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Abstract

This supplemental material contains five appendices. Appendix S.1 presents the results of an empirical
application and a Monte Carlo simulation calibrated to the application. Following Aghion et al. (2005),
we use a panel of U.K. industries to estimate Poisson models with industry and time effects for the
relationship between innovation and competition. Appendix S.2 gives the proofs of Theorems 4.3 and
4.4. Appendices S.3, S.4, and S.5 contain the proofs of Appendices B, C, and D, respectively. Appendix

S.6 collects some useful intermediate results that are used in the proofs of the main results.

S.1 Relationship between Innovation and Competition

S.1.1 Empirical Example

To illustrate the bias corrections with real data, we revisit the empirical application of Aghion, Bloom,
Blundell, Griffith and Howitt (2005) (ABBGH) that estimated a count data model to analyze the
relationship between innovation and competition. They used an unbalanced panel of seventeen U.K.
industries followed over the 22 years between 1973 and 1994.' The dependent variable, Yj;, is innovation
as measured by a citation-weighted number of patents, and the explanatory variable of interest, Z;;, is
competition as measured by one minus the Lerner index in the industry-year.

Following ABBGH we consider a quadratic static Poisson model with industry and year effects where
Yie | 2], 0, ~ Plexp[B1Ziv + B2 Zf; + i + 1)),

for (i =1,...,17;t = 1973, ...,1994), and extend the analysis to a dynamic Poisson model with industry

and year effects where

Yie | Y/ ZE iyt ~ Plexp[By log(1 + Yii—1) + B1Zit + B2 Z3 + i + 1)),
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1'We assume that the observations are missing at random conditional on the explanatory variables and unobserved effects

and apply the corrections without change since the level of attrition is low in this application.



for (i =1,...,17;t = 1974, ...,1994). In the dynamic model we use the year 1973 as the initial condition
for Y;;.

Table S1 reports the results of the analysis. Columns (2) and (3) for the static model replicate the
empirical results of Table I in ABBGH (p. 708), adding estimates of the APEs. Columns (4) and (5)
report estimates of the analytical corrections that do not assume that competition is strictly exogenous
with L = 1 and L = 2, and column (6) reports estimates of the jackknife bias corrections described
in equation (3.4) of the paper. Note that we do not need to report separate standard errors for the
corrected estimators, because the standard errors of the uncorrected estimators are consistent for the

2 Overall, the corrected

corrected estimators under the asymptotic approximation that we consider.
estimates, while numerically different from the uncorrected estimates in column (3), agree with the
inverted-U pattern in the relationship between innovation and competition found by ABBGH. The close
similarity between the uncorrected and bias corrected estimates gives some evidence in favor of the strict
exogeneity of competition with respect to the innovation process.

The results for the dynamic model show substantial positive state dependence in the innovation
process that is not explained by industry heterogeneity. Uncorrected fixed effects underestimates the
coefficient and APE of lag patents relative to the bias corrections, specially relative to the jackknife.
The pattern of the differences between the estimates is consistent with the biases that we find in the
numerical example in Table S4. Accounting for state dependence does not change the inverted-U pattern,
but flattens the relationship between innovation and competition.

Table S.2 implements Chow-type homogeneity tests for the validity of the jackknife corrections. These
tests compare the uncorrected fixed effects estimators of the common parameters within the elements of
the cross section and time series partitions of the panel. Under time homogeneity, the probability limit
of these estimators is the same, so that a standard Wald test can be applied based on the difference
of the estimators in the sub panels within the partition. For the static model, the test is rejected at
the 1% level in both the cross section and time series partitions. Since the cross sectional partition is
arbitrary, these rejection might be a signal of model misspecification. For the dynamic model, the test
is rejected at the 1% level in the time series partition, but it cannot be rejected at conventional levels in
the cross section partition. The rejection of the time homogeneity might explain the difference between

the jackknife and analytical corrections in the dynamic model.

S.1.2 Calibrated Monte Carlo Simulations

We conduct a simulation that mimics the empirical example. The designs correspond to static and
dynamic Poisson models with additive individual and time effects. We calibrate all the parameters and

exogenous variables using the dataset from ABBGH.

