
Bech, Katarzyna; Hillier, Grant

Working Paper

Nonparametric testing for exogeneity with discrete
regressors and instruments

cemmap working paper, No. CWP11/15

Provided in Cooperation with:
The Institute for Fiscal Studies (IFS), London

Suggested Citation: Bech, Katarzyna; Hillier, Grant (2015) : Nonparametric testing for exogeneity with
discrete regressors and instruments, cemmap working paper, No. CWP11/15, Centre for Microdata
Methods and Practice (cemmap), London,
https://doi.org/10.1920/wp.cem.2015.1115

This Version is available at:
https://hdl.handle.net/10419/130034

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1920/wp.cem.2015.1115%0A
https://hdl.handle.net/10419/130034
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Nonparametric testing 
for exogeneity with 
discrete regressors 
and instruments

Katarzyna Bech  
Grant Hillier

The Institute for Fiscal Studies 
Department of Economics, UCL 

cemmap working paper CWP11/15



Nonparametric testing for exogeneity with discrete
regressors and instruments

Katarzyna Bech and Grant Hillier
University of Southampton

March, 2015

Abstract
This paper presents new approaches to testing for exogeneity in non-parametric

models with discrete regressors and instruments. Our interest is in learning about
an unknown structural (conditional mean) function. An interesting feature of
these models is that under endogeneity the identifying power of a discrete instru-
ment depends on the number of support points of the instruments relative to that
of the regressors, a result driven by the discreteness of the variables. Observing
that the simple nonparametric additive error model can be interpreted as a lin-
ear regression, we present two test-statistics. For the point identifying model,
the test is an adapted version of the standard Wu-Hausman approach. This ex-
tends the work of Blundell and Horowitz (2007) to the case of discrete regressors
and instruments. For the set identifying model, the Wu-Hausman approach is not
available. In this case the test-statistic is derived from a constrained minimization
problem. The asymptotic distributions of the test-statistics are derived under the
null and �xed and local alternatives. The tests are shown to be consistent, and
a simulation study reveals that the proposed tests have satisfactory �nite-sample
properties.

1 Introduction

The possible presence of endogeneity is one of the common problems in econometric
models. It occurs when the regressor is correlated with the model error term. Typ-
ically it is a result of omitting a relevant explanatory variable, of simultaneity in the
model, or measurement error in the regressor. The presence of endogenous regressors
in the nonparametric model produces bias in the identi�ed case, and non-existence of
any consistent estimator in the set identi�ed case. Because of the potentially severe
consequences of endogeneity, applied researchers need to check whether the explanatory
variables used are exogenous, before providing an inference on the parameters of inter-
est. Following the work of Hausman (1978), a vast literature on testing for exogeneity
of the regressors has emerged.
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Recently, with the expansion of interest in nonparametric models, new testing pro-
cedures have been developed. The problem of testing the correct speci�cation of a
nonparametric model of the form

Y = h(X) + " (1)

has been discussed by many authors including Fan and Li (1996), Zheng (1996), Lavergne
and Vuong (2000), Lavergne and Patilea (2008) and Blundell and Horowitz (2007).
These tests �t in a conditional moment restriction testing framework, and are based on
the earlier work of Newey (1985) and Bierens (1990), among others.
All the nonparametric tests of this type assume that the regressors are continuously

distributed. The aim of this paper is to provide a test for exogeneity in a nonparametric
model with discrete explanatory variables. A model with discrete regressors arises
in many economic problems. Variables such as gender, marital status or education
levels typically take discrete values. When X is binary it may indicate the occurrence
of the event. In empirical applications, such regressors are called �dummy variables�
taking values 0 or 1, for example, an individual is either male or female, working or
unemployed. The discrete regressor with multiple categories might measure e.g. the
number of children in a household, or give the position on an attitudinal scale. The
nonparametric model with discrete regressors has been applied by Hu and Lewbel (2008)
to identify and estimate the di¤erence in average wages between individuals who falsely
claim college experience and those who tell the truth about not completing college
education. More recently, Iori, Kapar and Olmo (2014) use nonparametric methods
to explain variation in the continuous variable (bank funding spreads) given a set of
discrete regressors (bank characteristics, nationality, size and operating currency) in
the European interbank money market.
The most popular method of dealing with endogeneity in econometric models is by

instrumental variable (IV) estimation. Although IV methods are traditionally para-
metric in nature, the extension of the approach to a more �exible, non-parametric
framework was introduced by Newey and Powell (2003). The method suggests that
researchers should �nd a set of variables satisfying instrument relevance and exogeneity
conditions and use them to consistently estimate the causal relationship between the
dependent variable and endogenous regressors. However, the IV method involves some
identi�cation issues. The problem with identi�cation is particularly noticeable in non-
parametric models with additive errors when the regressors are discrete. Florens and
Malavolti (2003) and Das (2005) show that the identi�cation of the unknown function
of interest depends on the support of instruments relative to the support of the endoge-
nous regressor. If the identi�cation condition is violated and point identi�cation is not
feasible, the model still has some partial identifying power. Partial identi�cation can be
achieved in models which cannot provide the exact value of the parameter or structure
of interest, but contain enough information to bound these values to informative sets.
Chesher (2004) discusses the estimation of the regression function h(�) in equation (1)
with this framework.
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One of the advantages of nonparametric models with discrete endogenous regressors
is that they do not su¤er from the ill-posed inverse problem that arises in nonpara-
metric models with continuous endogenous regressors. The problem derives from the
discontinuity of the mapping from the structural to the reduced form, when estimating
an in�nite dimensional function h(�) in continuous speci�cations (Newey and Powell
(2003)). This means that h(�) cannot be estimated consistently by replacing the un-
known population quantities with consistent estimators. In order to obtain a consistent
estimator, it is necessary to regularize the mapping that identi�es the unknown function
of interest. Restricting the endogenous regressors to be discrete eliminates the ill-posed
inverse problem. The discrete speci�cation is well-posed, and no regularization of the
problem is required.
The plan of this paper is as follows. Section 2 introduces the nonparametric model

of interest and presents the notation that enables us to interpret equation (1) as a
linear model. This section also explains the identi�cation problems in the presence of
endogenous regressors and shows some basic estimation results. Section 3 presents the
test for models that point identify the unknown function of interest and establishes the
asymptotic properties under the null and alternative hypothesis. Section 4 introduces
the test for models that are set identi�ed. The asymptotic distribution of the test
statistic under the null and alternative hypothesis is also derived in this section. In
Section 5, we present the results of the Monte Carlo investigation of the �nite-sample
properties of the proposed tests. Section 6 concludes. All proofs are in the appendix.

2 Model and assumptions

2.1 Notation

The upper case letters X; Y; Z will denote observed random variables, and xsi ; y
s
i ; z

s
i will

denote sample (data) points. Symbols xk for k = 1; :::; K denote the points of support
of a discrete random variable X. I(A) stands for an indicator function, which takes
value 1 if the event A occurs,and is 0 otherwise. The probability density function of a
continuous random variableW is denoted by fW (w); and the probability mass function
of a discrete random variable X is pX(x). The cumulative distribution function is
denoted by FX(x). For a matrix A of full column rank we de�ne PA = A (A0A)�1A0

and MA = I � PA, both of which depend only on the space spanned by the columns of
A. For any r, lr denotes an r-vector of ones and Cr denotes an r� (r� 1) matrix with
the properties C 0rlr = 0 and C

0
rCr = Ir�1.

2.2 Model

We consider the simple additive error model in which a continuous outcome Y is deter-
mined by equation (1), with X a single discrete regressor, and " denotes a continuously
distributed error term. The interest of econometricians typically lies in estimating the
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unknown structural function h(�). Consistent nonparametric estimation of h(�) is fea-
sible under the assumption that the regressors are exogenous. Numerous de�nitions
of exogeneity have been provided in the literature, see Deaton (2010). The standard
exogeneity condition is that of an absence of correlation between the regressor and the
model error term. Here we employ the de�nition proposed by Blundell and Horowitz
(2007) for nonparametric regressions: the explanatory variable X is exogenous if the
conditional moment restriction E["jX = xk] = 0 holds for all k = 1; :::; K. In that case
E[Y jX] = h(X); i.e. the conditional mean of the dependent variable given X coin-
cides with h(X). This de�nition has the advantage that the standard nonparametric
regression of Y on X is then appropriate for the consistent estimation of the unknown
function of interest h(�).
In the presence of endogeneity of regressors, further analysis needs to be conducted.

