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Abstract

We introduce econometric methods to perform estimation and inference on the permanent and

transitory components of the stochastic discount factor (SDF) in dynamic Markov environments.

The approach is nonparametric in that it does not impose parametric restrictions on the law

of motion of the state process. We propose sieve estimators of the eigenvalue-eigenfunction

pair which are used to decompose the SDF into its permanent and transitory components, as

well as estimators of the long-run yield and the entropy of the permanent component of the

SDF, allowing for a wide variety of empirically relevant setups. Consistency and convergence

rates are established. The estimators of the eigenvalue, yield and entropy are shown to be

asymptotically normal and semiparametrically efficient when the SDF is observable. We also

introduce nonparametric estimators of the continuation value under Epstein-Zin preferences,

thereby extending the scope of our estimators to an important class of recursive preferences.

The estimators are simple to implement, perform favorably in simulations, and may be used

to numerically compute the eigenfunction and its eigenvalue in fully specified models when

analytical solutions are not available.
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1 Introduction

Dynamic asset pricing models link the prices assets with sources of risk, the payoff horizon, and the

preferences of economic agents. A large and growing literature in macroeconomics and asset pricing

has shown how to extract information about the long-run valuation implications of a model by

analyzing the permanent and transitory components of the stochastic discount factor (SDF).1 The

permanent-transitory decomposition of the SDF provides a powerful and robust means for investi-

gating the connection between macroeconomic fundamentals, asset returns, and agents’ preferences.

Despite this recent activity, econometric methods for performing estimation and inference on the

permanent and transitory components of the SDF have not yet been well developed.

We introduce econometric methods for performing estimation and inference on features of the

permanent and transitory components of the SDF in discrete-time Markov environments. The

estimators are nonparametric in that we do not impose no parametric restrictions on the law of

motion, or “dynamics”, of the Markov state process. This approach is in the spirit of generalized

method of moments (GMM) (Hansen, 1982). One very attractive feature of GMM is that it allows

important structural parameters of a model to be estimated without fully specifying the data

generating process. Similar to GMM, our estimators may be used to extract information about

the long-run pricing implications of a model without fully specifying the dynamics of the state

process. To date, researchers have typically imposed simple parametric models in order to obtain

analytical formulas for terms related to the permanent and transitory components. In contrast,

economic theory is vague as to how the dynamics of the state process should be modeled. This

nonparametric approach avoids potential distortion of the long-run implications which may arise

due to misspecification of simple parametric models for the dynamics. This approach also permits

researchers to use data to investigate the long-run valuation implications of different preferences

without having to specify the dynamics and SDF in a way that makes analytical solution feasible.

Hansen and Scheinkman (2009) show that the permanent and transitory components of the SDF

may be extracted by studying a positive eigenfunction and eigenvalue of a pricing operator. Their

long-run pricing approximation shows that the positive eigenfunction characterizes the state depen-

dence of the price of long-horizon assets and its eigenvalue encodes the yield on long-term bonds.

The eigenvalue is also related to the entropy of the permanent component of the SDF, which is a

measure of the persistence and dispersion of the SDF. Alvarez and Jermann (2005) derive bounds

for the entropy of the permanent component as a function of returns relative to long-term bonds

and estimate the bounds from historical returns data. Dual to their approach, we show how to

estimate the entropy of the permanent component of the SDF obtained under different, possibly

counterfactual, preference specifications using historical data on the state. Our estimators may be

used in conjunction with the Alvarez and Jermann (2005) bounds to establish whether different

1Prominent examples include Alvarez and Jermann (2005), Hansen and Scheinkman (2009), Hansen (2012), Bakshi
and Chabi-Yo (2012), and Backus, Chernov, and Zin (2014).
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preference specifications can generate a sufficiently large entropy of the permanent component of

the SDF to rationalize historical return premia.

The central focus of this paper is nonparametric sieve estimation of the positive eigenfunction,

its eigenvalue, the long-run yield, and the entropy of the permanent component. This approach

is inspired by earlier work of Chen, Hansen, and Scheinkman (2000) on nonparametric estimation

of diffusion processes. Sieve methods are useful in this context as they reduce an intractable,

infinite-dimensional eigenfunction problem to a low-dimensional matrix eigenvector problem which

is then easily estimated from time series data on the state.2 The estimators are particularly easy to

implement: there is no simulation, optimization, or numerical integration. The estimators may also

be used to numerically compute the long-run implications of fully specified asset pricing models for

which analytical solutions are unavailable.

The scope of this paper is confined to stationary, discrete-time environments so as to simplify the

econometric analysis. We present identification conditions for the positive eigenfunction in sta-

tionary discrete-time environments to complement those Hansen and Scheinkman (2009) provide

for possibly nonstationary, continuous-time environments. The identification conditions are weaker

than other nonparametric identification conditions for positive eigenfunctions which have been de-

rived recently using similar operator methods (see Chen, Chernozhukov, Lee, and Newey (2014) and

references therein). Following earlier work by Hansen and Scheinkman (1995) on Markov processes,

we study a “time-reversed” version of the pricing operator.3 Existence of a positive eigenfunction

of the time-reversed operator is one of the identification conditions. We also present a version of

the long-run pricing approximation of Hansen and Scheinkman (2009) which is formulated in terms

of the positive eigenfunctions of the forward- and reverse-time pricing operators.

We establish consistency and convergence rates of the estimators of the forward- and reverse-

time positive eigenfunctions, the eigenvalue, the long-run yield, and the entropy of the permanent

component of the SDF, allowing for a variety of modeling setups. When specialized to the case in

which the SDF is observable, the estimators of the eigenvalue, long-run yield, and entropy of the

permanent component are shown to be asymptotically normal and semiparametrically efficient.

Certain SDFs contain components that depend on forward-looking expectations and are therefore

not directly observable when we model the dynamics nonparametrically. For example, the SDF

obtained under Kreps and Porteus (1978), Epstein and Zin (1989), and Weil (1990) recursive

preference specifications depends on the continuation value function of future consumption which

is unobservable to the econometrician when the dynamics are modeled nonparametrically. To extend

the ambit of our estimators to models with recursive preferences, we also introduce nonparametric

2I am grateful to a referee for suggesting an alternative kernel-based approach in which (i) the Markov transition
density is estimated nonparametrically and plugged into the pricing operator, then (ii) the estimator is recast as a
n× n matrix eigenvector problem using similar reasoning as in Darolles, Fan, Florens, and Renault (2011) (where n
is the sample size). A comparison of the relative merits of the two approaches is beyond the scope of this paper.

3Note, however, that we do not require the state process to be time reversible.
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sieve estimators of the continuation value of future consumption under Epstein-Zin preferences. The

continuation-value estimators may be plugged in to the sieve eigenfunction/eigenvalue estimators

to nonparametrically estimate the positive eigenfunction, eigenvalue, long-run yield and entropy of

the permanent component under counterfactual preference parameters. We show, via simulations,

that these quantities may be estimated to a high degree of accuracy under Epstein-Zin preferences

despite the fact that a nonparametric estimate of the continuation value is first plugged in to the

eigenfunction/eigenvalue estimators. The continuation value estimators may also be used as an

alternative to discretization methods (e.g. Tauchen and Hussey (1991)) to numerically solve for the

continuation value and SDF in fully specified models when a solution is not available analytically.

The estimators are applied to extract the permanent and transitory components consistent with

historical data on consumption and corporate earnings under both constant relative risk aversion

(CRRA) preferences and Epstein-Zin preferences with unit elasticity of intertemporal substitution.

We find that the two preference specifications generate virtually indistinguishable permanent com-

ponents. Coherently with the well-documented shortcomings of the C-CAPM, neither preference

specification can explain the historically high return on equities relative to long-term bonds under

reasonable values of the risk aversion and time preference parameters. The Epstein-Zin specifica-

tion has some success at explaining the level of historical long-term yields, but cannot explain the

volatility of returns on long-term bonds.

The theoretical contributions of this paper have broader application to nonparametric identifica-

tion and estimation. First, other quantities of interest, such as a habit formation component in a

semiparametric C-CAPM (Chen et al., 2014) and marginal utility in nonparametric Euler equations

(Lewbel, Linton, and Srisuma, 2011; Escanciano and Hoderlein, 2012), may be written as positive

eigenfunctions of nonselfadjoint operators. Our estimators provide a computationally simple means

of estimating these other models in a representative agent setting. In contrast, implementation of

the kernel-based estimator of Lewbel et al. (2011) requires nonparametrically estimating condi-

tional densities, a numerical integration step, and then solving a high-dimensional eigenfunction

problem. The estimators and large-sample theory presented herein may be extended to study sieve

estimation of these other models in a heterogeneous agent setting using mirco-level data.

Second, the derivation of the large sample properties of the estimators is nonstandard as the

eigenfunction-eigenvalue pair are defined implicitly by an unknown, nonselfadjoint operator. The

literature on nonparametric eigenfunction estimation to date has focused almost exclusively on the

selfadjoint case (see Chen et al. (2000) and Gobet, Hoffmann, and Reiß (2004) for sieve estimation

and Darolles, Florens, and Renault (1998), Darolles, Florens, and Gourieroux (2004), and Carrasco,

Florens, and Renault (2007) for a kernel approach).4 A notable exception is the working paper Lew-

4Darolles et al. (1998), Darolles et al. (2004), and Carrasco et al. (2007) estimate the singular value decomposition
(SVD) of a possibly nonselfadjoint conditional expectation operator. The SVD is obtained as the eigendecomposition
of two composite operators formed as the product of the operator and its adjoint. The composite operators are
selfadjoint even when the conditional expectation operator is nonselfadjoint.
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bel et al. (2011) who establish asymptotic normality of kernel-based eigenfunction and eigenvalue

estimators for nonparametric Euler equations. Our derivation of the large-sample theory is rather

different from theirs because with sieves the dimension of the function space is expanding with the

sample size.

The paper is organized as follows. Section 2 presents the setting and briefly reviews SDF de-

composition. Section 3 presents identification and existence conditions and a long-run pricing ap-

proximation. Section 4 describes the estimators and derives their large-sample properties. Section

5 outlines nonparametric continuation value estimation under recursive preferences and presents

the simulations and empirical application. Section 6 concludes. A Supplementary Appendix con-

tains a discussion of the connection between our identification conditions and those in Hansen and

Scheinkman (2009), verification of the identification conditions for common parametric models,

further results on estimation, and all proofs.

2 SDF decomposition

This section reviews briefly the relationship between the positive eigenfunction, the long-term

implications of asset pricing models as exposited by Hansen and Scheinkman (2009), and related

work by Alvarez and Jermann (2005), Hansen (2012), and Backus et al. (2014).

Consider a discrete-time environment such that at each date t ∈ {0, 1, . . .} the random vector Xt of

state variables summarizes all relevant information for assigning values to future state-contingent

payoffs. We assume that the state process {Xt} on X ⊆ Rd is a strictly stationary and ergodic, time-

homogeneous, first-order Markov process defined on a complete probability space (Ω,F , {Ft},P),

where Ft = σ(Xt, Xt−1, . . .) is the σ-algebra generated by the history {. . . , Xt−1, Xt}. We follow

Alvarez and Jermann (2005) and Backus et al. (2014) and assume a stationary environment whereas

Hansen and Scheinkman (2009) allow for possibly non-stationary environments.

We further assume there exists a pricing kernel process {Mt} such that Mt is adapted to Ft for each

t, and for which Mt+n = MtMn(θt) where θt is the shift operator that moves the time subscript

forward by t units (see Hansen and Scheinkman (2009)).5 At each date t, the price assigned to a

claim to Zt+n, payable at the future date t+ n, is given by

E
[
Mt+n

Mt
Zt+n

∣∣∣∣Xt

]
. (1)

It is convenient to write
Mt+1

Mt
= m(Xt, Xt+1) (2)

for some time-homogeneous, non-negative function m : X ×X → R which will be referred to as the

5We refer to Mt as the pricing kernel and Mt+1/Mt as the SDF following Alvarez and Jermann (2005).
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SDF, and the random variable m(Xt, Xt+1) will be referred to as the date-t SDF.6

Hansen and Scheinkman (2009) show that, by restricting (1) to payoffs of the form Zt+n = ψ(Xt+n)

for ψ : X → R, we may define a collection {Mn : n ≥ 1} of linear operators of the form

Mnψ(x) = E
[
Mt+n

Mt
ψ(Xt+n)

∣∣∣∣Xt = x

]
on a space of payoff functions ψ. As a consequence of the multiplicative functional and Markov

structure, the factorization Mn = Mn holds for each n ≥ 1, where the pricing operator M is

Mψ(x) = E[m(Xt, Xt+1)ψ(Xt+1)|Xt = x]

using the notation (2). Thus Mnψ may be calculated by iteratively applying M to ψ for n times.

A function φ is an eigenfunction of {Mn : n ≥ 1} with eigenvalue ρ if

Mnφ = ρnφ (3)

for each n ≥ 1. If, in addition, the eigenfunction φ is positive, then φ is referred to as the principal

eigenfunction, its eigenvalue ρ as the principal eigenvalue, and the pair (ρ, φ) as the principal

eigenpair.7 As a consequence of the factorization Mn = Mn, the pair (ρ, φ) are the principal eigenpair

if and only if

Mφ = ρφ (4)

where φ is positive.

Alvarez and Jermann (2005) decompose the pricing kernel into its permanent and transitory com-

ponents MP
t and MT

t , respectively. Their decomposition is Mt = MP
t M

T
t where Et[MP

t+1] = MP
t

and where MT
t /M

T
t+1 = Rt+1,∞ is the gross return from t to t+ 1 on a risk-free bond with infinite

maturity. Hansen and Scheinkman (2009) show that, in Markov environments, the permanent and

transitory components of the pricing kernel are MP
t = ρ−tMtφ(Xt) and MT

t = ρtφ(Xt)
−1 and the

permanent and transitory components of the SDF are

MP
t+1

MP
t

= ρ−1Mt+1

Mt

φ(Xt+1)

φ(Xt)
(5)

MT
t+1

MT
t

= ρ
φ(Xt)

φ(Xt+1)
(6)

for each date t ∈ {0, 1, . . .}. The martingale property of the permanent component may be used to

6If the SDF depends on additional variables, then m(Xt, Xt+1) may be interpreted as the conditional expectation
of the SDF with respect to (Xt, Xt+1) (Hansen and Scheinkman, 2013).

7Under the identification conditions presented below, ρ will be the largest eigenvalue of M and φ will be the unique
positive eigenfunction of M (in an appropriately chosen parameter space).
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define a distorted conditional expectation Ẽ, where

Ẽ[ψ(Xt+n)|Xt = x] := E
[
MP
t+n

MP
t

ψ(Xt+n)

∣∣∣∣Xt = x

]
.

Hansen and Scheinkman (2009) provide a set of stochastic stability conditions for continuous-time

environments under which

Ẽ[ψ(Xt+n)|Xt = x]→
∫
X

ψ(u)

φ(u)
dς̂(u) (7)

for some probability measure ς̂.8 The measure ς̂ will, in general, be different from the unconditional

distribution of Xt. Further, Hansen and Scheinkman (2009) show that (7) implies

ρ−nMnψ(Xt)→
(∫
X

ψ(u)

φ(u)
dς̂(u)

)
φ(Xt) (8)

as n→∞. Equation (8) makes precise the sense in which ρ captures the yield on long-horizon assets

and φ captures state dependence of the prices of long-horizon assets. In particular, y := − log ρ

may be interpreted as the yield on a bond with infinite maturity. We derive a version of (8) for

stationary, discrete time environments under different conditions from Hansen and Scheinkman

(2009) (see Theorem 3.3). We show that ς̂ in stationary environments is characterized by φ and a

positive eigenfunction φ∗ of a time-reversed pricing operator.

Alvarez and Jermann (2005), Hansen (2012) and Backus et al. (2014) study the entropy of a SDF

and its permanent and transitory components. Recall that the entropy of a positive random variable

Z is defined as L(Z) = logE[Z] − E[logZ]. In stationary, discrete-time environments, the entropy

of the permanent component of the SDF takes the convenient form

L
(MP

t+1

MP
t

)
= log ρ− E

[
log
(Mt+1

Mt

)]
(9)

whenever E[log φ(X0)] is finite, which we assume hereafter.

Alvarez and Jermann (2005) derive the bound

L
(MP

t+1

MP
t

)
≥ E[logRt+1]− E[logRt+1,∞] (10)

where Rt+1 is the gross return from t to t+1 on a generic asset. The inequality (10) complements the

Hansen and Jagannathan (1991) bound in that it restricts the size of the permanent component of

the SDF as a function of observed asset prices. The entropy bound (10) has a short-term counterpart,

8The stochastic stability conditions in Hansen and Scheinkman (2009) are for continuous-time environments. See
Appendix A for a version of their conditions for discrete-time environments. Appendix A also shows the relation
between the conditions imposed in the present paper and the discrete-time version of Hansen and Scheinkman’s
(2009) stochastic stability conditions.
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namely

L
(Mt+1

Mt

)
≥ E[logRt+1]− E[logRt+1,f ] (11)

where Rt+1,f denotes the gross return from t to t + 1 on the risk-free asset. Alvarez and Jermann

(2005) also derive bounds on the size of the transitory component and conditional versions of (10).

Bakshi and Chabi-Yo (2012, 2014) refine the bounds of Alvarez and Jermann (2005) and derive

revealing bounds for the entropy of the square of the permanent component of the SDF.

The permanent component of the SDF is invariant under a certain transformations of the pricing

kernel. As argued by Bansal and Lehmann (1997), Hansen (2012) and Backus et al. (2014), models

may generate different short-term asset pricing implications but behave very similarly over long

horizons. Following Hansen (2012), we may construct alternative pricing kernel processes {M∗t }
with

M∗t = Mt
f∗(Xt)

f∗(X0)
(12)

for each t ∈ {0, 1, . . .} where f∗ is a positive function. For example,Mt could be the C-CAPM pricing

kernel and f∗ may capture internal or external habit persistence. Crucially, this modification of {Mt}
does not alter its long-run pricing implications: both {Mt } and {M∗t } have the same permanent

component (and therefore the same entropy of the permanent component of the SDF), the same

principal eigenvalue ρ, and the same long-run yield (see Hansen (2012) and Backus et al. (2014)).

By analyzing the permanent component of the SDF for a single model we can, therefore, make

inferences about a much broader class of models. In particular, the long-term pricing implications

of many models with habit persistence and models with a limiting type of recursive preferences are

identical to the long-term pricing implications the C-CAPM.

3 Identification, existence, and long-run pricing

3.1 Identification

Multiplicity of positive eigenfunctions is an issue without further restrictions on the parameter

space for φ (i.e. the space of functions to which φ is assumed to belong). Hansen and Scheinkman

(2009) do not restrict the parameter space ex ante. Instead, they apply Markov process theory to

derive a set of stochastic stability conditions for possibly non-stationary, continuous-time environ-

ments. Their stability conditions imply that the positive eigenfunction which is germane to their

long-run approximation is unique, even though there may exist multiple positive eigenfunctions. In

contrast, we follow Alvarez and Jermann (2005) and Backus et al. (2014) and confine our analysis

to stationary, discrete-time environments. Under stationarity there is a natural way to restrict the

parameter space for φ. Restricting the parameter space in this manner allows alternative identifica-

tion conditions to be derived using operator theory. Our identification result shows that there is at

most one positive eigenfunction in the parameter space. A long-run approximation result (Theorem

8



3.3) shows that this positive eigenfunction is indeed germane to the long-run approximation. The

link between our regularity conditions are summarized below and discussed in greater detail in

Appendix A.

Following previous work on stationary continuous-time Markov processes,9 a natural parameter

space in which to consider identification is the space Lp(X ,X , Q) with 1 ≤ p <∞ where X ⊆ Rd

is the support of the state process, X is the Borel σ-algebra on X , and Q is the stationary (i.e.

unconditional) distribution of the state process. Note that we use do not require that {Xt} be

embeddable by a continuous-time process. Let Lp denote the space Lp(X ,X , Q).

Assumption 3.1 M : Lp → Lp is a bounded linear operator of the form

Mψ(x) =

∫
X
KM(x, y)ψ(y) dQ(y)

for some measurable KM : X × X → R.

When the joint density f0,1(xt, xt+1) of (Xt, Xt+1) exists and the unconditional density f(xt) of Xt

exists and is positive, then

KM(x, y) =
f0,1(x, y)

f(x)f(y)
m(x, y) .

Boundedness of M may be verified using the Schur test.

Assumption 3.2 (a) KM(x, y) ≥ 0 a.e.-[Q⊗Q]; and

(b) for all S ∈X with 0 < Q(S) < 1 we have∫
X\S

(∫
S
KM(x, y) dQ(x)

)
dQ(y) > 0 .

Let q be such that p−1 + q−1 = 1 and let Lq denote the space Lq(X ,X , Q). Following earlier work

by Hansen and Scheinkman (1995) on continuous-time Markov processes, define the time-reversed

pricing operator M∗ : Lq → Lq as

M∗ψ(x) = E[m(X0, X1)ψ(X0)|X1 = x]

for ψ ∈ Lq.

9See Hansen and Scheinkman (1995), Florens, Renault, and Touzi (1998), and Chen, Hansen, and Scheinkman
(2009) who study continuous-time Markov processes. In contrast, we deal with general discrete-time Markov processes.
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Assumption 3.3 There exists φ ∈ Lp, φ∗ ∈ Lq and a constant ρ such that

Mφ = ρφ

M∗φ∗ = ρφ∗

with φ, φ∗ > 0 a.e.-[Q].

Assumption 3.1 is a mild condition which places some basic structure on M and ensures that M∗ is

well defined. Assumption 3.2(a) is included mainly for completeness, and is trivially satisfied when

f0,1(xt, xt+1) and f(xt) exist and are positive. Assumption 3.2(b) is a direct extension of the irre-

ducibility criterion in the Perron-Frobenius theorem for matrices. The stronger “strict positivity”

condition K(x, y) > 0 a.e.-[Q⊗Q] implies Assumption 3.2 but is stronger than needed for identifica-

tion and existence. Assumption 3.3 merely requires that both M and its time-reversed counterpart

M∗ have positive eigenfunctions corresponding to the same eigenvalue ρ. This condition is verified

directly for three parametric models in Appendix B, namely exponentially affine and exponentially

quadratic SDFs, and a model with recursive preferences with stochastic volatility.

Theorem 3.1 Let Assumptions 3.1, 3.2 and 3.3 hold. Then:

(a) if ζ ∈ Lp is a positive eigenfunction of M then ζ(x)
φ(x) is constant a.e.-[Q]

(b) if ζ∗ ∈ Lq is a positive eigenfunction of M∗ then ζ∗(x)
φ∗(x) is constant a.e.-[Q]

(c) ρ is the unique eigenvalue of M with a positive eigenfunction.

To summarize the connection between Assumptions 3.1–3.3 and Hansen and Scheinkman (2009),

Assumption 3.2 is analogous to their positivity and irreducibility conditions (their Assumptions

7.1 and 7.3). Assumption 3.3 and the maintained assumption of stationarity are sufficient for

existence of an invariant distribution for the distorted conditional expectations (their Assumption

7.2). Assumption 3.3 is altogether different from their Harris recurrence condition (their Assumption

7.4). Harris recurrence, together with their other assumptions, implies convergence of the distorted

conditional expectations which they use to achieve identification. We instead assume existence of

φ∗ which does not imply convergence of the distorted conditional expectations (cf. Theorem 3.3).

Appendix A provides a more detailed comparison of the two sets of identification conditions.

A similar result to part (a) of Theorem 3.1 is reported in a preliminary draft of Hansen and

Scheinkman (2009) from 2005.10 In their earlier draft, the parameter space is a Lp space defined

by an arbitrary measure and the environment is again formulated in continuous time. They impose

10See http://www.cirano.qc.ca/realisations/grandes_conferences/methodes_econometriques/hansen.pdf,
dated November 24, 2005.
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different positivity and irreducibility conditions on the (continuous-time) semigroup of pricing op-

erators and assume that the semigroup and dual semigroup both have positive eigenfunctions φ

and φ∗ corresponding to the same eigenvalue.11 Their identification result establishes uniqueness

of φ but does not establish uniqueness of φ∗.

Escanciano and Hoderlein (2012), Chen et al. (2014), and Christensen (2014) have used related

function-analytic methods to derive identification conditions of positive eigenfunctions of various

operators. Each of these papers impose various positivity or irreducibility conditions on the operator

and assume either that the operator is compact (Escanciano and Hoderlein, 2012; Chen et al.,

2014) or power compact (Christensen, 2014). Theorem 3.1 does not require compactness or power

compactness of M to nonparametrically identify φ and φ∗. Compactness or power compactness of M
is a stronger sufficient condition for Assumption 3.3 (see Theorem 3.2 below). Further, Assumption

3.3 is simple to verify for common parametric models (see Appendix B).

