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1 Introduction

Private provision of public goods is important for governments or organizations to seek private

support to cover costs of projects partially or entirely. Prominent examples include the newly

emerged crowd-funding industry, annual fundraising of nonprofit organizations such as Wikipedia

and National Public Radio (NPR).1 Because of the prevalence of provision of public goods in our

society, understanding individuals’ behaviors in private provision of public goods is an important

economic question in its own right. Moreover, inference of individuals’ behavior in contributing

to public goods could shed lights on some policy related issues such as setting appropriate

mechanism for the provision.

A large body of literature has been devoted to the study of private provision of public goods

with a focus on individual behavior. It has been documented that individuals do not always

reveal their true values toward the public good, (e.g., see Andreoni (1988), Weimann (1994) and

Olson (1965)) and that they exhibit strategic and heterogenous contributing behaviors (Oliveira

et al. (2014) and Fischbacher and Gächter (2010)). However, existing studies of individuals’

behavior mainly rely on behavioral assumptions on their beliefs or preferences, and little rigor-

ous structural and empirical work has been undertaken on private provision of public goods by

modeling individuals’ strategic behaviors and interactions explicitly. To fill the gap, we propose

a structural model of private provision of public goods, which allows individuals’ contributing

behaviors to be heterogenous and evolve over time. The model primitives including the number

of different contributing strategies, functional form for each strategy, and the transition proba-

bilities among all possible strategies are shown to be identifiable and estimable from the revealed

contribution choices of individuals. We apply our method to the data we collected in a threshold

public good experiment and provide some new evidence on private provision of public goods. The

empirical results suggest that subjects employ three contributing strategies and they strategically

respond to provision history by adjusting their preceding contributing behaviors. Furthermore,

the response is heterogenous and dependent on subjects’ contributing strategies.

This paper focuses on threshold public good games (Bergstrom et al., 1986; Cadsby and

Maynes, 1999; Croson and Marks, 2000), where the public good is provided only if the aggre-

gated contributions reach or surpass the predetermined cost (or the provision point); otherwise

contributions will be returned to individuals.2 We collect data of individual contributions from

1The Crowd-funding Industry Report’s data indicating the overall crowd-funding industry has raised $2.7

billion in 2012, across more than 1 million individual campaigns globally. In 2013 the industry is projected to

grow to $5.1 billion. Wikipedia organizes an annual fundraising campaign to support its operations, which usually

lasts from mid-November to mid-January. The total money raised increases from $94,000 in 2005 to $25 million

in 2012.
2Bagnoli and McKee (1991) find that provision point mechanism together with money back guarantee (MBG)

can potentially induce Pareto efficient outcome in a single unit provision environment.
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a threshold public good experiment. Subjects in a group with fixed membership make contribu-

tions toward a public good with predetermined cost across 10 periods, with their induced values

being randomly drawn from a uniform distribution. Subjects observe the outcome of the game,

i.e., whether the public good is provided, and not other group members’ contributions after

each period. A reduced-form analysis demonstrates that subjects contribute using heterogenous

strategies. Furthermore, they also adjust their strategies mainly based on the outcome as well

as their own strategies in the preceding period.

To further qualify the reduced-form findings and understand the interaction among individ-

uals within a group, we propose a structural model describing individuals’ behaviors in public

good provision and estimate the model using our experimental data. Our model allows the in-

dividuals to employ heterogenous contributing strategies (we label all individuals employing the

same strategy as a “type”) . In line with Fischbacher and Gächter (2010), which focus on “linear”

public goods,3 the heterogeneity in our model is originated in their beliefs about other contribu-

tors’ behaviors as well as their own preference. Both the beliefs and preferences may change over

time, hence subjects may adjust their contributing strategies based on the provision history, and

our model also allows such adjustments. Without specifying the number of different contributing

strategies, functional form of the strategies, and how individuals change their strategies ex ante,

we indicate that all these objectives can be directly recovered from individuals’ contributions.

The main requirement of our approach is that each individual participates in three public good

provision games (makes three contributions); however their induced values are not required to

be known for our analysis. The three observations for each individual enable us to apply the

recently developed results in nonclassical measurement errors, namely from that of Hu (2008), to

identify and estimate the structural model we propose. The underlying link between our model

and a model with nonclassical measurement errors is that the unobserved type of an individual

is treated as the latent variable, and her contributions are the corresponding measurements. The

main idea of our identification is that the contributions are used as instrumental variables for

the unobserved type of individuals.

We employ a two-stage procedure for estimation. First, we back out the number of type as

well as the contributing strategy for each type by a fully nonparametric approach. Second, we

use maximum likelihood estimation to estimate the transition probability among different types

based on provision history using multi-periods data. A Monte Carlo experiment demonstrates

that our proposed method performs very well for samples with a similar size as that of our

3In a standard linear public good game, subjects are asked to allocate their tokens between a private fund

that benefits only the individual investor and a group fund that generates profits for everyone. The private fund

yields a higher rate of return than the public fund for the private investor, but the public fund provides the group

with a higher total return. The marginal return for the group fund is normally set such that the social optimum

occurs when individuals give everything to the group fund, while the individuals’ optimum occurs when one keeps

all tokens in their private fund.
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experimental data. The results of estimation, using our experimental data, suggest that subjects

are of three types with different contributing strategies: types 1 and 3 contribute the least and

the most, respectively and type 2 is in the middle. We estimate the proportions of three types

to be 36.2%, 37.4%, and 26.4% for type 1, 2, and 3, respectively. The contributing strategies of

all three types are highly nonlinear, i.e., subjects with different values contribute very different

proportions of their values. Type 1 contributes comparatively lesser than type 2 and 3, whereas

the strategies of the latter two types are similar. Heterogenous behaviors in “linear” public good

games have been documented in Fischbacher et al. (2001) and Fischbacher and Gächter (2010).

These studies on linear public goods have indicated the existence of a substantial portion of

free-rider. However, in our experiment with provision point mechanism, we find that the least

generous type (type 1) still contributes a significant proportion of their induced values rather

than employ a complete free-riding strategy.

We estimate the transition among types by matrices with each element being a probability of

type k (k = 1,2,3) in the current period conditional on one’s type j (j = 1,2,3) and the outcome

of provision in the preceding period. Whether the provision is successful in the preceding period

affects all three types’ transition significantly: subjects maintain their proceeding contributing

strategies with a probability greater than 70% in response to a successful provision. By contrast,

both type 1 and 2 would adjust to higher types with a substantial probability to respond to an

unsucessful outcome. Moreover, type 2 is more “sensitive” to the pervious outcome than the

other two types. Considering the possibility that subjects’ adjustment of types is variant over

time, we estimate the model separately for the first five periods and last five periods of data and

compare the results with that estimated from all the 10 periods of data. The main findings are

from the first to the last five periods (1) the difference between types 2 and 3 diminishes; (2)

subjects are less reluctant to adjust their contributing strategies. A possible interpretation is

that subjects do learn to corporate over time.

The main contribution of our paper is to provide some new findings on individuals’ contribut-

ing strategies and how they are adjusted. A fast-growing experimental literature on private

provision of public goods focuses on investigating heterogenous behaviors of individuals, e.g.,

Oliveira et al. (2014) and Fischbacher and Gächter (2010). However, to the best of our knowl-

edge, ours is the first paper that explicitly estimates the individuals’ heterogenous strategies,

and the transition probabilities between any two strategies in private provision of public goods

without imposing behavioral assumptions on individuals’ beliefs or preferences. These estimates

in our paper constitute systematic evidence on individuals’ heterogeneity and their strategic

response to others’ behaviors as well as their own.

The novelty of our paper is that the analysis of individuals’ heterogenous behaviors is grounded

on revealed contribution choices instead of relying on prior behavioral assumptions on individu-

als’ beliefs or preferences. Moreover, individuals’ induced values are not needed for our approach
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however, only the distribution of the values is necessary. Existing studies of individuals’ het-

erogenous behavior (e.g., Fischbacher et al. (2001), Fischbacher and Gächter (2010), and ?)

mainly rely on experimental controls to classify different contributing strategies, which is either

not applicable or costly to data contexts in fields. By contrast, our approach does not specify the

number of strategies and what they are ex ante but identifies these objectives from the revealed

contributions by exploring the structural connection between individuals’ strategies and their

multiple contributions. Therefore, our approach can be applied to more general data contexts.

To our knowledge, this is the first paper that provides empirical evidences on threshold public

goods using a structural model.

Another main contribution of our paper is that contributing strategies can be estimated

without imposing a functional form or solving equilibria explicitly. This is a great advantage since

the existing studies on the threshold public good provision lack detailed analyses on individuals’

contributing strategies, partially due to the difficulty of deriving an analytical solution. There are

several attempts to characterize the Bayesian-Nash equilibrium for two-player’s threshold public

good provision game (e.g., Alboth et al. (2001), Barbieri and Malueg (2008), and Laussel and

Palfrey (2003)). However, once the group size grows to three or more, an analytical solution is

almost impossible without much more stringent assumptions. The possible non-equilibrium and

heterogenous contributing strategies of individuals might be rationalized by various behavioral

models, e.g., level-k thinking (Crawford and Iriberri, 2007) or cognitive hierarchy (Camerer et

al., 2004). Therefore, our paper sheds some lights on the analysis of non-equilibrium behavior

without imposing too many structural restrictions. Furthermore, our paper contributes to the

public good learning literature (Clemens and Riechmann, 2002; Healy, 2006). Our learning

results show individuals will adjust their contributions based on the history of outcome and their

own strategies and such learning adjustments are contingent on unobserved individual types.