The common strategy to deal with the endogeneity problem is to use instrumental
variables. However, the choice of a consistent estimation method depends on a char-
acteristic of the available instruments. The identifying power of the model varies with
the number of the points of support of the instrumental variable (see Section 2.5). The
complete model is characterized by the following set of assumptions:
Assumption 1. X is a discrete (scalar) random variable with support fx1; :::; xKg
and associated probabilities pk > 0.
Assumption 2. There exists a discrete instrumental variable Z with support
fz1; :::; zJg and associated probabilities qj > 0, with the property

E["jZ = zj] = 0; j = 1; :::; J (2)

which de�nes the instrument exogeneity condition.1 The matrix of joint probabilities
P with elements

pjk = Pr[X = xk \ Z = zj]; j = 1; :::; J ; k = 1; :::; K

is of full rank K when J � K and of full rank J when J < K.
Assumption 3. E[XjZ = zj] and E[h(X)jZ = zj] vary with zj. The �rst condi-
tion (the instrument relevance condition) together with (2) ensures that Z is a valid
instrument.
Assumptions 2 and 3 are analogous to the standard assumptions for the validity of

instruments in single equation IV estimation (see, for example, Greene (1993), Section
20.4.3)
Assumption 4. The data consists of n iid observations on (Y;X;Z); denoted by
(ysi ; x

s
i ; z

s
i ) for i = 1; :::; n: Under exogeneity, for all j and k,

E["jX = xk; Z = zj] = 0 and V ar["jX = xk; Z = zj] = �
2:

1Notice that we include in the support of X and Z only points for which pk and qj are strictly
positive
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The complete model consists of equations (1) and (2). We are interested in testing
the null hypothesis of exogeneity of the regressor i.e. E["jX = xk] = 0 for all k.
Equivalently, in terms of observables,

H0 : E[Y jX = xk] = h(xk); k = 1; :::; K:

If this condition is satis�ed the unknown function h(�) can be consistently estimated
nonparametrically.
In equation (1) the function h(�) is unknown and if h(xk) is completely arbitrary,

the null hypothesis would not constrain the conditional density function of Y given X,
fY jX(yjx); and would therefore be untestable. Thus, more information than just equa-
tion (1) is required for H0 to become a testable hypothesis. This additional information
is acquired by using the fact that there exists a valid instrument Z satisfying (2) for
any admissible zj.
Let nXk =

Pn
i=1 I(x

s
i = xk) and n

Z
j =

Pn
i=1 I(z

s
i = zj) denote the multiplicities of xk

and zj in the sample, and also njk =
Pn

i=1 I(x
s
i = xk)I(z

s
i = zj). Under Assumption 2,

the unknown function h(�) satis�es the set of J linear equations

E[Y jZ = zj] =
KX
k=1

Pr[X = xkjZ = zj]h(xk); j = 1; :::; J: (3)

Let � denote the K-vector with �k = h(xk), k = 1; :::; K, � be the J-vector with
the elements E[Y jZ = zj], j = 1; :::; J , and � be the J � K matrix of conditional
probabilities Pr[X = xkjZ = zj]; j = 1; :::; J; k = 1; :::; K. Then, (3) can be written as
the system2:

� = ��: (4)

The nonparametric nature of the model is re�ected in the fact that �, the vector of
values of h(�) at the support points of X is completely unknown.
It is worth noting that equation (4) always has a solution (for �), since for each

j = 1; :::; J; by de�nition

E[Y jZ = zj] =
KX
k=1

Pr[X = xkjZ = zj]E[Y jX = xk; Z = zj]

so that � is certainly in the space spanned by the columns of �. That � has full rank
minfJ;Kg is part of Assumption 2.
The hypothesis H0 imposes the constraint that the vector of conditional means

E[Y jX = xk] is a solution to a linear equations � = ��, so in this case the null
hypothesis imposes a restriction on the conditional density function fY jX(yjx) and is
therefore testable.

2In the continuous case, equation (4) corresponds to the integral equation for the structural function
(2.2) in Blundell and Horowitz (2007).
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Remark 1 There might be other restrictions that can be imposed on h(�) to make the
null hypothesis testable. In order to make sure that h(�) is not entirely arbitrary, one
could impose some shape restrictions dictated by economic theory. Such restrictions are
already in use in the literature of nonparametric estimation, for example by Hall and
Huang (2001) who estimate the conditional mean function subject to a monotonicity
constraint. Monotone estimates are required in many empirical applications, when the
theory suggests that the outcome should be monotonic in explanatory variables e.g. wage
increasing in the years of schooling. Blundell, Horowitz and Parey (2012) use di¤er-
ent shape restriction and provide a nonparametric estimator of the demand function
assuming that the unknown function h(�) satis�es the Slutsky condition of consumer
theory. The literature suggests that imposing shape restrictions improves the precision
of nonparametric estimates, but in our case it might also act as a tool to ensure that
the hypothesis of exogeneity of regressors is testable.

The elements of the vector � can be consistently estimated from the data, by aver-
aging those yi that correspond to the observations with zsi = zj; i.e. by

b�j = 1
n

Pn
i=1 yiI(z

s
i = zj)

1
n

Pn
i=1 I(z

s
i = zj)

=
1

nZj

nX
i=1

yiI(z
s
i = zj): (5)

The elements of the matrix of conditional probabilities � can be written as

Pr[X = xkjZ = zj] =
Pr[X = xk \ Z = zj]

Pr[Z = zj]

and can be consistently estimated by

b�jk = 1
n

Pn
i=1 I(x

s
i = xk)I(z

s
i = zj)

1
n

Pn
i=1 I(z

s
i = zj)

=
njk
nZj
: (6)

Thus, � and � can (ultimately) be learned from the data, and the problem is to use
this information to make inference on h(�):

Remark 2 In the discussion here, and also in what follows, it is implicitly assumed
that all K support points of X; and all J of Z; occur in the sample. That is, that both
nXk and nZj are non-zero for all k = 1; ::; K and j = 1; ::; J . This will ultimately (for
large enough n) be the case with probability one. The alternative would be to de�ne
estimates for the �j and �jk only for those points xk and zj that occur in the sample,
say Ks � K and Js � J points, and allow these to increase to K and J respectively,
as n increases. This would make the arguments and derivations to follow considerably
more cumbersome, without materially a¤ecting the results, so instead we will tacitly
assume throughout that n is large enough to ensure that Ks = K and Js = J:

There is no di¢ culty in extending the results by allowing for additional discrete
exogenous regressors in the model as long as there is only one possibly endogenous
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explanatory variable. An unresolved issue is how to deal with multiple discrete endoge-
nous regressors. Assuming that more than one regressor is endogenous is likely to a¤ect
the identi�cation conditions and existing estimation and testing procedures. The model
with multiple discrete endogenous regressors will be addressed in future research.

2.3 Linear Model Representation

The above setup can be represented compactly in terms of a linear model. To do so,
de�ne the n�K matrix LX with (i; k) element

(LX)ik = I(x
s
i = xk);

so that (LX)ik = 1 if observation i corresponds to a value xk for X, and is 0 otherwise.
Likewise, de�ne the n� J matrix LZ with elements

(LZ)ij = I(z
s
i = zj):

Note that the row sums of both LX and LZ are 1, because each row of both contains
exactly one element that is equal to 1. Both LX and LZ are random matrices, because
the positions of the non-zero elements, and the multiplicities of each xk and zj; are
determined randomly in the sample. Let x denote the K-vector with elements xk;
k = 1; :::; K, the support points of the regressor, and let xs = LXx denote the n-vector
of sample observations xsi ; i = 1; :::; n. Finally, let y denote the n�vector of sample
observations on Y; a realization of the random n�vector Y.
Using the notation just introduced, (5) can be written as

�̂ = (L0ZLZ)
�1
L0Zy (7)

and (6) becomes
�̂ = (L0ZLZ)

�1
L0ZLX : (8)

The inverse in (7) and (8) exists almost surely for large enough sample size3, since
Pr[Z = zj] = qj > 0. Note that

n�1L0ZLZ !p diag(qj) := DZ

because 1
n

Pn
i=1 I(z

s
i = zj) !p E[I(zsi = zj)] = Pr[Z = zj]. Hence, by the Slutsky

Theorem �
n�1L0ZLZ

��1 !p D�1
Z :

Similarly, the elements of n�1L0ZLX are consistent estimates of the joint probability
matrix P: Therefore, b� !p � and b�!p � := D�1

Z P .

3Of course, for existence we require n > K and n > J here. And, as discussed in Remark 2, we
are tacitly assuming that n is large enough to ensure that Ks = K and Js = J:
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Letting X denote the random n�vector of observations on X, the model can be
written in the familiar form E[YjX = LXx] = LX�+E["jX = LXx], a linear model for
the vector Y with random regressor matrix LX and unknown parameters �k = h(xk);
k = 1; :::; K. The null hypothesis then takes the form:

H0 : E[YjX = LXx] = LX�;

Thus, although the model is purely nonparametric, it can be interpreted as a linear
model. Note that even though in the nonparametric speci�cation there is only one
discrete regressor X, LX is n �K in the linear model speci�cation. Also,observe that
the support points xk ofX determine the points at which we can learn h(�); i.e., �; but do
not appear elsewhere in the linear model. This familiar linear model speci�cation allows
us to connect the nonparametric estimators with well known regression estimators,
particularly OLS and 2SLS.