In certain cases M may not be represented as an integral operator with measurable kernel. This

includes when Xt is formed by stacking a rth-order Markov process into a first-order process and

certain in habit formation models when Xt includes r lags of consumption growth. Nevertheless,

Mn might be represented as an integral operator with measurable kernel for some n ≥ r. Theorem

3.1 can then be applied with Mn in place of M to achieve identification of φ and φ∗.12

3.2 Existence

We now use Perron-Frobenius theory to establish existence of positive eigenfunctions φ ∈ Lp and

φ∗ ∈ Lq of the forward and reverse-time pricing operators M and M∗. In contrast, Hansen and

Scheinkman (2009) use Markov process theory to provide a constructive proof for the existence

of φ without restricting the space ex ante. Appendix A discusses the connection between their

existence conditions and the existence conditions presented here.

Assumption 3.4 Mn is compact for some n ≥ 1.

Assumption 3.4 is weaker than requiring M to be compact (which corresponds to taking n = 1).

There exist different sufficient conditions for Assumption 3.4 for different choices of p. Consider

L2, which will be the space of interest for estimation. Iterated kernels may be calculated via the

recurrence relation

K(n)
M (x, y) =

∫
X
K(n−1)

M (x, u)KM(u, y) dQ(u)

11Note that φ∗ has the interpretation of an eigenfunction of the time-reversed operator only when {Xt} is stationary
and its stationary distribution Q is used to define the Lp space.

12If M has multiple positive eigenfunctions then Mn must also have multiple positive eigenfunctions. Thus, unique-
ness of positive eigenfunctions of Mn implies uniqueness of positive eigenfunctions of M.
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with K(1)
M (x, y) = KM(x, y). If there exists n ≥ 1 for which∫

X

∫
X
K(n)

M (x, y)2 dQ(x) dQ(y) <∞ (13)

then Mn is Hilbert-Schmidt and therefore compact (see Carrasco et al. (2007)).13 Assumption 3.4

is satisfied for L1 if there exists n ≥ 1 such that Mn maps L1 into Lr for some r > 1; moreover,

Assumption 3.4 is satisfied for Lp with 1 < p < ∞ if there exists n ≥ 1 such that Mn maps Lp

into L∞ (Schaefer, 1974, p. 337). In what follows, we say that the eigenvalue ρ is simple if it has a

unique eigenfunction (up to scale) and we say that ρ is isolated if there exists a neighborhood of ρ

such that ρ is the unique element of the spectrum of M belonging to the neighborhood.

Theorem 3.2 Let Assumptions 3.1, 3.2 and 3.4 hold. Then:

(a) there exist positive eigenfunctions φ and φ∗ satisfying Assumption 3.3

(b) ρ is simple, isolated, and the largest real eigenvalue of M.

It follows from Theorems 3.1 and 3.2 that φ and φ∗ exist and are identified under Assumptions 3.1,

3.2 and 3.4. A similar existence result to part (a) was presented in a 2005 preliminary version of

Hansen and Scheinkman (2009). There, they assumed that the spectral radius of M was positive

and that their (continuous-time) semigroup of operators had an element which was compact. Their

latter compactness condition is a continuous-time counterpart to Assumption 3.3. The further

properties of ρ that we establish in part (b) of Theorem 3.2 are essential to our derivation of the

large-sample theory. A similar proposition was derived under different positivity and irreducibility

conditions in Christensen (2014).

3.3 Long-run pricing

We now derive a version of the long-run pricing approximation of Hansen and Scheinkman (2009)

under a slight strengthening of the identification and existence conditions. To do so, we replace

Assumption 3.2 with the following condition.

Assumption 3.5 KM(x, y) > 0 a.e.-[Q⊗Q].

We impose the normalizations E[φ(X0)p] = 1 and E[φ(X0)φ∗(X0)] = 1 and define the operator

(φ⊗ φ∗) : Lp → Lp by

(φ⊗ φ∗)ψ(x) = φ(x)

∫
X
φ∗(u)ψ(u) dQ(u) .

13Similar Hilbert-Schmidt conditions have been used recently by Darolles et al. (2011), Escanciano and Hoderlein
(2012), Connor, Hagmann, and Linton (2012), and Chen et al. (2014) to study nonparametric identification and/or es-
timation in other contexts. In these other applications the Hilbert-Schmidt condition is used to establish compactness
of the operator whereas here we use it to establish power compactness.
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Theorem 3.3 Let Assumptions 3.1, 3.4, and 3.5 hold. Then there exists c > 0 such that

sup
ψ∈Lp:E[|ψ(X0)|p]≤1

∫
X

∣∣ρ−nMnψ(x)− (φ⊗ φ∗)ψ(x)
∣∣p dQ(x) = O(e−cn)

as n→∞.

Theorem 3.3 establishes convergence of ρ−nMn uniformly in Lp norm, with the approximation error

vanishing exponentially in the payoff horizon n. A similar proposition (without the exponential rate

of convergence) was reported in a 2005 preliminary draft of Hansen and Scheinkman (2009). There,

they assumed directly that the distorted conditional expectations converged do an unconditional

expectation characterized by φ, φ∗, and the arbitrary measure used to define the Lp space. Here,

we instead show that convergence obtains under a very slight strengthening of the conditions of

Theorem 3.2.

Theorem 3.3 is similar to the various long-run approximation results presented in Section 7 of

Hansen and Scheinkman (2009) which imply

ρ−nMnψ(x)→
(∫
X

ψ(u)

φ(u)
dς̂(u)

)
φ(x) (14)

for some probability measure ς̂. In general, possibly non-stationary environments it not clear how

to calculate the measure ς̂. In stationary environments, however, Theorem 3.3 shows that

ρ−nMnψ(x)→
(∫
X

ψ(u)

φ(u)
φ(u)φ∗(u) dQ(u)

)
φ(x) . (15)

Comparing (14) and (15), we see that the Radon-Nikodym derivative of ς̂ with respect to Q is

dς̂(x)

dQ(x)
= φ(x)φ∗(x) .

Therefore, in stationary, discrete-time environments the measure ς̂ is characterized by the distri-

bution Q and the normalized positive eigenfunctions of M and M∗.

Remark 3.1 The preceding analysis could equally be applied to study valuation with a stochastic

growth component as in Hansen, Heaton, and Li (2008), Hansen and Scheinkman (2009), Hansen

(2012), Lettau and Wachter (2007, 2011), and others. Assuming the reference growth process from

time t to t+ 1 is G(Xt, Xt+1) for some measurable G : X ×X → R and existence of f0,1 and f , the

stochastic growth operator S and the valuation-with-stochastic-growth operator T have kernels

KS(x, y) =
f0,1(x, y)

f(x)f(y)
G(x, y) and KT(x, y) =

f0,1(x, y)

f(x)f(y)
G(x, y)m(x, y) ,

respectively.
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4 Estimators and large-sample theory

This section introduces the nonparametric estimators of ρ, φ, φ∗, the long-run yield, and the entropy

of the permanent component of the SDF and describes the large-sample properties of the estimators.

Sieve methods work by projecting the infinite-dimensional eigenfunction problem (4) onto a sub-

space spanned by finitely many known basis functions. This finite-dimensional approximation means

that, at the cost of introducing some bias, the eigenfunction problem (4) can be rewritten as a low-

dimensional matrix eigenvector problem. The matrices are estimated from a time series of data

on {Xt},14 from which the estimators of ρ, φ, and related quantities are easily calculated. The

estimators may also be used to numerically compute for ρ, φ, and related quantities fully specified

models for which analytical solutions are unavailable.

The estimators introduced below build on previous work by Chen et al. (2000) and Gobet et al.

(2004) who applied sieve methods to nonparametrically estimate eigenfunctions of the selfadjoint

conditional expectation operator associated with a stationary, scalar diffusion process. However,

in our context the operator M will typically be nonselfadjoint. This introduces several additional

technicalities. First, if M is selfadjoint then the problem of estimating the time-reversed positive

eigenfunction φ∗ disappears because, in that circumstance, φ = φ∗. Thus our results on estimating

time-reversed eigenfunctions are new. Second, if M is selfadjoint then ρ and φ solve an infinite-

dimensional maximization problem (by the Courant-Fischer minimax theorem); this is not so for

the nonselfadjoint case. Therefore, we apply perturbation methods, rather than extremum estimator

asymptotics, to derive the large-sample theory. Our convergence rates for estimators of ρ and φ

are obtained by modifying some arguments in Gobet et al. (2004); the convergence rates for the

estimator of φ∗ and the derivation of the asymptotic distribution and efficiency bounds of the

parametric estimators are all new.

For the remainder of this section we use L2 as the parameter space for φ and φ∗ because it is

endowed with the inner product 〈ψ1, ψ2〉 = E[ψ1(X0)ψ2(X0)].

4.1 Sieve approximation

Let bK1, . . . , bKK ∈ L2 be a dictionary of linearly independent basis functions (polynomials, splines,

wavelets, Fourier series, etc) and let BK denote the closed linear span of bK1, . . . , bKK . We now

construct an approximation of (4) in the space BK . Any function ψ ∈ BK may be written as

ψ(x) = bK(x)′cK(ψ)

14As discussed below, the convergence rate calculations may be applied to study models with latent state variables
despite our maintained assumption of an observable state vector.
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where bK(x) = (bK1(x), . . . , bKK(x))′ is a vector of basis functions and cK(ψ) ∈ RK is a vector of

coefficients. Define the Gram matrix

GK = E[bK(X0)bK(X0)′] (16)

which is K ×K, symmetric, and positive definite. The sieve space BK is isometrically isomorphic

to RK endowed with the inner product (u, v) 7→ u′GKv under the isometry ψ 7→ cK(ψ) because

E[ψ1(X0)ψ2(X0)] = cK(ψ1)′GKcK(ψ2)

for all ψ1, ψ2 ∈ BK .

To describe the finite-dimensional approximation of (4), let ΠK : L2 → BK denote the orthogonal

projection onto BK . Consider the eigenfunction problem

(ΠKM)φK = ρKφK (17)

where ρK is the largest real eigenvalue of ΠKM. This problem will be well defined for all K

sufficiently large under Assumptions 4.1 and 4.2(a) below: ρK will be positive and simple and will

therefore have a unique eigenfunction φK . Since φK ∈ BK we may write φK = bK(x)′cK where

cK = c(φK) is a vector of coefficients. Also define the K ×K matrix

MK = E[bK(X0)m(X0, X1)bK(X1)′] . (18)

To simplify notation, let M = MK and G = GK hereafter. The approximate eigenvalue problem

(17) may then be rewritten as

bK(x)′G−1McK = ρKb
K(x)cK

or, equivalently,

G−1McK = ρKcK

where ρK is the largest real eigenvalue of G−1
K MK and cK is its eigenvector. Similar logic leads us

to approximate φ∗(x) by φ+
K(x) = bK(x)′c∗K where

G−1M′c∗K = ρKc
∗
K

(here we use the superscript “+” to denote that bK(x)c∗K is the eigenfunction of the adjoint of ΠKM
with respect to BK rather than L2; see Appendix C). Moreover, ρK is the largest real generalized

eigenvalue of the pair (M,G) and cK and c∗K are its right- and left eigenvectors:

McK = ρKGcK

c∗′KM = ρKc
∗′
KG .

(19)
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Display (19) provides the basis for numerical computation of ρ, φ, and φ∗ in models for which

analytical solutions are unavailable. For such models, the matrices M and G may be computed

directly, via simulation or numerical integration, from which the approximate solutions ρK , φK and

φ+
K for ρ, φ and φ∗ can be recovered by solving (19). Lemma C.1 in Appendix C provides bounds

on the approximation errors ρK − ρ, φK − φ, and φ+
K − φ∗.

4.2 Estimators

To estimate ρ, φ and φ∗ we replace M and G in (19) by estimators M̂ and Ĝ, where Ĝ is positive

definite and symmetric. We then solve

Ĝ−1M̂ ĉ = ρ̂ĉ

Ĝ−1M̂′ĉ∗ = ρ̂ĉ∗
(20)

where ρ̂ is the maximum real eigenvalue of Ĝ−1M̂. The estimator of φ is φ̂(x) = bK(x)′ĉ and the

estimator of φ∗ is φ̂∗(x) = bK(x)′ĉ∗. Under Assumptions 4.1, 4.2, and 4.3(a) below, with probability

approaching one, ρ̂ will be positive and simple and so its eigenvectors ĉ and ĉ∗ will be unique.15

Given a time series of data {X0, X1, . . . , Xn}, we estimate G using

Ĝ =
1

n

n−1∑
t=0

bK(Xt)b
K(Xt)

′ . (21)

We consider three possibilities for estimating M.

Case 1: SDF is observable First, consider the case in which the one-period SDF m(Xt, Xt+1)

is known. This is the case for the C-CAPM under CRRA preferences in which m(Xt, Xt+1) =

m(Xt, Xt+1;β, γ) = βG−γt+1 with fixed β and γ, provided Gt+1 = G(Xt, Xt+1) for some measur-

able function G. Other examples include the SDFs obtained under the external habit preference

specifications of Abel (1990) and Gaĺı (1994). As the SDF is observable, we may estimate M using

M̂ =
1

n

n−1∑
t=0

bK(Xt)m(Xt, Xt+1)bK(Xt+1)′ . (22)

Case 2: SDF has unobservable components There exist several popular asset pricing models

in which components of the SDF depend implicitly on the law of motion of {Xt}. For these models

the functional form of m is unknown when we model the dynamics nonparametrically. Nevertheless,

our estimators can still be applied provided an estimate of the unobservable component is first

15When Ĝ−1M̂ has no real positive eigenvalues or when its maximum real eigenvalue is not positive and simple,
then we can simply take ρ = 1 and set φ̂(x) = φ̂∗(x) = 1 for all x without altering the convergence rates or limiting
distribution of the estimators.

16



“plugged in” to the SDF. For example, under Epstein-Zin preferences the SDF depends implicitly

on the continuation value of future consumption which is unobservable when the dynamics of

the state are modeled nonparametrically. In Section 5 we introduce a procedure to estimate the

continuation value from a time series {X0, X1, . . . , Xn} using sieve methods. By plugging in the

estimated continuation value v̂, we can form a time series m̂(Xt, Xt+1) = m(Xt, Xt+1; v̂) for t =

0, 1, . . . , n− 1. Our estimator of M in this case is

M̂ =
1

n

n−1∑
t=0

bK(Xt)m̂(Xt, Xt+1)bK(Xt+1)′ . (23)

Models with internal habit formation also have an unobservable forward-looking expectation in the

marginal utility of consumption. It is not clear how to nonparametrically estimate this forward-

looking component from data on the state alone. In the absence of such an estimator, the procedure

introduced in this paper cannot be used to study internal habit formation models under counter-

factual preference parameters.

Case 3: SDF is estimated The third case we consider is that in which the econometrician

wishes to extract ρ, φ, and related quantities from a SDF that has been estimated from data on

both Xt and asset returns over the period t = 0, . . . , n. This is different from Case 2 in two respects.

First, the data used for estimation includes both data on the state and returns, whereas Case 2 only

uses data on the state. Second, here the parameters in the estimated SDF are those that are implied

by the returns data. In contrast, the approach taken in Case 2 allows us to estimate components

of the SDF that are consistent with given, possibly counterfactual, preference parameters.

The method by which m̂ is extracted is not important for our purposes. All that we require is

that the researcher may evaluate m̂(Xt, Xt+1) for each date t = 0, . . . , n − 1. If so, then M may

be estimated as in (23). For example, conventional moment-based methods such as GMM, mini-

mum distance (such as the estimator for internal habit formation models introduced in Chen and

Ludvigson (2009)), or empirical likelihood may be used to estimate the SDF from moment restric-

tions based on the Euler equation. Procedures based on options data, such the extended method

of moments (Gagliardini, Gourieroux, and Renault, 2011) or nonparametric state-price density es-

timators (Aı̈t-Sahalia and Lo, 1998), could also be used. This approach allows researchers to use

sieve methods to recover the permanent component of the SDF implicit in option prices without

discretizing the state space (cf. Ross (2014)).

It remains to introduce estimators for the long-run yield y and entropy of the permanent component

L(MP
t+1/M

P
t ) which, for simplicity, we denote by L. Coherently with the formulae y = − log ρ and

L = log ρ− E[logm(X0, X1)], we estimate y using

ŷ = − log ρ̂ (24)
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and we estimate L using

L̂ = log ρ̂− 1

n

n−1∑
t=0

logm(Xt, Xt+1) (25)

in Case 1, and

L̂ = log ρ̂− 1

n

n−1∑
t=0

log m̂(Xt, Xt+1) (26)

in Cases 2 and 3.

4.3 Consistency and convergence rates

We first state three basic assumptions which are used to develop the large-sample theory. The first

is an identifying assumption, the second relates to the approximation properties of the sieve, and

the third relates to the convergence properties of the matrix estimators.

In what follows, we let ‖ · ‖ denote the L2 norm when applied to functions and the L2 operator

norm, given by ‖A‖ = sup{‖Aψ‖ : ψ ∈ L2, ‖ψ‖ = 1}, when applied to linear operators A : L2 → L2.

We also let ‖ · ‖G denote the vector and matrix norms on RK induced by G, i.e., ‖v‖2G = v′Gv for

vectors and ‖A‖G = sup{‖Av‖G : v ∈ RK , ‖v‖G = 1} for matrices.

Assumption 4.1 Assumptions 3.1, 3.2, and 3.4 hold for the space L2.

Assumption 4.2 (a) ‖ΠKM−M‖ = o(1);

(b) ‖ΠKφ− φ‖ = O(δK); and

(c) ‖ΠKφ
∗ − φ∗‖ = O(δ∗K).

Assumption 4.3 (a) ‖Ĝ−1M̂−G−1M‖G = op(1);

(b) ‖(Ĝ−1M̂−G−1M)cK‖G = Op(ηn,K); and

(c) ‖(Ĝ−1M̂′ −G−1M′)c∗K/‖c∗K‖G‖G = Op(η
∗
n,K).

Assumption 4.1 guarantees existence and identification of the positive eigenfunctions φ and φ∗ in

the space L2. Assumption 4.1 also guarantees that ρ is isolated and simple. These two properties are

used extensively in the derivation of the large sample theory. Assumption 4.1 can be replaced with

the higher-level assumption that φ and φ∗ exist and correspond to an isolated, simple eigenvalue ρ

where ρ is the maximum eigenvalue of M.
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Assumption 4.2(a) is a condition on how well the range of M can be approximated over the sieve

space BK . This assumption necessarily requires that M is compact,16 as has been assumed previ-

ously in the literature on sieve estimation of eigenfunctions (see, e.g., Gobet et al. (2004)). If M is

not compact but M` is compact for some ` ≥ 2, then one can apply the estimators to M` in place

of M; consistency and convergence rates of ρ`, φ and φ∗ would then follow directly from Theorem

4.1. Assumption 4.2(b)(c) are conditions on how well φ and φ∗ may be approximated by elements

of BK . Values for δK and δ∗K are known for common choices of sieve under standard smoothness

assumptions (see Chen (2007)).

Assumption 4.3(a) requires that the estimator Ĝ−1M̂ converges to G−1M in the matrix norm

induced by G. This condition imposes a restriction on the maximum rate at which K can grow

with n, which will be determined by both the choice of sieve and the weak dependence properties

of the data. When m is a function of other estimators (of, say, an unobservable component as in

Case 2 or unknown parameters as in Case 3) then Assumption 4.3(a) also places restrictions on

the rate at which the first-stage estimators must converge. Sufficient conditions for Assumption

4.3 are presented in Appendix C. Finally, Assumptions 4.2(a) and 4.3(a) imply δK , δ
∗
K = o(1) and

ηn,K , η
∗
n,K = o(1), respectively. The purpose of introducing the terms δK , δ∗K , ηn,K , and η∗n,K is to

obtain more refined convergence rates for φ and φ∗.

The following Theorem, which is the main result of this section, establishes consistency and con-

vergence rates of the estimators. Recall that for Theorem 3.3 we have normalized φ and φ∗ so that

E[φ(X0)2] = 1 and E[φ(X0)φ∗(X0)] = 1. As eigenfunctions are only normalized up to scale, we also

impose the normalizations E[φ̂(X0)2] = 1 and E[φ̂(X0)φ̂∗(X0)] = 1.

Theorem 4.1 Let Assumptions 4.1, 4.2 and 4.3 hold. Then:

(a) |ρ̂− ρ| = Op(δK + ηn,K)

(b) ‖φ̂− φ‖ = Op(δK + ηn,K)

(c) ‖φ̂∗/‖φ̂∗‖ − φ∗/‖φ∗‖‖ = Op(δ
∗
K + η∗n,K).

Remark 4.1 Theorem 4.1 does note require that Ĝ and M̂ be estimated as in (21), (22), and (23).

In fact, Theorem 4.1 holds for estimators ρ̂, φ̂ and φ̂∗ calculated from any estimators Ĝ and M̂ of

G and M provided Ĝ is positive definite and symmetric and Ĝ and M̂ satisfy Assumption 4.3.

Remark 4.2 Theorem 4.1 may be used to estimate eigenvalues and eigenfunctions of the stochastic

growth and valuation-with-stochastic growth operators S and T (see Remark 3.1) by replacing M with

S = E[bK(X0)G(X0, X1)bK(X1)′] and T = [bK(X0)G(X0, X1)m(X0, X1)bK(X1)′], respectively.

16An operator is compact if and only if it is the limit (in operator norm) of a sequence of operators with finite-
dimensional range (Carrasco et al., 2007, Theorem 2.29). Each ΠKM has range BK where dim(BK) = K <∞.
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Theorem 4.1 is a direct consequence of Lemmas C.1 and C.2 which derive separately the convergence

rates of the bias and variance terms. The bias calculations in Lemma C.1 may be used to bound the

finite-dimensional approximation error when the estimators are used to numerically compute ρ, φ,

and φ∗ in fully-specified models. Theorem 4.1 exhibits the usual bias-variance tradeoff encountered

in nonparametric estimation. The terms δK and δ∗K , which represent the bias terms, will typically

be decreasing in K because φ and φ∗ will be approximated over increasingly rich subspaces as K

increases. On the other hand, increasing K means that more parameters in Ĝ and M̂ need to be

estimated, which introduces additional sampling error. Therefore, the variance terms ηn,K and η∗n,K
will typically be increasing in K and decreasing in n. Note that Conclusions (a) and (b) of Theorem

4.1 hold under Assumptions 4.1, 4.2(a)(b), and 4.3(a)(b).

Remark 4.1 suggests that preceding Theorem might be applied to models with latent state variables.

Fully nonparametric model with latent variables are not well identified. Yet certain latent processes

possess enough structure that a filter or similar device may be used to estimate the latent time

series from a related, observable time series. For such processes it might be possible to construct Ĝ

and M̂ from the estimate of the latent data. Consistency and convergence rates would then follow

from Theorem 4.1 so long as Assumption 4.3 could be verified.

Corollary 4.1 Let Assumptions 4.1, 4.2(a)(b) and 4.3(a)(b) hold. Then:

(a) |ŷ − y| = Op(δK + ηn,K).

If, in addition,

n−1
n−1∑
t=0

logm(Xt, Xt+1)− E[logm(X0, X1)] = Op(η
L
n,K)

in Case 1, or

n−1
n−1∑
t=0

log m̂(Xt, Xt+1)− E[logm(X0, X1)] = Op(η
L
n,K)

in Cases 2 or 3, then:

(b) |L̂− L| = Op(δK + ηn,K + ηLn,K).

To further investigate the theoretical properties of the estimators, we now derive the convergence

rate of φ̂ in Case 1, where Ĝ and M̂ are as in (21) and (22), under standard conditions from

the statistics literature on optimal convergence rates. Although the following conditions are not

particularly appropriate in an asset pricing context, the result is informative about the convergence

properties of φ̂ relative to conventional nonparametric estimators.

Corollary 4.2 Let Assumptions 3.1, 3.2 and the following conditions hold: (i) X ⊂ Rd is compact,

rectangular and has nonempty interior; (ii) Q has density f which is continuous and strictly positive
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on X ; (iii) M is a bounded operator from L2 into a Hölder space Λp0(X ) of smoothness p0 > 0

(see Section 2.3.1 of Chen (2007)); (iv) φ ∈ Λp(X ) with p ≥ p0; (v) E[|m(X0, X1)|r]1/r < ∞ for

some 2 ≤ r ≤ ∞; (vi) BK is a spanned by (a tensor product of) polynomial splines of degree

ν ≥ p with uniformly bounded mesh ratio (see Chapter 12 of Schumaker (2007)); and (vii) {Xt} is

exponentially rho-mixing. Then:

(a) Assumptions 4.1 and 4.2(a)(b) hold with δK = O(K−p/d), and Assumption 4.3(a)(b) holds

with ηn,K = O(K(r+2)/2r/
√
n) provided K(2r+2)/r/n = o(1)

(b) ‖φ̂− φ‖ = Op(n
−rp

2rp+(2+r)d ) when K � n
rd

2rp+(2+r)d and p > d/2.

The convergence rate obtained in Corollary 4.2 when r =∞ (i.e. m is bounded) is n−p/(2p+d). This

rate is the same as the optimal L2 convergence rate for nonparametric regression estimators with

i.i.d. data when the unknown regression function belongs to Λp(X ) and conditions (i) and (ii) of

Corollary 4.2 hold (see, e.g., Stone (1982)).

