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Abstract

This paper presents new approaches to testing for exogeneity in non-parametric
models with discrete regressors and instruments. Our interest is in learning about
an unknown structural (conditional mean) function. An interesting feature of
these models is that under endogeneity the identifying power of a discrete instru-
ment depends on the number of support points of the instruments relative to that
of the regressors, a result driven by the discreteness of the variables. Observing
that the simple nonparametric additive error model can be interpreted as a lin-
ear regression, we present two test-statistics. For the point identifying model,
the test is an adapted version of the standard Wu-Hausman approach. This ex-
tends the work of Blundell and Horowitz (2007) to the case of discrete regressors
and instruments. For the set identifying model, the Wu-Hausman approach is not
available. In this case the test-statistic is derived from a constrained minimization
problem. The asymptotic distributions of the test-statistics are derived under the
null and fixed and local alternatives. The tests are shown to be consistent, and
a simulation study reveals that the proposed tests have satisfactory finite-sample
properties.

1 Introduction

The possible presence of endogeneity is one of the common problems in econometric
models. It occurs when the regressor is correlated with the model error term. Typ-
ically it is a result of omitting a relevant explanatory variable, of simultaneity in the
model, or measurement error in the regressor. The presence of endogenous regressors
in the nonparametric model produces bias in the identified case, and non-existence of
any consistent estimator in the set identified case. Because of the potentially severe
consequences of endogeneity, applied researchers need to check whether the explanatory
variables used are exogenous, before providing an inference on the parameters of inter-
est. Following the work of Hausman (1978), a vast literature on testing for exogeneity
of the regressors has emerged.



Recently, with the expansion of interest in nonparametric models, new testing pro-
cedures have been developed. The problem of testing the correct specification of a
nonparametric model of the form

Y=hX)+e (1)

has been discussed by many authors including Fan and Li (1996), Zheng (1996), Lavergne
and Vuong (2000), Lavergne and Patilea (2008) and Blundell and Horowitz (2007).
These tests fit in a conditional moment restriction testing framework, and are based on
the earlier work of Newey (1985) and Bierens (1990), among others.

All the nonparametric tests of this type assume that the regressors are continuously
distributed. The aim of this paper is to provide a test for exogeneity in a nonparametric
model with discrete explanatory variables. A model with discrete regressors arises
in many economic problems. Variables such as gender, marital status or education
levels typically take discrete values. When X is binary it may indicate the occurrence
of the event. In empirical applications, such regressors are called ’dummy variables’
taking values 0 or 1, for example, an individual is either male or female, working or
unemployed. The discrete regressor with multiple categories might measure e.g. the
number of children in a household, or give the position on an attitudinal scale. The
nonparametric model with discrete regressors has been applied by Hu and Lewbel (2008)
to identify and estimate the difference in average wages between individuals who falsely
claim college experience and those who tell the truth about not completing college
education. More recently, Iori, Kapar and Olmo (2014) use nonparametric methods
to explain variation in the continuous variable (bank funding spreads) given a set of
discrete regressors (bank characteristics, nationality, size and operating currency) in
the European interbank money market.

The most popular method of dealing with endogeneity in econometric models is by
instrumental variable (IV) estimation. Although IV methods are traditionally para-
metric in nature, the extension of the approach to a more flexible, non-parametric
framework was introduced by Newey and Powell (2003). The method suggests that
researchers should find a set of variables satisfying instrument relevance and exogeneity
conditions and use them to consistently estimate the causal relationship between the
dependent variable and endogenous regressors. However, the IV method involves some
identification issues. The problem with identification is particularly noticeable in non-
parametric models with additive errors when the regressors are discrete. Florens and
Malavolti (2003) and Das (2005) show that the identification of the unknown function
of interest depends on the support of instruments relative to the support of the endoge-
nous regressor. If the identification condition is violated and point identification is not
feasible, the model still has some partial identifying power. Partial identification can be
achieved in models which cannot provide the exact value of the parameter or structure
of interest, but contain enough information to bound these values to informative sets.
Chesher (2004) discusses the estimation of the regression function A(-) in equation (1)
with this framework.



One of the advantages of nonparametric models with discrete endogenous regressors
is that they do not suffer from the ill-posed inverse problem that arises in nonpara-
metric models with continuous endogenous regressors. The problem derives from the
discontinuity of the mapping from the structural to the reduced form, when estimating
an infinite dimensional function A(-) in continuous specifications (Newey and Powell
(2003)). This means that h(-) cannot be estimated consistently by replacing the un-
known population quantities with consistent estimators. In order to obtain a consistent
estimator, it is necessary to regularize the mapping that identifies the unknown function
of interest. Restricting the endogenous regressors to be discrete eliminates the ill-posed
inverse problem. The discrete specification is well-posed, and no regularization of the
problem is required.

The plan of this paper is as follows. Section 2 introduces the nonparametric model
of interest and presents the notation that enables us to interpret equation (1) as a
linear model. This section also explains the identification problems in the presence of
endogenous regressors and shows some basic estimation results. Section 3 presents the
test for models that point identify the unknown function of interest and establishes the
asymptotic properties under the null and alternative hypothesis. Section 4 introduces
the test for models that are set identified. The asymptotic distribution of the test
statistic under the null and alternative hypothesis is also derived in this section. In
Section 5, we present the results of the Monte Carlo investigation of the finite-sample
properties of the proposed tests. Section 6 concludes. All proofs are in the appendix.

2 Model and assumptions

2.1 Notation

The upper case letters X, Y, Z will denote observed random variables, and =, y7, 27 will
denote sample (data) points. Symbols zj, for k = 1, ..., K denote the points of support
of a discrete random variable X. I(A) stands for an indicator function, which takes
value 1 if the event A occurs,and is 0 otherwise. The probability density function of a
continuous random variable W is denoted by fi (w), and the probability mass function
of a discrete random variable X is px(z). The cumulative distribution function is
denoted by Fx(z). For a matrix A of full column rank we define Py = A (A’A)~" A’
and M, = I — P4, both of which depend only on the space spanned by the columns of
A. For any r, I, denotes an r-vector of ones and C, denotes an r x (r — 1) matrix with
the properties C'l, = 0 and C/C, = I,_;.

2.2 Model

We consider the simple additive error model in which a continuous outcome Y is deter-
mined by equation (1), with X a single discrete regressor, and e denotes a continuously
distributed error term. The interest of econometricians typically lies in estimating the



unknown structural function h(-). Consistent nonparametric estimation of h(-) is fea-
sible under the assumption that the regressors are exogenous. Numerous definitions
of exogeneity have been provided in the literature, see Deaton (2010). The standard
exogeneity condition is that of an absence of correlation between the regressor and the
model error term. Here we employ the definition proposed by Blundell and Horowitz
(2007) for nonparametric regressions: the explanatory variable X is exogenous if the
conditional moment restriction Ele|X = x;] = 0 holds for all k = 1, ..., K. In that case
E[Y|X] = h(X), i.e. the conditional mean of the dependent variable given X coin-
cides with h(X). This definition has the advantage that the standard nonparametric
regression of Y on X is then appropriate for the consistent estimation of the unknown
function of interest h(-).