2.4 A complication

There is a relationship between LX and LZ , which has an important implication for the
further analysis. This is that every sample point is associated with exactly one support
point of both X and Z. It follows that, for any regressor X and any instrument Z, the
row sums of both LX and LZ are all equal to one. That is,

LX lK = LZ lJ = ln:

Algebraically, this says that the column spaces of LX and LZ always have the vector ln
in common, and this needs to be taken into account in adapting existing procedures to
the present problem. Let us, for brevity, call this Property C.
Note that Property C implies, in particular,

MLXLZ lJ =MLX ln = 0:

As a consequence of Property C, some matrices involving both LX and LZ have reduced
rank. Hence, special attention has to be paid when dealing with these matrices.

2.5 Identi�cation

Newey and Powell (2003) and Das (2005) study identi�cation of the unknown structural
function h(�) in the presence of endogeneity of discrete regressors X. Florens and
Malavolti (2003) and Das (2005) consider estimation in this framework. They show
that nonparametric identi�cation is achieved if the vector of instruments Z has at least
as many points of support as the endogenous regressor X under a marginal covariation
condition, i.e. E["jZ = z] = c, where c is a constant that is invariant with respect to
Z.
Using this marginal covariation restriction, one can normalize c = 0; producing the

system of linear equations (4). Since the conditional expectations on the left hand
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side and probabilities on the right hand side are observables, (4) forms a set of linear
equations in the unknown h(xk); i.e., in �. Hence, the value of the vector � is identi�ed if
and only if the solution to these linear equations is unique. Assuming that equations in
(4) represent the only information about h(�) that the data contains, point identi�cation
requires that the matrix � has rank K.

Proposition 1 (Newey and Powell (2003)) The necessary and su¢ cient condition for
identi�cation in the model Y = h(X) + ", with discrete endogenous X and a discrete
instrument Z satisfying E["jZ] = 0; both with �nite support, is that the number of points
of support of the instrument Z is at least as large as the number of points of support of
endogenous X.4

Hence, if J � K, � is point-identi�ed for known (�;�) and � = (�0�)�1�0�.
Even if the identi�cation condition fails, the model still has partial identifying power.
Partial identi�cation arises in models, which cannot provide the exact value of the
parameter or structure of interest, but contain enough information to bound these
values to informative sets. The literature on partial identi�cation has been growing
rapidly since the late 1980s. See Tamer (2010) for a detailed review.
Chesher (2004) presents the conditions under which the nonparametric model with

discrete endogenous regressors partially identi�es the conditional mean of the outcome
by bounding its value in informative ways when the support of instruments is sparse
relative to the support of endogenous regressor. If J < K, even though the exact value
of the vector � in (4) remains unknown, we are able to bound its value by quantities
which are easily estimated from the data.

2.6 Estimation

This section presents some basic estimation results under point identi�cation. That
is, we assume that J � K. Since E[Y jX] = h(X) +E["jX], �k = h(xk) can be
nonparametrically estimated from the data by averaging the yi corresponding to all xsi
that equal xk. Given the linear interpretation of the model, the standard OLS estimator
for � is

�̂ = (L0XLX)
�1
L0Xy; (9)

which coincides with the standard nonparametric estimator. The important observation
is that the value of the conditional mean of Y given X, does not depend on the values
xk of X and the con�guration of xk in the sample (the position of non-zero elements
in the matrix LX) does not matter. The only thing that matters is the multiplicity of
each xk in the sample. Since n�1nXk is a sample proportion, it converges in probability
to pk i.e. the probability mass on the support point xk.
Substituting the linear model y = LX� + " in (9) gives

�̂ = (L0XLX)
�1
L0Xy

= � + (L0XLX)
�1
L0X"

4The result can also be found in Matzkin (2007), Chapter 73 in "Handbook of Econometrics"
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and since (n�1L0XLX)
�1 !p D�1

X whereDX is diag(pk), the matrix of probability masses
on each point of support of X on the main diagonal with zero entries elsewhere, and
n�1L0X" !p EX [L

0
XE["jX]] = 0, under the null hypothesis, we have �̂ !p �; i.e., if X

is exogenous the OLS estimator �̂ is a consistent estimator of �. We can also readily
establish the asymptotic distribution of the OLS estimator.

Theorem 1 Under the assumptions above, if X is exogenous then the OLS estimatorb� is consistent and p
n
�
�̂ � �

�
!d N

�
0; �2D�1

X

�
Remark 3 The primitive components of the elements of �̂ are sums of random numbers
of i:i:d:random variables, since the multiplicities and positions of the xk in the sample
are random. At �rst sight, therefore, one might expect to need a central limit theorem
adapted to this situation, such as those of, for example, Robbin�s (1948), or Anscombe
(1952), both of which deal with this case. However, the problem turns out to be more
straightforward, and Theorem 1 can be proved by using a multivariate version of the
Lindeberg-Feller central limit theorem (see Appendix).

It can be shown that the covariance matrix �2D�1
X , under exogeneity, achieves the

asymptotic Cramer-Rao bound and hence b� is asymptotically e¢ cient. And, the un-
known parameter �2 can be consistently estimated by the usual estimator in a linear
regression model: n�1y0MLXy !p �2.
Of course, if E["jX = xk] 6= 0; i.e. X is endogenous, then

n�1L0X"!p EX [L
0
XE["jX]] 6= 0

and b� is an inconsistent estimator for �. However, if X is endogenous the unknown
function h(�) (or vector �) can be estimated using familiar IV methods. When the model
point-identi�es the structure of interest, the problem can be treated as a standard IV
problem and the IV estimator for � is

�̂IV =
�
�̂0L0ZLZ�̂

��1
�̂0L0ZLZ �̂

=
�
L0XLZ (L

0
ZLZ)

�1
L0ZLX

��1
L0XLZ (L

0
ZLZ)

�1
L0Zy

= (L0XPLZLX)
�1
L0XPLZy:

This is the IV estimator for � in the null model y = LX� + ", in the presence of the
instrument matrix LZ . Even though in the nonparametric speci�cation there is only
one discrete instrument Z, we have J instrumental values (I(Z = zj), j = 1; :::; J)
in the linear regression speci�cation. The matrix of instruments corresponding to this
interpretation of the model is LZ , so the familiar requirements for the validity of the
instruments are that n�1L0ZLX !p P , a �nite nonsingular matrix; n�1L0Z" !p 0 and
n�1L0ZLZ !p DZ , a positive de�nite matrix (Greene (1993), p.601). All these conditions
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are covered by Assumption 2. Note that the matrix P is the matrix of joint probabilities,
and the full rank assumption for P requires: in the case J � K, that there is no non-zero
K�1 vector x for which Px = 0, and in the case J < K, there is no non-zero J�1 vector
z such that P 0z = 0. The last condition follows from the fact that DZ = diag(q1; :::; qJ)
with qj > 0.
The IV estimator is consistent in both scenarios: whenX is exogenous and when it is

endogenous, since n�1L0ZLX !p P , n�1L0ZLZ !p DZ and n�1L0Z"!p EZ [L
0
ZE["jZ]] =

0. The last expression follows because of instrument exogeneity condition (2). The
asymptotic normality of the IV estimator is established through:

Theorem 2 Under assumptions above, the IV estimator �̂IV is consistent and

p
n
�
�̂IV � �

�
!d N

�
0; �2

�
P 0D�1

Z P
��1�

:

It can be shown that the IV estimator de�ned for the linear representation of the
nonparametric model is equivalent to the standard nonparametric estimator (see, for
example Das (2005)). The advantage of our approach is that the estimator can be
written in a compact matrix notation, which is easier to work with.
It is crucial to understand that because K and J are �xed, we cannot estimate

the entire unknown function h(�), but can only learn about speci�c values of h(�) at
the support points. Additional information about h(�), could possibly be acquired if
the support of the regressor (and instrument) were assumed to be increasing with the
sample size. Allowing for growing dimensions could be considered as an abstract way
of generating asymptotic approximations to the distributions of estimators and might
result in di¤erent limiting behaviour instead of Theorems 1 and 2. Additionally, letting
both J and K grow at a rate that is proportional to n, would have an impact on the
identi�cation analysis. It is possible that a model that is only set identi�ed (J < K) in
small samples, point identi�es h(�) in large samples if K is �xed and J increases with n;
or if J grows faster than K. Therefore, considering such increasing dimensions might
be an interesting extension of our work, but this topic is left for further research.