The methodology of this paper is related to some recent studies of unobserved heterogeneity

in environments of strategic interactions using results of measurement errors (e.g. Hu (2008)

and Hu and Schennach (2008)). For example, Li et al. (2000), Krasnokutskaya (2011) and Hu

et al. (2013a) consider auction models unobserved heterogeneity. Hu et al. (2013b) use bandit

experiments to nonparametrically estimate the learning rule using auxiliary measurements of

beliefs. Xiao (2013) considers multiple equilibria in static and dynamic games. The connection

between the unobserved heterogeneity and observables in these studies is similar to our paper.

Nevertheless, to the best of our knowledge this paper is the first study of private provision of

public goods with rigorous identification and estimation in a framework of measurement errors.

This paper is organized as follow. Section 2 provides an overview of the experiment and the

data, and further presents some reduced-form evidences for subjects’ heterogenous contributing

strategies and learning. Section 3 proposes a structural model of threshold public goods with het-

erogenous subjects and shows the model is nonparametrically identifiable and estimable. Section
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4 conducts Monte Carlo experiments to illustrate our method. Section 5 presents the estimated

results for our experimental data. Section 6 concludes. Proofs, tables, figures and experiment

instructions are collected in the Appendix.

2 The Experiment and Data

We conducted six experiment sessions in the CANR (College of Agriculture and Natural Re-

sources) Lab, University of Connecticut (UConn). Subjects were recruited primarily through

UConn Daily Digest where we advertised requesting volunteer participation in economic experi-

ments. Our subject pool consist mostly undergraduates and a few graduate students from various

academic majors who have indicated a willingness to participate in economic experiments. We

checked the participants names and email addresses, before confirming their attendance, to ensure

each subject participated only once in this sequence of experiments. We conduct experiments

through networked computer terminals using z-Tree (Fischbacher (2007)). Inter-participant com-

munications during the experiment were prohibited and subjects could not observe each others

choices. Experiment instructions were read aloud and the group size was kept constant at five.

Each experiment session consist two groups and the group memberships are kept the same during

the 10 decision periods, i.e., individuals know that they will play with the same people during

the 10-periods experiment.

Our experiment uses provision point mechanism where each individual is asked to contribute

according to the induced value. Furthermore, each individual is asked to enter their subjective

probability, from 0 to 1, to indicate how likely they think their group will provide the public goods.

After each decision period, we randomly re-assigned the induced value. At the beginning of each

decision period, individuals were told their induced values, which simulate the valuations for the

public goods. Induced values followed a uniform distribution on the interval [7.95,20.05) and

are rounded to one decimal place. Subjects know the value distribution and their own induced

values, however, not the induced value of the others. The unit cost, c, is public information.

After each decision period, subjects will be informed the provision result and their own profits

but not others’ profit in the last period. We set the provision cost for one unit equal to 60%

of the expected induced value for an individual times the number of all individuals in a session;

thus, the cost is 60%∗14∗5 = 42. A total of 60 subjects participated in the treatment, producing

600 individual level observations. Individuals receive an average earning of about $20. Actual

earnings vary across individuals and sessions.

Table 1 presents simple summary statistics of the data. In each column (period), the variable

“Provided” is a binary variable indicating the outcome of the public good game: provided=1 if

provided and 0 otherwise.; “Contr./Value” is defined as the ratio of contribution over value. The
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table demonstrates that the proportion of groups that successfully provide the public good varies

a lot across period with the minimum 0.333 and the maximum 0.833 even though the change of

value and contribution is relatively small. The ratio of contribution to value ranges from 0.569

to 0.661, which implies variation of subjects’ contributing behavior.

[Table 1 is about here.]

2.1 A preliminary analysis of data

We provide a preliminary analysis of the data to show that subjects are heterogenous in their

contributing strategies, which might be varying across periods too. Let bi and vi be subject i’s

contribution and value respectively, and wt−s, s = 1,2, ... be a dummy variable of outcome, which

equals to 1 if the public good is provided by the group in period t−s and zero otherwise. Denote

pi ∈ [0,1] subjective i’s subject belief on the probability that the good would be provided. To

investigate an aggregated pattern of the data, we run a linear regression of contributions on

values, periods, beliefs as well as the interactions terms as follows:

bi = α0 + α1vi + α2t + α3pi + α4vi ∗ t + α5vi ∗ pi + α6t ∗ pi + ui. (1)

The results are presented in Table 2. Predictably, subjects’ values are important for their contri-

butions and on average a subject contributes approximately 50%-60% of her value. The effects

of beliefs on contributions are positive and significant, which implies that one tends to corporate

if she believes other group members would corporate. The evidence is consistent with the em-

pirical findings in Fischbacher and Gächter (2010) for linear public goods provision games. We

find that the period is insignificant and the magnitude is small. This result indicates that the

overall contributing behavior does not change over time.

As subjects observe the outcomes in previous periods in the game, dependence between

their contributing behavior in two consecutive periods may exist. For this purpose, we further

analyze the data by period. Let bit, vit and pit be subject i’s contribution, induced value and

belief in period t, respectively. Figure 1 illustrates the relationship between subjects’ value vit
and contribution bit conditional on the outcome wt−1 in the preceding period. The blue and

red markers are for wt−1 = 1 and wt−1 = 0, respectively. There are two important observations

regarding this figure: First, for a given outcome the relationship between value and contribution

varies across periods. For example, the blue markers are concentrated in period 5, however,

they are scattered in period 9, implying that contributing behavior in those two periods are

distinctive. Second, the relationship between value and contribution is different across outcomes;

e.g., in period 2 those subjects who had a successful outcome in period 1 contribute relatively
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less: for a given value, contributions indicated by the blue markers are smaller than the red ones.

However, such a pattern is less obvious for period 3. A possible interpretation is that subjects

respond to the preceding period’s different outcomes differently and such response could also be

distinctive across subjects and/or periods.

[Figure 1 is about here.]

To further explore the observations in Figure 1 quantitatively, we consider a linear regression

model by period:

bit = β0 + β1vit + β2wt−1 + β3wt−2 + β4wt−1 ∗ ri,t−1 + β5wt−2 ∗ ri,t−2 + εit, t = 1,2,⋯,10, (2)

where the ratio of contribution to value ri,t ≡ bi,t/vi,t is an approximation of the contributing

strategy of subject i at period t. In this regression equation, β1 describes how subjects’ value

affects their contribution after controlling for other factors. The coefficient β2 and β3 captures

how subjects respond to the different outcomes of period t−1 and t−2 respectively , and β4 and

β5 summarizes how subjects with different contributing strategies respond the previous periods’

outcome distinctively.

Table 3 provides the regression results for 10 periods. Being consistent with the results of

regression (1), induced value is significant in determining subjects’ contribution across all periods

(β1). Specifically, on average subjects contribute 35%-70% of their value. The effect of the

preceding period’s outcome (β2) is negative and significant for most of the periods. The results

indicate that subjects respond to a successful provision in the last period by decreasing their

contribution in the current period. In addition, such response varies for different contributing

strategies and this is shown by the estimate of coefficient β4. The total effects of last period’s

outcome on the current period’s contribution can be calculated as β̂2 + β̂4 × ri,t−1, for example, in

period 2, β̂2+ β̂4×ri,t−1 = −4.208+2.919×0.609 = −2.430. Thus if the good is provided in period 1,

on average subjects would contribute -2.430 less than if the good is not provided, which is 31.2%

of the average contribution in period 2. The estimates β̂3 and β̂5 are insignificant in almost

all the periods and the results demonstrate that subjects learn mainly from the most recent

history. In summary, the results for the coefficients of wt−1 and wt−1 × ri,t−1 demonstrate that

subjects adjust their contributing behavior based on the outcome of the preceding period (it is

called “learning rule” hereafter) and the adjustment is heterogenous. To further qualify subjects’

contributing behavior and their learning rule, we present a structural model of private provision

of public goods and indicate that the model is nonparametrically identified and estimated in the

next section.

[Table 3 is about here.]

8



3 A Structural Model with Heterogenous Subjects

In this section, we propose a structural model of public goods provision with heterogenous

subjects to rationalize the findings in Section 2. The main components of the model are shown

to be nonparametrically identifiable and estimable under mild conditions.

3.1 The model

A group of I ≥ 2 risk-neutral subjects contribute to a public good across T ≥ 3 periods. The

private values of subjects vit ∈ [v, v], i = 1,2, ..., I; t = 1,2,⋯T are i.i.d. draws across i and t

from a cumulative distribution function G(⋅) with density g(⋅).4 At period t, subject i makes a

contribution bit ∈ [0, vit] and the public good is provided only if the total contribution of all the

I subjects exceeds the cost (threshold) c > 0, i.e., ∑i bit ≥ c where c is a known constant over

periods. We maintain that v < c such that it is impossible for an individual subject to provide the

good. Subject i obtains a payoff vit − bit if the public good is provided and zero otherwise. The

common knowledge among subjects at the beginning of period t includes the value distribution

G(⋅), group size I, cost c and the outcome of previous periods w−t ≡ {w1,w2,⋯,wt−1}, which are

binary variables with ws = 1 indicating a successful provision in period s, and ws = 0 otherwise.

In summary, subject i solves the following maximization problem in period t:

max
bit

(vit − bit)Pr(
I

∑
j=1
bjt ≥ c∣ I−it) , (3)

where I−it ≡ {(ws, bis, vis) , s = 1,2, ..., t − 1} is a set of information available for subject i prior to

period t. The probability in (3) summarizes both a subject’s belief about others’ behaviors and

her own preference, as described in Fischbacher and Gächter (2010). To model the heterogenous

contributing behaviors of the subjects, we follow the previous findings in the literature and

assume that the probability may be different across subjects. Given a subject’s value vit, each

possible probability implies a corresponding bit as the optimal solution to problem (3). We use

“type” to indicate a certain probability and the resulting contributing strategy. Without loss of

generality, let all the subjects be one of the K (K ≤ I) (discrete) private types with each type is

corresponding to a specific contributing strategy. Subject i’s type is denoted as τi ∈ {1,2, ...,K},

then her contributing strategy (we only consider those strategies monotone in value) is a mapping

from her private value and type to her contribution, i.e.,

si(⋅, ⋅) ∶ [v, v] × {1,2, ...,K} → [0, v].