In the presence of endogeneity of regressors, further analysis needs to be conducted.
The common strategy to deal with the endogeneity problem is to use instrumental
variables. However, the choice of a consistent estimation method depends on a char-
acteristic of the available instruments. The identifying power of the model varies with
the number of the points of support of the instrumental variable (see Section 2.5). The
complete model is characterized by the following set of assumptions:

Assumption 1. X is a discrete (scalar) random variable with support {z1, ..., xx}
and associated probabilities p > 0. m

Assumption 2. There exists a discrete instrumental variable Z with support
{#1, ..., z;} and associated probabilities ¢; > 0, with the property

Ele|Z=2]=0, j=1,..,J (2)

1

which defines the instrument exogeneity condition.” The matrix of joint probabilities

P with elements
pir=PrX=x,NZ=zl]; j=1,...,J; k=1,..,K

is of full rank K when J > K and of full rank J when J < K. m
Assumption 3. FE[X|Z = z;] and E[M(X)|Z = z;] vary with z;. The first condi-
tion (the instrument relevance condition) together with (2) ensures that Z is a valid
instrument. m

Assumptions 2 and 3 are analogous to the standard assumptions for the validity of
instruments in single equation IV estimation (see, for example, Greene (1993), Section
20.4.3)
Assumption 4. The data consists of n iid observations on (Y, X, 7), denoted by
(ys, x5, 28) for i = 1,...,n. Under exogeneity, for all j and k,

E[€|X = :Ek,Z = Zj] =0 and Var[g|X — CU]C,Z — Zj] — 0_2‘

'Notice that we include in the support of X and Z only points for which p; and ¢; are strictly
positive



The complete model consists of equations (1) and (2). We are interested in testing
the null hypothesis of exogeneity of the regressor i.e. FEle|X = xz;] = 0 for all k.
Equivalently, in terms of observables,

Hy: ElY|X =] = h(zg), k=1,....K.

If this condition is satisfied the unknown function A(-) can be consistently estimated
nonparametrically.

In equation (1) the function A(-) is unknown and if h(xy) is completely arbitrary,
the null hypothesis would not constrain the conditional density function of ¥ given X,
fyix(y|z), and would therefore be untestable. Thus, more information than just equa-
tion (1) is required for Hy to become a testable hypothesis. This additional information
is acquired by using the fact that there exists a valid instrument Z satisfying (2) for
any admissible z;.

Let ny = 0 I(zf = x) and nf = 377" | I(2 = z;) denote the multiplicities of z;
and z; in the sample, and also nj, = > ., I(xf = x4)I(2f = z;). Under Assumption 2,
the unknown function h(-) satisfies the set of J linear equations

=

ElY|Z=2z] =) PrX =z|Z = z]h(zy), j=1,...J (3)
k=1

Let 5 denote the K-vector with 3, = h(zg), & = 1,..., K, m be the J-vector with
the elements E[Y|Z = zj|, j = 1,...,J, and II be the J x K matrix of conditional
probabilities Pr[X = x;|Z = 2], j =1,...,J, k = 1,..., K. Then, (3) can be written as
the system?:

7w =T1Ip. (4)

The nonparametric nature of the model is reflected in the fact that 3, the vector of
values of h(-) at the support points of X is completely unknown.

It is worth noting that equation (4) always has a solution (for ), since for each
j=1,....,J, by definition

=

ElY|Z =z]=) Pr[X =2|Z = 5]E[Y|X = 2}, Z = 2)]

k=1

so that 7 is certainly in the space spanned by the columns of II. That II has full rank
min{.J, K'} is part of Assumption 2.

The hypothesis Hy imposes the constraint that the vector of conditional means
E[Y|X = x| is a solution to a linear equations 7 = IIf3, so in this case the null
hypothesis imposes a restriction on the conditional density function fy|x(y|z) and is
therefore testable.

2In the continuous case, equation (4) corresponds to the integral equation for the structural function
(2.2) in Blundell and Horowitz (2007).



Remark 1 There might be other restrictions that can be imposed on h(-) to make the
null hypothesis testable. In order to make sure that h(-) is not entirely arbitrary, one
could impose some shape restrictions dictated by economic theory. Such restrictions are
already in use in the literature of nonparametric estimation, for example by Hall and
Huang (2001) who estimate the conditional mean function subject to a monotonicity
constraint. Monotone estimates are required in many empirical applications, when the
theory suggests that the outcome should be monotonic in explanatory variables e.g. wage
increasing in the years of schooling. Blundell, Horowitz and Parey (2012) use differ-
ent shape restriction and provide a monparametric estimator of the demand function
assuming that the unknown function h(-) satisfies the Slutsky condition of consumer
theory. The literature suggests that imposing shape restrictions improves the precision
of monparametric estimates, but in our case it might also act as a tool to ensure that
the hypothesis of exogeneity of regressors is testable.

The elements of the vector 7 can be consistently estimated from the data, by aver-
aging those y; that correspond to the observations with 2§ = z;, i.e. by

T i=1Yi i g .

J i=1

The elements of the matrix of conditional probabilities II can be written as

PriX =x,NZ = z]

PriX =a4|Z = 2] = PrlZ = 2]
=%

and can be consistently estimated by
i (@ =m)I(z = 2)
” % > 1(2F = )

Thus, 7 and II can (ultimately) be learned from the data, and the problem is to use
this information to make inference on A(-).

E

)

_ Mk
=7 (6)

Remark 2 In the discussion here, and also in what follows, it is implicitly assumed
that all K support points of X, and all J of Z, occur in the sample. That is, that both
ny and an are non-zero for all k = 1,..,. K and j = 1,..,J. This will ultimately (for
large enough n) be the case with probability one. The alternative would be to define
estimates for the w; and 11, only for those points x, and z; that occur in the sample,
say Ky < K and J, < J points, and allow these to increase to K and J respectively,
as n increases. This would make the arguments and derivations to follow considerably
more cumbersome, without materially affecting the results, so instead we will tacitly
assume throughout that n is large enough to ensure that Ks = K and Js = J.

There is no difficulty in extending the results by allowing for additional discrete
exogenous regressors in the model as long as there is only one possibly endogenous
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explanatory variable. An unresolved issue is how to deal with multiple discrete endoge-
nous regressors. Assuming that more than one regressor is endogenous is likely to affect
the identification conditions and existing estimation and testing procedures. The model
with multiple discrete endogenous regressors will be addressed in future research.

2.3 Linear Model Representation

The above setup can be represented compactly in terms of a linear model. To do so,
define the n x K matrix Ly with (i, k) element

(Lx)y = 1z = x1),

so that (Lx),, = 1 if observation i corresponds to a value x) for X, and is 0 otherwise.
Likewise, define the n x J matrix L, with elements

(LZ)z‘j = I(z] = z).

Note that the row sums of both Ly and Lz are 1, because each row of both contains
exactly one element that is equal to 1. Both Ly and L, are random matrices, because
the positions of the non-zero elements, and the multiplicities of each z; and z;, are
determined randomly in the sample. Let x denote the K-vector with elements xy,
k=1,..., K, the support points of the regressor, and let 2° = Lxx denote the n-vector
of sample observations 7, ¢« = 1,...,n. Finally, let y denote the n—vector of sample
observations on Y, a realization of the random n—vector ).
Using the notation just introduced, (5) can be written as

#=(LyLy) " Ly (7)

and (6) becomes ) X
fl = (LyLy) " Ly L. 5)

The inverse in (7) and (8) exists almost surely for large enough sample size®, since

Pr[Z = z;] = ¢; > 0. Note that
n 'L, Ly —? diag(q;) := Dy

because =" | I(zf = z;) =P E[I(zf = z;)] = Pr[Z = z;]. Hence, by the Slutsky
Theorem

(n'LyyL;) " =" D
Similarly, the elements of n~'L/,Lx are consistent estimates of the joint probability
matrix P. Therefore, 7 —? 7 and I1 —P II := D' P.

30f course, for existence we require n > K and n > J here. And, as discussed in Remark 2, we
are tacitly assuming that n is large enough to ensure that K; = K and J; = J.



Letting X denote the random n—vector of observations on X, the model can be
written in the familiar form F[Y|X = Lxz| = Lxf+ Ele|X = Lxz], a linear model for
the vector ) with random regressor matrix Lx and unknown parameters 3, = h(xy),
k=1,..., K. The null hypothesis then takes the form:

H() . E[y|X = LXIL‘] = Lxﬁ,

Thus, although the model is purely nonparametric, it can be interpreted as a linear
model. Note that even though in the nonparametric specification there is only one
discrete regressor X, Lx is n X K in the linear model specification. Also,observe that
the support points x;, of X determine the points at which we can learn h(-), i.e., 3, but do
not appear elsewhere in the linear model. This familiar linear model specification allows

us to connect the nonparametric estimators with well known regression estimators,
particularly OLS and 2SLS.