4.4 Asymptotic normality

We now establish to asymptotic normality of ρ̂, ŷ and L̂ in Case 1. The limit theory is derived via

a novel sieve perturbation expansion because the usual derivation for extremum estimators cannot

be applied. For the sake of brevity, we focus on Case 1 (observable SDF) with Ĝ and M̂ as in

(21) and (22). In Cases 2 and 3 the limiting distribution will depend on how the unobservable

components or unknown parameters in m are estimated in the first stage, as is typical of two-step

plug-in estimators. Appendix C presents a general expansion for ρ̂, from which the asymptotic

distribution of the estimators may be derived on a case-by-case basis.

For Case 1, we derive the representation

√
n(ρ̂− ρ) =

1√
n

n−1∑
t=0

ψρ(Xt, Xt+1) + op(1) (27)

where ψρ(x, y) := φ∗(x)m(x, y)φ(y)− ρφ∗(x)φ(x). Expression (27) shows that ρ̂ behaves asymptot-

ically like a sample average even though ρ̂ is a highly nonlinear function of Ĝ and M̂. Conveniently,

{ψρ(Xt, Xt+1),Ft} is a martingale difference sequence. Thus, the asymptotic distribution of ρ̂ fol-

lows from (27) by a martingale central limit theorem. Rather than assuming a specific type of weak

dependence in order to derive (27), we instead impose a high-level assumption regarding the rate

at which the estimation and approximation errors vanish. This assumption can be verified using

the results in Appendix C for different weak dependence conditions.

Let G−1/2 denote the inverse of the positive definite square root of G and let b̃K(x) = G−1/2bK(x)

denote the orthogonalized vector of basis functions. Coherently with (21) and (22), define the
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orthogonalized estimators

Ĝo =
1

n

n−1∑
t=0

b̃K(Xt)̃b
K(Xt)

′

M̂o =
1

n

n−1∑
t=0

b̃K(Xt)m(Xt, Xt+1)̃bK(Xt+1)′ .

Note that E[Ĝo] = I (the K ×K identity matrix) and define Mo = E[M̂o]. Let η̄n,K,1 and η̄n,K,2

be such that ‖Ĝo − I‖ = Op(η̄n,K,1) and ‖M̂o −Mo‖ = Op(η̄n,K,2) where, without confusion, we

let ‖ · ‖ denote the matrix spectral norm (largest singular value). Define

τn,K =
1

n

n−1∑
t=0

{
φ+
K(Xt)m(Xt, Xt+1)φK(Xt+1)− ρKφ+

K(Xt)φK(Xt)− ψρ(Xt, Xt+1)
}

where φK and φ+
K are normalized so that E[φK(X0)2] = 1 and E[φK(X0)φ+

K(X0)] = 1. Let Vρ =

E[ψρ(X0, X1)2] and Vy = ρ−2Vρ, which will be the asymptotic variances of ρ̂ and ŷ, respectively.

Also define ψL(x, y) = ρ−1ψρ(x, y)− logm(x, y) +E[logm(X0, X1)] and let VL denote the long-run

variance of {ψL(Xt, Xt+1)}. Finally, let a ∨ b := max{a, b}.

Assumption 4.4 (a) δK = o(n−1/2);

(b) (ηn,K ∨ η̄n,K,1)× (η̄n,K,1 ∨ η̄n,K,2) = o(n−1/2);

(c) τn,K = op(n
−1/2);

(d) Vρ is positive and finite; and

(e) n−1/2
∑n−1

t=0 ψL(Xt, Xt+1)→d N(0, VL) where VL is positive and finite.

Assumption 4.4(a) is an undersmoothing condition which ensures that the approximation bias ρ−ρK
vanishes sufficiently quickly that it does not distort the limiting distribution. Assumption 4.4(b)(c)

ensures the higher-order terms in (27) are op(1); sufficient conditions for Assumption 4.4(b) under

different weak dependence assumptions are presented in Appendix C. Note that the summands in

τn,K have expectation zero, and that φK , φ+
K and ρK are converging to φ, φ∗, and ρ by Lemma C.1.

Assumption 4.4(d) ensures the estimators have a non-degenerate limiting distribution and finite

asymptotic variance.17 Parts (a)–(d) of Assumption 4.4, together with the earlier assumptions, are

sufficient to derive the asymptotic distribution of ρ̂ and ŷ. An analogous expansion to (27) holds

for L̂ with ψL(Xt, Xt+1) in place of ψρ(Xt, Xt+1). However, {ψL(Xt, Xt+1),Ft} is not necessarily

a martingale difference sequence. Therefore we make the high-level Assumption 4.4(e) in order to

derive the asymptotic distribution of L̂.

17This is made to rule out certain pathological cases. For instance, if m(x, y) = m̄ for all x, y then then ρ = m̄,
φ = 1, and φ∗ = 1 which yields ψρ(x, y) = 0 for all x, y.
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Theorem 4.2 Let Assumptions 4.1, 4.2, 4.3, and 4.4 hold. Then (27) holds and:

(a)
√
n(ρ̂− ρ)→d N(0, Vρ)

(b)
√
n(ŷ − y)→d N(0, Vy)

(c)
√
n(L̂− L)→d N(0, VL).

Variance estimators of Vρ, Vy and VL are presented in Appendix C, together with the asymptotic

distributions of t-statistics for ρ̂, ŷ and L̂ .

We conclude this section by deriving the semiparametric efficiency bounds for Case 1. To derive

the efficiency bound we require a further technical condition (Assumption D.1), which is deferred

to the Appendix.

Theorem 4.3 Let Assumptions 4.1, 4.2, 4.3, 4.4, and D.1 hold. Then:

(a) the semiparametric efficiency bounds for ρ, y and L are Vρ, Vy and VL, respectively

(b) ρ̂, ŷ and L̂ are semiparametrically efficient.

Theorem 4.3 provides further theoretical justification for using sieve methods to nonparametrically

estimate ρ, φ, and related quantities.

5 Simulation and empirical application

The empirical performance of the proposed estimators is explored first in a simulation and then in

an empirical application. In both illustrations we assume the SDF is determined by a representative

agent and consider two specifications of the agent’s preferences over future consumption, namely

time-separable CRRA preferences and a recursive preference specification following Kreps and

Porteus (1978), Epstein and Zin (1989) and Weil (1990). To implement the estimators with recursive

preferences, we first introduce a new approach for nonparametrically estimating the continuation

value (CV) of future consumption from a time series of data on {Xt}. By estimating the CV

directly, rather than using a proxy for the return on the aggregate wealth portfolio, we avoid any

potential issues related to imperfect proxies which may arise if, for example, human capital and

other intangible/non-tradable assets are significant components of aggregate wealth. The simulation

results below show that the estimated CV can be plugged in to the SDF in order to estimate ρ, φ,

and related quantities with a high degree of accuracy.
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5.1 Nonparametric continuation value estimation under recursive preferences

In this subsection we briefly describe an approach to nonparametrically estimate the continuation

value in models with Epstein-Zin recursive preferences when we do not place parametric restrictions

on the law of motion of {Xt}. This procedure may also be used to numerically solve for the contin-

uation value and SDF in models for which analytical solutions are not available, as an alternative

to discretization-based methods (e.g. Tauchen and Hussey (1991)).

Under Epstein-Zin preferences, the quantity Vt, which denotes the date-t utility of the representative

agent, is defined in terms of Vt+1 and current consumption Ct via the recursion

Vt =
{

(1− β)C1−θ
t + βE[V 1−γ

t+1 |Ft]
1−θ
1−γ
} 1

1−θ

where 1/θ is the elasticity of intertemporal substitution (EIS), β is the time discount parameter,

and γ is the risk aversion parameter. Assume hereafter that consumption growth Gt+1 := Ct+1/Ct

is a measurable function of Xt+1 where {Xt} is a strictly stationary first-order Markov process.

Hansen and Scheinkman (2012) show that, in this environment, the scaled continuation value Vt/Ct

is of the form Vt/Ct =: V (Xt) where V solves the fixed point equation

V (Xt) =

(1− β) + βE

[(
V (Xt+1)

Ct+1

Ct

)1−γ
∣∣∣∣∣Xt

] 1−θ
1−γ


1
1−θ

(28)

with V ≥ 0. We now show how (28) may be used to estimate the continuation value function

nonparametrically for given (θ, β, γ) from a time series of data on {Xt}.

In the remainder of this section we follow Tallarini (2000) and Hansen et al. (2008) focus on the case

θ = 1 so that (28) may be solved analytically for V . This allows us to evaluate the performance of

the estimators in the simulation exercise.18 Nevertheless, the following sieve methods may certainly

be used to estimate the continuation value when θ 6= 1 by appropriately modifying the conditional

moment restriction (29) below.

When θ = 1, the fixed point equation (28) becomes

v(Xt) =
β

1− γ
logE[e(1−γ)(v(Xt+1)+gt+1)|Xt]

where v(x) = log V (x) and gt+1 = log(Ct+1/Ct) (Hansen et al., 2008, Section III). This expression

18When θ 6= 1 the CV is not known analytically so it would be difficult to evaluate the accuracy of our estimators
in simulations. One possible approach for doing so when θ 6= 1 might be to consider a log-quadratic approximation to
the CV and SDF obtained under small perturbations of θ from 1, as in Hansen et al. (2008) and Backus et al. (2014).
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for v may be rearranged to obtain the conditional moment restriction

E
[
e

(1−γ)(v(Xt+1)+gt+1)− 1−γ
β
v(Xt) − 1

∣∣∣Xt

]
= 0 (29)

upon which our estimator of v is based.

We now describe a sieve minimum distance (SMD) approach to nonparametrically estimate v given

β, γ, and a time series of data on {Xt} (see Ai and Chen (2003) and Chen and Pouzo (2012)

for background material on SMD estimation with i.i.d. data). Chen, Favilukis, and Ludvigson

(2013) have recently applied SMD methods to estimate models with recursive preferences.19 In

the SMD procedure, the function v is first approximated by a linear combination
∑K1

k=1 c1kpK1k

of K1 basis functions pK11, . . . , pK1K1 . The moment restriction (29) is used to form a criterion

function which is minimized with respect to the coefficients c11, . . . , c1K1 . To form the criterion

function, the conditional expectation in (29) is estimated by series regression on a second ba-

sis ψK21, . . . , ψK2K2 of dimension K2 with K1 ≤ K2. Let pK1(x) = (pK11(x), . . . , pK1K1(x))′, let

ψK2(x) = (ψK21(x), . . . , ψK2K2(x))′, and let Ψ = (ψK2(X0), . . . , ψK2(Xn−1))′. The estimator of the

conditional moment restriction (29) evaluated at Xt = x and v(x) = c′1p
K1(x) is

û(x, c1) = ψK2(x)′(Ψ′Ψ/n)−1

(
1

n

n−1∑
t=0

ψK2(Xt)
(
e

(1−γ)(c′1p
K1 (Xt+1)+gt+1)− 1−γ

β
c′1p

K1 (Xt) − 1
))

.

Our estimator of v is v̂(x) = ĉ′1p
K1(x) where

ĉ1 = arg min
c1∈RK1

1

n

n−1∑
t=0

û(Xt, c1)2 .

Approximating v and the conditional moment over the finite dimensional subspaces spanned by

pK11, . . . , pK1K1 and ψK21, . . . , ψK2K2 introduces approximation bias. Increasing K1 and K2 will

typically reduce the bias but will introduce additional sampling error as there will be more pa-

rameters to be estimated. Therefore, nonparametric estimation of c will be subject to a similar

bias-variance tradeoff to that which is encountered in nonparametric estimation of ρ and φ. The

theoretical properties v̂ could be derived by a time-series extension of Ai and Chen (2003) or Chen

and Pouzo (2012). However, the literature on SMD estimation has almost exclusively focused on

i.i.d. data to date so defer such an endeavor to future research.

The SDF obtained under Epstein-Zin preferences with θ = 1 is of the form m(Xt, Xt+1) =

β exp{−γgt+1 + (1 − γ)v(Xt+1) − 1−γ
β v(Xt)}. Our estimator v̂ may be plugged in to this func-

19There are several important differences between the method introduced here and that in Chen et al. (2013). There,
they focus on the general case in which θ 6= 1 and use time series data consumption and returns to estimate (V, β, γ, θ)
nonparametrically using the conditional Euler equation. They also assume consumption growth is a function of a latent
univariate Markov state variable. Here we estimate v from data on {Xt} for fixed, possibly counterfactual, values of
(β, γ, θ) using the fixed-point equation (28) instead of the Euler equation. We require an observable state vector but
allow it to be of an arbitrary dimension.
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tional form to obtain

m̂(Xt, Xt+1) = β exp
{
− γgt+1 + (1− γ)v̂(Xt+1)− 1− γ

β
v̂(Xt)

}
. (30)

The matrix M can then be estimated as described in (23).

5.2 Simulation

The following Monte Carlo (MC) experiment investigates the performance of our estimators when

applied to a consumption-based asset pricing model under CRRA and Epstein-Zin preferences.

The state variable is simply taken as Xt = gt, where gt denotes log consumption growth, which is

assumed to evolve as a Gaussian AR(1) process:

gt+1 − µ = κ(gt − µ) + σet+1

where the et are i.i.d. N(0, 1) random variables. The parameters for the simulation are µ = 0.008,

κ = 0.6, and σ = 0.01. The data are constructed to be somewhat representative of quarterly

U.S. real per capita growth in consumption of nondurables and services (for which κ ≈ 0.3 and

σ ≈ 0.005) but we make {gt} are twice as persistent (κ = 0.60) to produce greater nonlinearity

in the eigenfunctions and twice as volatile (σ = 0.01) to produce a more challenging estimation

problem. The parameters in the utility function are set to β = 0.994 and γ = 10. For each design

we generate 1000 samples of length 400, 800, 1600, and 3200: the smallest sample size is roughly

the sample size with aggregate monthly or quarterly consumption data, whereas the larger sizes

are used to illustrate the convergence properties of the estimators.

To implement the estimators ρ̂, φ̂, and φ̂∗, we use Ĝ in (21) for both preference specifications and

use M̂ in (22) for the CRRA design and M̂ in (23) for the Epstein-Zin design with m̂ from (30).

We also compute L̂ using the estimators in (25) and (26) for CRRA and Epstein-Zin preferences,

respectively. A basis of dimension K = 8 is used for bK to approximate φ under both utility

specifications; for the recursive preference specification a sieve of dimension K1 = 6 is used for pK1

to approximate v and a sieve of dimension K2 = 12 for ψK2 to estimate the conditional moment

in the SMD procedure. The simulations are performed for using Hermite polynomial sieves for bK ,

pK1 , and ψK2 , and again with B-Spline sieves for bK , pK1 , and ψK2 . As is standard practice, the

Hermite bases were centered and scaled by the sample mean and sample standard deviation of g,

and the knots of the cubic B-spline sieve were placed at the empirical quantiles of the data. The

MC results were reasonably insensitive both to the choice of sieve and to the dimension of the

sieve space. Only the results for the Hermite polynomial sieve are presented below; the results for

B-spline sieves and the parameterization κ = 0.3, σ = 0.005 are presented in Appendix E.

For each simulation configuration we estimate φ, φ∗, ρ, y, L; we also estimate v for the Epstein-Zin

design. To calculate the root mean square error (RMSE) for φ̂, φ̂∗, and v̂, for each replication we
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CRRA Epstein-Zin

n φ̂ φ̂∗ φ̂ φ̂∗ v̂

Bias

400 0.0097 0.0110 0.0196 0.0317 0.1101
800 0.0035 0.0045 0.0098 0.0154 0.0443
1600 0.0034 0.0042 0.0056 0.0081 0.0264
3200 0.0009 0.0011 0.0024 0.0045 0.0068

RMSE

400 0.0675 0.0799 0.0415 0.1325 0.2825
800 0.0397 0.0492 0.0193 0.0879 0.1893
1600 0.0283 0.0342 0.0113 0.0645 0.1357
3200 0.0176 0.0212 0.0059 0.0416 0.0928

Table 1: Bias and RMSE of φ̂ and φ̂∗ under both preference specifications, and
bias and RMSE of v̂ under Epstein-Zin preferences. Results are obtained from 1000
replications of the MC design using the sample size shown and Hermite polynomial
bases for bK , pK1 and ψK2 with K = 8, K1 = 6 and K2 = 12.

CRRA Epstein-Zin

n ρ̂ ŷ L̂ ρ̂ ŷ L̂

Bias

400 0.0012 -0.0007 0.0011 0.0030 -0.0029 0.0007
800 0.0006 -0.0005 0.0004 0.0015 -0.0015 0.0004
1600 0.0004 -0.0003 0.0005 0.0010 -0.0010 0.0005
3200 0.0003 -0.0003 0.0001 0.0004 -0.0004 0.0001

RMSE

400 0.0385 0.0288 0.0251 0.0151 0.0131 0.0141
800 0.0103 0.0105 0.0061 0.0040 0.0039 0.0059
1600 0.0086 0.0086 0.0058 0.0049 0.0047 0.0059
3200 0.0050 0.0051 0.0025 0.0009 0.0009 0.0025

Table 2: Bias and RMSE of ρ̂, ŷ and L̂ under both preference specifications.
Results are obtained from 1000 replications of the MC design using the sample size
shown and Hermite polynomial bases for bK , pK1 and ψK2 with K = 8, K1 = 6 and
K2 = 12.

calculate the L2 distance between the estimators and their population counterparts, then take the

average over the MC replications. To calculate the bias we take the average of the estimators across

the MC replications, then compute the L2 distance between the average of the estimates across

MC replications and their population counterparts.20 Similar calculations are performed for ρ̂, ŷ,

and L̂.

Results of the MC exercise are presented in Tables 1 and 2. Table 1 shows that φ and φ∗ may be

estimated with small bias using a reasonably low-dimensional sieve, and that the sampling error

vanishes as the sample size increases. It is slightly surprising that the RMSEs for φ̂ under recursive

preferences are about one half of the RMSEs for φ̂ under CRRA preferences, even though with

recursive preferences the continuation value must be first estimated nonparametrically. In contrast,

20The use of the “bias” here is not to be confused with the bias term in the convergence rate calculations. There
“bias” measures how close φK and ρK are to φ and ρ. Here “bias” of an estimator refers to the distance between the
parameter and the average of its estimates across the MC replications.
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the bias for φ̂ and φ̂∗ and the RMSE for φ̂∗ is larger under recursive preferences than CRRA

preferences. The results in Table 1 show that v̂ is more difficult to estimate than φ̂ and φ̂∗, but may

be estimated with a reasonably small degree of bias in moderate samples. Appendix E presents

additional MC results under the parameterization κ = 0.3 and σ = 0.005 which yields bias and

RMSEs about one third of the values presented in Table 1.

Table 2 presents similar results for ρ̂, ŷ and L̂. The bias and RMSEs of the estimators are all

reasonably small, and are decreasing in the sample size n. As with φ̂ and φ̂∗, the RMSEs of ρ̂,

ŷ and L̂ under recursive preferences are smaller than under CRRA preferences even though the

continuation value is first estimated nonparametrically.

5.3 Empirical application

We now apply the methods developed in this paper to investigate the time-series properties and

asset pricing implications of the permanent and transitory components of the SDF under Epstein-

Zin preferences (with unit elasticity of intertemporal substitution) and CRRA preferences. As is well

known, the permanent component of the SDF under many external and internal habit formation

specifications is the same as the permanent component under CRRA preferences (Hansen, 2012;

Backus et al., 2014). Our analysis of the permanent component obtained under CRRA preferences

therefore extends to a much broader class of preferences. Two specifications of the state process

are used, namely Xt = gt and Xt = (gt, ge,t) where gt denotes the logarithm of real per capita

consumption growth and ge,t denotes the logarithm of real per capita corporate earnings growth.

Data on consumption, corporate earnings, and population were sourced from the National Income

and Product Accounts (NIPA) tables and span the period 1947:Q1 to 2012:Q4 (263 observations).

The consumption and earnings growth series are formed by taking seasonally adjusted consumption

of nondurables and services data (NIPA Table 2.3.5) and after tax corporate earnings (NIPA Table

1.12), deflating by the implicit price deflator for personal consumption expenditures (PCE; NIPA

Table 2.3.4), and then calculating per capita growth rates using the deflated series and population

data (NIPA Table 2.1). For data on the risk-free rate and market return, we take the 90-day

T-bill rate and value-weighted return on the combined NYSE/AMEX/NASDAQ index including

dividends (both from CRSP) and convert these series to real rates using the PCE deflator data.

We proxy the holding period return on a bond of infinite maturity by the quarterly return on the

30 year U.S. Treasury index (from CRSP) which we deflate using the PCE data. Finally, for GDP

data we use quarterly real seasonally adjusted data from the Federal Reserve.

The estimators ρ̂, φ̂, φ̂∗, v̂, ŷ, and L̂ are implemented as described in the simulation exercise. We

use Hermite polynomial sieves of dimension K = 8, K1 = 6, and K2 = 12 for bK , pK1 and ψK2

in the univariate case and a tensor-product sieves of dimension K = 16, K1 = 16, and K2 = 25

for bK , pK1 and ψK2 in the bivariate case. The following results were reasonably insensitive to the

choice of sieve dimension and basis.
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Figure 1: Time series of estimates of the logarithm of the SDF, its permanent com-
ponent (PC), and its transitory component (TC). Blue lines are the estimates ob-
tained under CRRA preferences and red lines are estimates obtained under Epstein-
Zin preferences with EIS = 1. Shaded bars denote NBER recession indicators. The
state variable is Xt = gt and SDF parameters are β = 0.994 and γ = 10.

For both preference and state process specifications, we construct time series of the SDF and

its permanent and transitory components by substituting the estimated ρ̂ and φ̂ (and m̂ with

Epstein-Zin preferences) into the formulae for MP
t+1/M

P
t and MT

t+1/M
T
t in (5) and (6). Time series

of the logarithm of Mt+1/Mt, M
P
t+1/M

P
t and MT

t+1/M
T
t have been plotted in Figure 1 (for the

case Xt = gt) and Figure 2 (for the case Xt = (gt, ge,t)
′).Both figures show that the permanent

components obtained under the two preference specifications are almost indistinguishable. The

Epstein-Zin SDF with EIS = 1 and β ≈ 1 is of approximately the same form as (12), because

Mt+1

Mt
= βG−γt+1

V (Xt+1)1−γ

V (Xt)(1−γ)/β
≈ βG−γt+1

V (Xt+1)1−γ

V (Xt)1−γ

when β ≈ 1. Reasoning as in Hansen (2012) and Backus et al. (2014) would then suggest that the

two SDFs should have similar permanent components. Nevertheless, it is perhaps surprising just

how indistinguishable the two permanent components are. In contrast, the time series of the SDF

under Epstein-Zin preferences is typically “rougher” than under CRRA preferences, and vice versa

for the trajectories of the transitory components.

Figures 1 and 2 also show that the both the SDF and its permanent component are countercyclical

whereas the transitory component is acyclical. The correlation between the log permanent com-

ponent series and log GDP growth is around -0.35 for both preference and state specifications.
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Figure 2: Time series of estimates of the logarithm of the SDF, its permanent com-
ponent (PC), and its transitory component (TC). Blue lines are the estimates ob-
tained under CRRA preferences and red lines are estimates obtained under Epstein-
Zin preferences with EIS = 1. Shaded bars denote NBER recession indicators. The
state variable is Xt = (gt, ge,t)

′ and SDF parameters are β = 0.994 and γ = 10.

In contrast, the correlation between the log transitory component series and log GDP growth is

approximately 0.01 with Xt = Gt and 0.06 when Xt = (Gt, Ge,t)
′. Further, the permanent and

transitory components are strongly negatively correlated (around -0.75 with CRRA preferences

and -0.6 with Epstein-Zin preferences).

