theorem 3.1. We first prove part (c). Let M{ = A\ where € € LP is positive. Then

AE[§(X0)9™ (Xo)] = E[((MS)(Xo))o™(Xo)] = E[§(Xo)(M*¢")(X0))] = pE[¢(X0)9™(Xo)]  (40)
by Assumption 3.3. Moreover, E[{(X()¢*(X0)] > 0 because £ and ¢* are positive. Therefore p = A,
proving (c).

For part (a), let FF = {& € LP : M{ = p&}. Clearly F' # {0} because ¢ € F by Assumption 3.3. If
¢ € F let |€] denote the function given by |£|(z) = [£(x)].

Claim 1: £ € F implies [£| € F.

Proof of Claim 1: Since M is a positive operator (Assumption 3.2(a)), for any & € F we have
M¢| > |ME| = |p&| = plé| for any £ € F which implies M|{| — p|£] > 0 a.e.-[@]. On the other hand,

E[¢" (Xo0) (MI£])(Xo) — pl&|(Xo))] = E[(M"¢")(X0))[&|(Xo)] — pE[¢*(X0)[£](Xo)] = 0.

But ¢*(z) > 0 a.e.-[Q] by Assumption 3.3. Therefore, M|{| = p|¢| whence [£| € F, proving Claim 1.
Claim 2: £ € F implies £ = [{| a.e.-[Q] or —& = [{] a.e.-[Q].

Proof of Claim 2: This is trivially true when £ = 0, so consider £ # 0. Let £ = || on a set of
positive ) measure. We prove, by contradiction, that this implies |{| = £. Assume |£| # £ on a set
of positive  measure. Then |£| — & > 0 a.e.-[Q] and |£| — & # 0. Note that M(|¢] — &) = p(|¢] = )
(by Claim 1) and that p < r(M) (by definition of the spectral radius). Then for any A > r(M) we

have
(p/N)

1—(0//\)(|§’_€):T;< ) (1€ = ;A "M (€] — €) > 0 ae-[Q)]

by Assumption 3.2 (Schaefer, 1974, p. 337) whence |[£| > £ a.e.-[Q]. This contradicts the fact that
€ = [£| on a set of positive ) measure. A similar proof shows that if —¢ = |£| holds on a set of

positive ) measure then —¢ = |£|, proving Claim 2.

We know by part (c) that if ( € LP is a positive eigenfunction of M then ¢ € F. Define the sets
Si={seR:(>s¢pae-[Q]} and S_ ={s e R:({ < s¢ a.e-[Q]}.

Claim 3: S, S_ are nonempty, closed, convex, and R =S5, U S_.

13



Proof of Claim 3: To prove S and S_ are nonempty, note that we must have (—oo, 0] C S because
¢ is positive and ¢ is positive. Suppose S_ is empty. Then { > s¢ on a set of positive measure for
all s € (0,00]. But by Claim 2 this implies that { > s¢ a.e.-[Q)] for all s € (0,00), which is clearly
impossible because ¢ > 0 a.e.-[Q)]. Therefore S_ is nonempty.

It is straightforward to verify that S, and S_ are convex and closed.

It remains to show R = Sy US_. Take any s € R. Clearly ( — s¢ € F. By Claim 2 we know that
¢ —s¢ >0 a.e-[Q] (implying s € Sy) or ¢ — s¢ < 0 a.e.-[Q] (implying s € S_) holds. Therefore
R = S, US_. This completes the proof of Claim 3.

Claim 3 implies that S+ N.S_ must be nonempty. Therefore S; NS_ = {s*} because Sy NS_ must
be a singleton (otherwise ( = s¢ and ( = s'¢ with s # ') and so { = s*¢ a.e.-[Q)], proving (a).

For part (b), a similar argument to (c) shows that p is the only eigenvalue of M* with a non-negative

eigenfunction. The result then follows by similar arguments to the proof of (a). m

The following theorem is originally due to Schaefer (1960). The version presented below is Theorem
3.2 on p. 318 of Schaefer (1999).

Theorem D.1 Let E be an ordered real Banach space with positive cone C, and suppose that u is

an irreducible positive endomorphism whose spectral radius v is a pole of the resolvent [of u]. Then:

i. 7> 0 and r is a pole of order 1

ii. there exist positive eigenvectors, pertaining to r, of u and u’ [its adjoint]. Fach positive eigen-
vector for r is quasi-interior to C, and each positive eigenvector for u' is a strictly positive

linear form

iii. each of the following assumptions implies that the multiplicity of d(r) of v is 1: (a) C has
non-empty interior, (b) d(r) is finite, (¢) E is a Banach lattice.

Proof of Theorem 3.2. For part (a), first note that M" is compact so M has discrete spectrum
whose only limit point is zero and any nonzero eigenvalue of M is a pole of the resolvent of M
(Dunford and Schwartz, 1958, Theorem 6, p. 579). Assumptions 3.1 and 3.2(a) imply M is a
positive operator, so r(M) € o(M) (Schaefer, 1999, p. 312). Assumptions 3.1 and 3.2 also imply
that r(M) > 0 (Schaefer, 1974, p. 337). Therefore, r(M) is a pole of the resolvent of M. Further,
Assumption 3.2(b) implies M is irreducible. Existence of ¢ and ¢* follows from Theorem D.1(ii).

Note p = r(M) because only one eigenvalue of M has a positive eigenfunction (Theorem 3.1(c)).

For part (b) we know that p = r(M) is a simple eigenvalue by Theorem D.1(iii). Further, p is

isolated because the only limit point of o(M) is zero. m
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Lemma D.1 Let the Assumptions of Theorem 3.3 hold. Then there exists € > 0 such that |\| <
(L—e¢)p for all A € o(M) \ {p}.

Proof of Lemma D.1. It follows from Theorem 3.2(b) that there exists e > 0 such that |\| <
(I—e)pforal A€ {ze€oM):|z| #p}. It remains to show that p is the unique element of o (M)
with modulus p. Since M is irreducible (by Assumption 3.5) it follows by Theorem V.5.4 of Schaefer
(1974) that S := {z € o(M) : |z| = p} consists of first-order poles of the resolvent of M. As M
has a discrete spectrum whose only limit point is zero there must be only finitely many elements
of §. Moreover, by power compactness of M, each of the first-order poles of the resolvent of M
are eigenvalues of Ml (Dunford and Schwartz, 1958, Theorem 6, p. 579). However, Assumption 3.5
implies that every eigenvalue A of M with A # p has modulus |A\| < p (Schaefer, 1974, Theorem 6.6,
p. 337). Therefore S = {p}. m

Proof of Theorem 3.3. Let M = p~!M, whence o(M) = p~1o(M) by the spectral mapping

theorem. In particular, 7(M) = 1. Note that, by construction, (¢ ® ¢*) is the spectral projection of

M corresponding to the eigenvalue 1.

Consider the operator V= M— (¢®¢*). Lemma D.1 implies that V has spectral radius (V) < 1—e

for some € > 0. Also note that
V=M= (p@¢")" =M" - (¢ ®¢*) = p"M,, — ($ ® ¢")

where the second equality is because M and (¢ ® ¢*) commute and (¢ ® ¢*) is a projection.

Let || - || denote the LP operator norm given by || A||P = sup{E[|Av(Xo)|P : E[|v(Xo)[P] < 1}. By
the Gelfand formula (Dunford and Schwartz, 1958, p. 567),

lim VP = r(V) <1 —e. (41)

Let {ng : k > 1} C N be the maximal subset of N for which [[V™|| > 0. If this subsequence is finite

then the proof is complete. If this subsequence is infinite, then by expression (41),

log ||V
lim sup M <0.
ng—>00 ng

Therefore, there exists a finite positive constant ¢ such that for all nj; large enough,
log ||V || < —eny

and the result follows. m
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Proof of Theorem 4.1. For parts (a) and (b), we first bound

p=pl < |p—pxl+lpx —pl
6 —oll < o~ okl +[lox — ol

The desired results now follow by parts (d) and (e) of Lemmas C.1 and C.2.

<
HIW‘\ H¢>*H‘ N ‘

and the result follows by Lemmas C.1(h) and C.2(f). m

For part (c), we have

*

o ik
okl Tie"]

ol H¢KH

|

Proof of Corollary 4.1. Part (a) follows immediately by continuity of log(-) on a neighborhood

of p > 0. Part (b) then follows from part (a) by the triangle inequality, since:

n—1

n 1Y “logm(Xy, Xi41) — Eflog m(Xo, Xl)]‘
=0

IL—L| <|y—y|l+

with the obvious modification in Cases 2 or 3. m

Proof of Corollary 4.2. Condition (iii) implies M is compact because M maps L? into AP°(X)
and AP (X) is compactly embedded in L?(X, 2", Leb) (Triebel, 2006, Proposition 4.6, p. 197) which,
by condition (ii), is equivalent to L?(X, 2, Q). Therefore Assumption 4.1 holds.