2.4 A complication

There is a relationship between Lx and Lz, which has an important implication for the
further analysis. This is that every sample point is associated with exactly one support
point of both X and Z. It follows that, for any regressor X and any instrument Z, the
row sums of both Ly and L are all equal to one. That is,

LXlK = LzlJ = Zn.

Algebraically, this says that the column spaces of Ly and Lz always have the vector [,
in common, and this needs to be taken into account in adapting existing procedures to
the present problem. Let us, for brevity, call this Property C.

Note that Property C implies, in particular,

MLXLzlJ = MLxln = 0.

As a consequence of Property C, some matrices involving both Lx and Ly have reduced
rank. Hence, special attention has to be paid when dealing with these matrices.

2.5 Identification

Newey and Powell (2003) and Das (2005) study identification of the unknown structural
function A(-) in the presence of endogeneity of discrete regressors X. Florens and
Malavolti (2003) and Das (2005) consider estimation in this framework. They show
that nonparametric identification is achieved if the vector of instruments Z has at least
as many points of support as the endogenous regressor X under a marginal covariation
condition, i.e. E[e|Z = z] = ¢, where ¢ is a constant that is invariant with respect to
Z.

Using this marginal covariation restriction, one can normalize ¢ = 0, producing the
system of linear equations (4). Since the conditional expectations on the left hand
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side and probabilities on the right hand side are observables, (4) forms a set of linear
equations in the unknown h(xy), i.e., in 5. Hence, the value of the vector 3 is identified if
and only if the solution to these linear equations is unique. Assuming that equations in
(4) represent the only information about h(-) that the data contains, point identification
requires that the matrix II has rank K.

Proposition 1 (Newey and Powell (2003)) The necessary and sufficient condition for
identification in the model Y = h(X) + €, with discrete endogenous X and a discrete
instrument Z satisfying Ee|Z] = 0, both with finite support, is that the number of points
of support of the instrument Z is at least as large as the number of points of support of
endogenous X .

Hence, if J > K, (3 is point-identified for known (7, II) and g = (H’H)_lﬂ’w.
Even if the identification condition fails, the model still has partial identifying power.
Partial identification arises in models, which cannot provide the exact value of the
parameter or structure of interest, but contain enough information to bound these
values to informative sets. The literature on partial identification has been growing
rapidly since the late 1980s. See Tamer (2010) for a detailed review.

Chesher (2004) presents the conditions under which the nonparametric model with
discrete endogenous regressors partially identifies the conditional mean of the outcome
by bounding its value in informative ways when the support of instruments is sparse
relative to the support of endogenous regressor. If J < K, even though the exact value
of the vector £ in (4) remains unknown, we are able to bound its value by quantities
which are easily estimated from the data.

2.6 Estimation

This section presents some basic estimation results under point identification. That
is, we assume that J > K. Since E[Y|X]| = h(X) +E[¢|X], B, = h(zx) can be
nonparametrically estimated from the data by averaging the y; corresponding to all z
that equal z;. Given the linear interpretation of the model, the standard OLS estimator
for [ is R

B=(LyLx)™" Ly, (9)
which coincides with the standard nonparametric estimator. The important observation
is that the value of the conditional mean of Y given X, does not depend on the values
zy of X and the configuration of zj in the sample (the position of non-zero elements
in the matrix Lx) does not matter. The only thing that matters is the multiplicity of
each z;, in the sample. Since n™'n;¥ is a sample proportion, it converges in probability
to py i.e. the probability mass on the support point zy.

Substituting the linear model y = Lx/3 + ¢ in (9) gives

-1
B = (IxLx) Ly
-1
4The result can also be found in Matzkin (2007), Chapter 73 in "Handbook of Econometrics"
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and since (n 'L L X)fl —? D! where Dy is diag(py,), the matrix of probability masses
on each point of support of X on the main diagonal with zero entries elsewhere, and
n~1Le —? Ex[LyE[¢|X]] = 0, under the null hypothesis, we have 3 —? 3, i.e., if X
is exogenous the OLS estimator B is a consistent estimator of 5. We can also readily
establish the asymptotic distribution of the OLS estimator.

Theorem 1 Under the assumptions above, if X 1is exogenous then the OLS estimator
[ is consistent and

N (5’ — ﬁ) —4 N (0, O'2D;(1)

Remark 3 The primitive components of the elements of B are sums of random numbers
of i.1.d.random variables, since the multiplicities and positions of the xjy in the sample
are random. At first sight, therefore, one might expect to need a central limit theorem
adapted to this situation, such as those of, for example, Robbin’s (1948), or Anscombe
(1952), both of which deal with this case. However, the problem turns out to be more
straightforward, and Theorem 1 can be proved by using a multivariate version of the
Lindeberg-Feller central limit theorem (see Appendix).

It can be shown that the covariance matrix o>Dy", under exogeneity, achieves the

asymptotic Cramer-Rao bound and hence B is asymptotically efficient. And, the un-
known parameter o2 can be consistently estimated by the usual estimator in a linear
regression model: n~ly' My y —? 2.

Of course, if E[e|X = x| # 0, i.e. X is endogenous, then
n'Lve =P Ex[L'yE[e|X]] #0

and E is an inconsistent estimator for 5. However, if X is endogenous the unknown
function h(-) (or vector ) can be estimated using familiar IV methods. When the model
point-identifies the structure of interest, the problem can be treated as a standard IV
problem and the IV estimator for 3 is

o N N
By = (H’L’ZLZH) 'L, Ly#

~1
- (L/XLZ(L/ZLZ)_ILIZLX> L'yLy (LyLy) ™ Ly
= (LxPp,Lx)" LyPry.

This is the IV estimator for # in the null model y = Lxf + ¢, in the presence of the
instrument matrix L. Even though in the nonparametric specification there is only
one discrete instrument Z, we have J instrumental values (I[(Z = z;), j = 1,...,J)
in the linear regression specification. The matrix of instruments corresponding to this
interpretation of the model is Ly, so the familiar requirements for the validity of the
instruments are that n='L,Lx —? P, a finite nonsingular matrix; n~'L,e —? 0 and
n 'L, Ly —P Dy, apositive definite matrix (Greene (1993), p.601). All these conditions

10



are covered by Assumption 2. Note that the matrix P is the matrix of joint probabilities,
and the full rank assumption for P requires: in the case J > K, that there is no non-zero
K x1 vector x for which Pz = 0, and in the case J < K, there is no non-zero J x 1 vector
z such that P’z = 0. The last condition follows from the fact that D, = diag(qu, ..., q7)
with ¢; > 0.

The IV estimator is consistent in both scenarios: when X is exogenous and when it is
endogenous, since n~ 'L, Lx —? P, n"'L/,L; —? Dy and n~'Lye —? Ez[L,E[e|Z]] =
0. The last expression follows because of instrument exogeneity condition (2). The
asymptotic normality of the IV estimator is established through:

Theorem 2 Under assumptions above, the IV estimator [3 v 18 consistent and
Jn (B,V _ @) i N (0, o2 (P’D;P)*l) .

It can be shown that the IV estimator defined for the linear representation of the
nonparametric model is equivalent to the standard nonparametric estimator (see, for
example Das (2005)). The advantage of our approach is that the estimator can be
written in a compact matrix notation, which is easier to work with.

It is crucial to understand that because K and J are fixed, we cannot estimate
the entire unknown function A(-), but can only learn about specific values of h(-) at
the support points. Additional information about A(-), could possibly be acquired if
the support of the regressor (and instrument) were assumed to be increasing with the
sample size. Allowing for growing dimensions could be considered as an abstract way
of generating asymptotic approximations to the distributions of estimators and might
result in different limiting behaviour instead of Theorems 1 and 2. Additionally, letting
both J and K grow at a rate that is proportional to n, would have an impact on the
identification analysis. It is possible that a model that is only set identified (J < K) in
small samples, point identifies A(-) in large samples if K is fixed and J increases with n,
or if J grows faster than K. Therefore, considering such increasing dimensions might
be an interesting extension of our work, but this topic is left for further research.