We now turn to investigating whether the SDF and its permanent and transitory components are

compatible with historical returns data. The bounds (11) and (10) show that the entropy of the SDF

and the entropy of its permanent component must be at least as large as the return on assets relative

to short- and long-term (zero-coupon) bonds, respectively. The quarterly premium on the combined

market index relative to the 90-day T-bill rate and 30-year Treasury index were 1.83% and 1.54%,

respectively, over the sample period. We take these historical premia as benchmark entropy bounds,

though these bounds may be tightened further by including additional asset returns or returns on

growth-optimal portfolios. Table 3 shows that none of the preference or state specifications can

rationalize either benchmark premium despite the fact that γ = 10 might be regarded as reasonably

large. Estimates of the entropy of the permanent component of the SDF are around 0.0030 for each

preference and state specification, which is roughly one fifth of the level required to explain the

premium of 1.54%. Table 3 also reports estimates of the entropy of the SDF, which we estimate by
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Xt L(Mt+1

Mt
) L(

MP
t+1

MP
t

) Var(
MT
t+1

MT
t

) − log ρ

CRRA

gt 0.0015
(0.0010,0.0020)

0.0032
(0.0015,0.0050)

0.0012
(0.0001,0.0023)

0.0550
(0.0469,0.0631)

(gt, ge,t)
′ 0.0015

(0.0010,0.0020)
0.0026

(0.0009,0.0042)
0.0018

(0.0003,0.0034)
0.0557

(0.0475,0.0639)

Epstein-Zin, EIS= 1

gt 0.0025
(0.0014,0.0036)

0.0030
(0.0015,0.0044)

0.0001
(−0.0004,0.0006)

0.0105
(0.0093,0.0118)

(gt, ge,t)
′ 0.0024

(0.0013,0.0034)
0.0028

(0.0014,0.0043)
0.0002

(−0.0005,0.0008)
0.0107

(0.0092,0.0122)

Table 3: Nonparametric estimates of the entropy of the SDF, the entropy of the
permanent component of the SDF, the variance of the transitory component of the
SDF, and the long-run yield, under CRRA preferences and Epstein-Zin preferences
(with EIS = 1 and continuation value estimated nonparametrically) using β =
0.994 and γ = 10. 90% confidence intervals (CIs) are reported in parentheses. CIs
for L(Mt+1/Mt), L(MP

t+1/M
P
t ), and long-run yield with CRRA preferences are

asymptotic CIs: for the long-run yield are computed as described in Appendix C,
CIs for L(MP

t+1/M
P
t ) are computed as described in Appendix C using an OSLRV

estimator with a cosine basis of dimension 10; CIs for L(Mt+1/Mt) are also formed
using an OSLRV estimator with a cosine basis of dimension 10. Remaining CIs
are computed using the bootstrap percentile method from 5000 replications of the
stationary bootstrap with expected block size 6.

its sample analogue

log
(
n−1

n−1∑
t=0

m(Xt, Xt+1)
)
− n−1

n−1∑
t=0

logm(Xt, Xt+1)

under CRRA preferences; under Epstein-Zin preferences we replace m in the above display by

m̂ from (30). Estimated entropies of the SDFs are even smaller, at around 0.0015 (CRRA) and

0.0025 (Epstein-Zin). So although the Epstein-Zin specification can generate a larger SDF than the

CRRA specification, and therefore account for a larger (though still too small) premium relative to

the short-term risk-free rate, the permanent components of the SDFs under the two specifications

are of almost equal size. Both models are therefore unable to account for the historical return on

equities relative to long-term bonds under the parameterization γ = 10 and β = 0.994. Repeating

the exercise with γ = 20 yields estimates of L(MP
t+1/M

P
t ) around 0.012 under both preference and

state specifications, which is still somewhat short of the benchmark. Moreover, this shortcoming

of the C-CAPM cannot be alleviated by adding internal or external habit formation in a way that

results in transitory modifications to the pricing kernel.

The estimated long-run yield reported in Table 3 for Epstein-Zin preferences is around 1.05%
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Figure 3: Nonparametric estimates of φ and φ∗ (solid lines) obtained under CRRA
preferences and Epstein-Zin preferences (with EIS = 1 and continuation value esti-
mated nonparametrically) using β = 0.994 and γ = 10 and Xt = Gt. Dashed lines
are parametric estimates obtained assuming logGt is a Gaussian AR(1) process.

per quarter which compares favorably with historical long-term yields. For instance, the historical

average real quarterly yield on the longest maturity (either 30 or 20 year) Treasury Constant

Maturity index over the period April 1953 to December 2012 is 0.78%.21 As expected, the estimated

long-run yield with CRRA preferences, at around 5% per quarter, is much higher than historical

long-term yields. Despite the relative success of the Epstein-Zin specification in matching the level

of long-term yields, it cannot match the volatility observed in historical yield data. The bound

Var
(MT

t+1

MT
t

)
≥

(1− E[Rt+1,∞]E[R−1
t+1,∞])2

Var(Rt+1,∞)
(31)

is a consequence of the identity MT
t /M

T
t+1 = Rt+1,∞.22 Using the quarterly return on the 30 year

U.S. Treasury index as a proxy for Rt+1,∞, our estimate of the right-hand side of (31) is 0.0031. Table

3 presents the sample variance of the estimated transitory component, from which it is apparent

that the volatility of the transitory component under Epstein-Zin preferences is roughly an order

of magnitude too small (at least to the extent that our proxy for long-term yields is representative

of the historical return on a bond of infinite maturity).

21Nominal Treasury Constant Maturity yields were taken from the Federal Reserve H-15 release and converted to
real yields using the PCE deflator.

22The bound (31) obtains by substituting MT
t /M

T
t+1 = Rt+1,∞ into the bound for Var(MT

t+1/M
T
t ) reported in

Proposition 2 of Bakshi and Chabi-Yo (2012).
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Figure 4: Time series of estimates of the logarithm of the SDF, its permanent
component (PC), and its transitory component (TC) obtained under Epstein-Zin
preferences with EIS = 1, β = 0.994, γ = 10 and Xt = (gt, ge,t)

′. Blue lines are
SDF, PC, and TC extracted nonparametrically. Red lines are corresponding SDF,
PC, TC with continuation value, ρ, and φ calculated assuming Xt is a Gaussian
VAR(1) process. Shaded bars denote NBER recession indicators.

To examine how the nonparametric estimates compare with a parametric model for Xt, ρ, φ, φ∗,

the Epstein-Zin continuation value, and the quantities L(Mt+1/Mt), L(MP
t+1/M

P
t ), Var(MT

t+1/M
T
t ),

and − log ρ were estimated assuming Xt is a Gaussian VAR(1) process. Figure 4 displays nonpara-

metric estimates of φ and φ∗ for both preference specifications together with parametric estimates

assuming gt is a Gaussian AR(1) process. To obtain these estimates, for each preference specifi-

cation we calculate analytical formulae for the relevant quantities and then evaluate the formulae

at the quasi maximum likelihood estimates (QMLEs) of the VAR(1) parameters. Figure 3 shows

that the nonparametric estimates of φ and φ∗ are steeper and more nonlinear than parametric

estimates for both CRRA and Epstein-Zin preferences. The parametric estimates of the entropy

of the permanent component (0.0027 with CRRA and EZ), the entropy of the SDF (0.0016 with

CRRA and 0.0029 with EZ) and the long-run yield (0.055 with CRRA and 0.0107 with EZ) are

similar to those obtained parametrically.

It is difficult to judge from Figure 4 just how the differences between the nonparametric and para-

metric estimates of φ translate to differences in the permanent and transitory component. Therefore,

Figure 4 plots time series of the logarithm of the SDF and its permanent and transitory components

obtained under the Epstein-Zin preference specification both nonparametrically and also assuming

the state evolves as a Gaussian VAR(1) process (with the continuation value, ρ and φ calculated
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analytically and evaluated at the QMLEs). The overall trajectories of the SDF and PC are similar

when obtained parametrically and nonparametrically, though the parametric trajectories appear

somewhat less rough. The transitory components are quite different when extracted parametrically

and nonparametrically, with the transitory component obtained parametrically appearing much too

smooth. Similar results are obtained with Xt = gt. With CRRA preferences the permanent com-

ponents extracted parametrically and nonparametrically are similar, and the parametric transitory

component is again more smooth than that which is obtained nonparametrically.

6 Conclusion

This paper introduces econometric methods for performing estimation and inference on the long-

term valuation implications of dynamic asset pricing models. We introduce nonparametric sieve

estimators of the positive eigenfunction and its eigenvalue, the long-run yield, and the entropy

of the permanent component of the SDF. We establish consistency and convergence rates of the

estimators allowing for a wide variety of empirically relevant setups, and establish asymptotic nor-

mality and efficiency of the estimators for the case in which the SDF is observed. To extend the

ambit of our estimators to an important class of recursive preferences, we introduce new non-

parametric estimators of the continuation value function in Markov environments. A simulation

exercise shows that the principal eigenpair and related quantities can be estimated with a high

degree of accuracy by plugging the nonparametric estimate of the continuation value function into

the eigenvalue/eigenfunction estimators. When applied to aggregate U.S. consumption and corpo-

rate earnings data, our estimators reveal that the permanent components of the SDF obtained

under Epstein-Zin preferences with unit EIS and under CRRA preferences are remarkably similar.

Neither preference specification is able to account for historical returns on equities relative to long-

term bounds under reasonable parameterizations. We also present identification conditions and a

long-run pricing approximation for stationary, discrete-time environments which complements the

analysis of Hansen and Scheinkman (2009) for general, continuous-time environments.

The present paper may be extended along several dimensions. First, one natural extension is to

models with latent state variables. Second, the identification conditions and estimators may be

applied to study identification and estimation of other semi/nonparametric models. Third, results

of the simulation and empirical application under Epstein-Zin preferences were obtained assuming

unit EIS. Further work is required to investigate the performance of the estimators and empirical

findings under alternate elasticities of intertemporal substitution and state process specifications.

Finally, the estimators may also be applied to study valuation with a baseline stochastic growth

component.
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Supplementary Appendix to

Nonparametric Stochastic Discount Factor Decomposition

Timothy M. Christensen

December 10, 2014

This appendix contains material to support the paper “Nonparametric Stochastic Discount Factor

Decomposition”. Appendix A presents further details on the relation between the identification

and existence conditions in Section 3 and the identification and existence conditions in Hansen and

Scheinkman (2009). Appendix C contains further results on nonparametric estimation of positive

eigenfunctions. Appendix B presents formulae for ρ, φ and φ∗ for three parametric specifications

in the literature, thereby verifying Assumption 3.3 for these models. The proofs of all results in

the main text and this supplement are presented in Appendix D. Finally, Appendix E presents

additional Monte Carlo results.

A Further discussion of identification and existence conditions

A.1 Identification

To establish identification of φ, Hansen and Scheinkman (2009) impose a set of stochastic stabil-

ity conditions under which there is at most one positive eigenfunction that is germane to their

long-run approximation. We now present a version of their stochastic stability conditions that are

tailored to discrete-time environments and discuss the connection between their conditions and

the identification conditions in the present paper. Some of the identification conditions in Hansen

and Scheinkman (2009) pertain to the generator of the semigroup of conditional expectation op-

erators Ẽ[·|Xt = x] under the change of conditional probability induced by MP
t . In discrete-time

environments both multiplicative functionals and semigroups are indexed by non-negative integers.

Therefore, the “generator” in discrete-time is just the single-period distorted conditional expecta-

tion operator ψ 7→ Ẽ[ψ(X1)|X0 = x].

The following are Assumptions 6.1, 7.1, 7.2, 7.3, and 7.4 of Hansen and Scheinkman (2009) tailored

to discrete-time environments (so here the time index t takes values in the set {0, 1, . . .}).

Assumption A.1 (a) {MP
t : t ≥ 0} is a multiplicative martingale;

(b) {Mt : t ≥ 0} is a strictly positive process with probability 1;
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(c) there exists a probability measure ς̂ such that∫
Ẽ[ψ(X1)|X0 = x] dς̂(x) =

∫
ψ(x) dς̂(x)

for all bounded measurable ψ : X → R;

(d) for any Λ ∈X with ς̂(Λ) > 0,

Ẽ

[ ∞∑
t=1

χΛ(Xt)

∣∣∣∣∣X0 = x

]
> 0

for all x ∈ X ; and

(e) for any Λ ∈X with ς̂(Λ) > 0,

P̃

( ∞∑
t=1

χΛ(Xt) =∞

∣∣∣∣∣X0 = x

)
= 1

for all x ∈ X , where the probability P̃(·|X0 = x) is absolutely continuous with respect to P̃
(where P̃ is given by P̃(A) =

∫
E[(MP

t /M
P
0 )χA|X0 = x] dς̂(x) for each A ∈ Ft) conditioned

on X0 = x when restricted to Ft for each t ≥ 0.

We now discuss the relation between Assumption A.1 (i.e. Hansen and Scheinkman’s (2009) as-

sumptions in a discrete-time setting) and Assumptions 3.1, 3.2 and 3.3 in the present paper.

Part (a) is satisfied by our construction of the permanent component, and part (b) is analogous to

the condition KM(x, y) ≥ 0 a.e.-[Q⊗Q] in Assumption 3.2.

For part (c), let φ and φ∗ be as in Assumption 3.3 and normalize φ∗ such that E[φ(X0)φ∗(X0)] = 1.

Under this normalization we can define a probability measure ς̂ by ς̂(A) = E[φ(X0)φ∗(X0)χA(X0)]

for all A ∈X . We then have:∫
Ẽ[ψ(X1)|X0 = x] dς̂(x) =

∫
E
[
ρ−1m(X0, X1)

φ(X1)

φ(X0)
ψ(X1)

∣∣∣∣X0 = x

]
φ(x)φ∗(x) dQ(x)

= ρ−1E [φ∗(X0)(M(φψ)(X0))]

= ρ−1E [((M∗φ∗)(X1))φ(X1)ψ(X1)]

= E[φ∗(X1)φ(X1)ψ(X1)]

=

∫
ψ(x) dς̂(x) .

Therefore, Assumption A.1(c) is satisfied under Assumption 3.3 and our maintained assumption

of stationarity. A similar derivation is reported for continuous-time semigroups in an preliminary

2005 draft of Hansen and Scheinkman (2009), but there the stationary distribution Q is replaced

by an arbitrary measure.
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For part (d), note that ς̂(Λ) > 0 implies Q(Λ) > 0 under our construction of ς̂. Therefore, ς̂(Λ) > 0

implies φχΛ is positive on a set of positive Q measure. Moreover, by definition of Ẽ we have:

Ẽ

[ ∞∑
t=1

χΛ(Xt)

∣∣∣∣∣X0 = x

]
=

1

φ(x)

∞∑
t=1

ρ−tMt(φχΛ)(x)

≥ 1

φ(x)

∞∑
t=1

λ−tMt(φχΛ)(x)

for any λ ≥ ρ. Assumption 3.2(b) is necessary and sufficient M to be irreducible and, by definition

of irreducibility of M,
∑∞

t=1 λ
−tMt(φχΛ)(x) > 0 a.e.-[Q] holds for λ > ρ (Schaefer, 1999, p. 317).

Therefore, Assumption 3.2(b) implies Assumption A.1(d), up to the qualification “a.e.-[Q]”.

Part (e) is a Harris recurrence condition which does not translate clearly in terms of the operator

M or the kernel KM. When combined with existence of an invariant measure and irreducibility

(Assumption A.1(c) and (d), respectively), it ensures both uniqueness of ς̂ as the invariant measure

for the distorted expectations as well as φ-ergodicity, i.e.,

lim
n→∞

sup
0≤ψ≤φ

∣∣∣∣Ẽ [ ψ(Xn)

φ(Xn)

∣∣∣∣X0 = x

]
−
∫
ψ(x)

φ(x)
dς̂(x)

∣∣∣∣ = 0 a.e.-[ς̂] (32)

as n → ∞, where the supremum is taken over all measurable ψ such that 0 ≤ ψ ≤ φ (Meyn and

Tweedie, 2009, Proposition 14.3.1).

The result (32) is a discrete-time version of Proposition 7.1 in Hansen and Scheinkman (2009),

which they use to establish identification of φ. Our identification conditions alone are not enough

to obtain a convergence result like (32) (cf. Theorem 3.3). On the other hand, the conditions in

the present paper assume existence of φ∗ whereas no positive eigenfunction of the adjoint of M
is guaranteed under the conditions in Hansen and Scheinkman (2009). Indeed, for non-stationary

environments it is not even clear how to restrict the class of functions appropriately to define an

adjoint (for instance, Hansen and Scheinkman (2009) do not appear to restrict φ to belong to a

Banach space). This suggests the Harris recurrence condition is of a very different nature from

Assumption 3.3.

A.2 Existence

Hansen and Scheinkman (2009) establish existence of φ in possibly non-stationary, continuous-time

environments by appealing to the theory of ergodic Markov processes. Equivalent conditions for

discrete-time environment are now presented and compared with our identification conditions. As

with the identification conditions, we use analogues of generators and resolvents for discrete-time

semigroups where appropriate.
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Assumption A.2 (a) there exists a function V : X → R with V ≥ 1 and a finite constant a > 0

such that MV (x) ≤ aV (x) for all x ∈ X

(b) there exists a measure ν on (X ,X ) such that FχΛ(x) > 0 for any Λ ∈ X with ν(Λ) > 0,

where F is given by

Fψ(x) =
∞∑
t=0

a−(t+1)Mt(V ψ)(x)

V (x)

for a > a

(c) the operator G given by

Gψ(x) =
∞∑
t=0

λ−t((F− s⊗ ν)tψ)(x)

is bounded on the space of bounded functions, where s : X → R is a non-negative function

such that
∫
s(x) dν(x) > 0 such that Fψ(x) ≥ s(x)

∫
ψ(u) dν(u) for all ψ ≥ 0 (s exists by part

(b)), (s⊗ ν)ψ(x) := s(x)
∫
ψ(u) dν(u), and λ belongs to the spectrum of F.

Hansen and Scheinkman (2009) show that φ := VGs is a positive eigenfunction of M. Let us now

consider how these existence conditions compare with the existence conditions in the present paper.

Part (b) is satisfied under Assumption 3.2 with ν = Q whenever a > r(M) where r(M) denotes

the spectral radius of M. By positivity and irreducibility of M (cf. Assumption 3.2(a) and (b),

respectively), if Λ ∈X with Q(Λ) > 0 then

∞∑
t=1

a−tMt(V χΛ)(x) ≥
∞∑
t=1

a−tMtχΛ(x) > 0 a.e.-[Q]

where the first inequality is by positivity and the second is by irreducibility. It follows that FχΛ(x) >

0 a.e.-[Q]. This verifies part (b) (up to the qualification “a.e.-[Q]”).

On the other hand, parts (a) and (c) of Assumption A.2 seem quite different from the conditions of

Theorem 3.1. For instance, the conditions of Theorem 3.2 do not presume existence of the function

V but impose a power compactness condition. Hansen and Scheinkman (2009) do not restrict the

function space for M ex ante so there is no notion of a bounded or power-compact operator on

the space to which φ belongs. The requirement that G be bounded (or the sufficient conditions for

this provided in Hansen and Scheinkman (2009)) do not seem to translate clearly in terms of the

operator M or the kernel KM.
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B Verification of the identification conditions in some parametric

models

B.1 Exponentially affine SDF

Let Xt denote the N × 1 vector of state variables each period. Let εt+1 denote a N × 1 vector of

N(0, I) shocks that are independent of Xt. Assume Xt evolves according to

Xt+1 = AXt + σεt+1 (33)

where all the eigenvalues of the N ×N matrix A lie within the unit circle, and Σ := σσ′ is positive

definite. We also assume the SDF is of the form

m(Xt, Xt+1) = α0 exp
{
α′1Xt + α′2σεt+1

}
(34)

where α0 ∈ R and α1, α2 ∈ RN . If log consumption growth is an affine function of Xt then this SDF

specification is obtained, e.g., under Epstein-Zin preferences with unit EIS (Hansen et al., 2008)

and also under CRRA preferences.

Lemma B.1 Let {Xt} follow (33) and let the SDF be as in (34). Then: Assumption 3.1 holds for

all Lp spaces with 1 < p <∞; Assumption 3.3 holds with

φ(x) = β0 exp
{
α′1(I −A)−1x

}
φ∗(x) = β∗0 exp

{
[α′1V A

′ + α′2Σ](I −A′)−1V −1x
}

ρ = α0 exp{1
2(α′1(I −A)−1 + α′2)Σ((I −A′)−1α1 + α2)} .

for positive constants β0 and β∗0 , where V =
∑

j≥0A
jΣA′j; and Assumption 3.5 holds (and therefore

Assumption 3.2 also holds). Note that φ ∈ Lp and φ∗ ∈ Lq for all 1 ≤ p, q <∞.

B.2 Exponentially quadratic SDF

Here we maintain the dynamic specification (33) but now assume that the stochastic discount factor

is of the form

m(Xt, Xt+1) = α0 exp
{
α′1Xt + α′2σεt+1 +X ′tΓ1Xt +X ′tΓ2σεt+1

}
(35)

where α0, α1, and α2 are as in the exponentially affine case, Γ1 ∈ RN×N is symmetric with −Γ1

non-nonnegative definite, and Γ2 ∈ RN×N . This specification has been used as a reduced-form SDF

to examine the term structure of equity (see, e.g., Lettau and Wachter (2007, 2011)) and in the

extensive literature on affine term structure models. In what follows, we impose the “essentially
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affine” restriction Γ1 + 1
2Γ2ΣΓ′2 = 0 (Duffee, 2002) because of the extensive use of this restriction

in the literature.23

Lemma B.2 Let {Xt} follow (33), let the SDF be as in (35) with Γ1 + 1
2Γ2ΣΓ′2 = 0, and let all

eigenvalues of A′+Γ2Σ lie inside the unit circle. Then: Assumption 3.1 holds for all Lp spaces with

1 < p <∞; Assumption 3.3 holds with

φ(x) = β0 exp
{

[α′1 + α′2ΣΓ′2][I −A− ΣΓ′2]−1x
}

φ∗(x) = β∗0 exp
{
β∗1x− x′B∗x

}
ρ = α0 exp{1

2(α′1 + α′2(I −A))(I −A− ΣΓ′2)−1Σ(I −A′ − Γ2Σ)−1(α1 + (I −A′)α2)}

for positive constants β0 and β∗0 , where

B∗ =
1

2

((∑
j≥0

(A+ ΣΓ′2)jΣ(A′ + Γ2Σ)j
)−1
− V −1

)
β∗1 = (I − S′D−1)−1(α2 + SD−1(α1 −A′α2))

with D = SΣS′ + V −1 + 2B∗, S = A′Σ−1 + Γ2, and V =
∑

j≥0A
jΣA′j; and Assumption 3.5 holds

(and therefore Assumption 3.2 also holds). Note that φ ∈ Lp for all 1 ≤ p <∞ and φ∗ ∈ Lq for all

q ∈ (1, q̄) where q̄ = sup{q > 1 : qB∗ + 1
2V
−1 is positive definite}.

The “stability condition” requiring all eigenvalues of A′ + Γ2Σ to lie inside the unit circle implies

that (i) B∗ is the unique solution of the discrete-time algebraic Riccati equation

2B∗ = Σ−1 − V −1 − S′(2B∗ + V −1 + SΣS′))−1S (36)

and (ii) φ∗ ∈ Lq for some q > 1. If the stability condition fails then there may be multiple B∗ solving

(36) and therefore multiple φ∗ solving M∗φ∗ = ρφ∗. However, none of these φ∗ would belong to Lq

for any q > 1 because the stability condition is also a necessary condition for positive definiteness

of qB∗ + 1
2V
−1 for any q > 1 (see the proof of Lemma B.2).

B.3 Recursive preferences and stochastic volatility

The previous two examples assumed the state process was linear. We now show Assumption 3.3

is easily verified for a nonlinear example. We assume that the log consumption growth process for

gt = log(Ct/Ct−1) is:

gt+1 = (1− κ)ḡ + κgt + σv
1/2
t εt+1

vt+1 = ARG(cv, ϕv, δv)
(37)

23The essentially affine condition can be relaxed but the analysis becomes substantially more complicated.
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where εt+1 is an independent N(0, 1) random variable and ARG(cv, ϕv, δv) is an autoregressive

gamma (ARG) process of order 1 which is parameterized by (cv, ϕv, δv) (see Gourieroux and Jasiak

(2006) for details). The ARG process is a discrete-time version of the familiar continuous-time

square root process. The state vector is Xt = (gt, vt)
′.

We assume that m(Xt, Xt+1) is of the form

m(Xt, Xt+1) = α0 exp
{
α1gt+1 + α2vt + α3vt+1 + α4σv

1/2
t εt+1

}
(38)

where α1 = −1, and where α2 = α3 = 0 when σ = 0. This SDF is obtained under Epstein-Zin

preferences with EIS = 1 by following Appendix H of Backus et al. (2014).

To solve for ρ, φ, and φ∗ we conjecture solutions that are exponentially affine in Xt = (gt, vt)
′

because the characteristic function of the ARG process is exponentially affine. Further, to solve for

φ∗ we use the fact that {vt}∞t=−∞ is time reversible, and that {gt}∞t=−∞ conditioned on {vt}∞t=−∞
is time reversible because it a scalar linear process with Gaussian innovations.

Lemma B.3 Let {Xt} follow (37) and let the SDF be as in (38). Then:

φ(g, v) = β0 exp
{ α1κ

1− κ
g + β2v

}
φ∗(g, v) = β∗0 exp

{[ α1

1− κ
+ α4(1 + κ)

]
g + β∗2v

}
ρ = α0 exp {α1ḡ − δv log(1− (α3 + β2)cv)}

solve Mφ = ρφ and M∗φ∗ = ρφ∗, where

β2 =
(1 + (ξ − α3)cv − ϕv)−

√
(1 + (ξ − α3)cv − ϕv)2 − 4cv(ξ − α3ξ + ϕvα3)

2cv
β∗2 = β2 + α3 − ξ

ξ = α2 +
1

2
σ2

(
α1

1− κ
+ α4

)2

and β0 and β∗0 are positive constants.

C Additional results on estimation

In this section we derive convergence rates of the bias and variance terms, supplementary results

useful for verification of Assumption 4.3, and some additional results related to inference.
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C.1 Bias and variance calculations

Before presenting the results, it is worth emphasizing the distinction between φ+
K and φ∗K . Recall

that φ+
K(x) = bK(x)′c∗K is the eigenfunction corresponding to ρK of the adjoint of ΠKM with

respect to the subspace BK . Let φ∗K denote the eigenfunction corresponding to ρK of the adjoint

of ΠKM with respect to the space L2 (these quantities are uniquely defined for all K sufficiently

large under Assumptions 4.1 and 4.2(a)). That is,

E[φ∗K(X0)ΠKMψ(X0)] = ρKE[φ∗K(X0)ψ(X0)]

E[φ+
K(X0)ΠKMψK(X0)] = ρKE[φ+

K(X0)ψK(X0)]

for all ψ ∈ L2 and ψK ∈ BK . It follows that ΠKφ
∗
K = φ+

K . Lemma C.1 below shows that φ∗K and

φ+
K converge to φ∗ at the same rate.