Let ||-||p, denote the norm on AP°(X) (see Section 2.3.1 of Chen (2007)). We may bound ||TIxM—Mi]|

using the factorization

Uk — M
M -~ M| < sup M=l MYl
perro (X):[lpe#0  Pllpe  werzuizo ¥l

= O(K™7/%) x const

where the O(K ~P0/4) term is by Theorem 12.8 of Schumaker (2007) (under conditions (i)(ii)(vi)) and
the constant term is by condition (iii). This verifies Assumption 4.2(a). Assumption 4.2(b) is satis-
fied with 0 = O(K ~P/%) by Theorem 12.8 of Schumaker (2007) (under conditions (i)(ii)(iv)(vi)).

For Assumption 4.3, note that the minimum eigenvalue of G is uniformly bounded away from zero
and £x = O(VK) under conditions (i)(ii)(vi) (see, e.g., Newey (1997)). As the data are exponen-
tially rho-mixing (condition (vii)), Lemma C.4 1mphes G~ IM-G- M||g = O,(K+D/7 /\/n) and
Nnre = O(KTH2/Cr) / /). Choosing K < nTPEET sets Sk X M. Further, K+2)/Cr)/ /=
o(1) holds for this choice of K provided p > d/2. This verifies Assumption 4.3(a)(b). m
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Proof of Theorem 4.2. First consider the limiting distribution for p. By Lemmas C.7 and C.1(d),

)

1 n—1
—p = Y ASk(X)m(Xe, Xep)éx (Xer) = predfe(X)ox (X0}
t=0
+pr — P+ Op((n,x V k1) X (i1 V T,k ,2))

n—1
- % > A (X)m(Xe, Xer1)$(Xee1) — po" (Xe)$(Xe)} + 0p(n1/?)
t=0

where the o, (n~/?) term is by Assumption 4.4(a)(b)(c), proving (27). Part (a) is then immediate by
a central limit theorem for stationary and ergodic martingale differences (Billingsley, 1961) under
Assumption 4.4(d). Part (b) follows directly from part (a) via the delta method. For part (c), by
continuity of log on a neighborhood of p > 0 and (27) we have

n—1

R 1 _ _
log 7~ logp = = 3 0™ (X0, Xi1) + 0pln~1/?)
=0
and so
R 1 n—1
L=1L= n UL (Xe, Xps1) + 0p(n™1?)
=0

and the result follows by Assumption 4.4(e). m

We first state a further assumption required to prove Theorem 4.3. Let P™(-|x) denote the condi-

tional measure of X,, given Xy = x.

Assumption D.1  (a) P!(:|z) has density f(-|z) with respect to Lebesque measure

(b) there exists a probability measure © on (X, Z") and n € N such that P"(A|z) > ©(A) for all
reX and Ae &

(c) Ellog m(Xg, X1)?] < oc.

Assumption D.1(a) is useful for characterizing the tangent space. Assumption D.1(b) implies that
{X;} is uniformly ergodic and phi-mixing (Doukhan, 1994, Theorem 1, p. 88). Finally, Assumption

D.1(c) just ensures that a component of V7, is well defined.

Proof of Theorem 4.3. We follow arguments in Bickel and Kwon (2001) and Greenwood, Schick,
and Wefelmeyer (2001). Let B denote the space of all bounded measurable f : X x X — R, and let
T ={h € B: E[h(Xo,X1)|Xo = 2] =0 for all z € X}. Let f(-|z) denote the conditional density
of Xi given Xo = . For any h € T there is N € N such that sup, ,)cx2 |h(z,y)| < n/? for
all n > Nj,. By Assumption D.1(a) we can define f,,(y|z) := f(y|z){1 +n~Y2h(y,z)} which is
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non-negative for all n > Ny, and

/fn,h(ylx) = /X(l +n"h(y, ) f(ylr) dy = 1+ 0" E[h(Xo, X1)| Xo = 2] = 1.

Therefore, for every h € T, f, 5 is a conditional density for all n > Nj,.

Let P, denote the distribution of {Xg, X1,...,X,} when the conditional distribution of Xy
given Xy is fy, , and let Py, o denote the distribution of { X, X1, ..., X, } under the true conditional

density f(y|z). A version of local asymptotic normality is known to obtain, i.e.

n—1

dpnh 1 1 2
— = — h(X, X — =E[h(Xo, X 1
\/ﬁtg ( [2) t+1) 2 [ ( 0 1) ]+0Pn,0( )

& P,

1

(see Greenwood et al. (2001)) where n~1/2 Z?:_ol h(Xy, X¢v1) —a N(0,E[R(Xo, X1)?]) by a CLT
stationary and ergodic martingale differences (Billingsley, 1961).

For any h € T define M, , : L? — L? by

M, () = /X Knaa, 1) (1 +n~Y2h(z, 1)) (y) AQ(y)

Therefore we may write:
(V=100 (0) = | Kaalo (a6 Q)

where ¢ (z) — [, Km(z,y)h(z,y)¥(y) dQ(y) is a bounded operator on L? because M is a bounded
operator on L? and h € B. Thus ||M,, 5 — M| = O(n~1/2) for each h € T. By the proof of Lemma
C.2, for all n sufficiently large the operator M, j, has one simple eigenvalue, say py, , in the interval

[p — €, p+ €]. Further, by similar arguments to the proof of Lemma D.10,

pap—p = E[¢*(Xo)(Myn —M)o(Xo)] + o [|M,, — M]|)
= Vn(pnn — p) E[¢*(Xo)m(Xo, X1)p(Xo)h(Xo, X1)] + o(1)

because ||M,, , — M| = O(n~1/2). The gradient of p is therefore ¢*(x)m(z, y)¢(y) and its projection
onto the closure of 7 (under the seminorm h — E[h(Xg, X1)?]"/?) is

¢ (x)m(z, y)o(y) — E[p"(Xo)m(Xo, X1)p(X1)|Xo = z] = ¢p(z,y) .

Therefore 1, is the efficient influence function and V, = E[¢),(Xo, X1)?] is the efficiency bound for
p, which is attained by p. The result for y follows by continuity.
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As shown in Example 1 of Greenwood et al. (2001),

Um(z,y) = logm(x,y) — Ellogm(Xo, X1)|Xo = z]

+Y (Ellogm(Xs, Xe41)| X1 = y] — Eflog m(Xe, Xo11)[ Xo = 2]) (42)
t=1

is the efficient influence function for E[logm(Xo, X1)]. The efficient influence function for L is
therefore ¥y (z,y) = p~ Y p(z,y) — Ym(z,y) and E[¢r,(Xo, X1)?] is the efficiency bound for L.
It may be verified using the telescoping property of the sum in (42) that V; = E[JL(XO,Xl)z].

Therefore, L is semiparametrically efficient. m

D.2 Proof of results in Appendix B

In the following proofs we use the Gaussian integration formula

/RN exp {b/x + —%x'Aa:} dx = (2|72|N exp {%b’A‘lb}

where A € RV*N ig positive definite and b € RY.

Proof of Lemma B.1. First consider ¢. Conjecture a solution of the form ¢(x) = By exp{Bix}.
Substituting into Ml¢ = p¢ yields

pBoexp{Bizi} = aofoBlexp{a)z: + ahoeryr + Bi(Ax + oern) Xy = a4
= aofoexp { 5(0h + B0z + 1) expi(af + F A}

Equating coefficients of x; on the left- and right-hand sides yields 8] = o (I — A)~L.