2In numerical examples, we find very little gains in terms of the ratio SE/SD and coverage probabilities when we reestimate

the standard errors using bias corrected estimates.



S.1.2.1 Static Poisson model

The data generating process is
i/it | Z;;Ta Q, 7y ~ P(GXP[Zitﬂl + Z,thﬂg + a; + ’Yt])a (Z = ]-7 ceey N7 t= ]-7 "'7T)7

where P denotes the Poisson distribution. The variable Z;; is fixed to the values of the competition
variable in the dataset and all the parameters are set to the fixed effect estimates of the model. We
generate unbalanced panel data sets with 7" = 22 years and three different numbers of industries N: 17,
34, and 51. In the second (third) case, we double (triple) the cross-sectional size by merging two (three)
independent realizations of the panel.

Table S3 reports the simulation results for the coefficients 81 and 2, and the APE of Z;;. We com-
pute the APE using the expression (2.5) with H(Z;;) = ZZ. Throughout the table, MLE corresponds
to the pooled Poisson maximum likelihood estimator (without individual and time effects), MLE-TE
corresponds to the Poisson estimator with only time effects, MLE-FETE corresponds to the Poisson
maximum likelihood estimator with individual and time fixed effects, Analytical (L=1) is the bias cor-
rected estimator that uses the analytical correction with L = [, and Jackknife is the bias corrected
estimator that uses SPJ in both the individual and time dimensions. The analytical corrections are
different from the uncorrected estimator because they do not use that the regressor Z;; is strictly ex-
ogenous. The cross-sectional division in the jackknife follows the order of the observations. The choice
of these estimators is motivated by the empirical analysis of ABBGH. All the results in the table are
reported in percentage of the true parameter value.

The results of the table agree with the no asymptotic bias result for the Poisson model with exogenous
regressors. Thus, the bias of MLE-FETE for the coefficients and APE is negligible relative to the
standard deviation and the coverage probabilities get close to the nominal level as N grows. The
analytical corrections preserve the performance of the estimators and have very little sensitivity to the
trimming parameter. The jackknife correction increases dispersion and rmse, specially for the small
cross-sectional size of the application. The estimators that do not control for individual effects are

clearly biased.

S.1.2.2 Dynamic Poisson model

The data generating process is
}/it | }/Z‘t_la Zf7 Q, 7y ~ P(GXP[BY log(l + Y;,t—l) + Zitﬂl + thﬁQ + Q; + ’Yt]), (l = 17 7N7t = 17 7T)

The competition variable Z;; and the initial condition for the number of patents Yy are fixed to the
values in the dataset and all the parameters are set to the fixed effect estimates of the model. To generate
panels, we first impute values to the missing observations of Z;; using forward and backward predictions
from a panel AR(1) linear model with individual and time effects. We then draw panel data sets with
T = 21 years and three different numbers of industries N: 17, 34, and 51. As in the static model, we
double (triple) the cross-sectional size by merging two (three) independent realizations of the panel. We
make the generated panels unbalanced by dropping the values corresponding to the missing observations

in the original dataset.



Table S4 reports the simulation results for the coefficient Bg), and the APE of Y; ;_;. The estimators
considered are the same as for the static Poisson model above. We compute the partial effect of Y; ;
using (2.5) with Z;; = Y;,—1, H(Zy) = log(1 + Z;;), and dropping the linear term. Table S5 reports
the simulation results for the coefficients 59 and 39, and the APE of Z;;. We compute the partial effect
using (2.5) with H(Z;;) = Z2. Again, all the results in the tables are reported in percentage of the true
parameter value.

The results in table S4 show biases of the same order of magnitude as the standard deviation for
the fixed effects estimators of the coeflicient and APE of Y;;_;, which cause severe undercoverage
of confidence intervals. Note that in this case the rate of convergence for the estimator of the APE is
ryr = VNT, because the individual and time effects are hold fixed across the simulations. The analytical
corrections reduce bias by more than half without increasing dispersion, substantially reducing rmse and
bringing coverage probabilities closer to their nominal levels. The jackknife corrections reduce bias and
increase dispersion leading to lower improvements in rmse and coverage probability than the analytical
corrections. The results for the coefficient of Z;; in table 8 are similar to the static model. The results

for the APE of Z;; are imprecise, because the true value of the effect is close to zero.