As eigenfunctions are only identified up to sign and scale, for the remainder of this section we

impose the scale normalizations ‖φ‖ = 1, ‖φK‖ = 1, ‖φ̂‖ = 1, 〈φ, φ∗〉 = 1, 〈φK , φ∗K〉 = 1, and

〈φ̂, φ̂∗〉 = 1, and the sign normalizations 〈φ, φK〉 ≥ 0, 〈φ∗, φ∗K〉 ≥ 0, 〈φ∗, φ+
K〉 ≥ 0, and 〈φ̂∗, φ+

K〉 ≥ 0.

The following Lemma provides convergence rates for the bias terms. These rates bound the approx-

imation error introduced when the infinite-dimensional eigenfunction problem (4) is approximated

by the matrix eigenvector problem (19).

Lemma C.1 Let Assumptions 4.1 and 4.2(a) hold. Then there exists K̄ ∈ N such that for all

K ≥ K̄:

(a) ρK is real and simple

(b) φK is the unique eigenfunction of ΠKM corresponding to the eigenvalue ρK

(c) (ΠKM)∗ has a unique eigenfunction φ∗K corresponding to the eigenvalue ρK .

If, in addition, Assumption 4.2(b) holds:

(d) |ρK − ρ| = O(δK)

(e) ‖φK − φ‖ = O(δK).

Further, if Assumption 4.2(c) also holds:

(f) ‖φ∗K/‖φ∗K‖ − φ∗/‖φ∗‖‖ = O(δ∗K)

(h) ‖φ+
K/‖φ

+
K‖ − φ∗/‖φ∗‖‖ = O(δ∗K).
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With Lemma C.1 in hand it remains to derive convergence rates for the variance terms.

Lemma C.2 Let Assumptions 4.1, 4.2(a), and 4.3(a) hold. Then with probability approaching one:

(a) ρ̂ is real and simple

(b) ĉ ∈ RK is the unique eigenvector of Ĝ−1M̂ corresponding to the eigenvalue ρ̂

(c) ĉ∗ ∈ RK is the unique eigenvector of Ĝ−1M̂′ corresponding to the eigenvalue ρ̂.

If, in addition, Assumption 4.3(b) holds:

(d) |ρ̂− ρK | = Op(ηn,K)

(e) ‖φ̂− φK‖ = Op(ηn,K).

Further, if Assumption 4.3(c) also holds:

(f) ‖φ̂∗/‖φ̂∗‖ − φ+
K/‖φ

+
K‖‖ = Op(ηn,K).

C.2 Convergence results for matrix estimators

We now provide some sufficient conditions for Assumption 4.3 in Cases 1, 2, and 3. We derive

the results assuming {Xt} is either beta-mixing or rho-mixing because many popular models for

macroeconomic or financial time series imply this form of weak dependence. Examples include

copula-based Markov models (Chen, Wu, and Yi, 2009; Beare, 2010) and discretely sampled Markov

diffusion processes (Chen, Hansen, and Carrasco, 2010). The results presented below for beta-mixing

data use an exponential inequality for sums of weakly-dependent random matrices derived by Chen

and Christensen (2014); the results for rho-mixing data adapt arguments in Gobet et al. (2004).

We first present sufficient conditions for Assumption 4.3 in Case 1, for Ĝ and M̂ in (21) and

(22). Let b̃K(x) = G
−1/2
K bK(x) denote the orthonormalized vector of basis functions, where G

−1/2
K

denotes the inverse of the positive definite square root of GK . Let ξK = supx ‖bK(x)‖ denote the

usual measure of roughness of the sieve basis functions and let λK = 1/
√
λmin(GK) denote the

reciprocal of the square root of the minimum eigenvalue of G.

Lemma C.3 Let {Xt} be strictly stationary and exponentially beta-mixing, let E[|m(X0, X1)|r] <
∞ for some 2 ≤ r ≤ ∞, and let ξKλK(log n)/

√
n = O(1). Then:

(a) ‖Ĝ−1M̂−G−1M‖G = Op((ξKλK)1+2/r(log n)/
√
n)

(b) Assumption 4.3(b)(c) holds with ηn,K = η∗n,K = O((ξKλK)1+2/r(log n)/
√
n).
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Lemma C.4 Let {Xt} be strictly stationary and exponentially rho-mixing and let E[|m(X0, X1)|r] <
∞ for some 2 ≤ r ≤ ∞. Then:

(a) ‖Ĝ−1M̂−G−1M‖G = Op((ξKλK)1+2/r
√
K/
√
n)

(b) Assumption 4.3(b)(c) holds with ηn,K = η∗n,K = O((ξKλK)1+2/r/
√
n).

We now present sufficient conditions for Cases 2 and 3 using Ĝ and M̂ in (21) and (23).

Lemma C.5 Let {Xt} be strictly stationary and exponentially beta-mixing, let E[|m(X0, X1)|r] <
∞ for some 2 ≤ r ≤ ∞, let ( 1

n

∑n−1
t=0 (m̂(Xt, Xt+1)−m(Xt, Xt+1))2)1/2 = Op(νn) where νn = o(1),

and let ξKλK(log n)/
√
n = o(1). Then:

(a) ‖Ĝ−1M̂−G−1M‖G = Op((ξKλK)1+2/r(log n)/
√
n+ ξKλKνn)

(b) Assumption 4.3(b)(c) holds with ηn,K = η∗n,K = O((ξKλK)1+2/r(log n)/
√
n+ ξKλKνn).

Lemma C.6 Let {Xt} be strictly stationary and exponentially rho-mixing, let E[|m(X0, X1)|r] <∞
for some 2 ≤ r ≤ ∞, let ( 1

n

∑n−1
t=0 (m̂(Xt, Xt+1)−m(Xt, Xt+1))2)1/2 = Op(νn) where νn = o(1), and

let ξKλK
√
K/
√
n = o(1). Then:

(a) ‖Ĝ−1M̂−G−1M‖G = Op((ξKλK)1+2/r
√
K/
√
n+ ξKλKνn)

(b) Assumption 4.3(b)(c) holds with ηn,K = η∗n,K = O((ξKλK)1+2/r/
√
n+ ξKλKνn).

Remark C.1 Lemmas C.5 and C.6 show that the mean-square convergence rate of m̂ to m, namely

νn, affects the convergence rates of the eigenfunction estimators. With all else being equal, if νn → 0

at a slower rate then ηn,K and η∗n,K will be larger for given K (see parts (b) of Corollaries C.5 and

C.6). Moreover, larger νn means that K will have to increase more slowly with with the sample

size to verify Assumption C.1, which means δK and δ∗K will vanish more slowly as n increases.

Consequently, the convergence rates of the estimators ρ̂, φ̂ and φ̂∗ will be slower.

C.3 Sieve perturbation expansion

The following result shows that, to first order, ρ̂− ρK behaves as a linear functional of M̂− ρKĜ.

This result is used to derive the limiting distribution of ρ̂, ŷ and L̂ in Theorem 4.2, and may be

applied to derive the asymptotic distribution of ρ̂, ŷ and L̂ in Cases 2 and 3. To introduce the

following result, let Mo, Ĝo, and M̂o by obtained by pre- and post-multiplying M, Ĝ and M̂ by

G−1/2 (where G−1/2 denotes the inverse of the positive definite square root of G).
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Lemma C.7 Let ‖Ĝo − I‖ = Op(η̄n,K,1) and ‖M̂o −Mo‖ = Op(η̄n,K,2) where η̄n,K,1 = o(1), and

let Assumptions 4.1, 4.2 and 4.3 hold. Then:

ρ̂− ρK = c∗′K(M̂− ρKĜ)cK +Op((ηn,K ∨ η̄n,K,1)(η̄n,K,1 ∨ η̄n,K,2)) .

C.4 Asymptotic inference in Case 1

We now turn to providing estimators of the asymptotic variances Vρ, Vy, and VL in Case 1. The rates

of convergence in Theorem 4.1 are for estimators under the scale normalization E[φ̂(X0)2] = 1 and

E[φ̂∗(X0)φ̂(X0)] = 1. In practice the measure Q is unknown so these normalizations are infeasible.

Therefore, we let φ̂f and φ̂∗f denote φ̂ and φ̂∗ renormalized under the empirical measure, i.e.

n−1
∑n−1

t=0 φ̂
f (Xt)

2 = 1 and n−1
∑n−1

t=0 φ̂
f (Xt)φ̂

∗f (Xt) = 1. Our estimator of Vρ is

V̂ρ =
1

n

n−1∑
t=0

(
φ̂∗f (Xt)m(Xt, Xt+1)φ̂f (Xt+1)− ρ̂φ̂∗f (Xt)φ̂

f (Xt)
)2

and our estimator of Vy is V̂y = ρ̂−2V̂ρ. Estimating VL involves estimating a long-run variance. We

use an orthogonal series long-run variance (OSLRV) estimator of Phillips (2005) in conjunction with

fixed-bandwidth asymptotics as in Chen, Liao, and Sun (2012).24 Let {hj : j ≥ 0} be a continuously

differentiable orthonormal basis for L2[0, 1] (the space of measurable functions on [0, 1] that are

square-integrable with respect to Lebesgue measure), such as a cosine or Legendre polynomial basis.

Let h0 = 1 so that
∫ 1

0 hj(u) du = 0 for each j ≥ 1. For each j = 1, . . . , J , define

Λ̂j =
1√
n

n−1∑
t=0

hj

( t+ 1

n

)
ψ̂L(Xt, Xt+1)

where

ψ̂L(Xt, Xt+1) = ρ̂−1φ̂∗f (Xt)m(Xt, Xt+1)φ̂f (Xt+1)− φ̂∗f (Xt)φ̂
f (Xt)−

(
logm(Xt, Xt+1)− lmn

)
and lmn = n−1

∑n−1
t=0 logm(Xt, Xt+1). Our estimator for VL is

V̂L,J =
1

J

J∑
j=1

Λ̂2
j . (39)

In what follows we use “fixed-bandwidth asymptotics” in that we keep J fixed as n → ∞. As a

result, we will obtain
√
nV̂
−1/2
L,J (L̂ − L) →d tJ rather than the usual N(0, 1) limit obtained with

consistent long-run variance estimation.

24A considerable literature has shown that asymptotic inference with consistent kernel-based truncated-lag esti-
mators can suffer size and power distortions in finite samples, and has proposed fixed-bandwidth asymptotics as a
remedy (see, e.g., Kiefer, Vogelsang, and Bunzel (2000); Jansson (2004); Müller (2007)).
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To simplify notation, let φt := φ(Xt), let mt,t+1 := m(Xt, Xt+1), and so on.

Assumption C.1 (a) each of E[φ∗20 m0,1φ0φ1], E[φ∗20 m
2
0,1φ

2
1], and E[φ∗20 φ

2
0] are finite;

(b) ξKλK(‖φ̂∗f − φ∗‖ ∨ ‖φ̂f − φ‖) = op(1);

(c) there exists a neighborhood NK of (φ, φ∗) such that (φ̂f , φ̂∗f ) ∈ NK wpa1 and for which

sup
(f,f∗)∈NK

n−1∑
t=0

hj

( t+ 1

n

)
{φ∗tφt − f∗t ft − E[φ∗0φ0 − f∗0 f0]} = op(n

1/2)

and

sup
(f,f∗)∈NK

n−1∑
t=0

hj

( t+ 1

n

)
{mt,t+1(φ∗tφt+1 − f∗t ft+1)− E[m0,1(φ∗0φ1 − f∗0 f1)]} = op(n

1/2) ;

(d) n−1
∑n−1

t=0 hj(
t+1
n )(φ∗tmt,t+1φt+1 − E[φ∗0m0,1φ1]) = op(1); and

(e) for any (v0, v1, . . . , vJ)′ ∈ RJ+1 we have

Pr
( J⋂
j=0

{ 1√
n

n−1∑
t=0

hj

( t+ 1

n

)
ψL(Xt, Xt+1) ≤ vj

})
= Pr

( J⋂
j=0

{ 1√
n

n−1∑
t=0

hj

( t+ 1

n

)
ωt ≤ vj

})
+o(1)

where ω0, ω1, . . . , ωn−1 are i.i.d. N(0, VL) random variables.

Assumption C.1(a) ensures the individual terms in Vρ are well defined. Assumptions C.1(c)(e)

are versions of Assumption 5.2(i)(iv) of Chen et al. (2012); C.1(e) is weaker than assuming a

functional central limit theorem applies. Assumption C.1(c)(d)(e) may be verified under specific

weak dependence assumptions.

Theorem C.1 Let Assumptions 4.1, 4.2, 4.3, 4.4 and C.1(a)(b) hold. Then:

(a) V̂ρ →p Vρ and
√
nV̂
−1/2
ρ (ρ̂− ρ)→d N(0, 1)

(b) V̂y →p Vy and
√
nV̂
−1/2
y (ŷ − y)→d N(0, 1).

If, in addition, Assumption C.1(c)(d)(e) holds, then:

(c) JV̂L,J/VL →d χ
2
J and

√
nV̂
−1/2
L,J (L̂− L)→d tJ .
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D Proofs

D.1 Proof of results in the main text

If T is a bounded linear operator on a Banach space B we define its spectrum σ(T) as the complement

in C of the set of all z ∈ C for which the resolvent operator R(T, z) := (T − zI)−1 is a bounded

linear operator on B. We also let r(T) := sup{|z| : z ∈ σ(T)} denote the spectral radius of T.

Proof of Theorem 3.1. We first prove part (c). Let Mξ = λξ where ξ ∈ Lp is positive. Then

λE[ξ(X0)φ∗(X0)] = E[((Mξ)(X0))φ∗(X0)] = E[ξ(X0)((M∗φ∗)(X0))] = ρE[ξ(X0)φ∗(X0)] (40)

by Assumption 3.3. Moreover, E[ξ(X0)φ∗(X0)] > 0 because ξ and φ∗ are positive. Therefore ρ = λ,

proving (c).

For part (a), let F = {ξ ∈ Lp : Mξ = ρξ}. Clearly F 6= {0} because φ ∈ F by Assumption 3.3. If

ξ ∈ F let |ξ| denote the function given by |ξ|(x) = |ξ(x)|.

Claim 1: ξ ∈ F implies |ξ| ∈ F .

Proof of Claim 1: Since M is a positive operator (Assumption 3.2(a)), for any ξ ∈ F we have

M|ξ| ≥ |Mξ| = |ρξ| = ρ|ξ| for any ξ ∈ F which implies M|ξ| − ρ|ξ| ≥ 0 a.e.-[Q]. On the other hand,

E[φ∗(X0)((M|ξ|)(X0)− ρ|ξ|(X0))] = E[((M∗φ∗)(X0))|ξ|(X0)]− ρE[φ∗(X0)|ξ|(X0)] = 0 .

But φ∗(x) > 0 a.e.-[Q] by Assumption 3.3. Therefore, M|ξ| = ρ|ξ| whence |ξ| ∈ F , proving Claim 1.

Claim 2: ξ ∈ F implies ξ = |ξ| a.e.-[Q] or −ξ = |ξ| a.e.-[Q].

Proof of Claim 2: This is trivially true when ξ = 0, so consider ξ 6= 0. Let ξ = |ξ| on a set of

positive Q measure. We prove, by contradiction, that this implies |ξ| = ξ. Assume |ξ| 6= ξ on a set

of positive Q measure. Then |ξ| − ξ ≥ 0 a.e.-[Q] and |ξ| − ξ 6= 0. Note that M(|ξ| − ξ) = ρ(|ξ| − ξ)
(by Claim 1) and that ρ ≤ r(M) (by definition of the spectral radius). Then for any λ > r(M) we

have
(ρ/λ)

1− (ρ/λ)
(|ξ| − ξ) =

∑
n≥1

(ρ
λ

)n
(|ξ| − ξ) =

∑
n≥1

λ−nMn(|ξ| − ξ) > 0 a.e.-[Q]

by Assumption 3.2 (Schaefer, 1974, p. 337) whence |ξ| > ξ a.e.-[Q]. This contradicts the fact that

ξ = |ξ| on a set of positive Q measure. A similar proof shows that if −ξ = |ξ| holds on a set of

positive Q measure then −ξ = |ξ|, proving Claim 2.

We know by part (c) that if ζ ∈ Lp is a positive eigenfunction of M then ζ ∈ F . Define the sets

S+ = {s ∈ R : ζ ≥ sφ a.e.-[Q]} and S− = {s ∈ R : ζ ≤ sφ a.e.-[Q]}.

Claim 3: S+, S− are nonempty, closed, convex, and R = S+ ∪ S−.
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Proof of Claim 3: To prove S+ and S− are nonempty, note that we must have (−∞, 0] ⊆ S+ because

ζ is positive and φ is positive. Suppose S− is empty. Then ζ > sφ on a set of positive measure for

all s ∈ (0,∞]. But by Claim 2 this implies that ζ ≥ sφ a.e.-[Q] for all s ∈ (0,∞), which is clearly

impossible because φ > 0 a.e.-[Q]. Therefore S− is nonempty.

It is straightforward to verify that S+ and S− are convex and closed.

It remains to show R = S+ ∪ S−. Take any s ∈ R. Clearly ζ − sφ ∈ F . By Claim 2 we know that

ζ − sφ ≥ 0 a.e.-[Q] (implying s ∈ S+) or ζ − sφ ≤ 0 a.e.-[Q] (implying s ∈ S−) holds. Therefore

R = S+ ∪ S−. This completes the proof of Claim 3.

Claim 3 implies that S+ ∩S− must be nonempty. Therefore S+ ∩S− = {s∗} because S+ ∩S− must

be a singleton (otherwise ζ = sφ and ζ = s′φ with s 6= s′) and so ζ = s∗φ a.e.-[Q], proving (a).

For part (b), a similar argument to (c) shows that ρ is the only eigenvalue of M∗ with a non-negative

eigenfunction. The result then follows by similar arguments to the proof of (a).

The following theorem is originally due to Schaefer (1960). The version presented below is Theorem

3.2 on p. 318 of Schaefer (1999).

Theorem D.1 Let E be an ordered real Banach space with positive cone C, and suppose that u is

an irreducible positive endomorphism whose spectral radius r is a pole of the resolvent [of u]. Then:

i. r > 0 and r is a pole of order 1

ii. there exist positive eigenvectors, pertaining to r, of u and u′ [its adjoint]. Each positive eigen-

vector for r is quasi-interior to C, and each positive eigenvector for u′ is a strictly positive

linear form

iii. each of the following assumptions implies that the multiplicity of d(r) of r is 1: (a) C has

non-empty interior, (b) d(r) is finite, (c) E is a Banach lattice.

Proof of Theorem 3.2. For part (a), first note that Mn is compact so M has discrete spectrum

whose only limit point is zero and any nonzero eigenvalue of M is a pole of the resolvent of M
(Dunford and Schwartz, 1958, Theorem 6, p. 579). Assumptions 3.1 and 3.2(a) imply M is a

positive operator, so r(M) ∈ σ(M) (Schaefer, 1999, p. 312). Assumptions 3.1 and 3.2 also imply

that r(M) > 0 (Schaefer, 1974, p. 337). Therefore, r(M) is a pole of the resolvent of M. Further,

Assumption 3.2(b) implies M is irreducible. Existence of φ and φ∗ follows from Theorem D.1(ii).

Note ρ = r(M) because only one eigenvalue of M has a positive eigenfunction (Theorem 3.1(c)).

For part (b) we know that ρ = r(M) is a simple eigenvalue by Theorem D.1(iii). Further, ρ is

isolated because the only limit point of σ(M) is zero.
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Lemma D.1 Let the Assumptions of Theorem 3.3 hold. Then there exists ε > 0 such that |λ| ≤
(1− ε)ρ for all λ ∈ σ(M) \ {ρ}.

Proof of Lemma D.1. It follows from Theorem 3.2(b) that there exists ε > 0 such that |λ| <
(1− ε)ρ for all λ ∈ {z ∈ σ(M) : |z| 6= ρ}. It remains to show that ρ is the unique element of σ(M)

with modulus ρ. Since M is irreducible (by Assumption 3.5) it follows by Theorem V.5.4 of Schaefer

(1974) that S := {z ∈ σ(M) : |z| = ρ} consists of first-order poles of the resolvent of M. As M
has a discrete spectrum whose only limit point is zero there must be only finitely many elements

of S. Moreover, by power compactness of M, each of the first-order poles of the resolvent of M
are eigenvalues of M (Dunford and Schwartz, 1958, Theorem 6, p. 579). However, Assumption 3.5

implies that every eigenvalue λ of M with λ 6= ρ has modulus |λ| < ρ (Schaefer, 1974, Theorem 6.6,

p. 337). Therefore S = {ρ}.

Proof of Theorem 3.3. Let M = ρ−1M, whence σ(M) = ρ−1σ(M) by the spectral mapping

theorem. In particular, r(M) = 1. Note that, by construction, (φ⊗ φ∗) is the spectral projection of

M corresponding to the eigenvalue 1.

Consider the operator V = M−(φ⊗φ∗). Lemma D.1 implies that V has spectral radius r(V) ≤ 1−ε
for some ε > 0. Also note that

Vn = (M− (φ⊗ φ∗))n = Mn − (φ⊗ φ∗) = ρ−nMn − (φ⊗ φ∗)

where the second equality is because M and (φ⊗ φ∗) commute and (φ⊗ φ∗) is a projection.

Let ‖ · ‖ denote the Lp operator norm given by ‖A‖p = sup{E[|Aψ(X0)|p : E[|ψ(X0)|p] ≤ 1}. By

the Gelfand formula (Dunford and Schwartz, 1958, p. 567),

lim
n→∞

‖Vn‖1/n = r(V) ≤ 1− ε . (41)

Let {nk : k ≥ 1} ⊆ N be the maximal subset of N for which ‖Vnk‖ > 0. If this subsequence is finite

then the proof is complete. If this subsequence is infinite, then by expression (41),

lim sup
nk→∞

log ‖Vnk‖
nk

< 0 .

Therefore, there exists a finite positive constant c such that for all nk large enough,

log ‖Vnk‖ ≤ −cnk

and the result follows.
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Proof of Theorem 4.1. For parts (a) and (b), we first bound

|ρ̂− ρ| ≤ |ρ̂− ρK |+ |ρK − ρ|

‖φ̂− φ‖ ≤ ‖φ̂− φK‖+ ‖φK − φ‖ .

The desired results now follow by parts (d) and (e) of Lemmas C.1 and C.2.

For part (c), we have∥∥∥∥∥ φ̂∗

‖φ̂∗‖
− φ∗

‖φ∗‖

∥∥∥∥∥ ≤

∥∥∥∥∥ φ̂∗

‖φ̂∗‖
−

φ+
K

‖φ+
K‖

∥∥∥∥∥+

∥∥∥∥ φ+
K

‖φ+
K‖
− φ∗

‖φ∗‖

∥∥∥∥
and the result follows by Lemmas C.1(h) and C.2(f).

Proof of Corollary 4.1. Part (a) follows immediately by continuity of log(·) on a neighborhood

of ρ > 0. Part (b) then follows from part (a) by the triangle inequality, since:

|L̂− L| ≤ |y − y|+

∣∣∣∣∣n−1
n−1∑
t=0

logm(Xt, Xt+1)− E[logm(X0, X1)]

∣∣∣∣∣
with the obvious modification in Cases 2 or 3.

Proof of Corollary 4.2. Condition (iii) implies M is compact because M maps L2 into Λp0(X )

and Λp0(X ) is compactly embedded in L2(X ,X , Leb) (Triebel, 2006, Proposition 4.6, p. 197) which,

by condition (ii), is equivalent to L2(X ,X , Q). Therefore Assumption 4.1 holds.

Let ‖·‖p0 denote the norm on Λp0(X ) (see Section 2.3.1 of Chen (2007)). We may bound ‖ΠKM−M‖
using the factorization

‖ΠKM−M‖ ≤ sup
ψ∈Λp0 (X ):‖ψ‖p0 6=0

‖ΠKψ − ψ‖
‖ψ‖p0

sup
ψ∈L2:‖ψ‖6=0

‖Mψ‖p0
‖ψ‖

= O(K−p0/d)× const

where theO(K−p0/d) term is by Theorem 12.8 of Schumaker (2007) (under conditions (i)(ii)(vi)) and

the constant term is by condition (iii). This verifies Assumption 4.2(a). Assumption 4.2(b) is satis-

fied with δK = O(K−p/d) by Theorem 12.8 of Schumaker (2007) (under conditions (i)(ii)(iv)(vi)).