Using the same ansatz for ¢*, we obtain

pexp{Bi'zi1} = oaoElexp{a) Xt + ab(zi41 — AXy) + B X H X1 = T41]
= agexp{ahzii JE[exp{T' X} X1 = m411]

where I' = oy — A’ + B5. The conditional density for X; given X; 11 = 441 is

F(Xi| X1 = 2441)

1
— (T =V D + XA A+ VYY) + X;A’z—lxm} :

1
T Ve exp{ 2

19



It follows that

E[exp{F’Xt}]XtH = xt+1]
exp {3TV(A'T1A+Vv-H~IT}
VIZAETA+ V-

x exp {TV(A'STTA+ V) TAS gy )
1
X exp {‘zwéﬂ(z-l —V T -2 AT A+ V‘lVlATl)W} | )

Cconsider the quadratic in x¢41 in (43), which must be zero if the ansatz for ¢* is correct. Note
that o'V ~lo = (I + AVA)™1 =T + ijl(—l)j(jivﬁ’)j where A = 0~ A. Therefore,

I—oV e — AAA+VvH) 1A

= —Z HAVAY — AV A AVY2 4 )=ty 124
= =) (F1(AVAY — AV [N (1 (VIPA AV | VvI2A = 0
J=1 §=0

as required. Moreover, by the Woodbury formula for determinants we obtain:
D|ASTTA+ VY = gV IETYE+AvA] = 1
because V =X + AV A’. Substituting (43) into M*¢* = p¢* yields
pexp{ By i1} = apexp {a’zxtﬂ + %F'(A’EAA +V HTIIT+T(A'S A + Vl)lAlﬁlxtH} .
Using the relation (A’S71A+ V1)~ =V - VA'V-'AV and equating the coefficients of z1:

= abton— oA+ F(ADTI A+ VT TIAS T
= ah+[o) —abA+ B|(VAVT
= [0} VA +ap3)(I - A)'vh,

It remains to check that ¢* corresponds to the eigenvalue p. By (43) and the expression for p it is
enough to show IV(A'S™1A+ V17T = (b + o (I — A)"HX(ag + (I — A)"Lay) where

I' = o] —ahA+ [a)VA +dhX](I — A"yt
= [of(IT—=A)" P +ah)(I-AVI A v

It therefore suffices to prove (I — A)V(I - A) 'V HASTTA+V H W T -A)WV(I-A)=%
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or equivalently V1T —A)[V+VASTAV](I- AV~ = (I-A)S~(I— A’) which holds because:

VI -AV+vASTIAVIT - AW = vV =AY T - vy
= (I-A)S 11— A).

Moreover, the joint density of (Xy, X;+1) and the unconditional density of X; both exist and
are strictly positive. The SDF is also strictly positive. Therefore Assumption 3.5 holds. To check
boundedness of M on LP we use the Schur test. Consider the test functions ¢ (x) = exp(a’x) and

((x) = exp(¥'z). By similar calculations to the above, for p € (1,00) and ¢ = (1 —p~1)~! we have

Myf(z) = coexp((af + qa'A)z)
M*¢P(z) = chexp((ab+ ) —ahA+pb ][V —VAVIAVIAYS )

where ¢, ¢ are finite positive constants. For the Schur test to hold we need Miy? < Cj¢? and

M*¢P < CyyP for positive constants Cy, Cjj. Equivalently, we require a solution to the system:

qb
pa = ax+ XAV - VAV IAV][ag — Aag + pb)] .

ar +qAa

Substituting ¢b into pa and letting § denote the sum of all terms depending on a; and ay (and not
on a), we have:
a = §+XTTAV —VAVTIAVIAa
= +Y N V-2V -)/VHV - %)a
= 5+ V-Da-EV-DI-V'8)a = 64+IT-V 'Y

therefore a = X'V and b= ¢ oy + ALV m

Proof of Lemma B.2. First consider ¢. We substitute the ansatz ¢(x) = Bpexp{fjz} into
M¢ = p¢ and apply I'1 + $I,ET% = 0 to obtain:

1
pexp{fiz:} = apexp {(0/1 + B1A)zy + 2Ty + 5(0/2 + B1 + i) S (e + B1 + Féxt)}

= aoexp { (o} + Bl A)z, + 3 (o + BBz + B1) + (ah + B)STha ).

The expressions for ¢ and p follow by equating coefficients of x; on the left- and right-hand sides.

For ¢*, we substitute the ansatz ¢*(z) = B§exp{f}’x — 2’B*z} into M*¢* = p*¢*. Calculating

E[-|Xt+1 = @41] using the time-reversed conditional distribution in the proof of Lemma B.1 and
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applying the condition I'y + 1[',XT% = 0, we obtain:

p*exp{fy' i1 — 332+1B*56t+1}

= E[CMQ GXp{(Odll + ,BTI)Xt + O/Q(wt—&—l — AXt) + X{(Fl — B*)Xt + X£F2($t+1 — AXt)}|Xt+1 = .Z't+1]
= exp{aéle}E[eXp{(w/ + .ZL';JrlFIQ)Xt + X{(—%(PQZFIQ +I'A + A/FIZ) — B*)Xt}’Xt+1 = xH_ﬂ
/ _ 1. 2—1 _ V—l 1
_ Qo eXp{Oé21,‘t+1 th—I—l( )$t+1} e {(.%';_HS/ + w/)D_l(S.%'t_H + w)}
VIE[D] 2
where @ = ay — Alag + B}, V. = 3,5 AITAY, § = A'S71 4Ty, D = S8 + V! 4 2B,
B =(I—-SD H (ag+SD ! (ag — A'a)), and B* solves

0=2B*+V Y —u 1 4 5(S%s + (2B* + V1)~ ls (44)
which implies
D=8%s+% 1 -8Ds, (45)

Therefore, @ = (I — S'D~ 1)L (ay + (I — A)ag). After some algebra, we obtain:

p = aoexp{%(o/l+o/2(I—A))(I—ES’)’lﬁ(I—SZ)’l(al—i—(I—A’)ag)}

1
o = |O‘E(|)|m exp {5(0/1 +ab(I— AN — D18 'D I — DV ay + (I — A’)a2)} .
We need p = p* to verify Assumption 3.3. Comparing the expressions for p and p*, we see p = p*
provided that both (I — 357 'S(I - SX)™t = (I - D7!S)"'D-}(1 — ’D~1)~L and |Z||D| = 1
hold. The first condition follows from taking the inverse of both its sides and using (45). Further,

by (45) and the properties of determinants of block matrices we have

D S
S/ 2—1

D S

-1
‘2 | S/ E_l

=|D- 828 | ="' - S'D71S| =|D|

Therefore, |3||D| =1 and so p = p*.

Now, ¢* € L7 provided Apax(—gB* — %V‘l) < 0 or, equivalently, that 2B* + V1 > p~'V~! where
q¢ '+ p~! =1 (the inequalities are in the sense of positive definite matrices). Rewrite (44) in terms
of Q:=2B* + V! to give

Q=x"1-5(525 +Q)'s. (46)

Consider the symmetric Stein equation
0=(ST)Q1(SY) - ' +¥. (47)

There exists a unique positive definite solution for Q! because all eigenvalues of S¥. = A’ + I')%.

lie inside the unit circle and ¥ is positive definite (Lancaster and Tismenetsky, 1985, Theorem 1,
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p. 451).25 We may rearrange (47) to obtain

Q = (T+x90tsn) !
= Yi(ET+se7s) i
YN - 28(Q 4+ 5Sns)tsn)n!
which implies that € is the unique positive definite solution of (46). Positive definiteness of
implies that Q = 2B* + V! > p~!V~! for all sufficiently large p > 1.

Assumption 3.5 holds by the same logic as the proof of Lemma B.1. To check boundedness of M on
LP we use the Schur test. Consider the test functions ¥ (z) = exp(a’z) and ((z) = exp(f'z —a'Fx).

By similar calculations to the above, for p € (1,00) and ¢ = (1 — p~1)~! we have

My?(z) = cyexp([a) + qa’A+ (af + ga’)ET5)z)
M*¢P(x) () €Xp ((0/2 + (o) — Alag + pf)[SES + VL + 2pF) 718z

—&—%m’[S’(SES' + Vg opR) Tl 4 vl - E_l]x>

where ¢, ¢, are finite positive constants. For the Schur test to hold we need Miy? < Cj¢? and
M*¢(P < CgypP for positive constants Cy, Cjy. These inequalities will hold if we can choose F' such
that F is negative definite and S’ (SXS" + V1 +2pF)~1S+ V! — ¥~ is negative definite. Taking
F = —cI we see that S'(SXS" + V=1 —2pcl)71S + V=1 — 571 < 0 for sufficiently large ¢ (because
V-1 — =1 <0). Further, this choice of F is clearly negative definite. m

Proof of Lemma B.3. Substituting the ansatz ¢(g,v) = By exp{S1g + Pf2v} into M¢ = p¢:

pexp{f1g: + Bovi}
— avexp{ (o + AL~ R)g+ (o + Bl + (0 + 5(ar 4 61+ aafa )

x exp {po(as + B2)(1 — (a3 + B2)eu) "o — 6, log(1 — (az + Ba)er) } -

Collecting coefficients, we have:

p = apexp{a1g — d,log(l — (a3 + f2)cy)}
5 . 1R
L
_ 1 2 9 9011(053 + 52)
52 = a9+ 5(0[1 + ,61 + 054) o+ 1_ (Oég n IBQ)CU . (48)

25In fact, the requirement that all eigenvalues of A’ + T's3 lie inside the unit circle is also necessary for existence
of a positive definite solution for Q7 !, and therefore for positive definiteness of Q = 2B* + V! (Lancaster and
Tismenetsky, 1985, Theorem 1, p. 451).
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Substituting ¢*(g,v) = Boexp{Sig + f5v} into M*¢* = p*p*:

p*exp{Bigs+1 + Bavis1}
= agexp{[—au(l — k) + (B] — aur)(l — K)]g + [1 + 4 + B — quk]ge1 + azviy1}

-1
<exp {% (0o 85+ 61— aana?) (1= (a4 55 + 5051 - aunPo? ) . vm}

X exp {du log <1 — (ag + 65+ %(ﬁf — a4m)202) cv>} .