For ease of notation, we rewrite si(vi, τi = k) as sk(vi). This strategy also depends on the group

size I, value distribution G(⋅), and the threshold c; however, we suppress the argument I,G and

4In the simulation, we demonstrate that our method still works well if there is modest correlation of values.
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c in sk(⋅) to simplify the notation. We assume that the number of types K does not vary across

time and each subject’s type is private information. Each subject potentially adjusts her type

over time based on the outcome of the game in previous periods. Instead of providing a model to

rationalize why subjects change their contributing strategies, we summarize such adjustments by

a transition matrix of type, Pr(τt′ ∣τt,w−t). Given a vector of outcome history w−t, Pr(τt′ ∣τt,w−t)
is a K ×K matrix with its (i, j)-th element being the probability for a type j in period t that

changes to type i in period t′.

Note that we did not explicitly model subjects’ interaction and subjects’ contributing strate-

gies do not necessarily constitute a Nash equilibrium in our model. The type τ can be understood

as a “reduced-form” description of subjects’ belief, preference and behavior. For the possible non-

equilibrium behavior, the heterogenous contributing strategies of subjects might be rationalized

by various behavioral models, e.g., level-k thinking (Crawford and Iriberri, 2007) or cognitive

hierarchy (Camerer et al., 2004). It will be interesting to investigate which behavioral model

best describes subjects’ behavior in private provision of public goods. However, we will leave

that for future research.

The data report three values and the corresponding contributions for each subject and the

outcomes for each period, then the joint distribution of b1, b2, b3 can be directly identified. Our

goal of identification is to uniquely determine the number of type K, the proportion and bidding

strategy for each type, and the transition matrix Pr(τt′ ∣τt,w−t). Let F (⋅) be the distribution of

subjects’ contributions and F (⋅∣τ = k), k = 1,2,⋯,K be the distribution for subjects of type k.

Then the model provides a finite mixture of distributions for all the types:

F (b1, b2, b3) = ∑
K

k=1F (b1, b2, b3∣τ = k)pk, (4)

where pk is the proportion of type k. To explore the dependence of model primitives on the

relationship above, we consider a similar equation for one period,

F (b) = ∑
K

k=1F (b∣τ = k)pk = ∑
K

k=1G(s−1τ=k(b))pk, (5)

where the second equation holds because F (b∣τ = k) = Pr(B ≤ b∣τ = k) = Pr(sτ=k(V ) ≤ b) =

Pr(V ≤ s−1τ=k(b)) = G(s−1τ=k(b)). We have two observations from (5) regarding identification of the

model. First, cross-sectional observations of subjects’ values and contributions are insufficient

for identification. The cross-sectional data allow us to recover a relationship between values and

contributions, which is the combined contributing strategies for all the types. Without prior

information about the number of types as well as proportion and functional form of the strategy

for each type, it is impossible to back out the contributing strategy for each type. Second, we

have a short panel with multiple observations for each subject and the subject’s identity; however,

identification still requires a novel method. With a panel data of values and contributions being

observed, a possible approach is to apply the method in Athey and Haile (2002) to recover a
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subject’s contributing strategy using her multiple values and contributions under the assumption

that her type is invariant. Such an approach requires a lot of observations for each subject, i.e.,

a long panel, which is unlikely to be satisfied in both experimental and field data.

We apply the recent development in the literature of measurement error, namely Hu (2008)

to identify the model based upon (4) and (5). It is worth noting that our methodology of

identification only requires researchers to observe three contributions for each subject, and the

distribution of induced values but not individuals’ values. This allows us to accommodate more

flexible data structures, e.g., in many field data individuals’ values are unknown but researchers

may have prior information about the distribution of values.

3.2 Identification

We consider the case where M groups of subjects sequentially participate in T games of

provision for the public good. The cost of the public good or the threshold is fixed for all

the game. Similarly, the group size and the group members remain the same. As subjects’

contributing strategies may depend on group size and cost, maintaining them fixed allows us

to control for their effects when we conduct our analysis. Suppose we observe an i.i.d. sample

{bmit ,wmt }, i = 1,2,⋯, I;m = 1,2,⋯,M ; t = 1,2,⋯, T , where i,m and t indicate individual, group,

and time period, respectively,5 and we use N ≡M ⋅I to denote the sample size or the total number

of individuals. We assume individuals’ values are unknown to researchers but the distribution

is known. For ease of notation, we suppress the superscript m and subscript i. As will be

shown, three periods of data (T = 3) are sufficient for identification, hence the sample is denoted

as {b1,w1; b2,w2; b3;w3}. As discussed previously, subject i’s type in period t is denoted as

τit ∈ {1,2, ...,K}, where K is unknown, and the type may evolve across periods. The objectives

of interest are: (1) number of type, (2) contributing strategy for each of the type, (3) the

proportion of each type in the first period and (4) the transition matrix of type across period,

or the “learning rules”.

We start our identification strategy from a joint distribution of subjects’ contributions and

the provision outcome, b1, b2 and b3 and w2. By the law of total probability, we have

fb3,w2,b2,b1 = ∑
τ3

∑
τ2

fb3,τ3,w2,b2,τ2,b1

= ∑
τ3

∑
τ2

fb3∣τ3,w2,b2,τ2,b1fτ3∣w2,b2,τ2,b1fw2∣b2,τ2,b1fb2∣τ2,b1fτ2,b1 , (6)

where fR1,R2 and fR1∣R2
denote the joint and conditional densities R1 and R2 respectively. For

simplicity of exposition, we still use the notation of f(⋅) when R1 and/or R2 are discrete whenever

5In our experiment M = 12, I = 5, T = 10.
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there is no ambiguity. Let Ω−t ≡ {(ws, bs, τs) for s = 1,2, ..., t − 1} be a set of information available

for subjects prior to period t, where τs contains all the subjects’ types from period 1 to t−1. Our

first assumption specifies the dependence of subjects’ contributions on the information set Ω−t.

Assumption 1. A subject’s contribution in each period is only determined by her induced value

and her current type, i.e., bit = sit(vit, τit), which is sk(vit) for τit = k, k ∈ {1,2,⋯,K}.

This assumption excludes the dependence of the current contribution on the preceding infor-

mation Ω−t. It states all the information available to a subject is absorbed into her current type.

That is, a subject sufficiently utilizes the history of outcomes, her contributions and strategies to

determine the strategy at the current period, which implies that the type is a “sufficient statistic”

of the information set Ω−t. This assumption simplifies the conditional density fb3∣τ3,w2,b2,τ2,b1 as

fb3∣τ3 and fb2∣τ2,b1 as fb2∣τ2 . Accordingly, (6) can be rewritten as

fb3,w2,b2,b1 = ∑
τ3

∑
τ2

fb3∣τ3fτ3∣w2,b2,τ2,b1fw2∣b2,τ2,b1fb2∣τ2fτ2,b1 . (7)

In the abovementioned equation, fw2∣b2,τ2,b1 is the probability that the public good is provided suc-

cessfully in period 2 for w2 = 1. Recall that w2 = 1 only if the summation of all the contributions

in this period exceeds the cost, hence the probability fw2∣b2,τ2,b1 is independent of any additional

information if b2 is given, i.e., fw2∣b2,τ2,b1 = fw2∣b2 . The conditional probability fτ3∣w2,b2,τ2,b1 captures

the transition process of subjects’ type from period t = 2 to t = 3. Similar to Assumption 1, we

impose some restrictions on how subjects’ type evolves.

Assumption 2. The contributing strategy in the next period for a subject only depends on the

outcome of provision and her contributing strategy in the current period.

Under this assumption, the transition of types Pr(τt+1∣wt, bt, τt,Ω−t) can be simplified to

Pr(τt+1∣wt, τt). The restriction imposed by this assumption is twofold: first, the history Ω−t,
especially outcomes before period t play no role in subjects’ learning rule given the current

period’s information. We do not rule out the possibility that subjects consider the information

Ω−t, however, it’s irrelevant under Assumption 1 since the current type τt absorbs the history Ω−t.
This leaves us with the transition probability being Pr(τt+1∣wt, bt, τt). This part of assumption

is also supported by the reduced-form evidence in the proceeding section, where wt−2 has little

impact on bit after controlling wt−1. Second, a subject’s contribution in the preceding period has

no impact on her strategy for this period given the previous outcome and her previous strategy.

This restriction is a natural consequence of the independence of subjects’ values across periods:

since values are independent, a subject can only learn from the provision outcome and her type

in the last period. Intuitively, the contribution bt contains no additional information other than

τt for subjects with independent values across period. Nevertheless, it is worth noting that the

independence of type τt+1 and the information set Ω−t is an assumption of first-order Markov

12



process, which is widely used in the literature, and it can be relaxed when more periods of data

are available for each subject.

Under Assumption 2 we further simplify (7) as

fb3,b1∣w2,b2fb2 = ∑
τ2

fb3∣w2,τ2fb2∣τ2fτ2,b1. (8)

Integrating out b2 on both sides of the equation above, we obtain

∫ fb3,b1∣w2,b2(⋅, ⋅∣⋅, u)fb2(u)du = ∑
τ2

fb3∣w2,τ2fτ2,b1 . (9)

The two equations above provide a structural link between directly observed objectives on the

L.H.S. and unknowns on the R.H.S. Following Hu (2008), we adopt a matrix form of equations

(8) and (9) for the purpose of identification. Specifically, we discretize the contributions b1 and

b3, which are both continuous variables, as L values and denote the discretized contributions as

d1 and d3, respectively.6

For a given outcome w2 ∈ {0,1}, and discretized contributions d1 and d3, we define the

following matrices:

Aij ≡ Pr(d3 = i, d1 = j∣w2, b2)fb2 ,

Eij ≡ ∫ Pr(d3 = i, d1 = j∣w2, b2)fb2db2,

(Bd3∣w2,τ2)i,k ≡ [Pr(d3 = i∣w2, τ2 = k)]ik,

(Cτ2,d1)k,j ≡ [Pr(τ2 = k, d1 = j)]kj,

Db2∣τ2 ≡ diag[f(b2∣τ2 = 1) f(b2∣τ2 = 2) ⋯ f(b2∣τ2 =K)]. (10)

All the matrices are pointwise in b2, where A and E are of dimension L × L, B,C and D are of

dimension L×K, K ×L and K ×K, respectively, where the number of types K is still unknown.