S.2 Proofs of Theorems 4.3 and 4.4

We start with a lemma that shows the consistency of the fixed effects estimators of averages of the data
and parameters. We will use this result to show the validity of the analytical bias corrections and the

consistency of the variance estimators.

Lemma S.1. Let G(8,¢) := [N(T — )] 3, 1501 9(Xit, Xit—js By i + Yoy i +3i—5) for 0 < j < T,
and BY be a subset of RI™B+2 that contains an e-neighborhood of (ﬂﬂl’,?t,ﬂ'?’tfj) for all i,t,5, N, T,
and for some ¢ > 0. Assume that (B,m1,m2) — it; (B, m1,m2) = 9(Xst, Xi—j, B, m1,m2) is Lipschitz
continuous over BY a.s, i.e. |gitj(B1,m11,m21) — Gitj (Bos 10, T20)| < Migj||(B1, w11, 721) — (B, ™10, T20) |
for all (Bo, T10,m20) € B, (B1,m11,m21) € BY, and some M;;; = Op(1) for all i,t,j, N,T. Let (B, $) be

an estimator of (8, ¢) such that HB— B2 —p 0 and ||$f #°||oo —>p 0. Then,

~

G(B,9) —p E[G(5°,¢°)),
provided that the limit exists.
Proof of Lemma S.1. By the triangle inequality
G(B,6) — E[G(8°,6°)]| < |G(B, ) — G(B°,¢")] + op(1),

because |G (5%, ¢°) —E[G(B°, ¢")]| = op(1). By the local Lipschitz continuity of g;;; and the consistency
of (8.9).

~ 1 SN~ o~ o~
G(B,9) = G(B°, ") < = > Mugll(B, @i + 70 @ +Fi—j) — (8%, af +97,af +7,)l|
N(T=3), 55
1 Z LA R0 >0
< m Mzt](”ﬂ 5 ||+4H¢ ¢ ||oo)

it>5+1



wpal. The result then follows because [N (T'—)] 7' 32, 5, Mis; = Op(1) and (1B= B +4]|p— ¢°|| o) =
op(1) by assumption. [ |

Proof of Theorem 4.3. We separate the proof in three parts corresponding to the three statements
of the theorem.

Part T: Proof of W — p Wea. The asymptotic variance and its fixed effects estimators can be
expressed as Woo = E[W(8°,¢°)] and W = W (B, $), where W (3, ¢) has a first order representation as
a continuously differentiable transformation of terms that have the form of G(8, ¢) in Lemma S.1. The
result then follows by the continuous mapping theorem noting that ||3 — 8% —p 0 and [|¢ — ¢°||ec <
|6 — ¢°|ly —p 0 by Theorem C.1.

Part II: Proof of VNT (34 — 3°) —4 J\/’(O,W;l). By the argument given after equation (3.3) in the
text, we only need to show that B — p Boo and D — p Do. These asymptotic biases and their fixed
effects estimators are either time-series averages of fractions of cross-sectional averages, or vice versa.
The nesting of the averages makes the analysis a bit more cumbersome than the analysis of /V[7, but
the result follows by similar standard arguments, also using that L — oo and L/T — 0 guarantee that
the trimmed estimator in B is also consistent for the spectral expectations; see Lemma 6 in Hahn and
Kuersteiner (2011).

Part IIT: Proof of \/]W(EJ — B9 =4 /\/’(QWO_:). For 71 = {1,...,|[(T+1)/2|}, T2 = {|T/2] +
L,...,TH To=T1UTa, Ni ={1,...,[(N+1)/2|}, No = {|N/2] + 1,...,N}, and Ny = N7 U Ny, let
BUK) he the fixed effect estimator of 3 in the subpanel defined by i € Nj and t € 7% In this notation,

A7 = 3B00) _ B10) j5 _ B(20) 9 _ B(O1) 19 _ 3(02) /g

We derive the asymptotic distribution of v N T(EJ — B%) from the joint asymptotic distribution of
the vector B = v NT(B(00 — g0, 3(10) _ g0 3(20) _ 30 3(01) _ 30 3(02) _ 30} with dimension 5 x dim j3.
By Theorem C.1,

91(j>0)91(k>0)