3 Testing for exogeneity under point identification

Assume that J > K and the model point identifies the unknown function of interest h(-)
by Proposition 1. The OLS estimator B is consistent and efficient if X is exogenous, but
inconsistent otherwise. The IV estimator is consistent in both cases, but inefficient if X
is exogenous. For this situation, then, the test is really just to decide which estimator
to use (OLS or IV).

The standard Wu-Hausman-type statistic for testing exogeneity in this context is
based on a quadratic form in the difference between the two estimators B ;v and B,
namely

By — B = (LxPp,Lx)"" LxPr, M.y, (10)

11



with the matrix of the quadratic form equal to the inverse of COU(B v— B), in order to
produce a x? variable asymptotically (Hausman (1978)). The covariance matrix of the
difference is given by

Cov(Bpy — B) = (L'y P, Lx) ' L'yPp, My, P, Lx (L'yPL,Lx) " (11)

However, in this case, Property C implies that this covariance matrix is singular. To
see this, observe that

e (L Py L) (G — B) = oLl Po, My
= UP,Mp.y (Lxlg=1,)
= [, My (Pl =1,)
= 0 (Mp,l,=0).

That is, for all Lx and Lz there is an exact linear relation between the elements of
5’ v — B , so its covariance matrix will always be singular.

We therefore need to adapt the Wu-Hausman test statistic to this situation. To
do so we simply replace the inverse of the covariance matrix - the matrix that would
normally be used in the quadratic form to produce an asymptotically x? test statistic -
by a generalized inverse of that matrix. The covariance matrix in (11) can be written
as

S = (LxPr,Lx)" Ck [Ci L'y P, My, Py, LxCk] Cic (L Pr, Lx) ",

since MLXPLZLX[ZK; CK] = [0, MLXPLZLXCK] and [ZK, CK]_l = [K_llK, CK]/ (see sec-
tion 2.1 for notation). The middle matrix C; Ly Py, My P, LxCf is a (K —1)—square
matrix of full rank. Thus, the covariance matrix can be expressed as a matrix of the
form S = A"'CBC'A™!, where C is m x p, C'"C' = I, B is p X p nonsingular and
symmetric, and A is m X m nonsingular and symmetric. The generalized inverse of a
matrix with this form is St = ACB~'C’A. To verify this it is sufficient to check that
the two conditions that define a generalized inverse, i.e. SSTS =S and STSSt = S+,
both hold.

Therefore, the generalized inverse of the covariance matrix is
S* = (LyPp,Lx)Cx [C Ly Pr,Mp, P, LxCxk] ™" Ci (L'y Pr,Lx) .
Using this matrix to define the test statistic, we have
T; == y/MLXPLZLXCK [C}(L/XPLZMLXPLZL)(CK]il C}(L/XPLZMLX:U
= YWz (Wi, Wxz) ™ Wy

where WXZ = MLXPLZLXCK isn x (K — 1)
Scaling to eliminate 02, we propose the test-statistic

_ YWxz (Wi, Wxz) " Wiy

T,
n—ly/MLX y

(12)

12



Observe that the values x; of X and z; of Z do not appear in the test statistic,
nor does their configuration in the sample matter. The only things that appear are the
multiplicities of each value in the sample, the n;* and nJZ , and the multiplicity of the
joint event (X = zy,Z = z;), nj. Note that the numerator of the modified version
of T, is easily computed from a linear regression of ¥ on Wx,. Since W is easy to
construct in practice, the value of the test-statistic might be efficiently calculated by
any statistical software package.

Remark 4 Using the generalized inverse is not the only way to deal with singularity
of the covariance matrixz. The naive approach would be to reduce the dimension of the
test-statistic by eliminating for example the first element in the difference (10) and pick-
ing up the lower-right corner of the covariance matriz in (11). Then the Wu-Hausman
test-statistic of reduced dimension would follow standard results. An alternative ap-
proach would be to use the Moore-Penrose inverse of the covariance matriz (built into
all econometric software). All three approaches give similar values of the test-statistic,
thus in applications, the researcher could choose the method that is most convenient.

3.1 Asymptotic distribution under the null hypothesis
To discuss the asymptotic distribution of 7,,, define the (J — 1) x 1 vector

Zn = CLI]L/ZMLXy = C}L/ZMLxg- (13)

The primitive components of z, are the two vectors u,, = L, and v, = L'ye. Thus, we
first consider the asymptotic behaviour of these two vectors, i.e. the joint asymptotic
distribution of

wmm i)

This is given in:

Lemma 1 Under Hy and the given assumptions,

e (2) 22 £])

This result will also be useful in the set-identified model later. Now, z, is a linear
function of u,, and v,

1 1

~Vn

. L. Ly [LyLy\ " -
p lim =2 <X > = PDy".

n— o0 n n

c, (un — L,Ly (L Ly) ™" un)

with

We therefore immediately obtain

13



Lemma 2 Under Hy and the given assumptions,
1

vn

where ¥ = C",(Dy — PDy'P")C} is positive definite.

2, —* N(0,0°%)

The numerator of the proposed test-statistic in (12) is a quadratic form in z, :
TF =2 A,B, Al 2,
where
A, = C (LyLy) " LyLxCk
isa (J—1)x (K — 1) matrix with probability limit equal to
A= C}DglpCK,
and
B, = A, (C,L'yM,.L;C;) A,

is (K — 1)—square matrix.
Using these results we obtain the asymptotic distribution of 7,, under the null hy-
pothesis:

Theorem 3 Under Hy, and the assumptions above,
Tn _>d X%{—l'

The asymptotic behaviour of the test-statistic under the null hypothesis is fully
characterized by the x? distribution. Therefore, for practical applications, the critical
values can be easily obtained from statistical tables. The accuracy of this asymptotic
result is examined in Section 5.

3.2 Asymptotics under the alternative hypothesis

In this section, we establish the asymptotic distribution of the test-statistic under a
sequence of local alternatives, and in order to show that the proposed test is consistent,
i.e. the power of the test approaches 1 as n — oo, we discuss the asymptotic behaviour
of T,, under a fixed alternative hypothesis.

14



3.2.1 Local alternatives

Let m(X,V’) be a bounded function, depending on X and another variable V, which
does not appear in the model and is independent of X. Assume now that the conditional
expectation of the error term is given by:

Ele|X =2,V =] = E[e| X]| = m(z,v),

and define the K vector
m(x1,v)

m(xK, v)

In the linear representation of the model, we have
Ele|X = Lxz| = Lxm. (14)

To derive the asymptotic distribution of the test statistic under the alternative hy-
1
pothesis, consider the sequence of local alternatives in which Ee|X = Lxz| =n"2Lxm.

Theorem 4 Under the sequence of local alternatives to (14) and the assumptions above,
the test statistic T,, converges to a mnon-central X3 _(81) distribution, with the noncen-
trality parameter

 WAASA) T Al

5y = g

o
where p = —C"Pm, A= C',D,;'PCx and X = C',[D; — PDy'P'|C}.

The proof of Theorem 4 is based on familiar results for quadratic forms in normal
variables with non-zero mean. The asymptotic behaviour of the test-statistic is captured
by the non-central x? distribution. For a given size of test, the power increases with
noncentrality parameter 6;. The value of this parameter depends on the the distance
between an inconsistent OLS and consistent IV estimators. Hence, the test is more
powerful if the probability limit of the OLS estimator is far from the true value of the
parameter of interest.

3.2.2 Fixed alternatives

Let us next consider fixed alternatives of form H; : F (¢;| X = zx) = m(x, v;). Building
on the results used in the previous section, by a simple generalization of Lemma 1, we

obtain . b p
Lo bzE d 0 2 z
Al =5 ((apan ) 5,)

Zn _)d N(MSa 0-22)

Additionally
1
NG
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with pg = —v/nC" Pm := \/npu, i.e. the mean is proportional to the square root of the
sample size.

Therefore, under fixed alternatives the test statistic in (12) converges to a non-
central Chi-square distribution with (K — 1) degrees of freedom and noncentrality pa-
rameter 6 equal to

gy BBAAD s
o
The following proposition establishes the consistency of the test against a fixed alter-
native hypothesis.