Similar to their continuous counter-parts, the matrices defined above describe the distributions

of observed and unobserved variables. For example, the (i, k)-th element in Bd3∣w2=0,τ2 is the

6The discrete contribution dt is determined by the following method of discretization.

dt =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 if bt ∈ [b, bt(1)],
2 if bt ∈ (bt(1), bt(2)],
...

L if bt ∈ (bt(L − 1), b],

where the support of contribution, [b, b] is divided into L segments by the L−1 cutoff points b(1), b(2), ..., b(L−1),
b < b(1) < b(2) < ... < b(L − 1) < b̄, and dt ∈ {1,2, ..., L}(L ≥ 2) is the discretized contribution. Both d1 and

d3 take values from {1,2, ..., L}, however, the cutoff points for discretizing b1 and b3 can be different. Then

Pr(dt = l) ≡ ∫
bt(l)

bt(l−1)
fbt(u)du.
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probability that the discretized contributions of the third period for those subjects who are of

type k is in the i-th segment given the second period’s outcome is “not provided”. The k-th

element of Db2∣τ2 is the density fb2∣τ2 for the type τ2 = k evaluated at b2.

The matrices defined above allow us to express (8) and (9) in a matrix form as follows:

A ≡ Bd3∣w2,τ2Db2∣τ2Cτ2,d1 ,

E ≡ Bd3∣w2,τ2Cτ2,d1 . (11)

For a given value of w2, the matrix E = Bd3∣w2,τ2Cτ2,d1 describes the joint distribution of two

discretized contributions d1 and d3. As argued in An (2010), the rank of this matrix can be used

to identify the number of types under two conditions: first, the support of τt does not change

along with t; second, contribution distribution of any type is not a linear combination of those

for other types. We employ this insight here and make the following assumption.

Assumption 3. The inverse contributing functions s−1k (⋅) for k = 1,2,⋯,K are linearly in-

dependent. Formally, there does not exist some ck ∈ R, k = 1,2,⋯,K not all zero such that

∑
K
k=1 cks−1k (b) = 0 for all b ∈ [0, v̄].

The restrictions imposed by this assumption on the inverse contributing strategies s−1k (⋅) can

be described as a nonzero Wronskian if s−1k (⋅) has (K − 1)-th continuous derivatives.7 Recall

that the distribution of contributions for type k, F (b∣τ = k) is equal to G(s−1k (b)), which can

be further simplified as s−1k (b)/(v̄ − v) because the induced values are uniformly distributed in

our experiment. Thus Assumption 3 implies that the distributions of contributions for different

types are linearly independent. We require the linear independence holds regardless the condi-

tioning on the outcome. The unconditional linear independence implies that the row rank of

Cτ2,d1 is equal to K, the number of types. Similarly, the linear independence conditional on the

outcome w2 guarantees that the column rank of Bd3∣w2,τ2 for any w2 ∈ {0,1} is also K. The

essential restriction of this assumption is that there are enough variations of contributing strate-

gies across type. Recall that the values of subjects who are of different types are i.i.d. It is

unlikely that two different mappings from values to contributions (contributing strategies) lead

to linearly dependent distributions of contributions. Similar assumptions of full rank have been

widely imposed to identify structural models in econometrics. For example, in Newey and Powell

(2003) and Chernozhukov et al. (2007) the full rank condition is essential for the identification

of nonparametric instrumental variable models.

Lemma 1. Under Assumptions 1-3, the number of types K = rank(E).

7See e.g., chapter 2 in Shilov (2013) for details.
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The assumption of invertibility implies E−1 = C−1
τ2,d1

B−1
d3∣w2,τ2

. Combining (11) with the rela-

tionship above, we obtain

A ×E−1 = Bd3∣w2,τ2Dd2∣τ2B
−1
d3∣w2,τ2

, (12)

where Db2∣τ2 and Bb3∣w2,τ2 are matrices of eigenvalues and eigenvectors, respectively for the ob-

served matrix A × E−1. Especially, each of the diagonal element of Db2∣τ2=k, k ∈ {1,2, ...,K} is

the density of contributions for subjects of type k evaluated at b2. Employing the strategies of

identification proposed in Hu (2008), if the matrix decomposition in (12) is unique, then both

Bd3∣w2,τ2 and Db2∣τ2 are identified since the L.H.S of the equation can be recovered from data.

To achieve the uniqueness of the decomposition, it is necessary to normalize the eigenvector

matrix Bd3∣w2,τ2 and make the eigenvector unique for each given eigenvalue. Considering that

for a given outcome w2 ∈ {0,1}, each element in the eigenvector matrix Bd3∣w2,τ2 is a conditional

probability, hence each column of the matrix sums up to one, i.e., ∑d3 Bd3∣w2,τ2 = 1. Then a

plausible method of normalization is to divide each column by the corresponding column sum.

To achieve the uniqueness of eigenvector for each eigenvalue, it is necessary for the eigenvalues

to be distinctive, which is guaranteed by the following lemma.

Lemma 2. If subjects’ values are uniformly distributed, then the distributions of contributions for

any two different types of subjects are distinct, i.e., for any two different types k, j ∈ {1,2,⋯,K},

the density fb∣τ(b∣τ = k) is different from fb∣τ(b∣τ = j).8

Proof. See Appendix. ∎

The result in lemma 2 is testable from (12) because once we obtain all the eigenvalues for

each contribution b2, it is straightforward to verify whether the result is violated, i.e., whether

there exist at least two types whose distributions of contributions are always the same for any

b2.

In our practice, as in most of the experiments, the distribution of subjects’ values is known

to the researcher. Combining this distribution with the identified conditional density f(b2∣τ2)

allows us to recover the contributing strategies for τ2 = 1,2,⋯,K, i.e.,

s−1k (b) = (v − v)FB∣τ(b∣τ = k) + v, k = 1,2,⋯,K.

Assumption 4. The inverse contributing strategies s−1k (b), k = 1,2,⋯,K can be strictly ordered

at either a known quantile of b ∈ [0, v̄] or the mean.

This assumption states that at some known quantiles, the contributing strategies of K types

can be strictly ordered. For example, let b0.5 be the median of the contribution b, then a possible

8To express it rigorously: for any two different types k, j ∈ {1,2,⋯,K}, the set {b ∶ fb∣τ(b∣τ = k) ≠ fb∣τ(b∣τ = j)}
has nonzero Lebesgue measure.

15



condition to order s−1k (⋅) is s−11 (b0.5) > s−12 (b0.5) > ⋯ > s−1K (b0.5), which implies subjects of type

1 would have the largest value to contribute b0.5 and type K have the smallest value, i.e., type

1 is the least generous type. The restriction of this assumption is flexible and in the following

identification we assume that the average contributions for different types can be ordered. Recall

that s−1k (b)/(v̄ − v) = F (b∣τ = k), Assumption 4 implies that we can distinguish different types

according to their average contribution. Without loss of generality, we always label types in

an ascending order according to expected contribution, i.e., on average type 1 contributes the

least while type K contributes most generously. The approach to label the types is consistent

with the findings in the literature of public good. For example, in Fischbacher and Gächter

(2010) the three types free riders, learners and contributors are classified according to how

much they contribute. By imposing assumption 4, the ordering of eigenvalues (eigenvectors) is

fixed and the eigenvector matrix Bd3∣w2,τ2 is uniquely determined from the eigenvalue-eigenvector

decomposition of the observed matrix A ×E−1. The ordering of eigenvalues may be achieved by

imposing alternative restrictions. More generally, the distribution of contributions for different

types fb∣τ can be ordered if there exists a functional $(⋅) such that $(f(b∣τ)) is strictly increasing

or decreasing in τ .

For each period, the observed distribution of contributions is a weighted average of distribu-

tions for all the possible types, i.e.,

f(b) = ∑
τ

f(b∣τ)Pr(τ). (13)

This relationship allows us to identify the proportion of each type Pr(τ2) in period 2 once the

distribution for each type f(b2∣τ2) is identified from the eigenvalue-eigenvector decomposition.

In summary, all the important components of the model are identified from (12) and the results

are summered as follows.

Proposition 1. Under Assumptions 1-4, the distribution of contributions in period 3 condition-

ing on the outcome and type in the last period Pr(d3∣w2, τ2), the distribution of contributions

(fb2∣τ2) and the proportion for each type (Pr(τ2)) in period 2 are uniquely determined by the joint

distribution of outcome in period 2 and contributions in three periods, fb3,w2,b2,b1. Furthermore, if

the distribution of values is known, the contributing strategy of each type sk(⋅) is also identified.