Collecting coeflicients, we have:
* = o * 1 * 2 2
pF = apexplaig—d,log (1 ag + 55 + 5 (8] — auk)0” ) ¢y

gr = 10171%+a4(1+/{)

-1
By = as+ oy <a2 + 585 + %(ﬁf — oz4i£)202> (1 — (ozz + B35 + %(BT — a4ﬁ)202> cv> .(49)

Comparing p in the forward calculation and p* in the and reverse calculation, it is clear that p = p*

provided
* 1 *
az+ B2 =az+ B3 + 5(51 — aur)’o? (50)

holds. Substituting (50) into (49) and rearranging yields precisely (48). Therefore, equality (50)
holds and so p = p*.

It remains to solve the quadratic equations (48) and (49) for 82 and G5, respectively. Consider (48)
first. Assuming the discriminant is positive there are two real solutions for 3. When o = 0 we

require that 33 = 0, so we take the negative root. Similar logic applies for 55. m

D.3 Proof of results in Appendix C

Proof of Lemma C.1. First note that p is a simple isolated eigenvalue of M under Assumption
4.1 (by Theorem 3.2(c)). Therefore, there exists an € > 0 such that |A — p| > 2¢ for all A € o(M).

In what follows, let I denote a positively oriented circle in C centered at p with radius e.

Let R(M,2) = (M — 2I)~! denote the resolvent of M evaluated at z € C\ o(M), where I is
the identity operator. Note that Cr := sup,cr |[R(M, 2)|| < oo because R(M, z) is a holomorphic

function on I' and I" is compact.

By Assumption 4.2(a) there exists K € N such that ||[[IxM —M]| < C5' for all K > K. Therefore,
for all K > K the inequality

ITLg M — M| sup |R(M, 2)|| < Cr|IxM —M]| < 1
zel
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holds. It follows by Theorem IV.3.18 on p. 214 of Kato (1980) that whenever K > K: (i) the
operator IIxM has precisely one simple eigenvalue pg inside I'; (ii) I' € (C \ o(IIxM)); and (iii)
o(ITgM) \ {p} lies on the exterior of I'. Note that px must be real whenever K > K because
complex eigenvalues come in conjugate pairs. Thus, if px were complex-valued then its conjugate

would also be in I', which would contradict that pg is the unique eigenvalue of IIxM on the interior
of I". This proves (a), (b) and (c).

The proof of (e) follows some arguments from the proof of Proposition 4.2 of Gobet et al. (2004).
Take K > K and let Px = (¢x ® ¢3;) denote the spectral projection of IIxM corresponding to
pr. By Lemma 6.4 on p. 279 of Chatelin (1983), we have that

o-pro< (5 [FUER0e) (- o

and so
lo-reoll < 5 |( [ FOED 0z ) e - o
. %W) i \REHKM, 11 - Mo
< (sup.er IRIIKM, 2)|)) [|(TxM — M)g||. (51)
Moreover, for each z € I' we have
IR(ML 2)|i Cr

IR(xM, 2)|| < =0(1) (52)

<
1 —[IgM—-M||Cr ~— 1—|[IIgM—M]|Cr

where the first inequality is by Theorem IV.3.17 on p. 214 of Kato (1980) and the second is by
definition of Cz. This inequality holds uniformly for z € I'. Substituting (52) into (51) yields

¢ — P

O(||(TIxgM — M)¢||)
px O(|[Mke¢ — )
= O(dk)

where the final line is by Assumption 4.2(b). Note that Px = ¢x ® ¢}. Again by the proof of
Proposition 4.2 of Gobet et al. (2004),

16 — o |* < 2[|¢ — (dk ® dx)9|* < 2||¢p — Px | (53)

and so ||¢ — ¢k || = O(dk ), proving (d).

The proof of part (d) is similar to the proof of Corollary 4.3 of Gobet et al. (2004). By the triangle
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inequalities, we have

lpx —p| = |[[TMxMéx| — [Mop]|
< |[TIgM¢g — Mo||
< HgMog — MgMo|| + [|TIxMe¢ — Mo||

IN

MxMllll¢r — ol + plllkd — ¢

which is O(0x) because |[IIxM]|||[¢x — ¢|| = O(dk) by part (e) (|[IIxM| = O(1) because M is
bounded and Il is a (weak) contraction) and ||IIx¢ — ¢|| = O(dx) by Assumption 4.2(b).

For part (f), note that the spectral projection of (IIxM)* = M*IIx corresponding to the eigenvalue
pK is given by P = (¢}, @ ¢ ). Also note that ||[R(M*, z)|| = [[R(M, z)|| holds for all z € I' (where
z denotes the conjugate of z) because R(M*, z) = R(M, z)* (Kato, 1980, Theorem 6.22, p. 184)
and an operator and its adjoint have the same norm. Similarly, |R((IIxM)*, 2)|| = ||R(IIxM, 2)||
holds for all z € I whenever K > K. Thus, by identical arguments to the proof of part (e), we have

167 — Pro®|l < O(1) x [[((TgM)" — M")o"|
< Mg @™ — @]
= O(0k) (54)

where the final line is by Assumption 4.2(c) and boundedness of M. Now observe that

2

(G O o
K | <
HII¢*|| ||¢K|| < Huwn (s 1o/
b
<
< HWH P9kl \\¢*|r>

= W x ||¢* — Pjo*|?

which is O((6%)?) by (54).
Finally, for part (h) we have

*

H R S "\ Ok
okl le*l

<
< 2|~ u¢;u’u¢*u
T

<
B H forl ~ A T
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¢l

for any f € L?. Substituting f = WW

and taking the square root of both sides,
¢+
< V2 H - K
‘ Hqﬁ*H

(-
[Cn I (o

V2 (W ﬂﬁ\[\{w’ H o H<Z>KH H)

where the final line uses the fact that ¢ = Ilxe} and ||llk| = 1. By Assumption 4.2(c) and
part(f), we obtain

H | ||<Z>*H

SN
6°]

il

IN

*

H ol Tl

\ < VHO() + 0(5%)

as required. =

Proof of Lemma C.2. As in the proof of Lemma C.1, let I' denote a positively oriented circle
in C centered at p with radius € which separates p from o(M) \ {p}. Since the nonzero eigenvalues
of ITxgM and IIxM]|p, are the same, it follows from the proof of Lemma C.1 that I' separates pg
from o(IIxM|g, )\ {px} for all K > K.

Claim 1: |R(IIgM|p,, 2)|| < |R(IIxM, 2)|| for all z for which z € C\ (c(IIxgM) U o (IIxM]|5,.)).

Proof of Claim 1: Fix such a z. Then for any ¢ € Bg we have R(IIxM|p,, 2)k = (x where
(k = Ck(YK) € By is such that ¥ = (IIxkM — 2I)(k (k). Similarly, for any ¢ € L? we
have R(IIxM, 2)yp = ¢ where ¢ = ((3)) € L? is such that v = (IIgM — 2I)((z)). Therefore,
for any ¢ i € Bx we must have (x (Vi) = ((¢VK), i.e., RUIxM|B,, 2)Yx = R(IIgM, z)1k for all
Y € Bg. Therefore,

R(IxM|p, 2)|| = sup IR(IxM|p, 2)¢K ||
Yr€BK: YK (=1
= sup I R(IL ML, 2) k||
Y EBK: YK ||=1
< s [ROGM 29| = [R(TKM,2)|
YeL2:||y|=1

which proves the claim.