Proposition 2 Under fized alternatives and the earlier assumptions, the proposed test
is consistent, i.e., for any fixed constant c,,

Pr(T, >c,) > 1asn— o

Since pg is a multiple of y/n, the noncentrality parameter is proportional to the
sample size. This implies that if the alternative hypothesis holds, as n — oo, the
chi-square distribution moves to the right and the probability of rejecting a false null
hypothesis increases, i.e. plim, .o Pr(x%_,(0r) > ¢,) = 1. Hence, as n — oo, the
power of the test converges to 1 and the test is said to be consistent.

Remark 5 Under the alternative hypothesis we will have E[e|X = x| # 0 for at least
one value of k. For some specifications of how these values are determined the tests
proposed above will have no power. This occurs if, when the null hypothesis fails,

EY|X = i) = h(zp) + p(wr)
where p(xy) = Ele| X = xy] depends only on xy. In this case we will have the model

y=Lx(f+pn) +<

where € = ¢ — p, which is identical to the original model with the unknown h replaced
by the also-unknown h + . Thus, it is not surprising that the test should have power
equal to size in this circumstance.

4 Testing for exogeneity under set identification

In this situation (J < K) there is no consistent estimator (in the conventional sense)
for 8 if X is endogenous, so in this case the test is to decide whether point estimation
of 8 is even possible. When J < K the Wu-Hausman approach to testing Hy is not
available. However, assuming the existence of an instrument Z with the properties
given above, 3 is constrained to satisfy the linear equations 7 = II3, but is not point
identified by them. That is, there is a set of vectors /3, a subset of R, that satisfy
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these equations, of dimension K — J. The model maintains that § belongs to this set,
and Hy says that F[Y|X = Lxz| = Lx0.
Now, consider the empirical counterpart of the system 7 = I3, namely 7 = I153, and

the vector /3 that, among all solutions to this system, minimizes (y — Lx3)'(y — Lxf3).
That is, define

B, =arg min (y— LxB) (y — Lxf).
B:r=IIg

Straightforward algebra gives

~

Bz

—~ —~ ~ ~\ —1 PN
B+ (yLx) T (ML L)' TY) (7 - TIB)
— B+ (LxLx) " LiyLy (LyPy Ly) " LYyM, .y,

where ﬁ is the OLS estimator defined earlier. The minimum achieved by this choice for
[ is therefore

Qn = (ZJ - LXﬁZ)/(y - LXBZ)
= My y+y My Ly(LyP, Ly)" L',M,_y.

Intuitively, a large value for this minimum sum of squares is evidence against Ho,
because it means that, among all solutions to 7 = II/3, none produces a small value of
(y — LxB) (y — Lxf). This suggests, not that m # II3, because this is ruled out, but
rather that F[Y|X = Lyx| # Lxf3, i.e. that the null hypothesis is false. Normalizing
Q. by dividing by n~'y/ M, y, this argument suggests rejecting Hy when the statistic

_ Y M Ly (LyPpLz) " LyMpy

R,
n_ly/Mny

is large.
Now, in view of Property C,

MLXLZ[ZJ7CJ] - [MLXZ’IHMLXLZCJ] = [07MLXLZCJ]
and, the (2,2) block of

n Z;LLZC’J -

/ ! -1 _
U, Col Bz Prc L) 0 CAI =\ oy o, Ly,

is given by
(CyLYy [Pry — Pu) LzCy)
Thus, after taking account of Property C, R, reduces to

_ Y My LyCy (CyLly [Py — P LzCy) " ChLy My y
n~ly' My

R, (15)

with the middle matrix being (J — 1) square. Thus, although at first sight a quadratic
form involving J variables, the numerator of R,, in fact involves only J — 1 terms.
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4.1 Asymptotic distribution under the null hypothesis

The following theorem gives the asymptotic distribution of the test statistic under the
null hypothesis.

Theorem 5 Under Hy and the assumptions above,
J—1
R, —* ijsz(l)
j=1

where the w; are positive eigenvalues satisfying

det[¥ —wQ] =0
with 4
Q=p lim —[C)Ly (P = P,)L7C]
and

1
n

n—oo

and the X?(l) variables are independent copies of a x? random variable.

The proposed test-statistic converges to a quadratic form in a normal vector z, and
the distribution of that quadratic form is given by the distribution of a weighted sum
of chi-square (1) random variables.

The asymptotic distribution of the proposed test with discrete regressors and instru-
ments is similar to the distribution obtained by Blundell and Horowitz (2007) for the
continuous case. Their test-statistic follows asymptotically the distribution of an infi-
nite sum of weighted chi-square variables with 1 degree of freedom. When calculating
the critical values, they face the additional problem of approximating an infinite sum
by a finite number of terms. In the discrete case, the asymptotic distribution is more
straightforward, since it is based on a finite sum of terms due to the discrete nature of
variables. Nonetheless, the distribution theory for such variables is complicated, and
there is an incentive to use approximations, and several have been discussed extensively
in the literature. In Section 4.3 we discuss the approximation proposed by Hall (1983)
and further explored by Buckley and Eagleson (1988), which allows us to compute the
critical values in practical applications.

4.2 Asymptotics under the alternative hypothesis

This section obtains the asymptotic distribution of R,, under a sequence of local alter-
natives. The test is also shown to be consistent against fixed alternatives.
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4.2.1 Local alternatives

Consider the sequence of local alternatives to (14). Using the vector z, defined in (13),
the numerator of the test statistic in (15) can be written as

R: =z, (ChLy(Pry — P,)LzCy) " 2,

n

with n=22, —% N(u,02%) with = —C,Pm and ¥ = C',[D; — PD5'P'|C; as before.
The following theorem establishes the asymptotic distribution of the test-statistic
under local alternatives.

Theorem 6 Under the sequence of local alternatives to (14) and the assumptions above,
the test statistic R, converges to a distribution of a weighted sum of non-central chi-

square random variables:
J—1

R, =" " wixi(63)

j=1

with the noncentrality parameters
(51, ceny 5J_1)/ = S/E_%[L = —S'E_%C&Pm
where S denotes the orthogonal matrix of the eigenvectors of IRETORID Y

Under local alternatives, the test-statistic asymptotically follows the distribution of
a weighted sum of non-central chi-square (1) variables. This result again corresponds
to the distribution obtained by Blundell and Horowitz (2007) for the continuous case.
4.2.2 Fixed alternatives
Under fixed alternatives (14) the test statistic in (15) converges to a weighted sum of

noncentral x¢) random variables, Zj:_ll w;x3(0%), with

(81, ..., 0,-1) = —/nS'S"2C" Pm

Since the noncentrality parameter is again proportional to the sample size for each
term, the power of the test goes to 1 as n — oo.

Proposition 3 Under fixed alternatives, the proposed test is consistent, i.e., for any
fixed constant c,,
Pr(R, >c,) = 1asn— o
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4.3 Computation of critical values

The asymptotic distribution of the test-statistic is non-standard and depends on the
weights w;, which, in practice, need to be estimated from the data. Since we cannot
provide statistical tables with the appropriate tail probabilities and cut off points, it
is essential to find a quick technique for calculating the critical values of the proposed
test.

Although the distribution of the weighted sum of chi-square variables has been
studied in the literature since 1960’s and the explicit formulas for the probability density
function and a cumulative distribution function have been derived, they are rather
complicated and difficult to handle in empirical applications. From the practical point
of view, in order to calculate the critical values for the proposed test, it is crucial to be
able to approximate the process of interest by a well known structure. Alternatively,
one could use the inverse interpolation procedure of finding the critical values proposed
by Sheil and Muircheartaigh (1977). However, this method is computationally intensive
and requires specifying the upper and lower bounds on the weights, which we would
like to avoid.

There are numerous ways of computing the critical values in this case. Letting W,
be consistent estimators of the weights w; under Hy, the distribution of Z 1 wj X](l)
can be simulated and appropriate 1 — a quantiles can be used as crltlcal values in
the standard rejection rule. However, our experiments show that this approach is
computationally intensive and time consuming. The second method involves simulating
the quadratic form 2’ Q12 withz ~ N (0, E) and computing the quantiles. This method
delivers satisfactory results and reduces the simulation time significantly. The third
method is based on using an approximation to the distribution of a weighted sum of
chi-square variables.