Based on the results of identification in proposition 1, we show next that the two learning

rules Pr(τ3∣w2, τ2) and Pr(τ2∣w1, τ1) are identified, too. First of all, the identified distribution of

period 3 conditional on the outcome and type in period 2, Pr(d3∣w2, τ2) is associated with the

learning rule Pr(τ3∣w2, τ2) as

Pr(d3∣w2, τ2) = ∑
τ3

Pr(d3∣τ3,w2, τ2)Pr(τ3∣w2, τ2)

= ∑
τ3

Pr(d3∣τ3)Pr(τ3∣w2, τ2). (14)
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It is necessary to utilize an important implication of our model: the distribution of subjects’

contributions for a certain type is invariant across periods, i.e., fb3∣τ3 = fb2∣τ2 = fb1∣τ1 . This

conclusion is due to fact that the provision game is homogeneous and subjects’ values are i.i.d.

in each period, therefore, the distribution of contributions must remain the same for each type in

different periods. Using this property, Pr(d3∣τ3) can be obtained from the identified conditional

density fb3∣τ3 = fb2∣τ2 , and the learning rule Pr(τ3∣w2, τ2) is identified from (14). We exemplify the

procedure by assuming subjects are of two types, and correspondingly the discretized contribution

d3 takes two values. Then the abovementioned equation can be expressed in a matrix form:

⎡
⎢
⎢
⎢
⎢
⎢
⎣

Pr(d3 = 1∣w2, τ2 = 1) Pr(d3 = 1∣w2, τ2 = 2)

Pr(d3 = 2∣w2, τ2 = 1) Pr(d3 = 2∣w2, τ2 = 2)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

Pr(d3 = 1∣τ3 = 1) Pr(d3 = 1∣τ3 = 2)

Pr(d3 = 2∣τ3 = 1) Pr(d3 = 2∣τ3 = 2)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

×

⎡
⎢
⎢
⎢
⎢
⎢
⎣

Pr(τ3 = 1∣w2, τ2 = 1) Pr(τ3 = 1∣w2, τ2 = 2)

Pr(τ3 = 2∣w2, τ2 = 1) Pr(τ3 = 2∣w2, τ2 = 2)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

(15)

where w2 ∈ {0,1}. This is a linear system and the learning rule Pr(τ3∣w2, τ2) can be uniquely

solved from it only if the first matrix on the R.H.S. is full rank, which is guaranteed under

Assumption 3. A similar argument can be applied to identify the learning rule of subjects from

the first to the second period Pr(τ2∣w1, τ1). Alternatively, we might identify the learning rule

as follows. Considering the observed joint density of contribution b2, b1 and the outcome w1,

fb2,w1,b1 , we employ the law of total probability to obtain

fb2,w1,b1 = ∑
τ2

∑
τ1

fb2,τ2,w1,b1,τ1

= ∑
τ2

∑
τ1

fb2∣τ2,w1,b1,τ1fτ2∣w1,b1,τ1fw1∣b1,τ1fb1∣τ1fτ1

= ∑
τ2

∑
τ1

fb2∣τ2 Pr(τ2∣w1, τ1)fw1∣b1fb1∣τ1fτ1 , (16)

where the first two equalities hold without any assumption and the third equality is due to

Assumptions 1 and 2. In the equation above, the L.H.S. as well as fw1∣b1 are directly observed

from the data. The distribution for each type fb2∣τ2 = fb1∣τ1 and fτ1 are identified using Proposition

1.

Proposition 2. Under Assumptions 1-4, the learning rules regarding how subjects adjust their

contributing strategies fτ2∣w1,τ1 and fτ3∣w2,τ2 are uniquely determined by the joint distribution of

outcomes and contributions in three periods, fb3,w2,b2,w1,b1.

The results of identification in Propositions 1 and 2 are constructive and they suggest a

convenient multi-step procedure for estimation. We discuss the procedure briefly and leave the
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technical details of estimation in Appendix B. The first step of estimation is to determine the

number of types by testing the rank of the matrix E. Next, by the eigenvalue-eigenvector de-

composition in (12), we obtain the eigenvector matrix as well as the conditional distribution of

contributions for each type in the second period, where the L.H.S. of (12) is estimated nonpara-

metrically by kernel estimation. Consequently, the corresponding probability of each type can

be estimated from (13). Lastly, based on (16) the learning rules are estimated by maximum

likelihood estimation (MLE) since the learning rule only contains K2 parameters, where K is

the number of types.

4 Monte Carlo Experiments

In this section, we present some Monte Carlo evidence to demonstrate the performance of

estimator. We consider a game of public good provision similar to the experimental setting in

Section 2. The game is played by groups with size m = 5 for three periods (T = 3). Values Vit
are drawn from a standard uniform distribution and independent across individuals and over the

three periods. The cost of the public good is set to be c = 0.6 ×E[Vit] ×m = 1.5. Individuals are

of three types with their contributing strategies respectively being as follows:9

s1(v) =
√
v + 1 − 1, s2(v) =

2v

3
, s3(v) = Φ−1((Φ(1) −Φ(0))v +Φ(0)), (17)

where Φ(⋅) is the cumulative distribution function for the standard norm distribution. Notice

that all the three strategies are strictly increasing in value on the support [0,1].

Starting from period t = 1, we randomly draw N values from a standard uniform distribution

U[0,1], then assign one of the three types to the N individuals according to the probability

Pr(τ1 = 1) = 0.4,Pr(τ1 = 2) = 0.3 and Pr(τ1 = 3) = 0.3. After we simulate the contributions for

all the individuals based on their values and the contributing strategies in (17), the indicator of

outcome w1 is generated as w1 = 1(∑
5
m=1 b1m ≥ c = 1.5). Conditioning on w1 and individuals’ type

τ1 in period t = 1, we simulate their type τ2 in period t = 2 according to the following transition

matrix of types:

f(τ ′∣τ,w = 1) =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0.5 0.3 0.2

0.2 0.6 0.4

0.3 0.1 0.4

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, f(τ ′∣τ,w = 0) =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0.8 0.1 0.2

0.1 0.7 0.6

0.1 0.2 0.2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

where τ ′ indicates the type in the next period. For simplicity, it is assumed that the two

transition matrices are invariant across periods. For example, if an individual was type 1 in a

9For simplicity we assume away the dependence of contributing strategies on group size. Nevertheless, the

estimation still relies on group size because the winning indicator w is determined by contributions and the cost

c, which is a linear function of group size m.

18



certain period, and her group successfully provides the public good, then she will be type 1, 2, and

3 with probabilities 0.5,0.3 and 0.2, respectively in the next period. By applying this procedure

repeatedly, we simulate a sample of contributions and outcomes {bi1,w1, bi2,w2, bi3}, i = 1,2,⋯,N

for 1000 replications.

We first estimate the number of types through the rank of E defined previously. Instead of

conducting a rigorous test of the rank (e.g., Robin and Smith (2000)), we provide some statistics

of the condition number and determinant for the matrix E under the hypotheses of different

number of types.10 The condition number is a measure of how close a matrix is singular: a

matrix with large condition number is nearly singular, whereas a matrix with condition number

close to 1 is far from being singular. In the simulation, we discretize bit, t = 1,3 into 2-6 segments,

and compute the condition number and the determinant of the matrix E for each segment.

Tables 4 and 5 present the results for w = 0,N = 500 and w = 1,N = 1000, respectively and

the results for w = 1,N = 500 and w = 0,N = 1000 are similar, hence omitted for abbrevity.11

As the results show, both the condition number and the determinant jump between 3 and 4 at

different quantiles. For instance, the median of condition number for N = 500 jumps more than

three-fold from 53-167.45 and a similar pattern is also observed for the case with N = 1000. The

pattern of determinants is consistent with the condition number, and this offers some statistical

confirmation for the rank of E, i.e., the number of types being three.

[Tables 4 and 5 are about here]

The estimates of contributing strategies for three types, together with the corresponding

[10%,90%] point-wise confidence intervals are illustrated in Figures 2. The estimates perform

well for modest sample-size datasets of N = 500,1000. For the three types, the estimated con-

tributing strategies track the actual ones very closely. Notice that for types 1 and 2 the estimated

contribution is larger than the true one when the value is close to its upper bound. This is be-

cause the estimate of contribution distribution is less accurate when contribution is close to the

upper bound due to the sparse observations.

[Figures 2 is about here]

10Condition number of a matrix A is defined as ∣∣A∣∣ ⋅ ∣∣A∣∣−1, where ∣∣ ⋅ ∣∣ is a matrix norm. We adopt the

Euclidean norm, i.e., ∣∣A∣∣2, which is defined as the largest eigenvalue of the matrix A′A.
11The presented results are obtained by discretizing the subjects’ contributions equally on the support. A

different approach of discretization might change the reported numbers but the pattern that both condition

number and determinant jump from 3 to 4 does not change with discretizations.
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We provide the estimation of the initial type probabilities, i.e., at period t = 1 in Table 6. The

probabilities are accurately estimated for both sample size. Tables 7 and 8 present the estimated

transition matrices of types. Notice that the estimate of f(τ ′∣τ,w = 1) performs very well while

that of f(τ ′∣τ,w = 0) is a bit noisy, and this is because the observations for w = 0 is smaller than

w = 1 due to the setting of our transition matrix of type. Nevertheless, both estimated matrices

are accurate enough to capture the transition pattern of the type.

[Tables 6, 7 and 8 are about here]

In summary, the Monte Carlo evidence illustrates that our procedure of estimation performs

well for modest-sized samples.

Robustness check. In the data generating process of the simulation as well as in our exper-

iment, it is assumed that individuals’ induced values are independent across periods. Such an

assumption might be violated for some field data and values may be correlated. As a robustness

check, we allow values to be correlated across three periods and then estimate the model by

the proposed method assuming independence of the values.12 Figure 3 and Table 9 present the

estimated contributing strategies and the transition matrices, respectively for sample size 500

when the values of two consecutive periods are correlated with a coefficient 0.2. The estimate of

strategies are very close to that in Figure 2. Similarly, the probabilities of transition in Table 9

also closely track the corresponding elements in the true transition matrices. A comparison of

the estimated results in Tables 7 and 9 illustrates that the correlation of values negatively affect

the accuracy of estimates. For example, the probability Pr(τ2 = 1∣w = 1, τ1 = 1) is estimated to

be 0.494 in Table 7, which is close to the true value 0.50, while the estimate is 0.590 in Table 9.