Note G~'M is isomorphic to the restriction of IIxM to By, denoted IIxM|p,, under the inner
product (u,v) — u'Gv on RE. Taking K > K, it follows from Claim 1 and (52) in the proof of
Lemma C.1, that

sulg IR(IIxM, 2)|| = O(1) .
zE
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Therefore, the inequality
|G1M — G Mg sup [R(icM, 2)] < 1 (55)
holds wpal by Assumption 4.3(a). By Claim 1, the inequality
IG~1M — G Mg sup [R(ITicMls,c, 2) | < 1

also hold whenever (55) holds. It follows by Theorem IV.3.18 on p. 214 of Kato (1980) that whenever
(55) holds: (i) G~ !'M has precisely one simple eigenvalue p inside T’; (ii) [ c (C\ U(G_lﬁ)); and
(iii) a(é_lﬁ) \ {p} lies on the exterior of I". Again, p must be real whenever (55) holds because

complex eigenvalues come in conjugate pairs. This proves (a), (b) and (c).

For the remainder of the proof we work on the set on which (55) holds. Let Py denote the spectral
projection of G 'M corresponding to the eigenvalue p. Note that Py is given by Pru = c(u'GeY)
for u € R¥. Because R¥ endowed with (u,v) + u/Gu is isomorphic to By under the L? inner

product, we have, by similar arguments to the proof of Lemma C.1(d),
~ -1 R<a71ﬁ72> N—1xnx -1
¢k — Preg < | — | ——————=dz | (GT M -G "M)eg
2 Jr  px — %

and so

lex = Prexlla < (sup.er [RIGT'M, 2)[| @) [(GT'M = G™'M)ex g . (56)

inszF |Z - PK|

Note that inf,cp |z — pg| — € because T' is centered at p and |p — px| = o(1) by Lemma C.1.
Further, when (55) holds, for each z € I' we have

IR@E M, )g < IRG M2
1—[|G-1M — G~M||g sup.cr [R(GIM, 2) ||
_ IRMxM]p,, 2)ll
1 - [|G-'M — G~'M||g sup.p [R(IxM]p,, 2)]|
IR(I1xM, 2)|

Ity S = 0p(1) (57
1= [|GTIM = G™'Ml|@ sup.r [R(IxM, 2)]|

by Assumption 4.3(a) and (52). Therefore, ||cx — Prckllg = Op(1n, k) by (56), (57), and Assump-
tion 4.3(b). Similar to (53) we have

16 = xcl* = lle = exlIG < llew =@ ex)lG < llex — Prex e = Op(nn i) (58)

which proves (e).
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For part (d), we use the a similar to the proof of Lemma C.1(d) to obtain

p—pxl = [IG'Méc - |G 'Mck|q
< |G 'Me— G 'Mek|
< |G'M@E-cx)lle + (G'M - G 'M)ek e
< |G 'Mllalle - cxlla + Op(im.x) (59)

where the final line is by Assumption 4.3(b). Moreover, Assumption 4.3(a) implies that || é_lﬁHG =
Op(1), and so we obtain |p — pr| = Op(nn, k) by substituting (58) into (59).

Finally, for part (f), by identical arguments to the proof of (d) we have
ek = Piexlla < 0p(1) x [(GT'M' = G™'M)ek||a (60)

from which it follows that

2 + " + 12
< 9|| & —< O 9k > ¢
Hd>*H H¢KH o5l Nl okl 137
O
< 2 — * —
< 2| p - I i e
ct ~ ct 2
el " \leklle/a

= Op(1) x [(GT'M' = G™'M)eie/lIck ell&
by (60). The result follows by Assumption 4.3(c). m

We first present a general result for verifying Assumption 4.3. The estimators p, gg and 5* are
invariant under an invertible linear transformation of the basis functions bk, ...,bx k. Let MP?,
(A}", and M° by obtained by pre- and post-multiplying M, G and M by G~1/2 (where G~ 1/2

denotes the inverse of the positive definite square root of G). Under this orthogonalization:

|GM -G 'Mlle = [(G)M - M|
I(GTM =G 'M)exlla = [[(G) "M — M)u| (61)
I(G'M = G™'M)eie/lciclalle = II((G*)™' M — M)wi /||vicl|
where vy = G'/2¢ck, vl = GY/2¢%;, and || - || denotes the Euclidean norm on R¥ when applied to
vectors and the spectral norm (largest singular value) when applied to matrices. Note that vk ]| = 1
under the normalization ||¢x|| = 1.

The following general result shows that the convergence rates of the terms in Assumption 4.3 may

be bounded by the individual convergence rates of G° and MP°. In what follows, let I = I denote
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the K x K identity matrix and let a V b = max{a, b}.
Lemma D.2 Let |G® — I|| = 0,(1), let | M° — M°|| = 0,(1) and |M°|| = O(1). Then:
(a) |[G'M ~ G 'Mllg = 05(1).
(b) If, in addition, |\(€;O — vkl = Op(n, k1) and H(MO — M) vkl = Op(n,k,2) then:
[(GM = G 'M)exla = Op(nn, i1 V 1 ic2)
and if [[(G* = Dvic/|viclll = Op(n}s sc.1) and (M = M )i /|[vic ||| = Op(115  5) thens
IG™IM — G'M)cic/||cicllalla = Op(m) a1 V i kc2) -

The condition [|[M?°|| = O(1) is trivially satisfied whenever M is a bounded operator on L?.

Proof of Lemma D.2. Follows directly from (61) and Lemma D.3. m
Lemma D.3 Let |G°—1I|| = op(1). Then the following inequalities hold with probability approach-
mng one:

(a) [[(G*)~'M® = M| < M — M| + 2] G — I x (|IM?]| + [|M” — M]))

(8) 1(G*) "M = M?)uic | < 2 (G — Dvic | + | (M? = M®)ve]| x (1 +2( G — 1)

(¢) I((G) "M = M)uiel < 20 [[(G2 = Tvjc | + | (M — M yojel| x (1+2[G” —T|]).
Proof of Lemma D.3. The condition ||G® — I|| = op(1) implies that the smallest and largest

eigenvalues of G° are bounded between % and 2 wpal. Whenever % < )\min((A}o) < /\max((A}") <2,

we have
(GO)'M? - M° = (I—(G%) (G~ I))M? - M°
= M°-M°—(G°) G - )M - (G°) (G — I)(M" — M) (62)

Part (a) follows by the triangle inequality, noting that H((A}O)_IH < 2 whenever Amin(ao) >
Post-multiplying (62) by vk and using the identity M°vx = prvg yields:

N[ =

~

((G°)"'M? — M%) vg = (M — M%)k — pr(G?) G — Nvg — (G°) "1 (G — I)(M° — M)y

from which (b) follows by the triangle inequality. Part (c) follows similarly by replacing MP° and
M? in (62) by their transposes and using the identity M v}, = pgvi,. ®
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Lemma D.4 Let {X;} be strictly stationary and exponentially beta-mizing and let Ex A (logn)/y/n =
O(1). Then:

(a) |G® ~1|| = Op(&xcAxc(log ) /)

b) [(G° — Dvg| = Op(Ex Ak (logn)/v/n) for each deterministic sequence of vectors vg € RE

with vk || = 1.

Proof of Lemma D.4. Part (a) is just Lemma 2.2 of Chen and Christensen (2014); part (b)

follows directly by definition of the spectral norm. m

Lemma D.5 Let {X;} be strictly stationary and exponentially beta-mizing, let E[|m(Xo, X1)|"] <
oo for some 2 < r < oo, and let Eg A (logn)/y/n = O(1). Then:
(a) [IM? = M?|| = Op((¢x k) /" (logn) /)

(b) |(Mo=M°)vg || = Op((ExAi)+2/" (log n) /v/n) and || (M =M?)ug || = Op((ExcAi) /" (log )/ /)

for each determmzstzc sequence of vectors vig € RE with ||| = 1.

Proof of Lemma D.5. For part (a) we use a truncation argument in conjunction with an
exponential inequality for weakly dependent random matrices due to Chen and Christensen (2014).