AT

ieNj,tETk

VNT(BU® — %) = [hir + bir + dit] + 0p(1),

for 1y = W oo Dgly, by = W [US®Y + USPID] and dyy = W UL + USP*), where the U
is implicitly defined by U() = (NT)~1/2 Dt Ui(t'). Here, none of the terms carries a superscript (jk)
by Assumption 4.3. The influence function 1;; has zero mean and determines the asymptotic variance
W;Ol, whereas b;; and d;; determine the asymptotic biases Boo and Do, but do not affect the asymptotic

variance. By this representation,

I/B\ﬂ—m./\[ K

NN = =

1
2

@B +rk 1| 2 | ®Ds,
1
1

—_ = = =

11
2 0
0 2
11
11

S N = =

1
1
1 | oW |,
0
2

3Note that this definition of the subpanels covers all the cases regardless of whether N and T are even or odd.



where we use that {1+ : 1 <i < N,1 <t <T} is independent across ¢ and martingale difference across
t and Assumption 4.3.
The result follows by writing v/ NT(EJ—BO) =(3,-1/2,-1/2,-1/2, —1/2)1@ and using the properties

of the multivariate normal distribution. |

Proof of Theorem 4.4. We separate the proof in three parts corresponding to the three statements
of the theorem.

Part T: V9 —p Vio. VE

oo and V9 have a similar structure to W oo and W in part I of the proof of

Theorem 4.3, so that the consistency follows by an analogous argument.
Part II: vV NT (54 — 8% 7) —a N(O,Vio). As in the proof of Theorem 4.2, we decompose

e (04 = 6%.) = rap (6 — 6%) + —NLNT(54 — 6).
~nr( 1) = N7 ( NT) INT ( )

Then, by Mann-Wald theorem,

VNT(3A — 6) = VNT(3 — B /T — D°/N — §) —4 N (0,7,

provided that B% —p Eio and D% —p E‘;, and N7 (0 — 6%7) —a N(O,Vif)), where Viil) and Vif)

are defined as in the proof of Theorem 4.2. The statement thus follows by using a similar argument to
part II of the proof of Theorem 4.3 to show the consistency of B? and 135, and because (§ — 0%,,) and
(64 — ) are asymptotically independent, and Vio =7y N 700 (rvr/VNT)2.

Part III: VNT (67 — 6%,) —4 /\/’((LVio). As in part II, we decompose

(87 = 6%0.) = rap (6 — 6%) + N NT(57 — 6).
N7 ( 1) = N7 ( NT) INT ( )

Then, by an argument similar to part III of the proof of Theorem 4.3,

79(1)

VNT(57 = 6) =q N0, Vo),

and rn7 (6 — 0%p) —a N(O,Vif)), where Vi(f

The statement follows because (6 — 6%7) and (67 — &) are asymptotically independent, and Vio =
—3 —5(1) .. e
( )thvT_mo(’r'NT/ NT)2 | |

) and Vif) are defined as in the proof of Theorem 4.2.

v Ly

S.3 Proofs of Appendix B (Asymptotic Expansions)

The following Lemma contains some statements that are not explicitly assumed in Assumptions B.1,
but that are implied by it.

Lemma S.1. Let Assumptions B.1 be satisfied. Then



(i) H(B,¢) >0 for all B € B(rg, B°) and ¢ € By(rs, ¢°) wpal,
sup sup 95 £(8, 9 = Op (VNT).

BEB(rp,6°) pEB,(T¢,¢°)

s sup[[9sp £(8, 9, = Op ((NT)V/),
BEB(rp,B°) p€By(re,4°)
sup sup  [|0p96L(B, )|, = Op (NT)),
BEB(rp,B°) d€By(rg,4°)
sip sup[|906L(8,9), = O (NT)),
BEB(rg,8°) $€B,(14,4°)
s sup[H7N(B9)], = Op(D).