Even though a linear combination of independent chi-squared variables is, under
regularity conditions, known to be asymptotically normally distributed when the sam-
ple size tends to oo (Johnson, Kotz and Balakrishnan (1994), p.444), the simulations
reveal the unsatisfactory performance of the normal approximation. Hence, we suggest
applying the approximation proposed by Hall (1983) and further explored by Buckley
and Eagleson (1988), where the distribution of a weighted sum of x? random variables
is approximated by the distribution of a variate R = ax? + b by choosing (a,b,v) so
that the first three cumulants of R and R agree.

The cumulants x; of a random variable are defined via the cumulant-generating func-
tion K (t), which is the logarithm of the characteristic function ¢(t) with the following
expansion (Muirhead (1982), p.40)

K (1) = log(6(t)) = > r 3.

=1

Since the characteristic function ¢(t) of a chi-square random variable with r degrees of
freedom is

r

o(t) = (1 —2it)">
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the cumulant generating function K () of X%r) variable is

[e 9]

—

K(t) = ——log (1 —2it) = =r

[\)

=1

and the cumulants k; solve

= @)t 1
D m =g
=1

Let R=Y7" i1 "W x3(1). The cumulants of this chi-squared-type mixture are given by”

=1

<

-1

ri(R) =211 =11 Wb

l
J
1

<.
I

Therefore, the first three cumulants of R are

rki(R) = E(R)= ij = trace(XQ 1)

ra(R) = Var(R) = QZw? = 2trace ((29_1)2)

k3(R) = E((R-E(R))’) =38 3 w? = 8trace ((2971)3) .

Jj=
The cumulants of R = ax? + b are:
k1(R) = av + b, ry(R) = 2d%v, k3(R) = 8a’v.

To determine the parameters a, b and v we set ki, (R) = sy (R) for m = 1,2,3 which
leads to

lig(R)

“ = 4/12(R) (16)
b= i =S
N 8k3(R)

- m3(R)

Hence the approximate cumulative distribution of R is

Fr(t) =Pr(R<t)~Pr(R<t)=Pr <X2 < t_b).

’See Severini (2005), Theorem 8.5, p. 245



The critical value ¢, solves

a—b
l—Pr(ngc >=oz
a

for a = 1%, 5% or 10%.

Note that parameter v is typically not an integer and the x? distribution here is
in fact a gamma distribution with parameters % and g. In practice, the matrix Ot
is unknown and, in order to calculate the values of parameters in (16), it has to be

replaced by its consistent estimate:
C' Ly My, LzCy [C Ly (Pry — B,)LzCy) "

An alternative (and popular) procedure of obtaining the critical values, based on
the numerical inversion of the characteristic function, was proposed by Imhof (1961).
This procedure is much more computationally intensive, since it requires the knowledge
of all eigenvalues of ¥~!, while for the three-cumulants approximation only the traces
of powers of this matrix are needed.

5 Monte Carlo simulations

In this section, we discuss the results of Monte Carlo simulations designed to examine
the finite sample size and power properties of the proposed tests. We modify Blundell
and Horowitz’s (2007) setup by generating X and Z as discrete random variables.

5.1 Simulation design

In the experiments, realizations of (X, Z) are generated as Z = Binomial(J — 1,pz)
with pz = 0.5 and X is a function of Z such that

X=uag,ifa< X" <b

where a and b are constants, and X* = aZ + (1 — o?)"?v with v ~ N(0,1) and
a € {0.35,0.7}. Note that o measures the strength of the relationship between X and
Z. Weak instruments are characterized by o = 0.35 and « = 0.7 characterizes strong
instruments. The realizations of a continuous outcome Y are generated from

Y:60+01X+0'55

where ¢ = v + (1 — n2)2u with u ~ N(0,1) and 6 = 0, 6; = 0.5 and 0. = 0.2. The
parameter 1 measures the strength of the relationship between X and ¢, and its value
varies across experiments. The null hypothesis is true if n = 0 and false otherwise. The
experiments use sample sizes of n = 50, 100, 200,400 and 1000 observations and there
are 2000 Monte Carlo replications in each experiment.
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5.2 Size analysis J > K

Recall that under the null hypothesis T,, —¢ x%_,, so the critical values are easily
obtained from statistical tables. For the size analysis, n = 0 and the errors are generated
as N(0,1). The empirical size of the proposed test for different combinations of J and
K (satisfying J > K) is presented in Tables 1 and 2.

K=2 J=2 J=3 J=4

o | samplesize | 1% [ 5% | 10% | 1% [ 5% | 10% | 1% [ 5% | 10%
50 120 525 10.25[0.85 585 10.80 [ 0.95 5.05 10.20

0.35 100 0.90 4.95 10.05 | 1.00 4.95 9.35 | 0.95 535 10.50
200 1.30 5.0 10.20 | 1.10 5.05 10.45|1.10 5.10 11.20
400 0.85 520 10.20 | 110 5.05 1045|110 510 10.25
50 140 570 10.95[1.25 5.05 10.05|1.05 5.60 10.50

0.7 100 0.80 4.50 9.55 | 0.85 4.95 10.10 | 1.25 4.95 9.65
200 110 4.55 10.80 | 1.25 4.85 10.10 | 0.95 5.40 9.70
400 1.25 5.20 10.10 | 0.95 4.95 10.50 | 1.10 5.15 10.40

Table 1: Proportion of rejections under the null hypothesis; K=2

K=3 J=3 J=4 J=5
o | samplesize | 1% [ 5% | 10% | 1% [ 5% | 10% | 1% [ 5% | 10%
50 0.85 550 11.50 [ 0.75 4.75 9.35 | 1.10 540 10.20
0.35 100 0.95 5.35 10.75 | 0.85 535 11.20 | 1.05 545 10.30
200 0.80 4.75 10.10 | 1.25 5.25 10.95 | 1.25 5.50 10.45
400 0.85 4.85 10.25|1.10 5.05 9.85 |1.20 5.10 9.55
50 0.85 5.70 11.40 | 0.95 5.60 10.15 | 0.90 5.10 10.65
0.7 100 1.05 590 11.20 | 1.15 5.15 10.70 | 0.95 5.15 10.30
200 1.00 5.40 10.65|1.25 5.05 1035 |1.10 5.75 10.70
400 145 580 10.65|0.95 545 1055 | 1.05 5.10 9.65

Table 2: Proportion of rejections under the null hypothesis; K=3

The empirical size is reasonably close to the nominal values of 1%, 5% and 10%,
even in small samples of 50 observations. The size seems not very sensitive to changes
in the number of points of support of the endogenous regressor and instrument and do
not vary with the strength of instrument.

5.3 Power analysis J > K

For the power analysis, the errors are generated as € = nv + (1 — 172)%14, u ~ N(0,1).
Recall that this specification excludes the alternatives with E[e|X = z;] = p(xy) in
which the power is equal to the size of the test. The results of power analysis at 5%
significance level for different sample sizes are summarized in Figures 1 and 2.
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Empirical power
Empirical power

Figure 1: Empirical power for K=2 and J=2 with weak (a) and strong (b) instruments

Ernpirical power
Ernpirical power

Figure 2: Empirical power for K=3 and J=3 with weak (a) and strong (b) instruments
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The proposed test exhibits satisfactory power properties. The empirical power in-
creases with a sample size and converges to 1 quickly. For a fixed number of support
points of the endogenous regressor and instrument, the empirical power is higher if the
instrument used in experiment are strong. The test has also higher power if the support
of endogenous regressor is larger.

Figures 3 and 4 show how the empirical power changes with the number of points
of support of the instrument.

Ernpirical power
Ernpirical power

n

Ernpirical power
Ernpirical power

n n

Figure 4: Empirical power for K=3 and n=400 with weak (a) and strong (b) instruments

If the instrument is weak, for fixed K, the empirical power of the test increases when
additional point of support is added. Therefore, for weak instruments, the larger the
support of Z, the more powerful the test is. This suggests that in practice the researcher
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should look for an instrument with many support points to increase the probability of
detecting the endogeneity of regressor.