For Assumption 4.3, note that the minimum eigenvalue of G is uniformly bounded away from zero

and ξK = O(
√
K) under conditions (i)(ii)(vi) (see, e.g., Newey (1997)). As the data are exponen-

tially rho-mixing (condition (vii)), Lemma C.4 implies ‖Ĝ−1M̂−G−1M‖G = Op(K
(r+1)/r/

√
n) and

ηn,K = O(K(r+2)/(2r)/
√
n). Choosing K � n

rd
2rp+(2+r)d sets δK � ηn,K . Further, K(r+2)/(2r)/

√
n =

o(1) holds for this choice of K provided p > d/2. This verifies Assumption 4.3(a)(b).
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Proof of Theorem 4.2. First consider the limiting distribution for ρ̂. By Lemmas C.7 and C.1(d),

ρ̂− ρ =
1

n

n−1∑
t=0

{φ+
K(Xt)m(Xt, Xt+1)φK(Xt+1)− ρKφ+

K(Xt)φK(Xt)}

+ρK − ρ+Op((ηn,K ∨ η̄n,K,1)× (η̄n,K,1 ∨ η̄n,K,2))

=
1

n

n−1∑
t=0

{φ∗(Xt)m(Xt, Xt+1)φ(Xt+1)− ρφ∗(Xt)φ(Xt)}+ op(n
−1/2)

where the op(n
−1/2) term is by Assumption 4.4(a)(b)(c), proving (27). Part (a) is then immediate by

a central limit theorem for stationary and ergodic martingale differences (Billingsley, 1961) under

Assumption 4.4(d). Part (b) follows directly from part (a) via the delta method. For part (c), by

continuity of log on a neighborhood of ρ > 0 and (27) we have

log ρ̂− log ρ =
1

n

n−1∑
t=0

ρ−1ψρ(Xt, Xt+1) + op(n
−1/2)

and so

L̂− L =
1

n

n−1∑
t=0

ψL(Xt, Xt+1) + op(n
−1/2)

and the result follows by Assumption 4.4(e).

We first state a further assumption required to prove Theorem 4.3. Let Pn(·|x) denote the condi-

tional measure of Xn given X0 = x.

Assumption D.1 (a) P 1(·|x) has density f(·|x) with respect to Lebesgue measure

(b) there exists a probability measure Θ on (X ,X ) and n ∈ N such that Pn(A|x) ≥ Θ(A) for all

x ∈ X and A ∈X

(c) E[logm(X0, X1)2] <∞.

Assumption D.1(a) is useful for characterizing the tangent space. Assumption D.1(b) implies that

{Xt} is uniformly ergodic and phi-mixing (Doukhan, 1994, Theorem 1, p. 88). Finally, Assumption

D.1(c) just ensures that a component of VL is well defined.

Proof of Theorem 4.3. We follow arguments in Bickel and Kwon (2001) and Greenwood, Schick,

and Wefelmeyer (2001). Let B denote the space of all bounded measurable f : X ×X → R, and let

T = {h ∈ B : E[h(X0, X1)|X0 = x] = 0 for all x ∈ X}. Let f(·|x) denote the conditional density

of X1 given X0 = x. For any h ∈ T there is Nh ∈ N such that sup(x,y)∈X 2 |h(x, y)| ≤ n1/2 for

all n ≥ Nh. By Assumption D.1(a) we can define fn,h(y|x) := f(y|x){1 + n−1/2h(y, x)} which is
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non-negative for all n ≥ Nh and∫
fn,h(y|x) =

∫
X

(1 + n−1/2h(y, x))f(y|x) dy = 1 + n−1/2E[h(X0, X1)|X0 = x] = 1 .

Therefore, for every h ∈ T , fn,h is a conditional density for all n ≥ Nh.

Let Pn,h denote the distribution of {X0, X1, . . . , Xn} when the conditional distribution of Xt+1

given Xt is fn,h, and let Pn,0 denote the distribution of {X0, X1, . . . , Xn} under the true conditional

density f(y|x). A version of local asymptotic normality is known to obtain, i.e.

log
dPn,h
dPn,0

=
1√
n

n−1∑
t=0

h(Xt, Xt+1)− 1

2
E[h(X0, X1)2] + oPn,0(1)

(see Greenwood et al. (2001)) where n−1/2
∑n−1

t=0 h(Xt, Xt+1) →d N(0,E[h(X0, X1)2]) by a CLT

stationary and ergodic martingale differences (Billingsley, 1961).

For any h ∈ T define Mn,h : L2 → L2 by

Mn,hψ(x) =

∫
X
KM(x, y)(1 + n−1/2h(x, y))ψ(y) dQ(y) .

Therefore we may write:

(Mn,h −M)ψ(x) = n−1/2

∫
X
KM(x, y)h(x, y)ψ(y) dQ(y)

where ψ(x) 7→
∫
X KM(x, y)h(x, y)ψ(y) dQ(y) is a bounded operator on L2 because M is a bounded

operator on L2 and h ∈ B. Thus ‖Mn,h −M‖ = O(n−1/2) for each h ∈ T . By the proof of Lemma

C.2, for all n sufficiently large the operator Mn,h has one simple eigenvalue, say ρn,h, in the interval

[ρ− ε, ρ+ ε]. Further, by similar arguments to the proof of Lemma D.10,

ρn,h − ρ = E[φ∗(X0)(Mn,h −M)φ(X0)] + o(‖Mn,h −M‖)

⇒
√
n(ρn,h − ρ) = E[φ∗(X0)m(X0, X1)φ(X0)h(X0, X1)] + o(1)

because ‖Mn,h−M‖ = O(n−1/2). The gradient of ρ is therefore φ∗(x)m(x, y)φ(y) and its projection

onto the closure of T (under the seminorm h 7→ E[h(X0, X1)2]1/2) is

φ∗(x)m(x, y)φ(y)− E[φ∗(X0)m(X0, X1)φ(X1)|X0 = x] = ψρ(x, y) .

Therefore ψρ is the efficient influence function and Vρ = E[ψρ(X0, X1)2] is the efficiency bound for

ρ, which is attained by ρ̂. The result for y follows by continuity.

18



As shown in Example 1 of Greenwood et al. (2001),

ψm(x, y) = logm(x, y)− E[logm(X0, X1)|X0 = x]

+
∞∑
t=1

(E[logm(Xt, Xt+1)|X1 = y]− E[logm(Xt, Xt+1)|X0 = x]) (42)

is the efficient influence function for E[logm(X0, X1)]. The efficient influence function for L is

therefore ψ̃L(x, y) = ρ−1ψρ(x, y) − ψm(x, y) and E[ψ̃L(X0, X1)2] is the efficiency bound for L.

It may be verified using the telescoping property of the sum in (42) that VL = E[ψ̃L(X0, X1)2].

Therefore, L̂ is semiparametrically efficient.

D.2 Proof of results in Appendix B

In the following proofs we use the Gaussian integration formula

∫
RN

exp
{
b′x+−1

2
x′Ax

}
dx =

√
(2π)N

|A|
exp

{1

2
b′A−1b

}
where A ∈ RN×N is positive definite and b ∈ RN .

Proof of Lemma B.1. First consider φ. Conjecture a solution of the form φ(x) = β0 exp{β′1x}.
Substituting into Mφ = ρφ yields

ρβ0 exp{β′1xt} = α0β0E[exp{α′1xt + α′2σεt+1 + β′1(Axt + σεt+1)}|Xt = xt]

= α0β0 exp
{1

2
(α′2 + β′1)Σ(α2 + β1)

}
exp{(α′1 + β′1A)xt} .

Equating coefficients of xt on the left- and right-hand sides yields β′1 = α′1(I −A)−1.

Using the same ansatz for φ∗, we obtain

ρ exp{β∗′1 xt+1} = α0E[exp{α′1Xt + α′2(xt+1 −AXt) + β∗′1 Xt}|Xt+1 = xt+1]

= α0 exp{α′2xt+1}E[exp{Γ′Xt}|Xt+1 = xt+1]

where Γ = α1 −A′α2 + β∗1 . The conditional density for Xt given Xt+1 = xt+1 is

f(Xt|Xt+1 = xt+1)

=
1√

(2π)N |Σ|
exp

{
−1

2

(
x′t+1(Σ−1 − V −1)xt+1 +X ′t(A

′Σ−1A+ V −1)Xt

)
+X ′tA

′Σ−1xt+1

}
.
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It follows that

E[exp{Γ′Xt}|Xt+1 = xt+1]

=
exp

{
1
2Γ′(A′Σ−1A+ V −1)−1Γ

}√
|Σ||A′Σ−1A+ V −1|

× exp
{

Γ′(A′Σ−1A+ V −1)−1A′Σ−1xt+1

}
× exp

{
−1

2
x′t+1(Σ−1 − V −1 − Σ−1A(A′Σ−1A+ V −1)−1A′Σ−1)xt+1

}
. (43)

Cconsider the quadratic in xt+1 in (43), which must be zero if the ansatz for φ∗ is correct. Note

that σ′V −1σ = (I + ÃV Ã′)−1 = I +
∑

j≥1(−1)j(ÃV Ã′)j where Ã = σ−1A. Therefore,

I − σ′V −1σ − Ã(Ã′Ã+ V −1)−1Ã′

= −
∞∑
j=1

(−1)j(ÃV Ã′)j − ÃV −1/2(V 1/2Ã′ÃV 1/2 + I)−1V −1/2Ã′

= −
∞∑
j=1

(−1)j(ÃV Ã′)j − ÃV 1/2

 ∞∑
j=0

(−1)j(V 1/2Ã′ÃV 1/2)j

V 1/2Ã′ = 0

as required. Moreover, by the Woodbury formula for determinants we obtain:

|Σ||A′Σ−1A+ V −1| = |Σ||V −1||Σ−1||Σ +AV A′| = 1

because V = Σ +AV A′. Substituting (43) into M∗φ∗ = ρφ∗ yields

ρ exp{β∗′1 xt+1} = α0 exp

{
α′2xt+1 +

1

2
Γ′(A′Σ−1A+ V −1)−1Γ + Γ′(A′Σ−1A+ V −1)−1A′Σ−1xt+1

}
.

Using the relation (A′Σ−1A+ V −1)−1 = V − V A′V −1AV and equating the coefficients of xt+1:

β∗′1 = α′2 + [α′1 − α′2A+ β∗′1 ](A′Σ−1A+ V −1)−1A′Σ−1

= α′2 + [α′1 − α′2A+ β∗′1 ](V A′V −1)

= [α′1V A
′ + α′2Σ](I −A′)−1V −1 .

It remains to check that φ∗ corresponds to the eigenvalue ρ. By (43) and the expression for ρ it is

enough to show Γ′(A′Σ−1A+ V −1)−1Γ = (α′2 + α′1(I −A)−1)Σ(α2 + (I −A′)−1α1) where

Γ′ = α′1 − α′2A+ [α′1V A
′ + α′2Σ](I −A′)−1V −1

= [α′1(I −A)−1 + α′2](I −A)V (I −A′)−1V −1.

It therefore suffices to prove (I−A)V (I−A′)−1V −1(A′Σ−1A+V −1)−1V −1(I−A)−1V (I−A′) = Σ
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or equivalently V −1(I−A)[V +V A′Σ−1AV ](I−A′)V −1 = (I−A′)Σ−1(I−A′) which holds because:

V −1(I −A)[V + V A′Σ−1AV ](I −A′)V −1 = V −1[V (I −A′)Σ−1(I −A)V ]V −1

= (I −A′)Σ−1(I −A) .

Moreover, the joint density of (Xt, Xt+1) and the unconditional density of Xt both exist and

are strictly positive. The SDF is also strictly positive. Therefore Assumption 3.5 holds. To check

boundedness of M on Lp we use the Schur test. Consider the test functions ψ(x) = exp(a′x) and

ζ(x) = exp(b′x). By similar calculations to the above, for p ∈ (1,∞) and q = (1− p−1)−1 we have

Mψq(x) = c0 exp((α′1 + qa′A)x)

M∗ζp(x) = c∗0 exp((α′2 + [α′1 − α′2A+ pb′][V − V A′V −1AV ]A′Σ−1)x)

where c0, c
∗
0 are finite positive constants. For the Schur test to hold we need Mψq ≤ C∗0ζ

q and

M∗ζp ≤ C∗0ψp for positive constants C0 , C
∗
0 . Equivalently, we require a solution to the system:

qb = α1 + qA′a

pa = α2 + Σ−1A[V − V A′V −1AV ][α1 −A′α2 + pb] .

Substituting qb into pa and letting δ denote the sum of all terms depending on α1 and α2 (and not

on a), we have:

a = δ + Σ−1A[V − V A′V −1AV ]A′a

= δ + Σ−1(V − Σ)a− Σ−1(V − Σ)V −1(V − Σ)a

= δ + (Σ−1V − I)a− (Σ−1V − I)(I − V −1Σ)a = δ + (I − V −1Σ)a

therefore a = Σ−1V δ and b = q−1α1 +A′Σ−1V δ.

Proof of Lemma B.2. First consider φ. We substitute the ansatz φ(x) = β0 exp{β′1x} into

Mφ = ρφ and apply Γ1 + 1
2Γ2ΣΓ′2 = 0 to obtain:

ρ exp{β′1xt} = α0 exp
{

(α′1 + β′1A)xt + x′tΓ1xt +
1

2
(α′2 + β′1 + x′tΓ2)Σ(α2 + β1 + Γ′2xt)

}
= α0 exp

{
(α′1 + β′1A)xt +

1

2
(α′2 + β′1)Σ(α2 + β1) + (α′2 + β′1)ΣΓ′2xt

}
.

The expressions for φ and ρ follow by equating coefficients of xt on the left- and right-hand sides.

For φ∗, we substitute the ansatz φ∗(x) = β∗0 exp{β∗′1 x − x′B∗x} into M∗φ∗ = ρ∗φ∗. Calculating

E[·|Xt+1 = xt+1] using the time-reversed conditional distribution in the proof of Lemma B.1 and
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applying the condition Γ1 + 1
2Γ2ΣΓ′2 = 0, we obtain:

ρ∗ exp{β∗′1 xt+1 − x′t+1B
∗xt+1}

= E[α0 exp{(α′1 + β∗′1 )Xt + α′2(xt+1 −AXt) +X ′t(Γ1 −B∗)Xt +X ′tΓ2(xt+1 −AXt)}|Xt+1 = xt+1]

= α0 exp{α′2xt+1}E[exp{($′ + x′t+1Γ′2)Xt +X ′t(−1
2(Γ2ΣΓ′2 + Γ2A+A′Γ′2)−B∗)Xt}|Xt+1 = xt+1]

=
α0 exp{α′2xt+1 − 1

2x
′
t+1(Σ−1 − V −1)xt+1}√
|Σ||D|

exp

{
1

2
(x′t+1S

′ +$′)D−1(Sxt+1 +$)

}

where $ = α1 − A′α2 + β∗1 , V =
∑

j≥0A
jΣA′j , S = A′Σ−1 + Γ2, D = SΣS′ + V −1 + 2B∗,

β∗1 = (I − S′D−1)−1(α2 + SD−1(α1 −A′α2)), and B∗ solves

0 = (2B∗ + V −1)− Σ−1 + S′(SΣS′ + (2B∗ + V −1))−1S (44)

which implies

D = SΣS′ + Σ−1 − S′D−1S . (45)

Therefore, $ = (I − S′D−1)−1(α1 + (I −A′)α2). After some algebra, we obtain:

ρ = α0 exp
{1

2
(α′1 + α′2(I −A))(I − ΣS′)−1Σ(I − SΣ)−1(α1 + (I −A′)α2)

}
ρ∗ =

α0√
|Σ||D|

exp
{1

2
(α′1 + α′2(I −A))(I −D−1S)−1D−1(I − S′D−1)−1(α1 + (I −A′)α2)

}
.

We need ρ = ρ∗ to verify Assumption 3.3. Comparing the expressions for ρ and ρ∗, we see ρ = ρ∗

provided that both (I − ΣS′)−1Σ(I − SΣ)−1 = (I − D−1S)−1D−1(I − S′D−1)−1 and |Σ||D| = 1

hold. The first condition follows from taking the inverse of both its sides and using (45). Further,

by (45) and the properties of determinants of block matrices we have

|Σ−1|

∣∣∣∣∣ D S

S′ Σ−1

∣∣∣∣∣ = |D − SΣS′| = |Σ−1 − S′D−1S| = |D|

∣∣∣∣∣ D S

S′ Σ−1

∣∣∣∣∣ .
Therefore, |Σ||D| = 1 and so ρ = ρ∗.

Now, φ∗ ∈ Lq provided λmax(−qB∗− 1
2V
−1) < 0 or, equivalently, that 2B∗+V −1 > p−1V −1 where

q−1 + p−1 = 1 (the inequalities are in the sense of positive definite matrices). Rewrite (44) in terms

of Ω := 2B∗ + V −1 to give

Ω = Σ−1 − S′(SΣS′ + Ω)−1S . (46)

Consider the symmetric Stein equation

0 = (SΣ)′Ω−1(SΣ)− Ω−1 + Σ . (47)

There exists a unique positive definite solution for Ω−1 because all eigenvalues of SΣ = A′ + Γ2Σ

lie inside the unit circle and Σ is positive definite (Lancaster and Tismenetsky, 1985, Theorem 1,
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p. 451).25 We may rearrange (47) to obtain

Ω = (Σ + ΣS′Ω−1SΣ)−1

= Σ−1(Σ−1 + S′Ω−1S)−1Σ−1

= Σ−1(Σ− ΣS′(Ω + SΣS′)−1SΣ)Σ−1

which implies that Ω is the unique positive definite solution of (46). Positive definiteness of Ω

implies that Ω = 2B∗ + V −1 > p−1V −1 for all sufficiently large p > 1.

Assumption 3.5 holds by the same logic as the proof of Lemma B.1. To check boundedness of M on

Lp we use the Schur test. Consider the test functions ψ(x) = exp(a′x) and ζ(x) = exp(f ′x−x′Fx).

By similar calculations to the above, for p ∈ (1,∞) and q = (1− p−1)−1 we have

Mψq(x) = c0 exp([α′1 + qa′A+ (α′2 + qa′)ΣΓ′2]x)

M∗ζp(x) = c∗0 exp
(

(α′2 + (α′1 −A′α2 + pf ′)[SΣS′ + V −1 + 2pF ]−1S)x

+
1

2
x′[S′(SΣS′ + V −1 + 2pF )−1S + V −1 − Σ−1]x

)
where c0, c

∗
0 are finite positive constants. For the Schur test to hold we need Mψq ≤ C∗0ζ

q and

M∗ζp ≤ C∗0ψ
p for positive constants C0 , C

∗
0 . These inequalities will hold if we can choose F such

that F is negative definite and S′(SΣS′+V −1 + 2pF )−1S+V −1−Σ−1 is negative definite. Taking

F = −cI we see that S′(SΣS′ + V −1 − 2pcI)−1S + V −1 −Σ−1 < 0 for sufficiently large c (because

V −1 − Σ−1 < 0). Further, this choice of F is clearly negative definite.

Proof of Lemma B.3. Substituting the ansatz φ(g, v) = β0 exp{β1g + β2v} into Mφ = ρφ:

ρ exp{β1gt + β2vt}

= α0 exp

{
(α1 + β1)(1− κ)ḡ + (α1 + β1)κgt +

(
α2 +

1

2
(α1 + β1 + α4)2σ2

)
vt

}
× exp

{
ϕv(α3 + β2)(1− (α3 + β2)cv)

−1vt − δv log(1− (α3 + β2)cv)
}
.

Collecting coefficients, we have:

ρ = α0 exp {α1ḡ − δv log(1− (α3 + β2)cv)}

β1 =
α1κ

1− κ

β2 = α2 +
1

2
(α1 + β1 + α4)2σ2 +

ϕv(α3 + β2)

1− (α3 + β2)cv
. (48)

25In fact, the requirement that all eigenvalues of A′ + Γ2Σ lie inside the unit circle is also necessary for existence
of a positive definite solution for Ω−1, and therefore for positive definiteness of Ω = 2B∗ + V −1 (Lancaster and
Tismenetsky, 1985, Theorem 1, p. 451).
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Substituting φ∗(g, v) = β0 exp{β∗1g + β∗2v} into M∗φ∗ = ρ∗φ∗:

ρ∗ exp{β∗1gt+1 + β∗2vt+1}

= α0 exp{[−α4(1− κ) + (β∗1 − α4κ)(1− κ)]ḡ + [α1 + α4 + β∗1 − α4κ]gt+1 + α3vt+1}

× exp

{
ϕv

(
α2 + β∗2 +

1

2
(β∗1 − α4κ)2σ2

)(
1−

(
α2 + β∗2 +

1

2
(β∗1 − α4κ)2σ2

)
cv

)−1

vt+1

}

× exp

{
δv log

(
1−

(
α2 + β∗2 +

1

2
(β∗1 − α4κ)2σ2

)
cv

)}
.

Collecting coefficients, we have:

ρ∗ = α0 exp

{
α1ḡ − δv log

(
1−

(
α2 + β∗2 +

1

2
(β∗1 − α4κ)2σ2

)
cv

)}
β∗1 =

α1

1− κ
+ α4(1 + κ)

β∗2 = α3 + ϕv

(
α2 + β∗2 +

1

2
(β∗1 − α4κ)2σ2

)(
1−

(
α2 + β∗2 +

1

2
(β∗1 − α4κ)2σ2

)
cv

)−1

.(49)

Comparing ρ in the forward calculation and ρ∗ in the and reverse calculation, it is clear that ρ = ρ∗

provided

α3 + β2 = α2 + β∗2 +
1

2
(β∗1 − α4κ)2σ2 (50)

holds. Substituting (50) into (49) and rearranging yields precisely (48). Therefore, equality (50)

holds and so ρ = ρ∗.

It remains to solve the quadratic equations (48) and (49) for β2 and β∗2 , respectively. Consider (48)

first. Assuming the discriminant is positive there are two real solutions for β2. When σ = 0 we

require that β2 = 0, so we take the negative root. Similar logic applies for β∗2 .

D.3 Proof of results in Appendix C

Proof of Lemma C.1. First note that ρ is a simple isolated eigenvalue of M under Assumption

4.1 (by Theorem 3.2(c)). Therefore, there exists an ε > 0 such that |λ − ρ| > 2ε for all λ ∈ σ(M).

In what follows, let Γ denote a positively oriented circle in C centered at ρ with radius ε.

Let R(M, z) = (M − zI)−1 denote the resolvent of M evaluated at z ∈ C \ σ(M), where I is

the identity operator. Note that CR := supz∈Γ ‖R(M, z)‖ < ∞ because R(M, z) is a holomorphic

function on Γ and Γ is compact.

By Assumption 4.2(a) there exists K̄ ∈ N such that ‖ΠKM−M‖ < C−1
R for all K ≥ K̄. Therefore,

for all K ≥ K̄ the inequality

‖ΠKM−M‖ sup
z∈Γ
‖R(M, z)‖ ≤ CR‖ΠKM−M‖ < 1
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holds. It follows by Theorem IV.3.18 on p. 214 of Kato (1980) that whenever K ≥ K̄: (i) the

operator ΠKM has precisely one simple eigenvalue ρK inside Γ; (ii) Γ ⊂ (C \ σ(ΠKM)); and (iii)

σ(ΠKM) \ {ρ} lies on the exterior of Γ. Note that ρK must be real whenever K ≥ K̄ because

complex eigenvalues come in conjugate pairs. Thus, if ρK were complex-valued then its conjugate

would also be in Γ, which would contradict that ρK is the unique eigenvalue of ΠKM on the interior

of Γ. This proves (a), (b) and (c).

The proof of (e) follows some arguments from the proof of Proposition 4.2 of Gobet et al. (2004).

Take K ≥ K̄ and let PK = (φK ⊗ φ∗K) denote the spectral projection of ΠKM corresponding to

ρK . By Lemma 6.4 on p. 279 of Chatelin (1983), we have that

φ− PKφ ≤
(
−1

2πi

∫
Γ

R(ΠKM, z)

ρ− z
dz

)
(ΠKM−M)φ

and so

‖φ− PKφ‖ ≤
1

2π

∥∥∥∥(∫
Γ

R(ΠKM, z)

ρ− z
dz

)
(ΠKM−M)φ

∥∥∥∥
≤ 1

2π
(2πε)

supz∈Γ ‖R(ΠKM, z)‖
ε

‖(ΠKM−M)φ‖

≤ (supz∈Γ ‖R(ΠKM, z)‖) ‖(ΠKM−M)φ‖ . (51)

Moreover, for each z ∈ Γ we have

‖R(ΠKM, z)‖ ≤ ‖R(M, z)‖
1− ‖ΠKM−M‖CR

≤ CR
1− ‖ΠKM−M‖CR

= O(1) (52)

where the first inequality is by Theorem IV.3.17 on p. 214 of Kato (1980) and the second is by

definition of CR. This inequality holds uniformly for z ∈ Γ. Substituting (52) into (51) yields

‖φ− PKφ‖ = O(‖(ΠKM−M)φ‖)

= ρ×O(‖ΠKφ− φ‖)

= O(δK)

where the final line is by Assumption 4.2(b). Note that PK = φK ⊗ φ∗K . Again by the proof of

Proposition 4.2 of Gobet et al. (2004),

‖φ− φK‖2 ≤ 2‖φ− (φK ⊗ φK)φ‖2 ≤ 2‖φ− PKφ‖2 (53)

and so ‖φ− φK‖ = O(δK), proving (d).