BEB(r5,8°) pEB(r4,¢°)

A = o ((NT) ),

(ii) Moreover, |S| = Op (1), |[H~1]| = Op (1), H*H = 0p (1), (
ot = (= HHA )| = on (NT)77%) 9300 L]l = Op ((NTVYY), 9555 ] = Op (NT)).
155 0usra, LIH1S) || = Op ((NT)/44/CO) | and |2 By, £ (8], | = O (NT) =41/ 205

Proof of Lemma S.1. # Part (i): Let v € RY™# and w,u € RY¥™? By a Taylor expansion of
956, L(B, ¢) around (8, ¢°)

Zug (0566, L(B, ¢)] w
= ug [aﬁ(b’%ﬁ + > (B = B850, L(B, 8) = > (b — 82) 0,00 L (B, @3)1 w,
g k h

with (3, ) between (5, ¢°) and (8, ¢). Thus

10866 L(B, &), = sup  sup sup Zug (0566, L(B, ¢)] w

loll=1 flullg=1 flwllg/(g—1)=1

<1900l +118 = 5] sup Haﬁwc 3, + 1o =6l up |\aﬂ¢¢¢c<m§>]q,

where the supremum over (5 , é) is necessary, because those parameters depend on v, w, u. By Assump-

tion B.1, for large enough N and T,

sup sup  [|0pgs L(B, D), < 0890 L]l +15  sup sup [|98psL(5, D),
BEB(rp,6°) $EB,(rs,4°) BEB(rg,B°) $EB, (ry,6°)
+7rg  sup sup  [[0sg00L(B, D),

BEB(rp,8°) $EBy(rg,4°)
=Op[(NT) +13(NT) +ry(NT)] = Op (NT)F) .

The proofs for the bounds on ([9gs L(B, ¢)||, [[0s¢ L(B, ¢)|, and [|05464L(B, ¢)||, are analogous.
Next, we show that H(f,¢) is non-singular for all 3 € B(rg, 3°) and ¢ € B,(rs,¢") wpal. By a

Taylor expansion and Assumption B.1, for large enough N and T,

sup sup [[H(B,¢) —H[l,<rs sup sup [|9800L(B, ),
BEB(rp,B°) $EB,(rs,4°) BEB(ry,60) SEB, (rs,4°)
+7¢ sup sup  [|0pps L(B, 9|, = op(1). (S.1)

BEB(rp,B°) p€By(ry,4°)



Define AH(B,6) =H — H(B, ). Then |AH(B,6)l, < I1H(8,0) - Hll, + |[#

, and therefore
q

sup sup  [|AH(B, 9|, = or(1),
ﬂEB(’I‘g,ﬁO) ¢€Bq(r¢7¢0)

by Assumption B.1 and equation (S.1).

For any square matrix with [|All, < 1, |
Johnson (1985). Then

(1 - A)_1Hq < (1- ||A||q)_1, see e.g. p.301 in Horn and

‘(ﬁ— AH(B,¢)

sup sup  [|HTH(B,9)||, = sup sup

BEB(rp,B°) p€By(ry,4°) BEB(rs,8°) $€Bq(r4,4°) q

‘7—[_1 (11 _ AH(ﬂ,qﬁ)ﬁ_l)_l

= sup sup
BEB(r5,8°) pEB,(r¢,¢°)

q

__ -1
<||H ! sup sup ‘(]lA’H(ﬂ,qﬁ)’H 1)
1 BeB(rp,B%) ¢EB,(r¢,¢°) q
Sl e e (- famsen])
7 BeB(rp,B0) p€By(re,4°) q
——1 _
<||H || @=op1)™' =0p(1).
a

#Part (i1): By the properties of the £,-norm and Assumption B.1(v),

ISl = [IS]l2 < (dim )2~ V4||S]|, = Oy(1).

Analogously,
103 €] < (dim 6)/27 /7 03], = Op ((NT)'*).
By Lemma S.4, ||ﬂ_1||q/(q_1) = ||ﬁ_1||q because 7 is symmetric, and
— 1 — 1 —1 ——1 =——1
177 = 77, = VI astal e = 1 = Op (1), (52)
Analogously,

0866 LIl < (0896 LIl,, = Op (NT)),

Za,ﬁ,ﬁ/%ﬁ[’}—[*lé’}g < 28454”%5[%718}9
g g .
< 18ss0 L, [, IS, = Op <(NT)—1/4+1/(2q)+e) 7
S 0spro, LI Sly| < Y s, LIH S,
g g .
< 10600 Ll [ 77| 1S1, = 0p ((vT) s/ E0%),