Nevertheless, with the modest correlation of values, our proposed method based on independence

of values still performs well in estimating the model.

12To generate the uniformly distributed values with Pearson correlation, we first generate normally distributed

draws with Spearman correlations then apply the uniform transformation to those random draws. Please see

Embrechts et al. (2003) for details.
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5 Empirical Results

In this section we apply our methodology to the experimental data described in Section 2 and

provide some new evidence on the private provision of public goods. As discussed in Section 3.2,

three periods of data are sufficient for our analysis. Thus each of the three consecutive periods

of the 10 periods in our sample can be employed for empirical analysis.13 To maximize the

number of observations and explore the possibility that subjects may change their learning rules

across periods, we consider the following three approaches to aggregate the observations: (a)

pool all the 10 periods’ data. By applying this approach, we are estimating an average learning

rule Pr(τ ′∣w, τ), which is treated invariant between any two periods. (b) use only the first five

periods’ data and (c) use the last five periods’ data, where we assume that subjects’ learning

behavior is invariant in the first and the last five periods, respectively. The results of (a) are

baseline and (b) and (c) are used for robustness check.

The first set of results are condition numbers and determinants of matrix Eij, which are used

to determine the number of types. Tables 10 presents the results when we pool the 10 periods’

data together. The first and last five periods’ of data both lead to very similar results and are

hence omitted. The top panel of the table is conditional on the outcome that the public good is

not provided, w2 = 0 and the bottom panel is for the outcome w2 = 1. Both panels reveal a clear

pattern that the condition number and determinant jump when the number of discretization

changes from 3 to 4, and this identifies the number of types to be 3.

[Table 10 is about here]

Next, the procedure of identification using matrix decomposition enables us to recover the

conditional density fb2∣τ2 . It is used to obtain the contributing strategies for three types and

the initial type probability through fb1 and fb2∣τ2 = fb1∣τ1 .14 The estimate of probability and

contributing strategy for each type are provided in Table 11 and Figure 4, respectively. We label

the three types such that type 3 contributes the most, whereas type 1 the least. The results in

Table 11 indicate that proportion of each of the three types is significantly positive. The first

two rows are both estimates for the first period; however using different sample of data they

reveal a similar pattern: the proportion of type 3 is the smallest (about 20%), whereas type 2 is

the largest (about 36%). By contrast, the type probability of period 5 (using the data of the last

five periods) displays a different pattern: the proportion of type 1 is the smallest (about 20%)

13We use {1,2,3},{2,3,4},⋯{8,9,10}. More generally, any sample of three periods t, t + s and t + 2s (s ≥ 1)

can be used for estimation. The corresponding learning rule will be for s periods.
14We focus on the type probability in the first period because the probability in the next period is just the

product of learning rule and the initial type probability.
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whereas the other two types both have a proportion approximately 40%. The results imply that

subjects tend to contribute less at the beginning (being types 1 and 2), probably because of less

corporation. As they continue to participate in the game, more subjects learn to cooperate and

contribute more.

[Table 11 and Figure 4 are about here.]

The three subplots in Figure 4 illustrate the contribution as a function of the value for subjects

of three types. The contributing strategies for three types can be classified into two groups: type

1 and type 2-3, where the difference between type 2 and 3 is relative small in the cases of overall

and last five periods. A formal test indicates that the contributing strategies of types 2 and

3 are not significantly different at the 5% significance level for those two cases, whereas type

1 significantly differs from both types 2 and 3.15 A different pattern displays for the first five

periods, where all the three types are tested to be significantly different at the 5% significance

level. An implication of these results is that learning of subjects may lead to “convergence” of

some contributing strategies. Nevertheless, some subjects may not conform to others even after

10 periods’ learning. Particularly, subjects of type 1 contribute significantly lesser than the other

two types in all three cases. When their values are near the lower bound 8, type 1 behave as

free-riders and contribute nothing; whereas types 2 and 3 contribute up to 4. However, as the

value increases type 1 may contribute a significant proportion of the value, e.g., for a value 14

the contribution is approximately 6, which is 43% of the value. Furthermore, it is worth noting

that the difference between type 1 and types 2& 3 is larger when the value is small and the

discrepancy diminishes as the value increases. Especially, when value is greater than 18, which

is near the upper bound (the upper bound of value is 20), the three types are very close to each

other. A comparison between type 2 and 3 implies that in the last five periods subjects of type 1

contribute more generously than the first five periods when their value is greater than 16. These

result reinforce our early findings that subjects tend to behave more generous as they spend more

time with other group members, and this may reflect subjects’ “learn to corporate” process.

[Figure 4 is about here]

The last set of results are on the learning rule of different types and they are presented in

Tables 12-14, where the two subtables (a) and (b) of each table are transition matrices of types

conditional on two outcome. For every matrix, each column contains the probabilities that a

15According to Lemma 2, testing the difference between two bidding strategies is equivalent to that of two dis-

tributions of contributions. Therefore, we conduct Kolmogorov-Smirnov tests on the distributions of contributions

for any of the two types.
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certain type is being adjusted to three types in the next period, hence the column sum is one.

For example, in Table 12 (a) the second column implies that if the public good is provided

successfully, then the subjects of type 2 in the current period would continue to be type 2 with

probability 70.1% and adjust to be type 1 (contributes less) with probability 29.9% in the next

period. However, they never transit to type 3 and contribute more.

Across all the three tables, subtables (a) are diagonally dominant, whereas (b) are not. Such

a difference reveals that subjects’ contributing strategies are negatively affected by the outcome,

i.e., they will maintain their strategies or change to a less generous one if the good is provided

successfully but contribute more generously or at least the same for a not successful outcome. In

Table 12 (a) almost all the type 1, 70.1% of types 2 and 75.6% of type 3 would keep their own type

in the next period conditioning on a successful outcome. Moreover, the remaining proportion

of types 2 and 3 would change to type 1 and contribute less generously in the next period.

By contrast, if the good is not provided in the current period, types 1 and 2 are more likely

to be higher types and contribute more in the next period.16 Table 14 (b) provides a typical

illustration: more than half of type 1 and all of type 2 adjust to types 2 and 3, respectively

conditional on a unsuccessful outcome.

Another important observation is that the estimates in Tables 13 and 14 indicate different

patterns of subjects’ learning. Subjects in the first five periods are more reluctant to adjust

their contributing strategies than in the last five periods. For instance, conditioning on an

unsuccessful provision, with probability 60.5% of type 1 moves to type 2 in the last five periods.

By contrast, this probability is only 34.6% for the first five periods. In response to a successful

provision, almost all the subjects of type 1 remain as type 1 in the first five periods, whereas

this probability is 62.2% in the last five periods. The difference between the first and the last

five periods suggest that the learning can also be dynamic, which is out of the primary focus of

our paper but provides an interesting venue for future research.

[Tables 12-14 are about here.]

6 Conclusion

We study the identification and estimation of a structural model for private provision of

public goods with heterogenous participants. The main motivation of the model is the need

16This is not true for type 1 in Table 12 (b). Nevertheless, a significant proportion of type 1 (25.4%) changes

to type 2.
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to explain individuals’ heterogenous contributing behavior and possible adjustments of their

strategies based on provision history (learning). The heterogeneity and the learning of individuals

have been documented in previous experimental studies and also confirmed by our reduced-

form analysis on our experimental data of threshold public good games. Our structural model

allows for individuals to employ heterogenous contributing strategies, which can be adjusted

upon observing the outcome of the provision. A prominent advantage of our approach over the

existing studies is that from the revealed contributions of individuals, we are able to recover

the number of different strategies, function form of each strategy and the transition probability

among the strategies without imposing any parametric assumptions on these objectives.

The structural estimates of our experimental data suggest that subjects can be classified

into three types who employ three different contributing strategies to make contributions. A

subject of type 1 contributes a much smaller share of her value than types 2 and 3 while the

contributing strategies of the latter two types are similar. The estimates of learning indicate

that subjects tend to keep their strategies in response to a successful provision in the last period.

By contrast, they become more generous in contributing if the good is not provided in the last

period. Nevertheless, the three types display different patterns of learning: type 1 makes relative

smaller adjustment to their strategy than the other two types. By dividing the data into two

time intervals, i.e., the first and last five periods, we find that subjects in the first five periods

are more reluctant to adjust their contributing strategies than in the last five periods.

There are a few directions for future research. First, our methodology for threshold public

good might be applied to another large category of experiments: linear public good provision,

where the contributing strategy is a mapping from endowment to the ratio of contributions made

to public good over their own account. Furthermore, we allow individuals change their learning

behavior across 10 periods but leave out their forward-looking behavior. It will be interesting to

incorporate dynamics into our model and explore deeper regarding individuals learning behaviors.
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Appendix

A Estimation

In this section, we propose a procedure to estimate the objectives that are identified nonpara-

metrically in Section 3 . The procedure follows directly from the argument of identification, and

a similar approach is also applied in An et al. (2010). We estimate all the objectives in multiple

steps.

Step one: Estimation of the conditional distribution f(b2∣τ2). Recall our identification

is mainly based on equation (12), which holds for all b2. To improve the performance of our

estimator, we take integral of this equation with respect to b2 and use the aggregated version for

estimation:

∫
b2
b2A ×E−1db2 = Bb3∣w2,τ2DEb2∣τ2B

−1
b3∣w2,τ2

Eb2, (A.1)
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where DEb2∣τ2 ≡ ∫b2 b2Db2∣τ2db2. The L.H.S. of the equation above is estimable from data, then

both Bb3∣w2,τ2 and DEb2∣τ2 can be estimated by the eigenvalue-eigenvector decomposition described

in (12). The details can be found in An et al. (2010) and An (2010), and thus omitted here.