The proof of part (d) is similar to the proof of Corollary 4.3 of Gobet et al. (2004). By the triangle
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inequalities, we have

|ρK − ρ| = |‖ΠKMφK‖ − ‖Mφ‖|

≤ ‖ΠKMφK −Mφ‖

≤ ‖ΠKMφK −ΠKMφ‖+ ‖ΠKMφ−Mφ‖

≤ ‖ΠKM‖‖φK − φ‖+ ρ‖ΠKφ− φ‖

which is O(δK) because ‖ΠKM‖‖φK − φ‖ = O(δK) by part (e) (‖ΠKM‖ = O(1) because M is

bounded and ΠK is a (weak) contraction) and ‖ΠKφ− φ‖ = O(δK) by Assumption 4.2(b).

For part (f), note that the spectral projection of (ΠKM)∗ = M∗ΠK corresponding to the eigenvalue

ρK is given by P ∗K = (φ∗K ⊗φK). Also note that ‖R(M∗, z)‖ = ‖R(M, z̄)‖ holds for all z ∈ Γ (where

z̄ denotes the conjugate of z) because R(M∗, z) = R(M, z̄)∗ (Kato, 1980, Theorem 6.22, p. 184)

and an operator and its adjoint have the same norm. Similarly, ‖R((ΠKM)∗, z)‖ = ‖R(ΠKM, z̄)‖
holds for all z ∈ Γ whenever K ≥ K̄. Thus, by identical arguments to the proof of part (e), we have

‖φ∗ − P ∗Kφ∗‖ ≤ O(1)× ‖((ΠKM)∗ −M∗)φ∗‖

≤ ‖M∗‖‖ΠKφ
∗ − φ∗‖

= O(δ∗K) (54)

where the final line is by Assumption 4.2(c) and boundedness of M. Now observe that∥∥∥∥ φ∗

‖φ∗‖
−

φ∗K
‖φ∗K‖

∥∥∥∥2

≤ 2

∥∥∥∥ φ∗

‖φ∗‖
−
〈 φ∗K
‖φ∗K‖

,
φ∗

‖φ∗‖

〉 φ∗K
‖φ∗K‖

∥∥∥∥2

≤ 2

∥∥∥∥ φ∗

‖φ∗‖
−
〈
φK‖φ∗K‖,

φ∗

‖φ∗‖

〉 φ∗K
‖φ∗K‖

∥∥∥∥2

=
2

‖φ∗‖2
× ‖φ∗ − P ∗Kφ∗‖2

which is O((δ∗K)2) by (54).

Finally, for part (h) we have∥∥∥∥ φ+
K

‖φ+
K‖
− φ∗

‖φ∗‖

∥∥∥∥2

≤ 2

∥∥∥∥ φ∗

‖φ∗‖
−
〈 φ+

K

‖φ+
K‖

,
φ∗

‖φ∗‖

〉 φ+
K

‖φ+
K‖

∥∥∥∥2

≤ 2

∥∥∥∥ φ∗

‖φ∗‖
−
〈
f,

φ∗

‖φ∗‖

〉 φ+
K

‖φ+
K‖

∥∥∥∥2
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for any f ∈ L2. Substituting f = φ∗
‖φ+K‖

‖φ∗‖‖φ∗K‖
and taking the square root of both sides,

∥∥∥∥ φ+
K

‖φ+
K‖
− φ∗

‖φ∗‖

∥∥∥∥ ≤
√

2

∥∥∥∥ φ∗

‖φ∗‖
−

φ+
K

‖φ∗K‖

∥∥∥∥
≤
√

2

(∥∥∥∥ φ∗

‖φ∗‖
− ΠKφ

∗

‖φ∗‖

∥∥∥∥+

∥∥∥∥ΠKφ
∗

‖φ∗‖
−

φ+
K

‖φ∗K‖

∥∥∥∥)
≤
√

2

(
‖φ∗ −ΠKφ

∗‖
‖φ∗‖

+

∥∥∥∥ φ∗

‖φ∗‖
−

φ∗K
‖φ∗K‖

∥∥∥∥)
where the final line uses the fact that φ+

K = ΠKφ
∗
K and ‖ΠK‖ = 1. By Assumption 4.2(c) and

part(f), we obtain ∥∥∥∥ φ+
K

‖φ+
K‖
− φ∗

‖φ∗‖

∥∥∥∥ ≤ √2(O(δ∗K) +O(δ∗K))

as required.

Proof of Lemma C.2. As in the proof of Lemma C.1, let Γ denote a positively oriented circle

in C centered at ρ with radius ε which separates ρ from σ(M) \ {ρ}. Since the nonzero eigenvalues

of ΠKM and ΠKM|BK are the same, it follows from the proof of Lemma C.1 that Γ separates ρK

from σ(ΠKM|BK ) \ {ρK} for all K ≥ K̄.

Claim 1: ‖R(ΠKM|BK , z)‖ ≤ ‖R(ΠKM, z)‖ for all z for which z ∈ C \ (σ(ΠKM) ∪ σ(ΠKM|BK )).

Proof of Claim 1: Fix such a z. Then for any ψK ∈ BK we have R(ΠKM|BK , z)ψK = ζK where

ζK = ζK(ψK) ∈ BK is such that ψK = (ΠKM − zI)ζK(ψK). Similarly, for any ψ ∈ L2 we

have R(ΠKM, z)ψ = ζ where ζ = ζ(ψ) ∈ L2 is such that ψ = (ΠKM − zI)ζ(ψ). Therefore,

for any ψK ∈ BK we must have ζK(ψK) = ζ(ψK), i.e., R(ΠKM|BK , z)ψK = R(ΠKM, z)ψK for all

ψK ∈ BK . Therefore,

‖R(ΠKM|BK , z)‖ := sup
ψK∈BK :‖ψK‖=1

‖R(ΠKM|BK , z)ψK‖

= sup
ψK∈BK :‖ψK‖=1

‖R(ΠKM, z)ψK‖

≤ sup
ψ∈L2:‖ψ‖=1

‖R(ΠKM, z)ψ‖ =: ‖R(ΠKM, z)‖

which proves the claim.

Note G−1M is isomorphic to the restriction of ΠKM to BK , denoted ΠKM|BK , under the inner

product (u, v) 7→ u′Gv on RK . Taking K ≥ K̄, it follows from Claim 1 and (52) in the proof of

Lemma C.1, that

sup
z∈Γ
‖R(ΠKM, z)‖ = O(1) .
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Therefore, the inequality

‖Ĝ−1M̂−G−1M‖G sup
z∈Γ
‖R(ΠKM, z)‖ < 1 (55)

holds wpa1 by Assumption 4.3(a). By Claim 1, the inequality

‖Ĝ−1M̂−G−1M‖G sup
z∈Γ
‖R(ΠKM|BK , z)‖ < 1

also hold whenever (55) holds. It follows by Theorem IV.3.18 on p. 214 of Kato (1980) that whenever

(55) holds: (i) Ĝ−1M̂ has precisely one simple eigenvalue ρ̂ inside Γ; (ii) Γ ⊂ (C \ σ(Ĝ−1M̂)); and

(iii) σ(Ĝ−1M̂) \ {ρ̂} lies on the exterior of Γ. Again, ρ̂ must be real whenever (55) holds because

complex eigenvalues come in conjugate pairs. This proves (a), (b) and (c).

For the remainder of the proof we work on the set on which (55) holds. Let P̂K denote the spectral

projection of Ĝ−1M̂ corresponding to the eigenvalue ρ̂. Note that P̂K is given by P̂Ku = ĉ(u′Gĉ∗)

for u ∈ RK . Because RK endowed with (u, v) 7→ u′Gv is isomorphic to BK under the L2 inner

product, we have, by similar arguments to the proof of Lemma C.1(d),

cK − P̂KcK ≤

(
−1

2πi

∫
Γ

R(Ĝ−1M̂, z)

ρK − z
dz

)
(Ĝ−1M̂−G−1M)cK

and so

‖cK − P̂KcK‖G ≤
ε

infz∈Γ |z − ρK |
(supz∈Γ ‖R(Ĝ−1M̂, z)‖G)‖(Ĝ−1M̂−G−1M)cK‖G . (56)

Note that infz∈Γ |z − ρK | → ε because Γ is centered at ρ and |ρ − ρK | = o(1) by Lemma C.1.

Further, when (55) holds, for each z ∈ Γ we have

‖R(Ĝ−1M̂, z)‖G ≤ ‖R(G−1M, z)‖G
1− ‖Ĝ−1M̂−G−1M‖G supz∈Γ ‖R(G−1M, z)‖G

=
‖R(ΠKM|BK , z)‖

1− ‖Ĝ−1M̂−G−1M‖G supz∈Γ ‖R(ΠKM|BK , z)‖

≤ ‖R(ΠKM, z)‖
1− ‖Ĝ−1M̂−G−1M‖G supz∈Γ ‖R(ΠKM, z)‖

= Op(1) (57)

by Assumption 4.3(a) and (52). Therefore, ‖cK − P̂KcK‖G = Op(ηn,K) by (56), (57), and Assump-

tion 4.3(b). Similar to (53) we have

‖φ̂− φK‖2 = ‖ĉ− cK‖2G ≤ ‖cK − ĉ(ĉ, cK)‖2G ≤ ‖cK − P̂KcK‖2G = Op(η
2
n,K) (58)

which proves (e).
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For part (d), we use the a similar to the proof of Lemma C.1(d) to obtain

|ρ̂− ρK | =
∣∣∣‖Ĝ−1M̂ĉ‖G − ‖G−1McK‖G

∣∣∣
≤ ‖Ĝ−1M̂ĉ−G−1McK‖G
≤ ‖Ĝ−1M̂(ĉ− cK)‖G + ‖(Ĝ−1M̂−G−1M)cK‖G
≤ ‖Ĝ−1M̂‖G‖ĉ− cK‖G +Op(ηn,K) (59)

where the final line is by Assumption 4.3(b). Moreover, Assumption 4.3(a) implies that ‖Ĝ−1M̂‖G =

Op(1), and so we obtain |ρ̂− ρK | = Op(ηn,K) by substituting (58) into (59).

Finally, for part (f), by identical arguments to the proof of (d) we have

‖c∗K − P̂ ∗KcK‖G ≤ Op(1)× ‖(Ĝ−1M̂′ −G−1M′)c∗K‖G (60)

from which it follows that∥∥∥∥∥ φ̂∗

‖φ̂∗‖
−

φ+
K

‖φ+
K‖

∥∥∥∥∥
2

≤ 2

∥∥∥∥∥ φ+
K

‖φ+
K‖
−
〈 φ̂∗

‖φ̂∗‖
,
φ+
K

‖φ+
K‖

〉 φ̂∗

‖φ̂∗‖

∥∥∥∥∥
2

≤ 2

∥∥∥∥∥ φ+
K

‖φ+
K‖
−
〈
φ̂‖φ̂∗‖,

φ+
K

‖φ+
K‖

〉 φ̂∗

‖φ̂∗‖

∥∥∥∥∥
2

= 2

∥∥∥∥ c∗K
‖c∗K‖G

− P̂ ∗K
(

c∗K
‖c∗K‖G

)∥∥∥∥2

G

= Op(1)× ‖(Ĝ−1M̂′ −G−1M′)c∗K/‖c∗K‖G‖2G

by (60). The result follows by Assumption 4.3(c).

We first present a general result for verifying Assumption 4.3. The estimators ρ̂, φ̂ and φ̂∗ are

invariant under an invertible linear transformation of the basis functions bK1, . . . , bKK . Let Mo,

Ĝo, and M̂o by obtained by pre- and post-multiplying M, Ĝ and M̂ by G−1/2 (where G−1/2

denotes the inverse of the positive definite square root of G). Under this orthogonalization:

‖Ĝ−1M̂−G−1M‖G = ‖(Ĝo)−1M̂o −Mo‖
‖(Ĝ−1M̂−G−1M)cK‖G = ‖((Ĝo)−1M̂o −Mo)vK‖

‖(Ĝ−1M̂′ −G−1M′)c∗K/‖c∗K‖G‖G = ‖((Ĝo)−1M̂o′ −Mo′)v∗K/‖v∗K‖‖
(61)

where vK = G1/2cK , v∗K = G1/2c∗K , and ‖ · ‖ denotes the Euclidean norm on RK when applied to

vectors and the spectral norm (largest singular value) when applied to matrices. Note that ‖vK‖ = 1

under the normalization ‖φK‖ = 1.

The following general result shows that the convergence rates of the terms in Assumption 4.3 may

be bounded by the individual convergence rates of Ĝo and M̂o. In what follows, let I = IK denote
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the K ×K identity matrix and let a ∨ b = max{a, b}.

Lemma D.2 Let ‖Ĝo − I‖ = op(1), let ‖M̂o −Mo‖ = op(1) and ‖Mo‖ = O(1). Then:

(a) ‖Ĝ−1M̂−G−1M‖G = op(1).

(b) If, in addition, ‖(Ĝo − I)vK‖ = Op(ηn,K,1) and ‖(M̂o −Mo)vK‖ = Op(ηn,K,2) then:

‖(Ĝ−1M̂−G−1M)cK‖G = Op(ηn,K,1 ∨ ηn,K,2)

and if ‖(Ĝo − I)v∗K/‖v∗K‖‖ = Op(η
∗
n,K,1) and ‖(M̂o′ −Mo′)v∗K/‖v∗K‖‖ = Op(η

∗
n,K,2) then:

‖(Ĝ−1M̂′ −G−1M′)c∗K/‖c∗K‖G‖G = Op(η
∗
n,K,1 ∨ η∗n,K,2) .

The condition ‖Mo‖ = O(1) is trivially satisfied whenever M is a bounded operator on L2.

Proof of Lemma D.2. Follows directly from (61) and Lemma D.3.

Lemma D.3 Let ‖Ĝo− I‖ = op(1). Then the following inequalities hold with probability approach-

ing one:

(a) ‖(Ĝo)−1M̂o −Mo‖ ≤ ‖M̂o −Mo‖+ 2‖Ĝo − I‖ × (‖Mo‖+ ‖M̂o −Mo‖)

(b) ‖((Ĝo)−1M̂o −Mo)vK‖ ≤ 2ρK‖(Ĝo − I)vK‖+ ‖(M̂o −Mo)vK‖ × (1 + 2‖Ĝo − I‖)

(c) ‖((Ĝo)−1M̂o′ −Mo′)v∗K‖ ≤ 2ρK‖(Ĝo − I)v∗K‖+ ‖(M̂o′ −Mo′)v∗K‖ × (1 + 2‖Ĝo − I‖).

Proof of Lemma D.3. The condition ‖Ĝo − I‖ = op(1) implies that the smallest and largest

eigenvalues of Ĝo are bounded between 1
2 and 2 wpa1. Whenever 1

2 ≤ λmin(Ĝo) ≤ λmax(Ĝo) ≤ 2,

we have

(Ĝo)−1M̂o −Mo = (I − (Ĝo)−1(Ĝo − I))M̂o −Mo

= M̂o −Mo − (Ĝo)−1(Ĝo − I)Mo − (Ĝo)−1(Ĝo − I)(M̂o −Mo) . (62)

Part (a) follows by the triangle inequality, noting that ‖(Ĝo)−1‖ ≤ 2 whenever λmin(Ĝo) ≥ 1
2 .

Post-multiplying (62) by vK and using the identity MovK = ρKvK yields:

((Ĝo)−1M̂o −Mo)vK = (M̂o −Mo)vK − ρK(Ĝo)−1(Ĝo − I)vK − (Ĝo)−1(Ĝo − I)(M̂o −Mo)vK

from which (b) follows by the triangle inequality. Part (c) follows similarly by replacing M̂o and

Mo in (62) by their transposes and using the identity Mo′v∗K = ρKv
∗
K .
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Lemma D.4 Let {Xt} be strictly stationary and exponentially beta-mixing and let ξKλK(log n)/
√
n =

O(1). Then:

(a) ‖Ĝo − I‖ = Op(ξKλK(log n)/
√
n)

(b) ‖(Ĝo − I)vK‖ = Op(ξKλK(log n)/
√
n) for each deterministic sequence of vectors vK ∈ RK

with ‖vK‖ = 1.

Proof of Lemma D.4. Part (a) is just Lemma 2.2 of Chen and Christensen (2014); part (b)

follows directly by definition of the spectral norm.

Lemma D.5 Let {Xt} be strictly stationary and exponentially beta-mixing, let E[|m(X0, X1)|r] <
∞ for some 2 ≤ r ≤ ∞, and let ξKλK(log n)/

√
n = O(1). Then:

(a) ‖M̂o −Mo‖ = Op((ξKλK)1+2/r(log n)/
√
n)

(b) ‖(M̂o−Mo)vK‖ = Op((ξKλK)1+2/r(log n)/
√
n) and ‖(M̂o′−Mo′)vK‖ = Op((ξKλK)1+2/r(log n)/

√
n)

for each deterministic sequence of vectors vK ∈ RK with ‖vK‖ = 1.

Proof of Lemma D.5. For part (a) we use a truncation argument in conjunction with an

exponential inequality for weakly dependent random matrices due to Chen and Christensen (2014).

Let {Tn : n ≥ 1} be a sequence of positive constants to be defined subsequently, and write

M̂o −Mo =

n−1∑
t=0

Ξ1,t,n +

n−1∑
t=0

Ξ2,t,n

where

Ξ1,t,n = n−1b̃K(Xt)m(Xt, Xt+1)̃bK(Xt+1)′χ{‖b̃K(Xt)m(Xt,Xt+1 )̃bK(Xt+1)′‖≤Tn}

−n−1E[̃bK(Xt)m(Xt, Xt+1)̃bK(Xt+1)′χ{‖b̃K(Xt)m(Xt,Xt+1 )̃bK(Xt+1)′‖≤Tn}]

Ξ2,t,n = n−1b̃K(Xt)m(Xt, Xt+1)̃bK(Xt+1)′χ{‖b̃K(Xt)m(Xt,Xt+1 )̃bK(Xt+1)′‖>Tn}

−n−1E[̃bK(Xt)m(Xt, Xt+1)̃bK(Xt+1)′χ{‖b̃K(Xt)m(Xt,Xt+1 )̃bK(Xt+1)′‖>Tn}]

and χΛ denotes the indicator function of the event Λ. Note that E[Ξ1,t,n] = 0 and ‖Ξ1,t,n‖ ≤ 2n−1Tn

by construction. Further, for any 0 ≤ t, s ≤ n− 1 we have:

E[Ξ1,t,nΞ′1,s,n] ≤ n−2ξ2
Kλ

2
KE[̃bK(Xt)m(Xt, Xt+1)m(Xs, Xs+1)̃bK(Xs)

′]

E[Ξ′1,t,nΞ1,s,n] ≤ n−2ξ2
Kλ

2
KE[̃bK(Xt+1)m(Xt, Xt+1)m(Xs, Xs+1)̃bK(Xs+1)′]
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and so, by the variational characterization of the spectral norm and the generalized Hölder inequal-

ity, we obtain:

‖E[Ξ1,t,nΞ′1,s,n]‖ ≤ sup
u,v∈RK :‖u‖,‖v‖=1

u′E[Ξ1,t,nΞ′1,s,n]v

≤ n−2ξ2
Kλ

2
KE[|m(Xt, Xt+1)|r]1/rE[|m(Xs, Xs+1)|r]1/r

× sup
u,v∈RK :‖u‖,‖v‖=1

E[|(u′b̃K(Xt))|q]1/qE[|(v′b̃K(Xs))|q]1/q

≤ n−2ξ2
Kλ

2
KE[|m(X0, X1)|r]2/r sup

u∈RK :‖u‖=1

E[|(u′b̃K(X0))|q]2/q

≤ n−2ξ2
Kλ

2
KE[|m(X0, X1)|r]2/r sup

u∈RK :‖u‖=1

(‖u‖ × ξKλK)2(q−2)/qE[(u′b̃K(X0))2]2/q

= O(n−2(ξKλK)(2r+4)/r)

because 1 = 2
r + 2

q , with the usual modification if r = 2 or r = ∞. This bound holds uniformly

for 0 ≤ t, s ≤ n − 1, and also holds for ‖E[Ξ′1,t,nΞ1,s,n]‖. It follows by Corollary 4.2 of Chen and

Christensen (2014) that ∥∥∥∥∥
n−1∑
t=0

Ξ1,t,n

∥∥∥∥∥ = Op((ξKλK)1+2/r(log n)/
√
n)

provided n−1Tn log n = O((ξKλK)1+2/r/
√
n).

Now consider the remaining term. When r = ∞ we can set Ξ2,t,n = 0 for all 0 ≤ t ≤ n − 1 and

all n by taking Tn = C(ξKλK)2 for sufficiently large C. Now consider the case 2 < r <∞. By the

triangle and Jensen inequalities,

E

[∥∥∥∥∥
n−1∑
t=0

Ξ2,t,n

∥∥∥∥∥
]
≤ 2n−1

n−1∑
t=0

E[‖b̃K(Xt)m(Xt, Xt+1)̃bK(Xt+1)′‖χ{‖b̃K(Xt)m(Xt,Xt+1 )̃bK(Xt+1)′‖>Tn}]

≤ 2

nT r−1
n

n−1∑
t=0

E[‖b̃K(Xt)m(Xt, Xt+1)̃bK(Xt+1)′‖rχ{‖b̃K(Xt)m(Xt,Xt+1 )̃bK(Xt+1)′‖>Tn}]

≤ 2(ξKλK)2r

T r−1
n

E[|m(X0, X1)|r] .

Markov’s inequality then yields∥∥∥∥∥
n−1∑
t=0

Ξ2,t,n

∥∥∥∥∥ = Op((ξKλK)2r/T r−1
n ) .

We choose Tn so that
(ξKλK)2r

T r−1
n

=
(ξKλK)1+2/r(log n)√

n

so that ‖
∑n−1

t=0 Ξ2,t,n‖ = Op((ξKλK)1+2/r(log n)/
√
n). The condition n−1Tn log n = O((ξKλK)1+2/r/

√
n)
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holds for this choice of Tn provided ξKλK(log n)/
√
n = o(1).

Part (b) follows from part (a) because ‖Av‖ ≤ ‖A‖‖v‖.

Proof of Lemma C.3. Follows from Lemmas D.3, D.4, and D.5.

Lemma D.6 Let {Xt} be strictly stationary and exponentially rho-mixing. Then:

(a) ‖Ĝo − I‖ = Op(ξKλK
√
K/
√
n)

(b) ‖(Ĝo − I)vK‖ = Op(ξKλK/
√
n) for each deterministic sequence of vectors vK ∈ RK with

‖vK‖ = 1.

Proof of Lemma D.6. Parts (a) and (b) may be proved by a slight generalization of the proof

of Lemmas 4.8 and 4.12 of Gobet et al. (2004), using supx ‖b̃K(x)‖ ≤ λK supx ‖bK(x)‖ = ξKλK .

Lemma D.7 Let {Xt} be strictly stationary and exponentially rho-mixing and let E[|m(X0, X1)|r] <
∞ for some 2 ≤ r ≤ ∞. Then:

(a) ‖M̂o −Mo‖ = Op((ξKλK)1+2/r
√
K/
√
n)

(b) ‖(M̂o −Mo)vK‖ = Op((ξKλK)1+2/r/
√
n) and ‖(M̂o′ −Mo′)vK‖ = Op((ξKλK)1+2/r/

√
n) for

each deterministic sequence of vectors vK ∈ RK with ‖vK‖ = 1.

Proof of Lemma D.7. We first prove part (b) using similar arguments to Lemmas 4.8 and 4.9 of

Gobet et al. (2004). By the covariance inequality for exponentially rho-mixing processes, we obtain:

E[‖(M̂o −Mo)vK‖2]

=
1

n2

K∑
l=1

E

(n−1∑
t=0

b̃Kl(Xt)m(Xt, Xt+1)(̃bK(Xt+1)′vK)− E[̃bKl(Xt)m(Xt, Xt+1)(̃bK(Xt+1)′vK)]

)2


≤ C

n

K∑
l=1

E
[
b̃Kl(Xt)

2m(Xt, Xt+1)2(̃bK(Xt+1)′vK)2
]

≤ C(ξKλK)2

n
E[|m(X0, X1)|r]2/rE[(̃bK(X0)′vK)2r/(r−2)](r−2)/r

≤ C(ξKλK)2+4/r

n
E[|m(X0, X1)|r]2/r (63)

where the constant C depends only upon the rho-mixing coefficients, b̃K1(x), . . . , b̃KK(x) denote

the elements of b̃K(x), and the final line is because ‖vK‖ = 1 and E[(̃bK(X0)′vK)2] = ‖vK‖2 = 1.

Chebyshev’s inequality and (63) imply ‖(M̂o −Mo)vK‖ = Op((ξKλK)1+2/r/
√
n). An identical

argument proves the result for ‖(M̂o′ −Mo′)vK‖. This completes the proof of (b). For part (a), let

33



u1, . . . , uK be an orthonormal basis for RK (with respect to the Euclidean inner product). Using

the fact that the Frobenius norm ‖ · ‖F dominates the L2 norm, we have

E[‖M̂o −Mo‖2] ≤ E[‖M̂o −Mo‖2F ]

=
K∑
k=1

E[‖(M̂o −Mo)uk‖2]

≤ CK(ξKλK)2+4/r

n
E[|m(X0, X1)|r]2/r

where the final line is by (63). Part (a) follows by Chebyshev’s inequality.