Let {T,, : n > 1} be a sequence of positive constants to be defined subsequently, and write

n—1 n—1
= § El,t,n"'g E2,t,n
t=0 t=0

where

Zren = 0B M X6 (Xea) X5 (x)m 6 X055 (e T
= B (X (X, Xt )b (X)X 0y (0 X )55 (X <3

Saaan =V (Xm(Xe Xert )V (X)X (om0 X B8 (11573}
—n B[R (X)m(Xy, Xe)bE (Xt+1),X{”EK(Xt)m(Xt7Xt+1)gK(Xt+1)/||>Tn}]

and xa denotes the indicator function of the event A. Note that E[Z;,] = 0 and ||Z1 ¢, < 2n~1T,,

by construction. Further, for any 0 < t¢,s < n — 1 we have:

E[‘—‘l )t nHll )8 n] < n_zg%()‘%(E[gK(Xt)m(Xb Xt+1)m(X87 XS+1)EK(XS)/]
E[‘:‘l,t,nEl,s,n] < n_QS%()‘%(E[bK (Xt+1)m(Xt7 Xt+1)m(X87 XS+1)bK (XS+1)/]
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and so, by the variational characterization of the spectral norm and the generalized Hélder inequal-

ity, we obtain:

||E[‘—‘1tn lsn]H < Sup ,]E[‘—‘ltn‘—‘lsn]v
uWERK:|ufl,[lv]=1
< nTGAREm(Xe, Xepn) [TV Em(Xs, Xon)[T]VT
x sup E[|(w/5" (X)) 1]V IE[ (D" (X,))|) 4
uvERK:|ufl,[lv]=1
< nTEGAKE[m(Xo, XD sup - E[|(u'b"(Xo0))|1]*/
uERK |u||=1
< 0P GAKEIm(Xo, X0)| T o (lull  ExcAg)* 2B (uD (Xo))?*/
ueRE :|ju||=1
= O(n *(&xAk) )
because 1 = = —|— 7, with the usual modification if » = 2 or » = oo. This bound holds uniformly

for 0 <'t,s < n — 1, and also holds for [[E[Z] ;= ; ][l It follows by Corollary 4.2 of Chen and
Christensen (2014) that

Zuu,n = Op((€xA) " *?/" (log n) /v/n)

provided n~'T}, logn = O((ﬁK)\K)”z/’"/\/ﬁ).

Now consider the remaining term. When r = oo we can set Za;, = 0 for all 0 < ¢ < n —1 and
all n by taking T, = C(éx A )? for sufficiently large C. Now consider the case 2 < r < co. By the

triangle and Jensen inequalities,

n—1
- -1 7K 7K
E[ Z:u’n] = ZE 197 (Xeym(Xe, Xer ) (Xeta) X e oy X 5 (X 15733
t=0
n—1
2 K 7K r
< 2 Bl (X m(X X )b (Kt e (x5 G52
" t=0
2(Exc A
< 2R o x0, X1)1.

Markov’s inequality then yields

— (é-KAK 2r/Tr 1

§ '—*2tn

We choose T;, so that
(Ex Ak )" _ (ExAk)' /" (log n)
75t NG

so that | 317 Za vl = Op((ExAk) %7 (logn)/v/n). The condition n~ 1T}, logn = O((Ex A ) +2/" //n)
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holds for this choice of T;, provided {x Ak (logn)//n = o(1).
Part (b) follows from part (a) because ||Av|| < ||All||v||. =

Proof of Lemma C.3. Follows from Lemmas D.3, D.4, and D.5. m

Lemma D.6 Let {X;} be strictly stationary and exponentially rho-mizing. Then:

(a) |G® = I|| = Op(éxAxVE //n)
(b) [(G° — Dog|| = Op(Ex Ak //n) for each deterministic sequence of vectors v € RE with

loxc|| = 1.

Proof of Lemma D.6. Parts (a) and (b) may be proved by a slight generalization of the proof
of Lemmas 4.8 and 4.12 of Gobet et al. (2004), using sup, |[bX (z)|| < Ak sup, [|b5(z)| = ExAk. =

Lemma D.7 Let {X,} be strictly stationary and exponentially rho-mizing and let E[|m(Xo, X1)|"] <

oo for some 2 < r < oo. Then:

(a) M2~ M°|| = Op((ExAk) VK [y/n)
(b) [I(M° — M®)vg || = Op((ExAK) /" /y/n) and [|(M® — M )u|| = Op((Ex k) T2/7 /y/n) for

each deterministic sequence of vectors v € RE with |lvk| = 1.

Proof of Lemma D.7. We first prove part (b) using similar arguments to Lemmas 4.8 and 4.9 of

Gobet et al. (2004). By the covariance inequality for exponentially rho-mixing processes, we obtain:

E[|(M® — M°)vk %]
n—1

K 2
= % Y E (ZEKl(Xt)m(Xt, Xer1) (08 (Xe1) vre) — Elbra(Xe)m(Xs, Xt+1)(5K(Xt+1)’vK)]>
=1

t=0

K
C 5 ~
< = DTE [bralXe)*m(Xe, Xeet) (55 (Xer1) vic)?]
=1
c Ak )? 7 —2)1(r—2)/r
< SO g o, ) PRI (X e/ =22
C A 2+4/r
< CERARTT plyn (x, x0) 2
where the constant C' depends only upon the rho-mixing coefficients, br1 (),... ,ZKK(x) denote
the elements of b (), and the final line is because ||vg|| = 1 and E[(b5 (Xo)'vi)?] = |vk|? = 1.

Chebyshev’s inequality and (63) imply H(K\/IO — Mkl = Op((Ex k)27 /\/n). An identical
argument proves the result for ||(ﬁ°’ — M)k ||. This completes the proof of (b). For part (a), let
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u1,...,ur be an orthonormal basis for RX (with respect to the Euclidean inner product). Using

the fact that the Frobenius norm || - || dominates the L? norm, we have
E[M° - M| < E[IM° — MC|]
K —_
= D E[[(M* = M)u ]
k=1

K (&g )2 T4
n

< E(|m(Xo, X1)["T*/"

where the final line is by (63). Part (a) follows by Chebyshev’s inequality. m
Proof of Lemma C.4. Follows from Lemmas D.3, D.6, and D.7. =
Lemma D.8 Let {X;} be strictly stationary and exponentially beta-mizing, let E[|m(Xo, X1)|"] <
oo for some 2 < r < oo, let (% i O( (Xt, Xiy1) — (Xt,XtH))Z)l/2 = Op(vpn) where v, = o(1),
and let Eg Ak (logn)/y/n = o(1). Then:
(a) M2 = M?|| = Op((ExcAr) 2/"VE v/ + ExcAxcvn)
(b) [[(MO—MC)vic|| = Op((Ex A )2/ itk ) and || (M7 =M Yo || = Op((€x Ak )+ /y/n+

ExAKVn) for each deterministic sequence of vectors v € RE with ||vk| = 1.

Proof of Lemma D.8. For part (a), by Lemma D.5 and the triangle inequality we have

n—1
=, o 1 ~ —~ ~ 5 )\ 1+2/7’ IOgTL
IM? - M < I ;_0: V(X)) (X, Xe1) — m(Xe, Xey1)]05 (Xes1)'|| + O, <( K K)\/ﬁ .

To control the leading term,

ZbK X)Xy, Xeg1) — m(Xy, Xpg1)]05 (Xiq1)’

n—1

- Z V™ (X)X, Xip1) — (Xtht+1)](U§5K(Xt+1))‘

—_

n
t=

UlvvzéRK ||U1H fluz]|=1

n—1
1 ~
< fkdk sup = > R (X) (X, Xer) — mU(X, Xipa))]
v1ERE vy ||=1 T 15
1 n—1 1/2
< Ak X Op(vn) X sup (n Z(UibK(Xt))Q)

v1 ERK:|lvg ||=1

N 1/2
= ErAr X Op(vy) X sup (vﬂGovl) = Ex A X Op(vn) x Op(1)

v ERE vy ]|=1

where the first inequality is by Holder’s inequality, the second is by the Cauchy-Schwarz inequality,
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and the final line is because ||(A}O — I|| = 0p(1) under the condition {x Ak (logn)/\/n = o(1) (by
Lemma D.4). Part (b) follows directly. m

Proof of Lemma C.5. Follows from Lemmas D.3, D.4, and D.8. =

Lemma D.9 Let {X;} be strictly stationary and exponentially rho-mizing, let E[jm(Xo, X1)|"] <
oo for some 2 <r < oo, let (% ?gol(ﬁ%(Xt,XtH) —m( Xy, Xe41))2)V? = Op(vyn) where v, = o(1),
and let Eg N VK [\/n = o(1). Then:

(a) [M° — M°|| = Op((Ex i) 2/ "VE /\/i+ Ex Aicvn)

(b) (MO=M)oic| = Op((€xcAic) 2/ [ /tErcAacrn) and | (MM yugc | = Op((&1chic) /" v/t
Ex Ak vn) for each deterministic sequence of vectors v € RE with |lvg| = 1.