Let B̂b3∣w2,τ2 be the estimated eigenvector matrix, we estimate the conditional density f(b2∣τ2)

from the joint density f(b2, τ2) and the probability distribution Pr(τ2). First we consider the

relationship

f(b2, τ2) = ∑
w2∈{0,1}

f(b2, τ2∣w2)Pr(w2),

where Pr(w2) can be directly recovered from data and the joint distribution of b2, τ2 conditional

on the outcome w2, f(b2, τ2∣w2) is determined by the following equation:

f(b2, d3∣w2) = ∑
τ2

f(b2, d3, τ2∣w2) = ∑
τ2

f(d3∣w2, b2, τ2)f(b2, τ2∣w2) = ∑
τ2

f(d3∣w2, τ2)f(b2, τ2∣w2).

The L.H.S. of the equation above is estimable from data, and f(d3∣w2, b2, τ2) is obtained from the

eigenvalue-eigenvector decomposition. Thus, we get an estimator of f(b2, d3∣w2). We exemplify

the estimation for w2 = 0:

f(b2, d3∣0) = Bd3∣0,τ2f(b2, τ2∣0) ⇒ f̂(b2, τ2∣0) = B̂
−1
d3∣0,τ2 f̂(b2, d3∣0),

where B̂d3∣0,τ2 is invertible by construction, and f̂(b2, d3∣0) is a kernel estimator defined as:

f̂(b2, d3 = j∣0) =
1

Nh

N

∑
i=1
K (

b2 − b2i
h

)1(b3i = j).

Consequently we have the estimator of the joint distribution (b2, τ2),

f̂(b2, τ2) = f̂(b2, τ2∣0)P̂r(w2 = 0) + f̂(b2, τ2∣1)P̂r(w2 = 1) (A.2)

Similarly, the type distribution Pr(τ2) can be estimated from

Pr(τ2) = ∑
w2∈{0,1}

Pr(τ2∣w2)Pr(w2),

where Pr(τ2∣w2) is associated with estimable Pr(d3∣w2) and estimated Pr(d3∣τ2,w2).

Pr(d3∣w2) = ∑
τ2

Pr(d3, τ2∣w2) = ∑
τ2

Pr(d3∣τ2,w2)Pr(τ2,w2)

Pr(w2)
= ∑

τ2

Pr(d3∣τ2,w2)Pr(τ2∣w2).

We again illustrate our estimator for w2 = 0. Let
Ð→
Pr(d3∣0) denote a column vector with three

elements [Pr(d3 = 1∣w2 = 0)Pr(d3 = 2∣w2 = 0)Pr(d3 = 3∣w2 = 0)]T , and
Ð→
Pr(τ2∣0) is similarly

defined. Then the last equation can be rewritten as
Ð→
Pr(d3∣0) = Bd3∣0,τ2

Ð→
Pr(τ2∣0),

which implies an estimator
Ð̂→
Pr(τ2∣0) = B̂−1

d3∣0,τ2
Ð̂→
Pr(d3∣0). Then the type probabilities are estimated

as
Ð̂→
Pr(τ2) =

Ð̂→
Pr(τ2∣0)P̂r(w2 = 0) +

Ð̂→
Pr(τ2∣1)P̂r(w2 = 1).
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Step two: Estimation of contributing strategies. In our paper, as in most of the experi-

ments, the distribution of subjects’ values is known to the researcher. Combining this distribution

with the estimated conditional density f̂(b2∣τ2) allows us to recover the contributing strategies

for τ2 = 1,2,3. Let FB∣τ denote the conditional cdf of the observed contributions for a type τ ,

then lemma 2 states that

FB∣τ(b∣τ = k) =
s−1k (b) − v

v − v
, k = 1,2,3,

The relationship above implies that

s−1k (b) = (v − v)FB∣τ(b∣τ = k) + v, k = 1,2,3.

Then, our estimate of s−1k (b) is

ŝ−1k (b) = (v − v)F̂B∣τ(b∣τ = k) + v, k = 1,2,3. (A.3)

Step three: Estimation of transition matrices of types. The learning rule fτ2∣w1,τ1 is

estimated from (16), which is repeated as follows.

fb2,w1,b1 = ∑
τ2

∑
τ1

fb2∣τ2fτ2∣w1,τ1fw1∣b1fb1∣τ1fτ1 .

Based on the equation above, we maximize the likelihood function of the L.H.S. to estimate the

learning rule on the R.H.S. Specifically, suppose we fix w1 = 1 then the log likelihood function is

expressed as:

log L =
N

∑
i=1

log
3

∑
τ2=1

(fb2i∣τ2
3

∑
τ1=1

Pr(τ2∣w1 = 1, τ1)fw=1∣b1ifb1i∣τ1 Pr(τ1))

=
N

∑
i=1

log
3

∑
τ2=1

(fb2i∣τ2
fw=1,b1i
fb1i

3

∑
τ1=1

Pr(τ2∣w1 = 1, τ1)fb1i∣τ1 Pr(τ1))

=
N

∑
i=1

log
3

∑
τ2=1

(fb2i∣τ2
fb1i∣w1=1 Pr(w1 = 1)

fb1i

3

∑
τ1=1

Pr(τ2∣w1 = 1, τ1)fb1i∣τ1 Pr(τ1)) . (A.4)

Recall that the unknown transition matrix Pr(τ2∣w1 = 1, τ1) contains six independent parameters

(denoted by θ). Given the estimated results in the proceeding steps, MLE of Pr(τ2∣w1 = 1, τ1; θ)

is

P̂r(τ2∣w1 = 1, τ1; θ) ≡ max
θ∈[0,1]6

logM, (A.5)

where logM is the log-likelihood function logL with all the terms but the transition matrix being

replaced by their corresponding estimates. Especially, we employ the relationship fb1∣τ1 = fb2∣τ2
and f(b1) = ∑τ1 fb1∣τ1 Pr(τ1) in estimating fb1∣τ1 and Pr(τ1), respectively.

Properties of the estimators can be proved by standard methods and we refer interested reader

to An (2010) and An et al. (2010) for details.
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B Tables and Figures

Table 1: Summary statistics (by period)

Period

Variable 1 2 3 4 5 6 7 8 9 10

Sample size 60 60 60 60 60 60 60 60 60 60

Provided 0.583 0.333 0.333 0.333 0.417 0.25 0.75 0.833 0.5 0.5

(0.497) (0.475) (0.475) (0.475) (0.497) (0.437) (0.437) (0.376) (0.504) (0.504)

Value 14.863 13.233 14.373 13.038 14.152 13.567 13.745 13.837 14.952 13.958

(3.280) (3.606) (3.365) (3.186) (3.311) (3.350) (3.793) (3.525) (3.195) (3.391)

Contribution 8.821 7.775 8.178 7.997 8.323 8.323 8.941 8.992 8.605 7.937

(4.068) (4.311) (3.621) (3.945) (2.626) (3.115) (3.776) (3.373) (3.470) (3.339)

Subj. Prob. 0.662 0.555 0.594 0.534 0.484 0.513 0.488 0.517 0.521 0.519

(0.240) (0.291) ( 0.281) (0.300) (0.300) (0.326) (0.314) (0.332) (0.292) (0.337)

Contr./Value 0.609 0.586 0.569 0.615 0.598 0.615 0.646 0.661 0.583 0.580

(0.326) (0.299) (0.232) (0.263) (0.169) (0.202) (0.188) (0.255) (0.213) (0.212)
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Table 2: Reduced-form analysis: overall regression

(1) (2) (3) (4)

Constant 1.441∗∗∗ 1.332∗∗ 0.499 -1.495

(0.542) (0.593) (0.603) (1.553)

Value 0.497∗∗∗ 0.497∗∗∗ 0.462∗∗∗ 0.600∗∗∗

(0.0376) (0.0377) (0.0375) (0.110)

Period 0.0205 0.0483 0.202

(0.0450) (0.0444) (0.200)

Belief 2.185∗∗∗ 4.716∗∗

(0.426) (1.880)

Value ∗ Period -0.00953

(0.0132)

Value ∗ Belief -0.172

(0.125)

Period ∗ Belief -0.0321

(0.151)

N 600 600 600 600

R2 0.226 0.226 0.259 0.262

adj. R2 0.225 0.224 0.255 0.254

Standard errors in parentheses, * p < 0.10, ** p < 0.05, *** p < 0.01.
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Table 4: Identification of number of types, w = 0,N = 500

Discretize Level 2 3 4 5 6

Condition Number

Mean 190.03 126.14 792.29 2124.35 1164.67

25 percentile 18.40 26.86 101.93 93.31 138.51

Median 32.03 53.00 167.45 199.17 247.45

75 percentile 63.20 93.47 425.37 490.10 590.13

Determinant

Mean 4.83E-03 -2.75E-02 2.16E-04 1.96E-07 -3.49E-05

25 percentile -4.66E-04 -3.01E-05 -6.54E-08 -8.15E-11 -9.75E-13

Median 1.08E-03 -1.02E-06 -2.99E-10 0.00E+00 -7.24E-18

75 percentile 5.05E-03 4.48E-06 8.59E-09 1.92E-10 2.14E-13

Table 5: Identification of number of types, w = 1,N = 1000

Discretize Level 2 3 4 5 6

Condition Number

Mean 115.89 145.99 1307.84 774.56 849.63

25 percentile 20.54 32.48 104.16 135.55 142.82

Median 35.87 60.07 196.40 220.76 253.25

75 percentile 77.65 116.02 440.30 461.40 476.87

Determinant

Mean 1.50E-04 9.20E-05 4.24E-07 5.91E-09 5.54E-13

25 percentile -2.72E-04 -4.61E-06 -8.23E-09 -4.79E-11 -6.84E-14

Median 8.53E-04 2.41E-07 1.60E-10 -8.34E-14 0.00E+00

75 percentile 2.95E-03 1.09E-05 1.12E-08 1.52E-11 6.16E-14

Table 6: Estimate of type probability

Type 1 Type 2 Type 3

True value 0.40 0.30 0.30

N = 500 0.400*** 0.301*** 0.299***

(0.047) (0.059) (0.045)