On the other hand, if the instrument is strong, the empirical power remains roughly
the same if the difference between the support of X and Z is small, but decreases with
the gap between J and K.

5.4 Size analysis J < K

We have experimented with different methods of computing the critical values for the
proposed test. The three methods proposed in Section 4.3 produce very similar results
for the empirical size and power of the test. In this section, we present the results
based on the chi-square approximation, which minimizes the computational time. The
empirical size of the proposed test is presented in Tables 3 and 4.

K=5 J=2 J=3 J=4

o sample size | 1% ‘ 5% ‘ 10% | 1% ‘ 5% ‘ 10% | 1% ‘ 5% ‘ 10%
50 0.85 5.80 11.10 | 1.25 5.30 9.65 | 1.45 5.65 10.80

0.35 100 1.10 5.00 10.45 | 1.20 5.65 10.85 | 0.85 5.25 10.80
200 0.90 4.85 10.00 | 0.80 4.55 9.65 | 0.95 4.55 9.65
400 0.85 5.50 10.50 | 1.15 6.15 10.55 | 1.10 5.50 9.75
50 1.30 5.95 11.20 | 1.05 5.65 11.30 | 1.35 5.60 10.80

0.7 100 1.20 6.10 11.50 | 1.35 5.85 11.35 | 1.55 5.80 11.20
200 1.15 5.80 1090 | 1.05 4.75 9.70 | 1.10 5.35 10.35
400 1.20 5.65 9.80 | 1.05 5.30 10.10 | 0.95 4.95 10.50

Table 3: Proportion of rejections under the null hypothesis; K=5

K=6 J=3 J=4 J=5
o | samplesize | 1% [ 5% | 10% | 1% [ 5% | 10% | 1% [ 5% | 10%
50 1.20 5.80 11.10]1.25 6.0 12.05]1.60 5.90 11.20
0.35 100 120 570 1050 | 0.85 525 10.95 | 1.10 6.15 11.50
200 1.05 4.80 10.15|1.00 5.60 11.10 | 1.50 5.55 10.40
400 0.95 4.65 9.80 | 0.90 5.05 9.85 | 0.90 5.25 10.50
50 120 6.15 1130 1.10 505 925 |[1.25 585 .75
0.7 100 1.05 5.35 10.55|0.95 4.75 10.30 | 1.60 5.70 10.15
200 115 510 9.85 | 0.85 505 9.90 |1.65 5.90 11.20
400 0.90 5.40 10.75 | 1.05 5.65 11.10 | 0.95 5.20 10.40

Table 4: Proportion of rejections under the null hypothesis; K=6

The test has adequate size in all cases, even in the small samples of 50 observations.
The size is not sensitive to changes in the number of points of support and the strength
of the relationship between endogenous regressor and the instrument.
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5.5 Power analysis J < K

The results of a power analysis at 5% significance level are presented in Figures 5 and
6.
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Figure 6: Empirical power for K=6 and J=3 with weak (a) and strong (b) instruments

The empirical power increases with the sample size and in some cases (strong in-
struments and large 1) converges quickly to 1. The proposed test performs particularly
well if the instruments used in experiment are strong. In general, the results are more
than satisfactory given the fact that the model is only partially identified under the al-
ternative hypothesis. A few testing procedures for partially identified models developed
recently are typically complicated and allow to test a limited range of hypotheses. We
provide the simple exogeneity test based on the standard results that can be applied in
this conventionally untestable context.
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Figures 7 and 8 show how the empirical power changes with the number of points
of support of the instrument.
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Figure 8: Empirical power for K=6 and n=400 with weak (a) and strong (b) instruments

For a fixed number of points of support of the regressor, the proposed test detects
endogeneity of the regressor better when the support of the instrument is smaller.
Hence, for both, weak and strong instruments, the power of the test is decreasing with
the number of points of support in the Z. Therefore, in applications in order to obtain
higher power in detecting endogeneity, among all the instruments available, the one
with the smallest number of support points should be chosen. Note that if the gap
between K and J is small, the test tends to be more powerful with weak instruments.
This counter intuitive behaviour of the power function might be due to the fact that
the chi-squared approximation is more accurate with smaller J. Simulations reveal
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that the approximation error is small up to 5 terms in the weighted sum. Therefore, in
experiments with large support of instrumental variable, the critical values should be
computed using another method discussed above.

6 Conclusion

The consistency of a standard nonparametric estimation procedures fails in the presence
of endogeneity in the model. Therefore, in order to choose a consistent estimation
technique, the applied researcher should test whether the explanatory variable(s) used
in the model are exogenous. This paper has provided two consistent tests for exogeneity
in nonparametric models, when the single explanatory variable is discrete. To the best
of our knowledge, there exist no such tests for nonparametric models with discrete
regressors. In models that point identify the unknown function of interest, the test
is built on a quadratic form of a difference between two estimators, one of which is
consistent only under exogeneity and the other is consistent under both scenarios. This
testing framework follows closely the Wu-Hausman-type of test. It has been shown that
under the null hypothesis of exogeneity, the test statistic follows chi-square distribution
asymptotically and that the test is consistent against fixed alternatives.

In models that set identify the structure of interest, the test-statistic is based on a
constrained minimized sum of squares. We have shown that under the null hypothesis,
the proposed test-statistic converges to a weighted sum of chi-square (1) random vari-
ables. Under the alternative hypothesis the test-statistic converges to a weighted sum
of noncentral chi-square (1) random variables. The proposed test is thus shown to be
consistent with asymptotic power approaching 1 as the sample size increases.

The results of Monte Carlo simulations have shown satisfactory finite-sample prop-
erties of the proposed tests. Based on our experiment, we can conclude that:

e both tests have correct size even in small samples,
e empirical power increases with the sample size and converges to 1,
e using a strong instrument leads to better power properties,

e empirical power changes with the number of support points of both endogenous
regressor and instrument.

Particularly interesting is the fact that the power increases with the gap between
the number of points of support of the variables. Therefore, assuming that there is a
choice between valid instruments for the applied researcher, when J > K, they should
choose the one with the most points of support (when the instruments are weak), and
when J < K choose the one with the smallest number of support points in order to
increase the probability of detecting endogeneity of the regressor.
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Appendix: Proofs

The crucial result underlying the analysis is the asymptotic distribution of a vector
(e'Lx €'Lz)". Therefore, we first prove Lemma 1 and use it to discuss other results.

Proof of Lemmas 1 and 2

Clearly Efw,] = 0, since for each j = 1,...J Eluy;] = Ez[Y_, 1(2{ = zj)Elgi|2]]] = 0
and for each k =1, ... K,

Therefore,

2
Var(uy;) <Z gl(z = ) = naij
and

2
Var(va) (Z el ) = nank.

The covariance between u,; and v, is

cov(Upj, Vi) = E (Z el (2 = z])) (Z el (z] = u))
= L (Z e 1(# = z) (] = l‘k))
— o2E (Z I(z] = zj)I(x] = ZEk)>

2
= No Pjk-

The covariance between two different elements of u,, is zero, because for j # [

cov(Upj, Upy) = <Z€21 V(2] = )):O,

since (%} = z;)I(2{ = z) = 0, and the indicated events cannot occur simultaneously.
Similarly, for k£ # s

cov(Vpg, Uns) = E (Z e2 (x5 = mp) (25 = xs)) =
i=1
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The covariance matrix of the vector w,, = ( " ) is therefore

Up,
D P
2 z
nV =no ( P DX)

with V finite. Because the components of w, are correlated, we need a multivariate
version of the Lindeberg-Feller central limit theorem to establish the asymptotic nor-
mality of \/iﬁwn (see, for example, van der Vaart (1998), Section 2.8). The stability
condition (finite V') is clear, so to establish the result we need to confirm the Lindeberg
condition

1
-
n

> [l PI{wi| > ﬁa}] — 0 for all § > 0.
=1

Firstly, observe that

K J
lwil> = Y e (z; =a) + > (2 = z)
k=1 j=1
K J
= & (Z[(xf = Tx) —1—21(2 = zj)>
k=1 j=1
= 2¢2

since Yon | I(x5 = x3,) = Z;]:l I(z} = z;) = 1. These results give
[lwil PI{lwi] > vnd} < ||wil|* = 2€7,
with E[2e?] = 202 < oo, and

lim |Jw|PI{|w;| > +ndé} = lim 262I{|v/2¢;] > v/nd}
= lim 2e27{2¢? > né*} = 0.