3 Testing for exogeneity under point identi�cation

Assume that J � K and the model point identi�es the unknown function of interest h(�)
by Proposition 1. The OLS estimator b� is consistent and e¢ cient if X is exogenous, but
inconsistent otherwise. The IV estimator is consistent in both cases, but ine¢ cient if X
is exogenous. For this situation, then, the test is really just to decide which estimator
to use (OLS or IV).
The standard Wu-Hausman-type statistic for testing exogeneity in this context is

based on a quadratic form in the di¤erence between the two estimators �̂IV and �̂,
namely

�̂IV � �̂ = (L0XPLZLX)
�1
L0XPLZMLXy; (10)
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with the matrix of the quadratic form equal to the inverse of Cov(�̂IV � �̂), in order to
produce a �2 variable asymptotically (Hausman (1978)). The covariance matrix of the
di¤erence is given by

Cov(�̂IV � �̂) = (L0XPLZLX)
�1
L0XPLZMLXPLZLX (L

0
XPLZLX)

�1
: (11)

However, in this case, Property C implies that this covariance matrix is singular. To
see this, observe that

l0K (L
0
XPLZLX) (�̂IV � �̂) = l0KL

0
XPLZMLXy

= l0nPLZMLXy (LX lK = ln)

= l0nMLXy (PLZ ln = ln)

= 0 (MLX ln = 0):

That is, for all LX and LZ there is an exact linear relation between the elements of
�̂IV � �̂, so its covariance matrix will always be singular.
We therefore need to adapt the Wu-Hausman test statistic to this situation. To

do so we simply replace the inverse of the covariance matrix - the matrix that would
normally be used in the quadratic form to produce an asymptotically �2 test statistic -
by a generalized inverse of that matrix. The covariance matrix in (11) can be written
as

S = (L0XPLZLX)
�1
CK [C

0
KL

0
XPLZMLXPLZLXCK ]C

0
K (L

0
XPLZLX)

�1
;

sinceMLXPLZLX [lK ; CK ] = [0;MLXPLZLXCK ] and [lK ; CK ]
�1 = [K�1lK ; CK ]

0 (see sec-
tion 2.1 for notation). The middle matrix C 0KL

0
XPLZMLXPLZLXCK is a (K�1)�square

matrix of full rank. Thus, the covariance matrix can be expressed as a matrix of the
form S = A�1CBC 0A�1, where C is m � p, C 0C = Ip, B is p � p nonsingular and
symmetric, and A is m �m nonsingular and symmetric. The generalized inverse of a
matrix with this form is S+ = ACB�1C 0A. To verify this it is su¢ cient to check that
the two conditions that de�ne a generalized inverse, i.e. SS+S = S and S+SS+ = S+;
both hold.
Therefore, the generalized inverse of the covariance matrix is

S+ = (L0XPLZLX)CK [C
0
KL

0
XPLZMLXPLZLXCK ]

�1
C 0K (L

0
XPLZLX) :

Using this matrix to de�ne the test statistic, we have

T �n = y0MLXPLZLXCK [C
0
KL

0
XPLZMLXPLZLXCK ]

�1
C 0KL

0
XPLZMLXy

= y0WXZ (W
0
XZWXZ)

�1
W 0
XZy

where WXZ =MLXPLZLXCK is n� (K � 1).
Scaling to eliminate �2, we propose the test-statistic

Tn =
y0WXZ (W

0
XZWXZ)

�1W 0
XZy

n�1y0MLXy
: (12)

12



Observe that the values xk of X and zj of Z do not appear in the test statistic,
nor does their con�guration in the sample matter. The only things that appear are the
multiplicities of each value in the sample, the nXk and n

Z
j ; and the multiplicity of the

joint event (X = xk; Z = zj), njk. Note that the numerator of the modi�ed version
of Tn is easily computed from a linear regression of y on WXZ . Since WXZ is easy to
construct in practice, the value of the test-statistic might be e¢ ciently calculated by
any statistical software package.

Remark 4 Using the generalized inverse is not the only way to deal with singularity
of the covariance matrix. The naive approach would be to reduce the dimension of the
test-statistic by eliminating for example the �rst element in the di¤erence (10) and pick-
ing up the lower-right corner of the covariance matrix in (11). Then the Wu-Hausman
test-statistic of reduced dimension would follow standard results. An alternative ap-
proach would be to use the Moore-Penrose inverse of the covariance matrix (built into
all econometric software). All three approaches give similar values of the test-statistic,
thus in applications, the researcher could choose the method that is most convenient.

3.1 Asymptotic distribution under the null hypothesis

To discuss the asymptotic distribution of Tn, de�ne the (J � 1)� 1 vector

zn = C
0
JL

0
ZMLXy = C

0
JL

0
ZMLX": (13)

The primitive components of zn are the two vectors un = L0Z" and vn = L
0
X". Thus, we

�rst consider the asymptotic behaviour of these two vectors, i.e. the joint asymptotic
distribution of

1p
n
wn =

1p
n

�
un
vn

�
:

This is given in:

Lemma 1 Under H0 and the given assumptions,

1p
n
wn !d N

��
0
0

�
; �2

�
DZ P
P 0 DX

��
:

This result will also be useful in the set-identi�ed model later. Now, zn is a linear
function of un and vn;

1p
n
zn =

1p
n
C 0J

�
un � L0ZLX (L0XLX)

�1
vn

�
with

p lim
n!1

L0ZLX
n

�
L0XLX
n

��1
= PD�1

X :

We therefore immediately obtain
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Lemma 2 Under H0 and the given assumptions,

1p
n
zn !d N(0; �2�)

where � = C 0J(DZ � PD�1
X P

0)CJ is positive de�nite.

The numerator of the proposed test-statistic in (12) is a quadratic form in zn :

T �n = z
0
nAnB

�1
n A

0
nzn

where
An = C

0
J (L

0
ZLZ)

�1
L0ZLXCK

is a (J � 1)� (K � 1) matrix with probability limit equal to

A = C 0JD
�1
Z PCK ;

and
Bn = A

0
n (C

0
JL

0
ZMLXLZCJ)An

is (K � 1)�square matrix.
Using these results we obtain the asymptotic distribution of Tn under the null hy-

pothesis:

Theorem 3 Under H0, and the assumptions above,

Tn !d �2K�1:

The asymptotic behaviour of the test-statistic under the null hypothesis is fully
characterized by the �2 distribution. Therefore, for practical applications, the critical
values can be easily obtained from statistical tables. The accuracy of this asymptotic
result is examined in Section 5.

3.2 Asymptotics under the alternative hypothesis

In this section, we establish the asymptotic distribution of the test-statistic under a
sequence of local alternatives, and in order to show that the proposed test is consistent,
i.e. the power of the test approaches 1 as n!1, we discuss the asymptotic behaviour
of Tn under a �xed alternative hypothesis.
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3.2.1 Local alternatives

Let m(X;V ) be a bounded function, depending on X and another variable V; which
does not appear in the model and is independent ofX. Assume now that the conditional
expectation of the error term is given by:

E["jX = x; V = v] = E["jX] = m(x; v);

and de�ne the K vector

m =

24 m(x1; v)
:::

m(xK ; v)

35 :
In the linear representation of the model, we have

E["jX = LXx] = LXm: (14)

To derive the asymptotic distribution of the test statistic under the alternative hy-
pothesis, consider the sequence of local alternatives in whichE["jX = LXx] = n

� 1
2LXm.

Theorem 4 Under the sequence of local alternatives to (14) and the assumptions above,
the test statistic Tn converges to a non-central �2K�1(�L) distribution, with the noncen-
trality parameter

�L =
�0A (A0�A)�1A0�

�2

where � = �C 0JPm, A = C 0JD�1
Z PCK and � = C

0
J [DZ � PD�1

X P
0]CJ :

The proof of Theorem 4 is based on familiar results for quadratic forms in normal
variables with non-zero mean. The asymptotic behaviour of the test-statistic is captured
by the non-central �2 distribution. For a given size of test, the power increases with
noncentrality parameter �L. The value of this parameter depends on the the distance
between an inconsistent OLS and consistent IV estimators. Hence, the test is more
powerful if the probability limit of the OLS estimator is far from the true value of the
parameter of interest.

3.2.2 Fixed alternatives

Let us next consider �xed alternatives of form H1 : E ("ijX = xk) = m(xk; vi). Building
on the results used in the previous section, by a simple generalization of Lemma 1, we
obtain

1p
n

�
L0Z"

L0X"

�
!d N

��
0p

nDXm

�
; �2

�
DZ P
P 0 DX

��
Additionally

1p
n
zn !d N(�S; �

2�)
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with �S = �
p
nC 0JPm :=

p
n�; i.e. the mean is proportional to the square root of the

sample size.
Therefore, under �xed alternatives the test statistic in (12) converges to a non-

central Chi-square distribution with (K � 1) degrees of freedom and noncentrality pa-
rameter �F equal to

�F =
�0SA (A

0�A)�1A0�S
�2

= n�L

The following proposition establishes the consistency of the test against a �xed alter-
native hypothesis.