N = 1000 0.401*** 0.297*** 0.301***

(0.032) (0.041) (0.031)

Standard errors in parentheses, * p < 0.10, ** p < 0.05, *** p < 0.01.
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Table 7: Estimated transition matrix of type, N = 500

(a) Pr(τ2∣w = 1, τ1)

Type1 Type2 Type3

Type1 0.494*** 0.308* 0.206

(0.170) (0.240) (0.170)

Type2 0.226 0.543** 0.423**

(0.193) (0.285) (0.225)

Type3 0.279*** 0.150 0.370**

(0.143) (0.167) (0.172)

(b) Pr(τ2∣w = 0, τ1)

Type1 Type2 Type3

Type1 0.735*** 0.218 0.213

(0.192) (0.279) (0.288)

Type2 0.160 0.555* 0.618*

(0.188) (0.358) (0.401)

Type3 0.105 0.227 0.169

(0.110) (0.234) (0.250)

Table 8: Estimated transition matrix of type, N = 1000

(a) Pr(τ2∣w = 1, τ1)

Type1 Type2 Type3

Type1 0.504*** 0.317* 0.176*

(0.125) (0.203) (0.136)

Type2 0.206 0.556*** 0.441***

(0.146) (0.230) (0.179)

Type3 0.291*** 0.127 0.382***

(0.102) (0.115) (0.130)

(b) Pr(τ2∣w = 0, τ1)

Type1 Type2 Type3

Type1 0.766*** 0.192 0.168

(0.153) (0.236) (0.239)

Type2 0.140 0.608** 0.615**

(0.138) (0.320) (0.362)

Type3 0.099 0.204 0.215

(0.084) (0.190) (0.244)

Table 9: Estimated transition matrix of type: correlated values (N = 500)

(a) Pr(τ2∣w = 1, τ1)

Type1 Type2 Type3

Type1 0.590*** 0.258 0.104

(0.152) (0.216) (0.134)

Type2 0.174 0.607** 0.408**

(0.167) (0.275) (0.214)

Type3 0.236** 0.135 0.488***

(0.135) (0.175) (0.193)

(b) Pr(τ2∣w = 0, τ1)

Type1 Type2 Type3

Type1 0.843*** 0.207 0.196

(0.157) (0.295) (0.314)

Type2 0.087 0.593** 0.607*

(0.144) (0.359) (0.394)

Type3 0.069 0.2 0.197

(0.092) (0.248) (0.293)



35

Table 10: Estimation of number of types

Discretize Level 2 3 4 5 6

w = 0

Condition Number

Original Sample 11.87 12.09 355.40 64.15 64.08

Mean 14.07 18.35 6.34E+14 1.40E+16 1.33E+16

25 percentile 8.54 10.57 1.37E+02 93.85 198.28

Median 11.48 13.25 340 194.06 399.48

75 percentile 16.04 18.28 1083.6 737.08 848.88

Determinant

Original Sample 0.03 6.70E-04 5.04E-07 1.22E-08 9.71E-11

Mean 0.02 5.29E-04 4.93E-07 5.74E-09 7.44E-12

25 percentile 0.01 3.07E-04 -2.10E-07 5.85E-10 -4.24E-12

Median 0.02 5.02E-04 1.10E-07 2.60E-09 2.68E-12

75 percentile 0.03 5.03E-04 1.03E-06 8.62E-09 1.42E-11

w = 1

Condition Number

Original Sample 18.34 16.43 137.96 90.78 128.50

Mean 17.56 27.81 9.86E+14 1.90E+16 1.66E+16

25 percentile 8.42 9.73 125.50 110.79 176.20

Median 10.92 13.67 306.80 238.21 418.00

75 percentile 16.95 23.38 1104.30 786.92 1219.10

Determinant

Original Sample 0.03 4.35E-04 5.04E-07 1.22E-08 9.71E-11

Mean 0.02 5.54E-04 5.52E-07 4.91E-09 1.06E-11

25 percentile 0.01 3.06E-04 -1.66E-07 0.00E+00 -3.91E-11

Median 0.02 5.03E-04 1.24E-07 2.54E-09 2.01E-12

75 percentile 0.03 7.33E-04 1.20E-06 6.83E-09 2.13E-11
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Table 11: Estimate of type probability in the first period

Type 1 Type 2 Type 3

pooled data 0.362*** 0.374*** 0.264***

(0.115) (0.071) (0.080)

the first 5 periods 0.346*** 0.493*** 0.161***

(0.053) (0.071) (0.087)

the last 5 periods 0.233*** 0.381*** 0.386***

(0.040) (0.064) (0.066)

Standard errors in parentheses, * p < 0.10, ** p < 0.05, *** p < 0.01.

Table 12: Learning rule: pooled data

(a) Pr(τ2∣w = 1, τ1)

Type1 Type2 Type3

Type1 1.000*** 0.259 0.240

(0.103) (0.281) (0.160)

Type2 0.000 0.741*** 0.000

(0.073) (0.273) (0.219)

Type3 0.000 0.000 0.760***

(0.044) (0.279) (0.174)

(b) Pr(τ2∣w = 0, τ1)

Type1 Type2 Type3

Type1 0.762*** 0.000 0.000

(0.127) (0.073) (0.096)

Type2 0.238** 0.000 0.173

(0.124) (0.449) (0.266)

Type3 0.000 1.000** 0.827***

(0.150) (0.449) (0.292)
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Figure 1: Value-Contribution Conditioning on Outcome
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Figure 2: Estimate of contributing strategies
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Figure 3: Estimated contributing strategies with correlated values, N = 500
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Table 13: Learning rule: first 5 periods

(a) Pr(τ2∣w = 1, τ1)

Type1 Type2 Type3

Type1 1.000*** 0.353 0.000

(0.180) (0.238) (0.320)

Type2 0.000 0.647** 0.223

(0.073) (0.273) (0.219)

Type3 0.000 0.000 0.777***

(0.162) (0.173) (0.320)

(b) Pr(τ2∣w = 0, τ1)

Type1 Type2 Type3

Type1 0.654*** 0.000 0.000

(0.187) (0.185) (0.006)

Type2 0.346* 0.520 0.000

(0.189) (0.385) (0.258)

Type3 0.000 0.480 1.000***

(0.116) (0.395) (0.260)

Table 14: Learning rule: last 5 periods

(a) Pr(τ2∣w = 1, τ1)

Type1 Type2 Type3

Type1 0.622*** 0.199* 0.000

(0.218) (0.154) (0.059)

Type2 0.378** 0.801*** 0.172

(0.219) (0.209) (0.162)

Type3 0.000 0.000 0.828***

(0.009) (0.120) (0.160)

(b) Pr(τ2∣w = 0, τ1)

Type1 Type2 Type3

Type1 0.397*** 0.214* 0.000

(0.153) (0.165) (0.074)

Type2 0.603*** 0.212 0.110

(0.212) (0.278) (0.221)

Type3 0.000 0.574** 0.890***

(0.184) (0.309) (0.242)
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Figure 4: Heterogenous contributing strategies
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C. Experiment Instruction 
 
In this experiment, you will be divided into different groups where each group can provide one 
unit of public good. If the sum of contributions from your group exceeds the cost, the public 
good is provided, and your profit is your value minus your contribution; otherwise your profit is 
zero. Your value is randomly drawn from 8 to 20; that is, someone may have a value as low as 8, 
and someone may have a value as high as 20, while for the most of the time, your value is 
between 8 and 20. Your value will vary across periods.  
 
Your goal is to maximize your profit. In order to make better decisions, you may need to guess 
how much other people would contribute in your group. In each period, you need to enter 1) your 
guess on how likely your group will provide the public good (subjective probability, between 0 
and 1); 2) your contribution to the public good.  
 
 
What you need to do? 
Once the program is activated, please enter your guess on how likely your group will provide the 
public good and then make an offer to the public good.  
 
 
How is your profit calculated? 

• Your profit= Your benefit - Your cost. 
 

• Your benefit= your value, if the public good if provided; 
            Your benefit= 0, if the public good if not provided.  
            Suppose that your value is $10, if the public good is provided, you benefit equals your 
value, which is $10; if the public good is not provided, you benefit is 0.  

  
• Your cost= your offer, if the public good if provided; 

            Your cost= 0, if the public good if not provided.  
            Suppose that you make an offer of $5, if the public good is provided, you cost is $5; if the 
public good is not provided, you cost is 0.  

  
   

• Under this situation, your profit=$10-$5=$5 if the public good is provided; your 
profit=$0 if the public good is not provided.  

 
 

All the numbers used in examples serve only illustrative purpose; please do not try to use these examples 
to guess what would actually happen in the experiment.   
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How to decide if the public good can be provided?  
• We will compare the total offer of your group with the cost of the public good. If the 

group’s total offer is higher or equal to the cost for the public good, we will provide the 
public good, otherwise not.  

 
 
 
 
Quiz (4 mins): 
 
 
1. If your offer on the public good is $10, you value $20, what’s if your profit if the public good 
is provided /not provided?  
 
 
2. If the total offers of your group is $50, the cost of the public good is $40, is the public good 
provided? What if the cost of the public good is $60?  
 
 
 

 
 

Instructions At-A-Glance 
• You will be asked to decide how much money to offer towards the cost of the public good. 
• The administrator will use the offers of everyone in your group to determine if we can 

provide the public good.  
• If you offer more, in exchange for incurring some of the costs, you may get a higher profit by 

increasing the probability of the public good being provided. 

• If you offer less, you may decrease the probability of the public good being provided; 
however, you may get a higher profit since you pay less if the public good is provided.  

 

At the end of the experiment, your earnings will be totaled across all periods and converted from 
experimental dollars to real dollars. You will be paid as you leave.   
  
Now please make your decisions!  
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