Proof of Lemma D.9. Follows by similar arguments to the proof of Lemma D.8. m
Proof of Lemma C.6. Follows from Lemmas D.3, D.6, and D.9. m

We present a simple lemma which is used in the proof of Lemma C.7.

Lemma D.10 Let Assumptions 4.1, 4.2 and 4.3 hold and let |G™'M — é_lﬁHG = Op(Mn.K)-
Then:
p—pr = cgG(GT'M - G 'M)cx + Op (M, K T k¢ ) -

Proof of Lemma D.10. By the proof of Lemma C.2, we know that G~'M has a unique simple
eigenvalue p in the interval [p— €, p+ €] whenever (55) holds, which it does wpal under Assumption

4.3(a). For the remainder of the proof we will work on the set on which (55) holds.

Recall that the spectral projection of G~!M associated with the eigenvalue p is given by Py
ﬁKu = ¢(u/Ge*) for u € RX. Similarly, the spectral projection of G™'M associated with the
eigenvalue pr is given by Piu = cx(u/Gcl) for u € RE. Also recall that cg, ¢k, ¢ and ¢* are
normalized such that ¢j/Gcx = 1 and ¢/Ge = 1.

Working on the set on which (55) holds, we have

p—px = Te(PkG™ ™M — PEG~'M)
= Te(PH(G'M — G 'M) + (Px — P;)G'M)
= G(GT'M — G ™M)ek + Tr((Px — PE)G™'M)

by linearity of trace. It remains to show that Tr((Px — P;)é—lﬁ) = Op(Mn,K7n, k). Using the
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inner product (u,v) = u'Gu,

By the Cauchy-Schwarz inequality (u,v) < ||ul|c||v||c, we have
T((Pic — PEGTM)| < eicllallex — Prexclla (17— ol +1GTM = G Mg ) .

Finally, |p— px| = Op(1n, k) by Lemma C.2(d), |cx — Prexllg = Op(Mn, i) by the proof of Lemma
C.2(e), |[G™IM — é_lﬁHG = Op(7n,K) by assumption. Finally, let I" be as in the proof of Lemmas
C.1 and C.2. Using the integral representation for PE (Kato, 1980, expression (6.19) on p. 178),

we have

1
el = 1741 = | g [ ROTKM5y.2)0s
T Jr

< e x sup |[R(IxgM|g,, 2)|
z€l

which is O(1) by the proof of Lemma C.2. m

Proof of Lemma C.7. Expression (61) and Lemma D.3 together imply that HCA}_IM—G_IMHG =
Op(Tn, k1 V Mn,Kk,2). Lemma D.10 then provides that

p—pK = C%G(é_lﬁ - G_IM)CK + Op(nn,K X (ﬁn,K,l v ﬁn,K,2)) . (64)

By rotational invariance, we have

AG(GT™M — G M)k = LGV (GOIM — M) G2 . (65)
As in the proof of Lemma D.3, the condition ||(A}° — I|| = 0p(1) implies that, wpal, the minimum

and maximum eigenvalues of G° are between % and 2. We work on this set for the remainder of

the proof. Repeated substitution of G~ = I — (A}O_l((A}O — I) yields

GoIMe - M° — [ — aofl(ao _ I)]Mo ~MP°
— MP°— éofl(éo _ [)1\’/\[0 _ M
= M°—[I-GYG° - D)(G®— )M’ — M?
= M°—(G°— )M’ + G (G® — I)*M° — M°
= M° - G°M° + (G° — I)(M° — M°) + G*1(G® — I)*M°
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where
J(G2 = DM = M?) + GG — 1)*M?)| < |G — 1] (M7 = M?|| + 2 G — 1] M) .
Substituting into (65) yields

HGGM =G 'M)ex = cf (M~ GG M)k + Op(iln 1 X (Tin, i1 V in,ic.2))
= M — prG)ex + Op(iinrcn % (a1 V i, i,2))

and the result follows by substituting into (64). m

Proof of Theorem C.1. We first prove part (a). By addition and subtraction of terms,

1
* f2 2. 2 2
( tf my t+1¢t+1 ) mt,t+1¢t+1) (66)

n

SEE

t

:Ié
L

G2 mi 10t — El¢*(Xo)*m(Xo, X1)?¢(X1)?) (67)

_I_

S|~
3 o+
LIl

4
S|
M

(p o720l — o ¢?) (68)

il
L

P10} — p°Eld"(X0)*¢(Xo0)?] (69)

_l_

S
S o
LI

:Eﬂw

(ﬁ¢:f2mt,t+l ¢,{¢{+1 — pEmy 11 ¢t¢t+1) (70)

3
|l
— O

PO My 1011 + 2pE[¢* (Xo)?m(Xo, X1)d(Xo)p(X1)] (71)

\
SN
~
Il
o

Terms (67), (69) and (71) are all 0,5.(1) by the ergodic theorem (the expectations exist by As-
sumption C.1(i)). Consider term (66), expanded as

—
|
—

1 ~
12 % f2 % 2
- Z <Z>t mt 41 ¢t+1 - ¢?+1] ﬁ Z[ tf - tz]m?,t—i—l[(bl];-l - ¢§+1] +

t=0 t

n
6 f2 212 2
[¢7"" — o1 ]mt,t+1¢t+1'

Sl
I
o

Let || - || denote the sup norm, and observe that || f|lcc < ExAx||f|| uniformly for all f € Bg. By
the relation (a? — b?) = (a + b)(a — b), we have

N N 1l .
(66)] < ExAx(lof —oll Vo™ - WH){E Z¢r2m?,t+1‘¢{+l + dry1l
=0

1 n—1 ~ . R 1 n—1 ~ .
T Z 6 + o7 \mitﬂ‘(ﬁ{ﬂ + ry1| + n Z 677 + ¢ ’m?,t—i-l(b?—i-l} .
t=0 t=0
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Also note that ]qAS{ + ¢t < 204 + H(Ef — @)oo < 20 +€K)\K||$f — ¢||; a similar bound applies to o+l

It follows by substituting into the above display and applying Assumption C.1(a)(b) that the term

in braces is Op(1), and so:

66)] < &A1 — &l V19" = ¢7) x Op(1) = 0p(1)

by Assumption C.1(b). Similar arguments may be applied to show that terms (68) and (70) are
both o,(1). Therefore, XA/p —p V, and so \/ﬁf/,;lﬂ(ﬁ— p) —a N(0,1) by Theorem 4.2(a) and the

continuous mapping theorem. Part (b) now follows immediately from part (a).

For part (c), we first write

n—1

M

<t ki 1> ¢L(Xt7Xt+1) — (X, Xi41))
=0

where A; f S 01 h; ( Do (X, Xey1). Let hji = h;j (%) to simplify notation. Writing out

term-by-term, for each j =1,...,J we have:

n—1
Aj—n; = <\/15 > hj,t) (Imy, — E[log m(Xo, X1)]) (72)
f Zhjt (616 — &1 0] (73)
n—1
+ﬁ1\/15 ; hya(dy! ol — &F dra)mess (74)
n—1
V(= pT x = Z hjtdrme 141041 - (75)

Note that n=' 320" hj; = O(n~!) (because fol hj(u)du = 0 and h; is continuously differentiable).
Term (72) is o,(1) because and Im,, — Ellogm(Xo, X1)] = 04.5.(1) by the ergodic theorem and

because n~ 2 Y74 by = O(n~'/2). Term (73) may be rewritten as

n—1

th],t{m ;'3 —Elgion — 67 8l1} + Eloien — 67 ] thjt

where the first term is o, (1) by Assumption C.1(c) and the second term is o, (1) since % Z?:_ol hjt=
O(n~Y/2) and [E[¢}¢r — ¢;/ /1| < ll6*[lll6 — &7 || + |67 [[[|¢* — ¢*/|| = 0,(1) by Assumption C.1(b).
An identical argument shows (74) is 0,(1). For term (75), y/n(p~! — p~1) = O,(1) by Theorem 4.2
and the delta method. It may be deduced from Assumption C.1(d) that % ?;01 hjtdimy 1041 =
0p(1), which implies that (75) is 0,(1).