Proposition 2 Under �xed alternatives and the earlier assumptions, the proposed test
is consistent, i.e., for any �xed constant c�;

Pr (Tn > c�)! 1 as n!1

Since �S is a multiple of
p
n, the noncentrality parameter is proportional to the

sample size. This implies that if the alternative hypothesis holds, as n ! 1, the
chi-square distribution moves to the right and the probability of rejecting a false null
hypothesis increases, i.e. p limn!1 Pr(�

2
K�1(�F ) > c�) = 1. Hence, as n ! 1, the

power of the test converges to 1 and the test is said to be consistent.

Remark 5 Under the alternative hypothesis we will have E["jX = xk] 6= 0 for at least
one value of k. For some speci�cations of how these values are determined the tests
proposed above will have no power. This occurs if, when the null hypothesis fails,

E[Y jX = xk] = h(xk) + �(xk)

where �(xk) = E["jX = xk] depends only on xk. In this case we will have the model

y = LX(� + �) + e"
where e" = " � �, which is identical to the original model with the unknown h replaced
by the also-unknown h + �. Thus, it is not surprising that the test should have power
equal to size in this circumstance.

4 Testing for exogeneity under set identi�cation

In this situation (J < K) there is no consistent estimator (in the conventional sense)
for � if X is endogenous, so in this case the test is to decide whether point estimation
of � is even possible. When J < K the Wu-Hausman approach to testing H0 is not
available. However, assuming the existence of an instrument Z with the properties
given above, � is constrained to satisfy the linear equations � = ��, but is not point
identi�ed by them. That is, there is a set of vectors �, a subset of RK , that satisfy
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these equations, of dimension K � J . The model maintains that � belongs to this set,
and H0 says that E[YjX = LXx] = LX�.
Now, consider the empirical counterpart of the system � = ��, namely b� = b��, and

the vector � that, among all solutions to this system, minimizes (y � LX�)0(y � LX�).
That is, de�ne b�Z = arg min

�:b�=b��(y � LX�)0(y � LX�):
Straightforward algebra gives

b�Z = b� + (L0XLX)�1 b�0 �b�(L0XLX)�1 b�0��1 �b� � b�b��
= b� + (L0XLX)�1 L0XLZ (L0ZPLXLZ)�1 L0ZMLXy;

where b� is the OLS estimator de�ned earlier. The minimum achieved by this choice for
� is therefore

Qn = (y � LXb�Z)0(y � LXb�Z)
= y0MLXy + y

0MLXLZ (L
0
ZPLXLZ)

�1
L0ZMLXy:

Intuitively, a large value for this minimum sum of squares is evidence against H0,
because it means that, among all solutions to b� = b��, none produces a small value of
(y � LX�)0(y � LX�). This suggests, not that � 6= ��, because this is ruled out, but
rather that E[YjX = LXx] 6= LX�; i.e. that the null hypothesis is false. Normalizing
Qn by dividing by n�1y0MLXy, this argument suggests rejecting H0 when the statistic

Rn =
y0MLXLZ (L

0
ZPLXLZ)

�1 L0ZMLXy

n�1y0MLXy

is large.
Now, in view of Property C,

MLXLZ [lJ ; CJ ] = [MLX ln;MLXLZCJ ] = [0;MLXLZCJ ]

and, the (2; 2) block of

[[lJ ; CJ ]
0 (L0ZPLXLZ) [lJ ; CJ ]]

�1 =

�
n l0nLZCJ

C 0JL
0
Z ln C 0JL

0
ZPLXLZCJ

��1
is given by

(C 0JL
0
Z [PLX � Pln ]LZCJ)

�1
:

Thus, after taking account of Property C, Rn reduces to

Rn =
y0MLXLZCJ (C

0
JL

0
Z [PLX � Pln ]LZCJ)

�1C 0JL
0
ZMLXy

n�1y0MLXy
(15)

with the middle matrix being (J � 1) square. Thus, although at �rst sight a quadratic
form involving J variables, the numerator of Rn in fact involves only J � 1 terms.
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4.1 Asymptotic distribution under the null hypothesis

The following theorem gives the asymptotic distribution of the test statistic under the
null hypothesis.

Theorem 5 Under H0 and the assumptions above,

Rn !d

J�1X
j=1

!j�
2
j(1)

where the !j are positive eigenvalues satisfying

det[�� !
] = 0

with

 = p lim

n!1

1

n
[C 0JL

0
Z(PLX � Pln)LZCJ ]

and
� = p lim

n!1

1

n
[C 0JL

0
ZMLXLZCJ ]

and the �2j(1) variables are independent copies of a �
2
1 random variable.

The proposed test-statistic converges to a quadratic form in a normal vector z, and
the distribution of that quadratic form is given by the distribution of a weighted sum
of chi-square (1) random variables.
The asymptotic distribution of the proposed test with discrete regressors and instru-

ments is similar to the distribution obtained by Blundell and Horowitz (2007) for the
continuous case. Their test-statistic follows asymptotically the distribution of an in�-
nite sum of weighted chi-square variables with 1 degree of freedom. When calculating
the critical values, they face the additional problem of approximating an in�nite sum
by a �nite number of terms. In the discrete case, the asymptotic distribution is more
straightforward, since it is based on a �nite sum of terms due to the discrete nature of
variables. Nonetheless, the distribution theory for such variables is complicated, and
there is an incentive to use approximations, and several have been discussed extensively
in the literature. In Section 4.3 we discuss the approximation proposed by Hall (1983)
and further explored by Buckley and Eagleson (1988), which allows us to compute the
critical values in practical applications.

4.2 Asymptotics under the alternative hypothesis

This section obtains the asymptotic distribution of Rn under a sequence of local alter-
natives. The test is also shown to be consistent against �xed alternatives.
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4.2.1 Local alternatives

Consider the sequence of local alternatives to (14). Using the vector zn de�ned in (13),
the numerator of the test statistic in (15) can be written as

R�n = z
0
n (C

0
JL

0
Z(PLX � Pln)LZCJ)

�1
zn

with n�
1
2 zn !d N(�; �2�) with � = �C 0JPm and � = C 0J [DZ � PD�1

X P
0]CJ as before.

The following theorem establishes the asymptotic distribution of the test-statistic
under local alternatives.

Theorem 6 Under the sequence of local alternatives to (14) and the assumptions above,
the test statistic Rn converges to a distribution of a weighted sum of non-central chi-
square random variables:

Rn !d

J�1X
j=1

!j�
2
1(�

2
j)

with the noncentrality parameters

(�1; :::; �J�1)
0 = S 0��

1
2� = �S 0�� 1

2C 0JPm

where S denotes the orthogonal matrix of the eigenvectors of ��
1
2
�1��

1
2 .

Under local alternatives, the test-statistic asymptotically follows the distribution of
a weighted sum of non-central chi-square (1) variables. This result again corresponds
to the distribution obtained by Blundell and Horowitz (2007) for the continuous case.

4.2.2 Fixed alternatives

Under �xed alternatives (14) the test statistic in (15) converges to a weighted sum of
noncentral �2(1) random variables,

PJ�1
j=1 !j�

2
1(�

2
j); with

(�1; :::; �J�1)
0 = �

p
nS 0��

1
2C 0JPm

Since the noncentrality parameter is again proportional to the sample size for each
term, the power of the test goes to 1 as n!1.

Proposition 3 Under �xed alternatives, the proposed test is consistent, i.e., for any
�xed constant c�;

Pr (Rn > c�)! 1 as n!1
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4.3 Computation of critical values

The asymptotic distribution of the test-statistic is non-standard and depends on the
weights !j, which, in practice, need to be estimated from the data. Since we cannot
provide statistical tables with the appropriate tail probabilities and cut o¤ points, it
is essential to �nd a quick technique for calculating the critical values of the proposed
test.
Although the distribution of the weighted sum of chi-square variables has been

studied in the literature since 1960�s and the explicit formulas for the probability density
function and a cumulative distribution function have been derived, they are rather
complicated and di¢ cult to handle in empirical applications. From the practical point
of view, in order to calculate the critical values for the proposed test, it is crucial to be
able to approximate the process of interest by a well known structure. Alternatively,
one could use the inverse interpolation procedure of �nding the critical values proposed
by Sheil and Muircheartaigh (1977). However, this method is computationally intensive
and requires specifying the upper and lower bounds on the weights, which we would
like to avoid.
There are numerous ways of computing the critical values in this case. Letting b!j

be consistent estimators of the weights !j under H0, the distribution of
PJ�1

j=1 b!j�2j(1)
can be simulated and appropriate 1 � � quantiles can be used as critical values in
the standard rejection rule. However, our experiments show that this approach is
computationally intensive and time consuming. The second method involves simulating
the quadratic form z0b
�1z with z � N(0; b�) and computing the quantiles. This method
delivers satisfactory results and reduces the simulation time signi�cantly. The third
method is based on using an approximation to the distribution of a weighted sum of
chi-square variables.
Even though a linear combination of independent chi-squared variables is, under

regularity conditions, known to be asymptotically normally distributed when the sam-
ple size tends to 1 (Johnson, Kotz and Balakrishnan (1994), p.444), the simulations
reveal the unsatisfactory performance of the normal approximation. Hence, we suggest
applying the approximation proposed by Hall (1983) and further explored by Buckley
and Eagleson (1988), where the distribution of a weighted sum of �21 random variables
is approximated by the distribution of a variate ~R = a�2v + b by choosing (a; b; v) so
that the �rst three cumulants of R and ~R agree.
The cumulants �l of a random variable are de�ned via the cumulant-generating func-

tion K(t), which is the logarithm of the characteristic function �(t) with the following
expansion (Muirhead (1982), p.40)