Proof of Lemma C.4. Follows from Lemmas D.3, D.6, and D.7.

Lemma D.8 Let {Xt} be strictly stationary and exponentially beta-mixing, let E[|m(X0, X1)|r] <
∞ for some 2 ≤ r ≤ ∞, let ( 1

n

∑n−1
t=0 (m̂(Xt, Xt+1)−m(Xt, Xt+1))2)1/2 = Op(νn) where νn = o(1),

and let ξKλK(log n)/
√
n = o(1). Then:

(a) ‖M̂o −Mo‖ = Op((ξKλK)1+2/r
√
K/
√
n+ ξKλKνn)

(b) ‖(M̂o−Mo)vK‖ = Op((ξKλK)1+2/r/
√
n+ξKλKνn) and ‖(M̂o′−Mo′)vK‖ = Op((ξKλK)1+2/r/

√
n+

ξKλKνn) for each deterministic sequence of vectors vK ∈ RK with ‖vK‖ = 1.

Proof of Lemma D.8. For part (a), by Lemma D.5 and the triangle inequality we have

‖M̂o−Mo‖ ≤

∥∥∥∥∥ 1

n

n−1∑
t=0

b̃K(Xt)[m̂(Xt, Xt+1)−m(Xt, Xt+1)]̃bK(Xt+1)′

∥∥∥∥∥+Op

(
(ξKλK)1+2/r log n√

n

)
.

To control the leading term,∥∥∥∥∥ 1

n

n−1∑
t=0

b̃K(Xt)[m̂(Xt, Xt+1)−m(Xt, Xt+1)]̃bK(Xt+1)′

∥∥∥∥∥
= sup

v1,v2∈RK :‖v1‖,‖v2‖=1

∣∣∣∣∣ 1n
n−1∑
t=0

(v′1b̃
K(Xt))[m̂(Xt, Xt+1)−m(Xt, Xt+1)](v′2b̃

K(Xt+1))

∣∣∣∣∣
≤ ξKλK sup

v1∈RK :‖v1‖=1

1

n

n−1∑
t=0

|(v′1b̃K(Xt))(m̂(Xt, Xt+1)−m(Xt, Xt+1))|

≤ ξKλK ×Op(νn)× sup
v1∈RK :‖v1‖=1

(
1

n

n−1∑
t=0

(v′1b̃
K(Xt))

2

)1/2

= ξKλK ×Op(νn)× sup
v1∈RK :‖v1‖=1

(
v′1Ĝ

ov1

)1/2
= ξKλK ×Op(νn)×Op(1)

where the first inequality is by Hölder’s inequality, the second is by the Cauchy-Schwarz inequality,
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and the final line is because ‖Ĝo − I‖ = op(1) under the condition ξKλK(log n)/
√
n = o(1) (by

Lemma D.4). Part (b) follows directly.

Proof of Lemma C.5. Follows from Lemmas D.3, D.4, and D.8.

Lemma D.9 Let {Xt} be strictly stationary and exponentially rho-mixing, let E[|m(X0, X1)|r] <
∞ for some 2 ≤ r ≤ ∞, let ( 1

n

∑n−1
t=0 (m̂(Xt, Xt+1)−m(Xt, Xt+1))2)1/2 = Op(νn) where νn = o(1),

and let ξKλK
√
K/
√
n = o(1). Then:

(a) ‖M̂o −Mo‖ = Op((ξKλK)1+2/r
√
K/
√
n+ ξKλKνn)

(b) ‖(M̂o−Mo)vK‖ = Op((ξKλK)1+2/r/
√
n+ξKλKνn) and ‖(M̂o′−Mo′)vK‖ = Op((ξKλK)1+2/r/

√
n+

ξKλKνn) for each deterministic sequence of vectors vK ∈ RK with ‖vK‖ = 1.

Proof of Lemma D.9. Follows by similar arguments to the proof of Lemma D.8.

Proof of Lemma C.6. Follows from Lemmas D.3, D.6, and D.9.

We present a simple lemma which is used in the proof of Lemma C.7.

Lemma D.10 Let Assumptions 4.1, 4.2 and 4.3 hold and let ‖G−1M − Ĝ−1M̂‖G = Op(η̄n,K).

Then:

ρ̂− ρK = c∗′KG(Ĝ−1M̂−G−1M)cK +Op(ηn,K η̄n,K) .

Proof of Lemma D.10. By the proof of Lemma C.2, we know that Ĝ−1M̂ has a unique simple

eigenvalue ρ̂ in the interval [ρ− ε, ρ+ ε] whenever (55) holds, which it does wpa1 under Assumption

4.3(a). For the remainder of the proof we will work on the set on which (55) holds.

Recall that the spectral projection of Ĝ−1M̂ associated with the eigenvalue ρ̂ is given by P̂K

P̂Ku = ĉ(u′Gĉ∗) for u ∈ RK . Similarly, the spectral projection of G−1M associated with the

eigenvalue ρK is given by P+
Ku = cK(u′Gc∗K) for u ∈ RK . Also recall that cK , c∗K , ĉ and ĉ∗ are

normalized such that c∗′KGcK = 1 and ĉ∗′Gĉ = 1.

Working on the set on which (55) holds, we have

ρ̂− ρK = Tr(P̂KĜ−1M̂− P+
KG−1M)

= Tr(P+
K (Ĝ−1M̂−G−1M) + (P̂K − P+

K )Ĝ−1M̂)

= c∗′KG(Ĝ−1M̂−G−1M)cK + Tr((P̂K − P+
K )Ĝ−1M̂)

by linearity of trace. It remains to show that Tr((P̂K − P+
K )Ĝ−1M̂) = Op(ηn,K η̄n,K). Using the
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inner product (u, v) = u′Gv,

Tr((P̂K − P+
K )Ĝ−1M̂)

= ρ̂− c∗KGĜ−1M̂P̂KcK + c∗′KGĜ−1M̂(P̂KcK − cK)

= ρ̂(c∗K , cK − P̂KcK) + c∗′KGĜ−1M̂(P̂KcK − cK)

= (ρ̂− ρK)(c∗K , cK − P̂KcK) + ρKc
∗′
KG(cK − P̂KcK) + c∗′KGĜ−1M̂(P̂KcK − cK)

= (ρ̂− ρK)(c∗K , cK − P̂KcK) + c∗′KGG−1M(cK − P̂KcK) + c∗′KGĜ−1M̂(P̂KcK − cK)

= (ρ̂− ρK)(c∗K , cK − P̂KcK) + (c∗K , (G
−1M− Ĝ−1M̂)(cK − P̂KcK)) .

By the Cauchy-Schwarz inequality (u, v) ≤ ‖u‖G‖v‖G, we have

|Tr((P̂K − P+
K )Ĝ−1M̂)| ≤ ‖c∗K‖G‖cK − P̂KcK‖G

(
|ρ̂− ρK |+ ‖G−1M− Ĝ−1M̂‖G

)
.

Finally, |ρ̂−ρK | = Op(ηn,K) by Lemma C.2(d), ‖cK − P̂KcK‖G = Op(ηn,K) by the proof of Lemma

C.2(e), ‖G−1M−Ĝ−1M̂‖G = Op(η̄n,K) by assumption. Finally, let Γ be as in the proof of Lemmas

C.1 and C.2. Using the integral representation for P+
K (Kato, 1980, expression (6.19) on p. 178),

we have

‖c∗K‖G = ‖P+
K‖ =

∥∥∥∥ 1

2πi

∫
Γ
R(ΠKM|BK , z) dz

∥∥∥∥ ≤ ε× sup
z∈Γ
‖R(ΠKM|BK , z)‖

which is O(1) by the proof of Lemma C.2.

Proof of Lemma C.7. Expression (61) and Lemma D.3 together imply that ‖Ĝ−1M̂−G−1M‖G =

Op(η̄n,K,1 ∨ η̄n,K,2). Lemma D.10 then provides that

ρ̂− ρK = c∗′KG(Ĝ−1M̂−G−1M)cK +Op(ηn,K × (η̄n,K,1 ∨ η̄n,K,2)) . (64)

By rotational invariance, we have

c∗′KG(Ĝ−1M̂−G−1M)cK = c∗′KG1/2(Ĝo−1M̂o −Mo)G1/2cK . (65)

As in the proof of Lemma D.3, the condition ‖Ĝo − I‖ = op(1) implies that, wpa1, the minimum

and maximum eigenvalues of Ĝo are between 1
2 and 2. We work on this set for the remainder of

the proof. Repeated substitution of Ĝo−1 = I − Ĝo−1(Ĝo − I) yields

Ĝo−1M̂o −Mo = [I − Ĝo−1(Ĝo − I)]M̂o −Mo

= M̂o − Ĝo−1(Ĝo − I)M̂o −Mo

= M̂o − [I − Ĝo−1(Ĝo − I)](Ĝo − I)M̂o −Mo

= M̂o − (Ĝo − I)M̂o + Ĝo−1(Ĝo − I)2M̂o −Mo

= M̂o − ĜoMo + (Ĝo − I)(Mo − M̂o) + Ĝo−1(Ĝo − I)2M̂o
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where

‖(Ĝo − I)(Mo − M̂o) + Ĝo−1(Ĝo − I)2M̂o‖ ≤ ‖Ĝo − I‖
(
‖M̂o −Mo‖+ 2‖Ĝo − I‖‖M̂o‖

)
.

Substituting into (65) yields

c∗′KG(Ĝ−1M̂−G−1M)cK = c∗′K(M̂− ĜG−1M)cK +Op(η̄n,K,1 × (η̄n,K,1 ∨ η̄n,K,2))

= c∗′K(M̂− ρKĜ)cK +Op(η̄n,K,1 × (η̄n,K,1 ∨ η̄n,K,2))

and the result follows by substituting into (64).

Proof of Theorem C.1. We first prove part (a). By addition and subtraction of terms,

V̂ρ − Vρ =
1

n

n−1∑
t=0

(
φ̂∗f2
t m2

t,t+1φ̂
f2
t+1 − φ

∗2
t m

2
t,t+1φ

2
t+1

)
(66)

+
1

n

n−1∑
t=0

φ∗2t m
2
t,t+1φ

2
t+1 − E[φ∗(X0)2m(X0, X1)2φ(X1)2] (67)

+
1

n

n−1∑
t=0

(
ρ̂2φ̂∗f2

t φ̂f2
t − ρ2φ∗2t φ

2
t

)
(68)

+
1

n

n−1∑
t=0

ρ2φ∗2t φ
2
t − ρ2E[φ∗(X0)2φ(X0)2] (69)

− 2

n

n−1∑
t=0

(
ρ̂φ̂∗f2

t mt,t+1φ̂
f
t φ̂

f
t+1 − ρφ

∗2
t mt,t+1φtφt+1

)
(70)

− 2

n

n−1∑
t=0

ρφ∗2t mt,t+1φtφt+1 + 2ρE[φ∗(X0)2m(X0, X1)φ(X0)φ(X1)] (71)

Terms (67), (69) and (71) are all oa.s.(1) by the ergodic theorem (the expectations exist by As-

sumption C.1(i)). Consider term (66), expanded as

1

n

n−1∑
t=0

φ∗2t m
2
t,t+1[φ̂f2

t+1 − φ
2
t+1] +

1

n

n−1∑
t=0

[φ̂∗f2
t − φ∗2t ]m2

t,t+1[φ̂f2
t+1 − φ

2
t+1] +

1

n

n−1∑
t=0

[φ̂∗f2
t − φ∗2t ]m2

t,t+1φ
2
t+1 .

Let ‖ · ‖∞ denote the sup norm, and observe that ‖f‖∞ ≤ ξKλK‖f‖ uniformly for all f ∈ BK . By

the relation (a2 − b2) = (a+ b)(a− b), we have

|(66)| ≤ ξKλK(‖φ̂f − φ‖ ∨ ‖φ̂∗f − φ∗‖)
{ 1

n

n−1∑
t=0

φ∗2t m
2
t,t+1|φ̂

f
t+1 + φt+1|

+
1

n

n−1∑
t=0

|φ̂∗ft + φ∗t |m2
t,t+1|φ̂

f
t+1 + φt+1|+

1

n

n−1∑
t=0

|φ̂∗ft + φ∗t |m2
t,t+1φ

2
t+1

}
.
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Also note that |φ̂ft +φt| ≤ 2φt + ‖φ̂f −φ‖∞ ≤ 2φt + ξKλK‖φ̂f −φ‖; a similar bound applies to φ̂∗f .

It follows by substituting into the above display and applying Assumption C.1(a)(b) that the term

in braces is Op(1), and so:

|(66)| ≤ ξKλK(‖φ̂f − φ‖ ∨ ‖φ̂∗f − φ∗‖)×Op(1) = op(1)

by Assumption C.1(b). Similar arguments may be applied to show that terms (68) and (70) are

both op(1). Therefore, V̂ρ →p Vρ and so
√
nV̂
−1/2
ρ (ρ̂ − ρ) →d N(0, 1) by Theorem 4.2(a) and the

continuous mapping theorem. Part (b) now follows immediately from part (a).

For part (c), we first write

Λ̂j = Λj +
1√
n

n−1∑
t=0

hj

(
t+ 1

n

)
(ψ̂L(Xt, Xt+1)− ψL(Xt, Xt+1))

where Λj = 1√
n

∑n−1
t=0 hj(

t+1
n )ψL(Xt, Xt+1). Let hj,t = hj

(
t+1
n

)
to simplify notation. Writing out

term-by-term, for each j = 1, . . . , J we have:

Λ̂j − Λj =

(
1√
n

n−1∑
t=0

hj,t

)
(lmn − E[logm(X0, X1)]) (72)

+
1√
n

n−1∑
t=0

hj,t(φ
∗
tφt − φ̂

∗f
t φ̂

f
t ) (73)

+ρ̂−1 1√
n

n−1∑
t=0

hj,t(φ̂
∗f
t φ̂

f
t+1 − φ

∗
tφt+1)mt,t+1 (74)

+
√
n(ρ̂−1 − ρ−1)× 1

n

n−1∑
t=0

hj,tφ
∗
tmt,t+1φt+1 . (75)

Note that n−1
∑n−1

t=0 hj,t = O(n−1) (because
∫ 1

0 hj(u) du = 0 and hj is continuously differentiable).

Term (72) is op(1) because and lmn − E[logm(X0, X1)] = oa.s.(1) by the ergodic theorem and

because n−1/2
∑n−1

t=0 hj,t = O(n−1/2). Term (73) may be rewritten as

1√
n

n−1∑
t=0

hj,t{φ∗tφt − φ̂
∗f
t φ̂

f
t − E[φ∗tφt − φ̂

∗f
t φ̂

f
t ]}+ E[φ∗tφt − φ̂

∗f
t φ̂

f
t ]

1√
n

n−1∑
t=0

hj,t

where the first term is op(1) by Assumption C.1(c) and the second term is op(1) since 1√
n

∑n−1
t=0 hj,t =

O(n−1/2) and |E[φ∗tφt − φ̂
∗f
t φ̂

f
t ]| ≤ ‖φ∗‖‖φ− φ̂f‖+ ‖φ̂f‖‖φ∗ − φ̂∗f‖ = op(1) by Assumption C.1(b).

An identical argument shows (74) is op(1). For term (75),
√
n(ρ̂−1 − ρ−1) = Op(1) by Theorem 4.2

and the delta method. It may be deduced from Assumption C.1(d) that 1
n

∑n−1
t=0 hj,tφ

∗
tmt,t+1φt+1 =

op(1), which implies that (75) is op(1).
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Thus, by the proof of Theorem 4.2(c) and Assumption C.1(e), we have

(
√
n(L̂− L), Λ̂1, . . . , Λ̂J)′ = (n−1/2

∑n−1
t=0 ψL(Xt, Xt+1),Λ1, . . . ,ΛJ)′ + op(1)

→d N(0, VL × IJ+1)

and the result follows by definition of the χ2
J and tJ distributions.

E Additional Monte Carlo results

Here we present additional MC results for the design in the body of the text. Tables 4 and 5 present

the results for cubic B-spline sieves for bK , pK1 and ψK2 . The MC mean and MC confidence bands

together with the true functions for φ and φ∗ under both preference specifications are plotted in

Figures 5 (Hermite polynomials) and 6 (B-splines; note that the vertical scale is different for each

subplot). Figures 5 and 6 show that φ and φ∗ may be estimated to a high degree of accuracy in

small samples under both preference specifications. Comparing the results in Tables 4 and 5 with

those in the main text, we see that the overall behavior of the estimates with Hermite polynomials

and B-splines is very similar.

Tables 6 and 7 present further MC results for the same design but with κ = 0.30 and σ = 0.005,

which are roughly the parameters obtained by fitting a Gaussian AR(1) to quarterly real per capita

consumption growth. Comparing the results in Tables 6 against the results presented in Tables 1

and 4, we see that the bias and RMSE for φ̂, φ̂∗ and v̂ are roughly one third of that obtained under

the parameterization κ = 0.60 and σ = 0.01. Table 7 shows that the bias for ρ̂, ŷ and L̂ order or

smaller 10−4. Surprisingly, the RMSE of ρ̂, ŷ and L̂ with κ = 0.30 and σ = 0.005 obtained using

a Hermite polynomial sieve when n = 400 are larger than under the more volatile and persistent

specification. Table 7 also shows that the Bias and RMSE of ρ̂, ŷ and L̂ for B-splines with n = 400

and for both bases with n > 400 are of a smaller order of magnitude than the Bias and RMSE with

κ = 0.30 and σ = 0.005 presented in Tables 2 and 5.
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CRRA Epstein-Zin

n φ̂ φ̂∗ φ̂ φ̂∗ v̂

Bias
400 0.0382 0.0486 0.0361 0.0869 0.1145
800 0.0182 0.0240 0.0179 0.0399 0.0465
1600 0.0051 0.0067 0.0067 0.0128 0.0265
3200 0.0010 0.0013 0.0025 0.0049 0.0070

RMSE
400 0.0884 0.1081 0.0653 0.1730 0.2853
800 0.0538 0.0664 0.0358 0.1177 0.1909
1600 0.0325 0.0395 0.0165 0.0747 0.1364
3200 0.0183 0.0219 0.0069 0.0444 0.0930

Table 4: Bias and RMSE of φ̂ and φ̂∗ under both preference specifications, as well
as bias and RMSE of v̂ under Epstein-Zin preferences. Results are obtained from
1000 replications of the MC design with κ = 0.60 and σ = 0.01 for different sample
sizes using cubic B-spline bases for bK , pK1 and ψK2 with K = 8, K1 = 6 and
K2 = 12.

CRRA Epstein-Zin

n ρ̂ ŷ L̂ ρ̂ ŷ L̂

Bias
400 0.0004 -0.0002 0.0006 0.0030 -0.0030 0.0005
800 0.0006 -0.0005 0.0003 0.0017 -0.0017 0.0005
1600 0.0003 -0.0003 0.0004 0.0010 -0.0010 0.0005
3200 0.0003 -0.0003 0.0001 0.0004 -0.0004 0.0001

RMSE
400 0.0180 0.0177 0.0119 0.0086 0.0082 0.0099
800 0.0102 0.0104 0.0058 0.0046 0.0045 0.0065
1600 0.0081 0.0082 0.0052 0.0041 0.0039 0.0054
3200 0.0050 0.0051 0.0025 0.0009 0.0010 0.0025

Table 5: Bias and RMSE of ρ̂, ŷ and L̂ under both preference specifications. Results
are obtained from 1000 replications of the MC design with κ = 0.60, σ = 0.01 for
different sample sizes using cubic B-spline bases for bK , pK1 and ψK2 with K = 8,
K1 = 6 and K2 = 12.
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Figure 5: MC results for φ̂ and φ̂∗ under both preference specifications for the
sample size n = 400. Dashed lines are pointwise 95% MC confidence intervals, solid
red line is the true φ or φ∗, and solid blue line is the pointwise mean across MC
replications. Results are obtained from 1000 replications of the MC design with
κ = 0.60 and σ = 0.01 using Hermite polynomial bases for bK , pK1 and ψK2 with
K = 8, K1 = 6 and K2 = 12. Note the vertical scales are different for each subplot.

41



−0.02 −0.01 0 0.01 0.02 0.03
0.6

0.8

1

1.2

1.4

1.6

C
R

R
A

: p
hi

−0.02 −0.01 0 0.01 0.02 0.03

0.5

1

1.5

2

C
R

R
A

: p
hi

 s
ta

r

−0.02 −0.01 0 0.01 0.02 0.03
0.85

0.9

0.95

1

1.05

1.1

1.15

E
ps

te
in

−
Z

in
: p

hi

−0.02 −0.01 0 0.01 0.02 0.03

0.5

1

1.5

2

2.5

E
ps

te
in

−
Z

in
: p

hi
 s

ta
r

Figure 6: MC plots for φ̂ and φ̂∗ under both preference specifications for the
sample size n = 400. Dashed lines are 95% MC confidence bands, solid red line is
the true φ or φ∗, and solid blue line is the pointwise mean across MC replications.
Results are obtained from 1000 replications of the MC design with κ = 0.60 and
σ = 0.01 using cubic B-spline bases for bK , pK1 and ψK2 with K = 8, K1 = 6 and
K2 = 12. Note the vertical scales are different for each subplot.
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CRRA Epstein-Zin

Sieve n φ̂ φ̂∗ φ̂ φ̂∗ v̂

Bias
HPol 400 0.0029 0.0139 0.0040 0.0139 0.0106
HPol 800 0.0002 0.0006 0.0009 0.0012 0.0013
HPol 1600 0.0001 0.0002 0.0005 0.0005 0.0027
HPol 3200 0.0001 0.0001 0.0002 0.0003 0.0017
Bspl 400 0.0286 0.0279 0.0286 0.0286 0.0360
Bspl 800 0.0126 0.0131 0.0126 0.0135 0.0151
Bspl 1600 0.0033 0.0034 0.0034 0.0034 0.0047
Bspl 3200 0.0004 0.0004 0.0004 0.0005 0.0018

RMSE
HPol 400 0.0153 0.0312 0.0112 0.0351 0.1046
HPol 800 0.0069 0.0096 0.0037 0.0126 0.0748
HPol 1600 0.0046 0.0056 0.0022 0.0080 0.0519
HPol 3200 0.0031 0.0037 0.0014 0.0053 0.0371
Bspl 400 0.0484 0.0533 0.0467 0.0562 0.1268
Bspl 800 0.0237 0.0255 0.0220 0.0277 0.0842
Bspl 1600 0.0094 0.0103 0.0074 0.0123 0.0545
Bspl 3200 0.0037 0.0044 0.0021 0.0059 0.0373

Table 6: Bias and RMSE of φ̂ and φ̂∗ under both preference specifications, as well
as bias and RMSE of v̂ under Epstein-Zin preferences. Results are obtained from
1000 replications of the MC design with κ = 0.30 and σ = 0.005 for different sample
sizes and sieves for bK , pK1 and ψK2 with K = 8, K1 = 6 and K2 = 12.

CRRA Epstein-Zin

Sieve n ρ̂ ŷ L̂ ρ̂ ŷ L̂

Bias
HPol 400 0.0013 -0.0008 0.0009 0.0014 -0.0009 0.0008
HPol 800 0.0000 -0.0000 0.0000 0.0000 -0.0000 0.0000
HPol 1600 -0.0000 0.0000 0.0000 0.0000 -0.0000 0.0000
HPol 3200 0.0001 -0.0001 -0.0000 0.0000 -0.0000 -0.0000
Bspl 400 0.0000 0.0000 0.0001 0.0001 -0.0001 0.0001
Bspl 800 0.0000 -0.0000 -0.0000 0.0000 -0.0000 0.0000
Bspl 1600 -0.0000 0.0000 0.0000 0.0000 -0.0000 0.0000
Bspl 3200 0.0001 -0.0001 -0.0000 0.0000 -0.0000 -0.0000

RMSE
HPol 400 0.0463 0.0297 0.0296 0.0419 0.0269 0.0269
HPol 800 0.0024 0.0025 0.0003 0.0003 0.0003 0.0003
HPol 1600 0.0017 0.0018 0.0002 0.0002 0.0002 0.0002
HPol 3200 0.0012 0.0013 0.0001 0.0001 0.0001 0.0001
Bspl 400 0.0050 0.0051 0.0038 0.0033 0.0032 0.0032
Bspl 800 0.0024 0.0025 0.0003 0.0003 0.0003 0.0003
Bspl 1600 0.0017 0.0018 0.0002 0.0002 0.0002 0.0002
Bspl 3200 0.0012 0.0013 0.0001 0.0001 0.0001 0.0001

Table 7: Bias and RMSE of ρ̂, ŷ and L̂ under both preference specifications. Results
are obtained from 1000 replications of the MC design with κ = 0.30, σ = 0.005 for
different sample sizes and sieves for bK , pK1 and ψK2 with K = 8, K1 = 6 and
K2 = 12.
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