38



Thus, by the proof of Theorem 4.2(c) and Assumption C.1(e), we have

(VL= L), Ay, Ay = (V2 n (X, Xiga), A, Ag) 4 0p(1)
—a N(0,Vp x Ijq1)

and the result follows by definition of the x% and t; distributions. m

E Additional Monte Carlo results

Here we present additional MC results for the design in the body of the text. Tables 4 and 5 present
the results for cubic B-spline sieves for b%, p1 and 2. The MC mean and MC confidence bands
together with the true functions for ¢ and ¢* under both preference specifications are plotted in
Figures 5 (Hermite polynomials) and 6 (B-splines; note that the vertical scale is different for each
subplot). Figures 5 and 6 show that ¢ and ¢* may be estimated to a high degree of accuracy in
small samples under both preference specifications. Comparing the results in Tables 4 and 5 with
those in the main text, we see that the overall behavior of the estimates with Hermite polynomials

and B-splines is very similar.

Tables 6 and 7 present further MC results for the same design but with £ = 0.30 and ¢ = 0.005,
which are roughly the parameters obtained by fitting a Gaussian AR(1) to quarterly real per capita
consumption growth. Comparing the results in Tables 6 against the results presented in Tables 1
and 4, we see that the bias and RMSE for gg, gg* and v are roughly one third of that obtained under
the parameterization k = 0.60 and ¢ = 0.01. Table 7 shows that the bias for p, ¥ and L order or
smaller 10~%. Surprisingly, the RMSE of p, § and L with & = 0.30 and o = 0.005 obtained using
a Hermite polynomial sieve when n = 400 are larger than under the more volatile and persistent
specification. Table 7 also shows that the Bias and RMSE of p, y and L for B-splines with n = 400
and for both bases with n > 400 are of a smaller order of magnitude than the Bias and RMSE with
k = 0.30 and o = 0.005 presented in Tables 2 and 5.
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CRRA Epstein-Zin
n ¢ o ¢ ¢ v
Bias
400 | 0.0382 0.0486 0.0361 0.0869 0.1145
800 | 0.0182 0.0240 0.0179 0.0399 0.0465
1600 | 0.0051 0.0067 0.0067 0.0128 0.0265
3200 | 0.0010 0.0013 0.0025 0.0049 0.0070

RMSE

400 | 0.0884 0.1081 0.0653 0.1730 0.2853
800 | 0.0538 0.0664 0.0358 0.1177 0.1909
1600 | 0.0325 0.0395 0.0165 0.0747 0.1364
3200 | 0.0183 0.0219 0.0069 0.0444 0.0930

Table 4: Bias and RMSE of QAS and (;AS* under both preference specifications, as well
as bias and RMSE of ¥ under Epstein-Zin preferences. Results are obtained from
1000 replications of the MC design with £ = 0.60 and ¢ = 0.01 for different sample
sizes using cubic B-spline bases for b%, p&1 and ¢%2? with K = 8, K; = 6 and
Ky =12.

~

CRRA Epstein-Zin
n P y L p y L
Bias

400 | 0.0004 -0.0002 0.0006 0.0030 -0.0030 0.0005
800 | 0.0006 -0.0005 0.0003 0.0017 -0.0017 0.0005
1600 | 0.0003 -0.0003 0.0004 0.0010 -0.0010 0.0005
3200 | 0.0003 -0.0003 0.0001 0.0004 -0.0004 0.0001

RMSE

400 | 0.0180 0.0177 0.0119 0.0086 0.0082 0.0099
800 | 0.0102 0.0104 0.0058 0.0046 0.0045 0.0065
1600 | 0.0081 0.0082 0.0052 0.0041 0.0039 0.0054
3200 | 0.0050 0.0051 0.0025 0.0009 0.0010 0.0025

Table 5: Bias and RMSE of p, § and L under both preference specifications. Results
are obtained from 1000 replications of the MC design with x = 0.60, o = 0.01 for
different sample sizes using cubic B-spline bases for b*, p&1 and %2 with K = 8,
K1 =6 and K2 =12.
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Figure 5: MC results for QAS and qAS* under both preference specifications for the
sample size n = 400. Dashed lines are pointwise 95% MC confidence intervals, solid
red line is the true ¢ or ¢*, and solid blue line is the pointwise mean across MC
replications. Results are obtained from 1000 replications of the MC design with
k = 0.60 and o = 0.01 using Hermite polynomial bases for b, p%1 and ¢*2 with
K =8, K1 =6 and Ky = 12. Note the vertical scales are different for each subplot.
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Figure 6: MC plots for g/i; and <$* under both preference specifications for the
sample size n = 400. Dashed lines are 95% MC confidence bands, solid red line is
the true ¢ or ¢*, and solid blue line is the pointwise mean across MC replications.
Results are obtained from 1000 replications of the MC design with £ = 0.60 and
o = 0.01 using cubic B-spline bases for %, p&1 and ¢ with K =8, K; = 6 and
K5 = 12. Note the vertical scales are different for each subplot.
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CRRA Epstein-Zin

Sieve n gg (E* qAS ngS* v
Bias

HPol 400 | 0.0029 0.0139 0.0040 0.0139 0.0106
HPol 800 | 0.0002 0.0006 0.0009 0.0012 0.0013
HPol 1600 | 0.0001 0.0002 0.0005 0.0005 0.0027
HPol 3200 | 0.0001 0.0001 0.0002 0.0003 0.0017
Bspl 400 | 0.0286 0.0279 0.0286 0.0286 0.0360
Bspl 800 | 0.0126 0.0131 0.0126 0.0135 0.0151
Bspl 1600 | 0.0033 0.0034 0.0034 0.0034 0.0047
Bspl 3200 | 0.0004 0.0004 0.0004 0.0005 0.0018

RMSE

HPol 400 | 0.0153 0.0312 0.0112 0.0351 0.1046
HPol 800 | 0.0069 0.0096 0.0037 0.0126 0.0748
HPol 1600 | 0.0046 0.0056 0.0022 0.0080 0.0519
HPol 3200 | 0.0031 0.0037 0.0014 0.0053 0.0371
Bspl 400 | 0.0484 0.0533 0.0467 0.0562 0.1268
Bspl 800 | 0.0237 0.0255 0.0220 0.0277 0.0842
Bspl 1600 | 0.0094 0.0103 0.0074 0.0123 0.0545
Bspl 3200 | 0.0037 0.0044 0.0021 0.0059 0.0373

Table 6: Bias and RMSE of qAS and (;A5* under both preference specifications, as well
as bias and RMSE of ¥ under Epstein-Zin preferences. Results are obtained from
1000 replications of the MC design with k = 0.30 and ¢ = 0.005 for different sample
sizes and sieves for b, p&1 and %2 with K =8, K; = 6 and Ky = 12.

CRRA

Epstein-Zin
Sieve n D y L ﬁ m L

Bias

HPol 400 | 0.0013 -0.0008 0.0009 0.0014 -0.0009 0.0008
HPol 800 | 0.0000 -0.0000 0.0000 0.0000 -0.0000 0.0000
HPol 1600 | -0.0000 0.0000  0.0000 0.0000 -0.0000 0.0000
HPol 3200 | 0.0001 -0.0001 -0.0000 0.0000 -0.0000 -0.0000
Bspl 400 | 0.0000 0.0000 0.0001 0.0001 -0.0001 0.0001
Bspl 800 | 0.0000 -0.0000 -0.0000 0.0000 -0.0000 0.0000
Bspl 1600 | -0.0000  0.0000  0.0000 0.0000 -0.0000 0.0000
Bspl 3200 | 0.0001 -0.0001 -0.0000 0.0000 -0.0000 -0.0000

RMSE

HPol 400 | 0.0463 0.0297 0.0296 0.0419 0.0269  0.0269
HPol 800 | 0.0024 0.0025 0.0003 0.0003 0.0003 0.0003
HPol 1600 | 0.0017  0.0018 0.0002 0.0002 0.0002  0.0002
HPol 3200 | 0.0012 0.0013 0.0001 0.0001 0.0001  0.0001
Bspl 400 | 0.0050 0.0051  0.0038 0.0033 0.0032  0.0032
Bspl 800 | 0.0024 0.0025 0.0003 0.0003 0.0003  0.0003
Bspl 1600 | 0.0017  0.0018 0.0002 0.0002 0.0002 0.0002
Bspl 3200 | 0.0012 0.0013 0.0001 0.0001 0.0001 0.0001

Table 7: Bias and RMSE of p, § and L under both preference specifications. Results
are obtained from 1000 replications of the MC design with k = 0.30, ¢ = 0.005 for
different sample sizes and sieves for b¥, p&1 and %2 with K = 8, K; = 6 and
Ky =12.
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