K(t) = log(�(t)) =
1X
l=1

�l
(it)l

l!
:

Since the characteristic function �(t) of a chi-square random variable with r degrees of
freedom is

�(t) = (1� 2it)� r
2
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the cumulant generating function K(t) of �2(r) variable is

K(t) = �r
2
log(1� 2it) = 1

2
r

1X
l=1

(2it)l

l

and the cumulants �l solve
1X
l=1

�l
(it)l

l!
=
1

2
r

1X
l=1

(2it)l

l
:

Let R =
PJ�1

j=1 !j�
2
j(1). The cumulants of this chi-squared-type mixture are given by

5

�l(R) = 2
l�1(l � 1)!

J�1X
j=1

!lj:

Therefore, the �rst three cumulants of R are

�1(R) = E(R) =
J�1X
j=1

!j = trace(�

�1)

�2(R) = V ar(R) = 2
J�1X
j=1

!2j = 2trace
��
�
�1

�2�
�3(R) = E

�
(R� E(R))3

�
= 8

J�1X
j=1

!3j = 8trace
��
�
�1

�3�
:

The cumulants of ~R = a�2v + b are:

�1( ~R) = av + b; �2( ~R) = 2a
2v; �3( ~R) = 8a

3v:

To determine the parameters a; b and v we set �m( ~R) = �m(R) for m = 1; 2; 3 which
leads to

a =
�3(R)

4�2(R)
(16)

b = �1(R)�
2�22(R)

�3(R)

v =
8�32(R)

�23(R)
:

Hence the approximate cumulative distribution of R is

FR(t) = Pr(R � t) � Pr( ~R � t) = Pr
�
�2v �

t� b
a

�
:

5See Severini (2005), Theorem 8.5, p. 245
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The critical value c� solves

1� Pr
�
�2v �

c� � b
a

�
= �

for � = 1%; 5% or 10%.
Note that parameter v is typically not an integer and the �2v distribution here is

in fact a gamma distribution with parameters 1
2
and v

2
. In practice, the matrix �
�1

is unknown and, in order to calculate the values of parameters in (16), it has to be
replaced by its consistent estimate:

C 0JL
0
ZMLXLZCJ [C

0
JL

0
Z(PLX � Pln)LZCJ ]

�1
:

An alternative (and popular) procedure of obtaining the critical values, based on
the numerical inversion of the characteristic function, was proposed by Imhof (1961).
This procedure is much more computationally intensive, since it requires the knowledge
of all eigenvalues of �
�1; while for the three-cumulants approximation only the traces
of powers of this matrix are needed.

5 Monte Carlo simulations

In this section, we discuss the results of Monte Carlo simulations designed to examine
the �nite sample size and power properties of the proposed tests. We modify Blundell
and Horowitz�s (2007) setup by generating X and Z as discrete random variables.

5.1 Simulation design

In the experiments, realizations of (X;Z) are generated as Z = Binomial(J � 1; pZ)
with pZ = 0:5 and X is a function of Z such that

X = xk if a < X� � b

where a and b are constants, and X� = �Z + (1 � �2)1=2� with v � N(0; 1) and
� 2 f0:35; 0:7g. Note that � measures the strength of the relationship between X and
Z. Weak instruments are characterized by � = 0:35 and � = 0:7 characterizes strong
instruments. The realizations of a continuous outcome Y are generated from

Y = �0 + �1X + �""

where " = �v + (1 � �2) 12u with u � N(0; 1) and �0 = 0, �1 = 0:5 and �" = 0:2. The
parameter � measures the strength of the relationship between X and ", and its value
varies across experiments. The null hypothesis is true if � = 0 and false otherwise. The
experiments use sample sizes of n = 50; 100; 200; 400 and 1000 observations and there
are 2000 Monte Carlo replications in each experiment.
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5.2 Size analysis J � K
Recall that under the null hypothesis Tn !d �2K�1, so the critical values are easily
obtained from statistical tables. For the size analysis, � = 0 and the errors are generated
as N(0; 1). The empirical size of the proposed test for di¤erent combinations of J and
K (satisfying J � K) is presented in Tables 1 and 2.

K=2 J=2 J=3 J=4
� sample size 1% 5% 10% 1% 5% 10% 1% 5% 10%

50 1.20 5.25 10.25 0.85 5.85 10.80 0.95 5.05 10.20
0.35 100 0.90 4.95 10.05 1.00 4.95 9.35 0.95 5.35 10.50

200 1.30 5.10 10.20 1.10 5.05 10.45 1.10 5.10 11.20
400 0.85 5.20 10.20 1.10 5.05 10.45 1.10 5.10 10.25
50 1.40 5.70 10.95 1.25 5.05 10.05 1.05 5.60 10.50

0.7 100 0.80 4.50 9.55 0.85 4.95 10.10 1.25 4.95 9.65
200 1.10 4.55 10.80 1.25 4.85 10.10 0.95 5.40 9.70
400 1.25 5.20 10.10 0.95 4.95 10.50 1.10 5.15 10.40

Table 1: Proportion of rejections under the null hypothesis; K=2

K=3 J=3 J=4 J=5
� sample size 1% 5% 10% 1% 5% 10% 1% 5% 10%

50 0.85 5.50 11.50 0.75 4.75 9.35 1.10 5.40 10.20
0.35 100 0.95 5.35 10.75 0.85 5.35 11.20 1.05 5.45 10.30

200 0.80 4.75 10.10 1.25 5.25 10.95 1.25 5.50 10.45
400 0.85 4.85 10.25 1.10 5.05 9.85 1.20 5.10 9.55
50 0.85 5.70 11.40 0.95 5.60 10.15 0.90 5.10 10.65

0.7 100 1.05 5.90 11.20 1.15 5.15 10.70 0.95 5.15 10.30
200 1.00 5.40 10.65 1.25 5.05 10.35 1.10 5.75 10.70
400 1.45 5.80 10.65 0.95 5.45 10.55 1.05 5.10 9.65

Table 2: Proportion of rejections under the null hypothesis; K=3

The empirical size is reasonably close to the nominal values of 1%, 5% and 10%,
even in small samples of 50 observations. The size seems not very sensitive to changes
in the number of points of support of the endogenous regressor and instrument and do
not vary with the strength of instrument.

5.3 Power analysis J � K
For the power analysis, the errors are generated as " = �v + (1 � �2) 12u, u � N(0; 1).
Recall that this speci�cation excludes the alternatives with E["jX = xk] = �(xk) in
which the power is equal to the size of the test. The results of power analysis at 5%
signi�cance level for di¤erent sample sizes are summarized in Figures 1 and 2.
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Figure 1: Empirical power for K=2 and J=2 with weak (a) and strong (b) instruments

Figure 2: Empirical power for K=3 and J=3 with weak (a) and strong (b) instruments
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The proposed test exhibits satisfactory power properties. The empirical power in-
creases with a sample size and converges to 1 quickly. For a �xed number of support
points of the endogenous regressor and instrument, the empirical power is higher if the
instrument used in experiment are strong. The test has also higher power if the support
of endogenous regressor is larger.
Figures 3 and 4 show how the empirical power changes with the number of points

of support of the instrument.

Figure 3: Empirical power for K=2 and n=400 with weak (a) and strong (b) instruments

Figure 4: Empirical power for K=3 and n=400 with weak (a) and strong (b) instruments

If the instrument is weak, for �xedK, the empirical power of the test increases when
additional point of support is added. Therefore, for weak instruments, the larger the
support of Z, the more powerful the test is. This suggests that in practice the researcher
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should look for an instrument with many support points to increase the probability of
detecting the endogeneity of regressor.
On the other hand, if the instrument is strong, the empirical power remains roughly

the same if the di¤erence between the support of X and Z is small, but decreases with
the gap between J and K.

5.4 Size analysis J < K

We have experimented with di¤erent methods of computing the critical values for the
proposed test. The three methods proposed in Section 4.3 produce very similar results
for the empirical size and power of the test. In this section, we present the results
based on the chi-square approximation, which minimizes the computational time. The
empirical size of the proposed test is presented in Tables 3 and 4.