Therefore, by the dominated convergence theorem (see for example Severini, (2005),
Theorem 1.10 (vi), p. 31), we have the Lindeberg condition:

lim E [||w][*I{|w;| > v/né}] = 0.

()2 L)

as claimed. Since z,, is a linear combination of u,, and v,,, by Slutsky’s Theorem, Lemma
2 follows immediately.

Since X represents the covariance matrix, we have to show that it is positive definite.
To do so, first observe that neither the support of Z, nor that of X, can affect the

Thus,
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properties of w,,. That is to say, such properties must be invariant to the support of Z (or
X), and hence hold for arbitrary support vectors z (or x). Now, the key matrix in ¥ is
Dz—PD'P' = D;—PDy'DxDy'P'. Let a denote a J-vector of hypothetical support
points of Z, and consider the quadratic form in the matrix D, — PD)_(lD XD;(IP’ :

d'Dya — (a'PDYY) Dy (Dx'Pla) . (18)

The first term is Ez[Z% = Ex[Ez x[Z?| X]]- the second moment of Z when its support
is a. The term D' P'a is the vector of conditional means E[Z|X = z;], k = 1,..., K,
so the whole second term is Ex[Ezx[Z|X]?]. Hence, the complete expression in (18)
can be interpreted as

Ex [EZ\X [Z2 — Ez|X[Z|X]2] ’X] = Ex[VGT(Z’X)] >0

i.e. the expectation of the conditional variance of Z given X when the support of Z is
a. Since this must hold for all a, it follows that the matrix D, — PDy' P’ is positive
definite as required. The only exception would be if the conditional variance of Z given
X vanished for each value of X, which we rule out.

Proof of Theorem 1

To determine the asymptotic distribution of the OLS estimator B, we need to study
the asymptotic behaviour of n_%L’Xa, which could be derived by using standard Lin-
deberg CLT. However, in the proof of Lemma 1, we have already derived that the joint
distribution of Le and L'ye. Given (17), we immediately get

n~2Le =4 N(0,0°Dyx).

It follows that, under exogeneity,

/ -1 7y
NG <B _ 5) — (LXnLX) Lxe an (0,6°Dy") .

NZD
Proof of Theorem 2

To determine the asymptotic distribution of the IV estimator B v, we need to study
. . 1 .
the asymptotic behaviour of n=2 L)e. Given (17), we have

n-2Lhe —% N(0,02Dy).
Since
BIV - ﬁ = (LiXPLZLX>_1 LS(Png = (L;(Lz(LIZLz)ilLIZLx)_l LZXLZ<LIZLZ)71L/ZE
it follows that

-1
VaBy —B) = (L’XLZ (L'ZLZ)*L'ZLX> LyLy (LL) Lye

n n n n n vn

— N (0,0% (P'D;'P) ).

32



Proof of Theorem 3

Note that under Hy we have E[y|X = Lxxz] = Lxf and the standard arguments show

easily that

nly' My, .y —F o’

The representation of 7' as a quadratic form in z, follows from the fact that
Wxz = My Lzl Cj[K ', Ch) (LY,Ly) " L, LxCxk
— [0, My, L,Cj|[K~,,C)) (L)yLy) ' LYy LxCk
= [MpyLsC)[C (LyLy) ' Ly LxCk].

Since the matrices C; and C'x are non-random, we have

L, L,\ 'L L
A, = ( Zn Z) z X0k =" €D, PCx = A
and )

—B, =P AV A.

n

By Lemma 2
1

ﬁA;Zn —>d N(O, 0'214/214)
It follows that
T, — U2X%<71

and therefore

Proof of Theorem 4

Recall that we are interested in obtaining the asymptotic distribution of

1 [Lye] 1 Ju,
el =l
under the alternative hypothesis. Clearly E|u,] = 0, since for each j =1, ...J Efu,;| =
Ez> >, 1(2f = z;)Elei|zf]] = 0 by Assumption 2. For each k = 1,..K, Elv,] =
Yo Ex(x} = xy)Elei|xf]] = n=apg >, m(xy,v;). Since we consider local alternatives
of order n~2, it follows that E [vn] = n’%L’XL xm and under the alternative

g 1 |u, 0

— —

N Dxm
The covariance between u,,; and v,; and the variances of u,; and v,; remain the same
as under the null hypothesis. The stability condition in the Lindeberg-Feller CLT is
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satisfied and the Lindeberg condition is exactly the same as under Hy. Therefore under

Hh
Gl = (Covm ) (% 5,))

Since we are interested in z,, a linear function of u,, and v,, it is clear that

1
2z, = N (i, 02%)
n

\/_
with 4 = —C,Pm and ¥ = C;[D; — PDy'P']C;, and that
1
NZD

with A’y = —C% P'D,'C;C",Pm. Note that the only difference in distribution between
null and alternative hypotheses is a non-zero mean in the asymptotic distribution of z,.

Therefore, the test statistic is a quadratic form in normal variables (with non-zero
mean). This implies that

Al 2, =T N (A'p, ASA)

T,

Tn = N——
y M.y

— X%{—1(5L)

i.e. non-central chi-square distribution with non-centrality parameter

 HAASA) T Al

2

oL

o

Proof of Theorem 5

Using z,, defined in (13), the numerator of the test-statistic can be written as

o (n_%zn>/ (CQLIZ [PLXn— B, LZCJ) i (n_%zn)

n

The matrix in the middle converges to 2 = (' (PD;(IP’ — prlz) C;, where py is a
J-vector with elements ¢;. Therefore,

R —402/Q 2

with z ~ N(0,%). It follows that

o J-1
R, =n—7"— %2072 ~ ) wi (1),
y M.y ; ! j( )

where the w; are the eigenvalues of Q! i.e., those of $2Q-Ixs.
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We have to show that all weights w; are positive. The argument is similar to that
used to prove that X is positive definite, which we have already shown in the Proof of
Lemma 1. Since the inverse of a positive definite matrix is positive definite itself, we
only have to prove that €2 is positive definite. This will be so if

PD3'P' — qzqy = PDY*Dx D3P’ — gz,

where ¢z = (q1,...,qs)’, is itself positive definite. Let a denote J- vector of the hypo-
thetical support points of Z. Then the first term in

' PD'DxDy'P'a — d'qzq5a
is familiar (it also appears in the proof of positive definiteness of ) and equals
Ex [Ezx|Z|X]?].

The second term is simply (Ey [Z])° = (Ex [EZ‘X[Z|X]D2. Hence, the complete ex-
pression is

Ex (BEzx|Z|X?) — (Ex [Exx[ZX]])? = Var (Exx[Z|X]) >0,

the variance of the conditional expectation of Z given X. Since this must again be true
for every support vector a. It follows that the matrix PDy' P’ —qzq), is positive definite
as required. The only case, in which this term would be zero is when E x[Z|X] is a
constant i.e. the expectation of Z doesn’t vary with X.

Proof of Theorem 6

Recall that for a quadratic form 7' = Y’AY with A being a symmetric matrix and
Y ~ N,(p,3) the standard results deliver T ~ >0, Aix%l)((f) with ); denoting the
eigenvalues of ¥ A and (04, ...,6,) = S’L~'y with L coming from the decomposition of
¥ = LL'. S is an orthogonal matrix of the eigenvectors of L'AL.

Since n~'C, L, (P, — B,)LzC; —" Q, it follows that,

with w; denoting the eigenvalues of Q™! and non-centrality parameters

(01,...,6,1) =SS 2 = —8'572C, Pm
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