K=5 J=2 J=3 J=4
� sample size 1% 5% 10% 1% 5% 10% 1% 5% 10%

50 0.85 5.80 11.10 1.25 5.30 9.65 1.45 5.65 10.80
0.35 100 1.10 5.00 10.45 1.20 5.65 10.85 0.85 5.25 10.80

200 0.90 4.85 10.00 0.80 4.55 9.65 0.95 4.55 9.65
400 0.85 5.50 10.50 1.15 6.15 10.55 1.10 5.50 9.75
50 1.30 5.95 11.20 1.05 5.65 11.30 1.35 5.60 10.80

0.7 100 1.20 6.10 11.50 1.35 5.85 11.35 1.55 5.80 11.20
200 1.15 5.80 10.90 1.05 4.75 9.70 1.10 5.35 10.35
400 1.20 5.65 9.80 1.05 5.30 10.10 0.95 4.95 10.50

Table 3: Proportion of rejections under the null hypothesis; K=5

K=6 J=3 J=4 J=5
� sample size 1% 5% 10% 1% 5% 10% 1% 5% 10%

50 1.20 5.80 11.10 1.25 6.10 12.05 1.60 5.90 11.20
0.35 100 1.20 5.70 10.50 0.85 5.25 10.95 1.10 6.15 11.50

200 1.05 4.80 10.15 1.00 5.60 11.10 1.50 5.55 10.40
400 0.95 4.65 9.80 0.90 5.05 9.85 0.90 5.25 10.50
50 1.20 6.15 11.30 1.10 5.05 9.25 1.25 5.85 9.75

0.7 100 1.05 5.35 10.55 0.95 4.75 10.30 1.60 5.70 10.15
200 1.15 5.10 9.85 0.85 5.05 9.90 1.65 5.90 11.20
400 0.90 5.40 10.75 1.05 5.65 11.10 0.95 5.20 10.40

Table 4: Proportion of rejections under the null hypothesis; K=6

.
The test has adequate size in all cases, even in the small samples of 50 observations.

The size is not sensitive to changes in the number of points of support and the strength
of the relationship between endogenous regressor and the instrument.
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5.5 Power analysis J < K

The results of a power analysis at 5% signi�cance level are presented in Figures 5 and
6.

Figure 5: Empirical power for K=5 and J=2 with weak (a) and strong (b) instruments

Figure 6: Empirical power for K=6 and J=3 with weak (a) and strong (b) instruments

The empirical power increases with the sample size and in some cases (strong in-
struments and large �) converges quickly to 1. The proposed test performs particularly
well if the instruments used in experiment are strong. In general, the results are more
than satisfactory given the fact that the model is only partially identi�ed under the al-
ternative hypothesis. A few testing procedures for partially identi�ed models developed
recently are typically complicated and allow to test a limited range of hypotheses. We
provide the simple exogeneity test based on the standard results that can be applied in
this conventionally untestable context.
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Figures 7 and 8 show how the empirical power changes with the number of points
of support of the instrument.

Figure 7: Empirical power for K=5 and n=400 with weak (a) and strong (b) instruments

Figure 8: Empirical power for K=6 and n=400 with weak (a) and strong (b) instruments

For a �xed number of points of support of the regressor, the proposed test detects
endogeneity of the regressor better when the support of the instrument is smaller.
Hence, for both, weak and strong instruments, the power of the test is decreasing with
the number of points of support in the Z. Therefore, in applications in order to obtain
higher power in detecting endogeneity, among all the instruments available, the one
with the smallest number of support points should be chosen. Note that if the gap
between K and J is small, the test tends to be more powerful with weak instruments.
This counter intuitive behaviour of the power function might be due to the fact that
the chi-squared approximation is more accurate with smaller J . Simulations reveal
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that the approximation error is small up to 5 terms in the weighted sum. Therefore, in
experiments with large support of instrumental variable, the critical values should be
computed using another method discussed above.

6 Conclusion

The consistency of a standard nonparametric estimation procedures fails in the presence
of endogeneity in the model. Therefore, in order to choose a consistent estimation
technique, the applied researcher should test whether the explanatory variable(s) used
in the model are exogenous. This paper has provided two consistent tests for exogeneity
in nonparametric models, when the single explanatory variable is discrete. To the best
of our knowledge, there exist no such tests for nonparametric models with discrete
regressors. In models that point identify the unknown function of interest, the test
is built on a quadratic form of a di¤erence between two estimators, one of which is
consistent only under exogeneity and the other is consistent under both scenarios. This
testing framework follows closely the Wu-Hausman-type of test. It has been shown that
under the null hypothesis of exogeneity, the test statistic follows chi-square distribution
asymptotically and that the test is consistent against �xed alternatives.
In models that set identify the structure of interest, the test-statistic is based on a

constrained minimized sum of squares. We have shown that under the null hypothesis,
the proposed test-statistic converges to a weighted sum of chi-square (1) random vari-
ables. Under the alternative hypothesis the test-statistic converges to a weighted sum
of noncentral chi-square (1) random variables. The proposed test is thus shown to be
consistent with asymptotic power approaching 1 as the sample size increases.
The results of Monte Carlo simulations have shown satisfactory �nite-sample prop-

erties of the proposed tests. Based on our experiment, we can conclude that:

� both tests have correct size even in small samples,

� empirical power increases with the sample size and converges to 1,

� using a strong instrument leads to better power properties,

� empirical power changes with the number of support points of both endogenous
regressor and instrument.

Particularly interesting is the fact that the power increases with the gap between
the number of points of support of the variables. Therefore, assuming that there is a
choice between valid instruments for the applied researcher, when J � K, they should
choose the one with the most points of support (when the instruments are weak), and
when J < K choose the one with the smallest number of support points in order to
increase the probability of detecting endogeneity of the regressor.
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Appendix: Proofs

The crucial result underlying the analysis is the asymptotic distribution of a vector
("0LX "

0LZ)
0. Therefore, we �rst prove Lemma 1 and use it to discuss other results.

Proof of Lemmas 1 and 2

Clearly E[wn] = 0, since for each j = 1; :::J E[unj] = EZ [
P

i I(z
s
i = zj)E["ijzsi ]] = 0

and for each k = 1; :::K,

E[vnk] =
X
i

EX [I(x
s
i = xk)E["ijxsi ]] = 0:

Therefore,

V ar(unj) = E

 
nX
i=1

"iI(z
s
i = zj)

!2
= n�2qj

and

V ar(vnk) = E

 
nX
i=1

"iI(x
s
i = xk)

!2
= n�2pk:

The covariance between unj and vnk is

cov(unj; vnk) = E

 
nX
i=1

"iI(z
s
i = zj)

! 
nX
i=1

"iI(x
s
i = xk)

!

= E

 
nX
i=1

"2i I(z
s
i = zj)I(x

s
i = xk)

!

= �2E

 
nX
i=1

I(zsi = zj)I(x
s
i = xk)

!
= n�2pjk:

The covariance between two di¤erent elements of un is zero, because for j 6= l

cov(unj; unl) = E

 
nX
i=1

"2i I(z
s
i = zj)I(z

s
i = zl)

!
= 0;

since I(zsi = zj)I(z
s
i = zl) = 0; and the indicated events cannot occur simultaneously.

Similarly, for k 6= s

cov(vnk; vns) = E

 
nX
i=1

"2i I(x
s
i = xk)I(x

s
i = xs)

!
= 0:
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The covariance matrix of the vector wn =
�
un
vn

�
is therefore

nV = n�2
�
DZ P
P 0 DX

�
with V �nite. Because the components of wn are correlated, we need a multivariate
version of the Lindeberg-Feller central limit theorem to establish the asymptotic nor-
mality of 1p

n
wn (see, for example, van der Vaart (1998), Section 2.8). The stability

condition (�nite V ) is clear, so to establish the result we need to con�rm the Lindeberg
condition

1

n
E

"
nX
i=1

jjwijj2Ifjwij >
p
n�g
#
! 0 for all � > 0:

Firstly, observe that

jjwijj2 =
KX
k=1

"2i I(x
s
i = xk) +

JX
j=1

"2i I(z
s
i = zj)

= "2i

 
KX
k=1

I(xsi = xk) +
JX
j=1

I(zsi = zj)

!
= 2"2i

since
PK

k=1 I(x
s
i = xk) =

PJ
j=1 I(z

s
i = zj) = 1. These results give

jjwijj2Ifjwij >
p
n�g � jjwijj2 = 2"2i ;

with E[2"2i ] = 2�
2 <1; and

lim
n!1

jjwijj2Ifjwij >
p
n�g = lim

n!1
2"2i Ifj

p
2"ij >

p
n�g

= lim
n!1

2"2i If2"2i > n�2g = 0:

Therefore, by the dominated convergence theorem (see for example Severini, (2005),
Theorem 1.10 (vi), p. 31), we have the Lindeberg condition:

lim
n!1

E
�
jjwijj2Ifjwij >

p
n�g
�
= 0:

Thus,
1p
n
wn !d N

��
0
0

�
; �2

�
DZ P
P 0 DX

��
; (17)

as claimed. Since zn is a linear combination of un and vn, by Slutsky�s Theorem, Lemma
2 follows immediately.
Since � represents the covariance matrix, we have to show that it is positive de�nite.

To do so, �rst observe that neither the support of Z; nor that of X; can a¤ect the
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properties of wn: That is to say, such properties must be invariant to the support of Z (or
X); and hence hold for arbitrary support vectors z (or x). Now, the key matrix in � is
DZ�PD�1

X P
0 = DZ�PD�1

X DXD
�1
X P

0. Let a denote a J-vector of hypothetical support
points of Z; and consider the quadratic form in the matrix DZ � PD�1

X DXD
�1
X P

0:

a0DZa�
�
a0PD�1

X

�
DX

�
D�1
X P

0a
�
: (18)

The �rst term is EZ [Z2] = EX [EZjX [Z2jX]]- the second moment of Z when its support
is a. The term D�1

X P
0a is the vector of conditional means E[ZjX = xk], k = 1; :::; K,

so the whole second term is EX [EZjX [ZjX]2]. Hence, the complete expression in (18)
can be interpreted as

EX
�
EZjX

�
Z2 � EZjX [ZjX]2

�
jX
�
= EX [V ar(ZjX)] > 0

i.e. the expectation of the conditional variance of Z given X when the support of Z is
a: Since this must hold for all a; it follows that the matrix DZ � PD�1

X P
0 is positive

de�nite as required. The only exception would be if the conditional variance of Z given
X vanished for each value of X, which we rule out.

Proof of Theorem 1

To determine the asymptotic distribution of the OLS estimator b�, we need to study
the asymptotic behaviour of n�

1
2L0X", which could be derived by using standard Lin-

deberg CLT. However, in the proof of Lemma 1, we have already derived that the joint
distribution of L0Z" and L

0
X". Given (17), we immediately get

n�
1
2L0X"!d N(0; �2DX):

It follows that, under exogeneity,

p
n
�b� � �� = �L0XLX

n

��1
L0X"p
n
!d N

�
0; �2D�1

X

�
:

Proof of Theorem 2

To determine the asymptotic distribution of the IV estimator b�IV , we need to study
the asymptotic behaviour of n�

1
2L0Z". Given (17), we have

n�
1
2L0Z"!d N(0; �2DZ):

Sinceb�IV � � = (L0XPLZLX)�1 L0XPLZ" = �L0XLZ(L0ZLZ)�1L0ZLX��1 L0XLZ(L0ZLZ)�1L0Z"
it follows that

p
n(b�IV � �) =

 
L0XLZ
n

�
L0ZLZ
n

��1
L0ZLX
n

!�1
L0XLZ
n

�
L0ZLZ
n

��1
L0Z"p
n

! dN
�
0; �2

�
P 0D�1

Z P
��1�

:
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Proof of Theorem 3

Note that under H0 we have E[yjX = LXx] = LX� and the standard arguments show
easily that

n�1y0MLXy !p �2:

The representation of T �n as a quadratic form in zn follows from the fact that

WXZ = MLXLZ [lJ ; CJ ][K
�1lJ ; CJ ]

0 (L0ZLZ)
�1
L0ZLXCK

= [0;MLXLZCJ ][K
�1lJ ; CJ ]

0 (L0ZLZ)
�1
L0ZLXCK

= [MLXLZCJ ][C
0
J (L

0
ZLZ)

�1
L0ZLXCK ]:

Since the matrices CJ and CK are non-random, we have

An = C
0
J

�
L0ZLZ
n

��1
L0ZLX
n

CK !p C 0JD
�1
Z PCK = A

and
1

n
Bn !p A0�A:

By Lemma 2
1p
n
A0nzn !d N(0; �2A0�A)

It follows that
T �n !d �2�2K�1

and therefore

Tn =
nT �n

y0MLXy
!d �2K�1:

Proof of Theorem 4

Recall that we are interested in obtaining the asymptotic distribution of

1p
n

�
L0Z"

L0X"

�
=

1p
n

�
un
vn

�
under the alternative hypothesis. Clearly E[un] = 0, since for each j = 1; :::J E[unj] =
EZ [
P

i I(z
s
i = zj)E["ijzsi ]] = 0 by Assumption 2. For each k = 1; :::K, E[vnk] =P

iEX [I(x
s
i = xk)E["ijxsi ]] = n�

1
2pk
P

im(xk; vi). Since we consider local alternatives
of order n�

1
2 , it follows that E[vn] = n�

1
2L0XLXm and under the alternative

E

�
1p
n

�
un
vn

��
!
�

0
DXm

�
The covariance between unj and vnk and the variances of unj and vnk remain the same
as under the null hypothesis. The stability condition in the Lindeberg-Feller CLT is
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satis�ed and the Lindeberg condition is exactly the same as under H0. Therefore under
H1,

1p
n

�
un
vn

�
!d N

��
0

DXm

�
; �2

�
DZ P
P 0 DX

��
:

Since we are interested in zn, a linear function of un and vn; it is clear that

1p
n
zn !d N(�; �2�)

with � = �C 0JPm and � = C 0J [DZ � PD�1
X P

0]CJ ; and that

1p
n
A0nzn !d N (A0�;A0�A)

with A0� = �C 0KP 0D�1
Z CJC

0
JPm. Note that the only di¤erence in distribution between

null and alternative hypotheses is a non-zero mean in the asymptotic distribution of zn:
Therefore, the test statistic is a quadratic form in normal variables (with non-zero

mean). This implies that

Tn = n
T �n

y0MLXy
!d �2K�1(�L)

i.e. non-central chi-square distribution with non-centrality parameter

�L =
�0A (A0�A)�1A0�

�2
:

Proof of Theorem 5

Using zn de�ned in (13), the numerator of the test-statistic can be written as

R�n =
�
n�

1
2 zn

�0�C 0JL0Z [PLX � Pln ]LZCJ
n

��1 �
n�

1
2 zn

�
The matrix in the middle converges to 
 = C 0J

�
PD�1

X P
0 � pZp0Z

�
CJ , where pZ is a

J-vector with elements qj. Therefore,

R�n !d �2z0
�1z

with z � N(0;�). It follows that

Rn = n
R�n

y0MLXy
!d z0
�1z �

J�1X
j=1

!j�
2
j(1);

where the !j are the eigenvalues of �
�1; i:e:; those of �
1
2
�1�

1
2 .
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We have to show that all weights !j are positive. The argument is similar to that
used to prove that � is positive de�nite, which we have already shown in the Proof of
Lemma 1. Since the inverse of a positive de�nite matrix is positive de�nite itself, we
only have to prove that 
 is positive de�nite. This will be so if

PD�1
X P

0 � qZq0Z = PD�1
X DXD

�1
X P

0 � qZq0Z

where qZ = (q1; :::; qJ)0, is itself positive de�nite. Let a denote J- vector of the hypo-
thetical support points of Z. Then the �rst term in

a0PD�1
X DXD

�1
X P

0a� a0qZq0Za

is familiar (it also appears in the proof of positive de�niteness of �) and equals

EX
�
EZjX [ZjX]2

�
:

The second term is simply (EZ [Z])
2 =

�
EX
�
EZjX [ZjX]

��2
. Hence, the complete ex-

pression is

EX
�
EZjX [ZjX]2

�
�
�
EX
�
EZjX [ZjX]

��2
= V ar

�
EZjX [ZjX]

�
> 0;

the variance of the conditional expectation of Z given X. Since this must again be true
for every support vector a. It follows that the matrix PD�1

X P
0�qZq0Z is positive de�nite

as required. The only case, in which this term would be zero is when EZjX [ZjX] is a
constant i.e. the expectation of Z doesn�t vary with X.

Proof of Theorem 6

Recall that for a quadratic form T = Y 0AY with A being a symmetric matrix and
Y � Nr(�;�) the standard results deliver T �

Pr
i=1 �i�

2
(1)(�

2
i ) with �i denoting the

eigenvalues of �A and (�1; :::; �r)
0 = S 0L�1� with L coming from the decomposition of

� = LL0. S is an orthogonal matrix of the eigenvectors of L0AL.
Since n�1C 0JL

0
Z(PLX � Pln)LZCJ !p 
, it follows that,

Rn = n
R�n

y0MLXy
!d

J�1X
j=1

!j�
2
1(�

2
j)

with !j denoting the eigenvalues of �
�1 and non-centrality parameters

(�1; :::; �J�1)
0 = S 0��

1
2� = �S 0�� 1

2C 0JPm
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