Assumption B.1 guarantees that Hﬁ_l ‘ H'r'-NlH < 1 wpal. Therefore,

H=H (1 +ﬁﬁ*1)’1 =7 i(—ﬁﬁ’l)s =H ' -H HH +H i(-ﬁﬁ*l)s.

s=0 s=2



Note that Hﬁd 2212(—#%71)5

H )S, and therefore

<[ =

R s .
o g e

by Assumption B.1(vi) and equation (S.2).
The results for ||'r'-l*1 || and H?—Fl - ﬂ_l H follow immediately. |

S.3.1 Legendre Transformed Objective Function

We consider the shrinking neighborhood B(rg, 8°) x By(rg, ¢°) of the true parameters (3°, ¢"). State-
ment (i) of Lemma S.1 implies that the objective function £(3, ¢) is strictly concave in ¢ in this shrinking
neighborhood wpal. We define

LB, 8) = max [L(B, ¢)—¢'5], (B, S) = argmax [L(B, ¢) — ¢S], (S.3)

$EBy (w,aﬁ“) $EB,(14,¢°)

where 8 € B(rg,8°) and S € RY4™?. The function £*(8, S) is the Legendre transformation of the
objective function L£(8, ¢) in the incidental parameter ¢. We denote the parameter S as the dual
parameter to ¢, and L*(8, S) as the dual function to £(8, ¢). We only consider £*(8, S) and ®(3, S)
for parameters 3 € B(rg, 8°) and S € S(B, B,(r4,#°)), where the optimal ¢ is defined by the first order

conditions, i.e. is not a boundary solution. We define the corresponding set of pairs (3, S) that is dual

to B(rg,ﬁo) X Bq(r¢,¢0) b
B,(8° ¢°) = {(B,S) € RUimAHdime . (3 9(8, S)) € B(rg, 8°) x By(rg,¢°)} -

Assumption B.1 guarantees that for 8 € B(rg, %) the domain S(3, B,(r4, ¢°)) includes S = 0, the origin
of R4™ ¢ as an interior point, wpal, and that £*(3, S) is four times differentiable in a neighborhood
of S = 0 (see Lemma S.2 below). The optimal ¢ = ®(5,5) in equation (S.3) satisfies the first order
condition S = 8(8, ¢). Thus, for given §, the functions ®(3,5) and S(3, ¢) are inverse to each other,
and the relationship between ¢ and its dual S is one-to-one. This is a consequence of strict concavity of
L(B, ¢) in the neighborhood of the true parameter value that we consider here.* One can show that
oL* (B, S)
oS ’

which shows the dual nature of the functions £(8, ¢) and L*(5, S). For S = 0 the optimization in (S.3)
is just over the objective function £(8, ¢), so that ®(3,0) = a(ﬁ) and L£*(8,0) = L(8, (E(ﬁ)), the profile
objective function. We already introduced S = S(5°, ¢°), i.e. at 8 = 8° the dual of ¢" is S, and vica

CI)(ﬂ,S) = =

4 Another consequence of strict concavity of £(f, ¢) is that the dual function £*(8, S) is strictly convex in S. The original

L(B, ¢) can be recovered from L*(8, S) by again performing a Legendre transformation, namely

L(B,¢) = min [L£*(B,S)+¢'S] .

SeRdim ¢



versa. We can write the profile objective function L£(f3, &(5)) = L£*(5,0) as a Taylor series expansion of
L*(B, S) around (3, 5) = (8°,S), namely

L(B,$(B)) = L*(B°,8) + (0 LA — AP (9ps1 L)S + %M'(aﬁglﬁ*mﬁ +...,

where A = 3 — 3%, and here and in the following we omit the arguments of £*(3,S) and of its partial
derivatives when they are evaluated at (8%, S). Analogously, we can obtain Taylor expansions for the
profile score agﬁ(ﬂ,cg(ﬂ)) = 0gL*(B3,0) and the estimated nuisance parameter 5(,6’) = —0sL*(3,0) in
ApB and S, see the proof of Theorem B.1 below. Apart from combinatorial factors those expansions
feature the same coefficients as the expansion of £(8, (E(ﬂ)) itself. They are standard Taylor expansions
that can be truncated at a certain order, and the remainder term can be bounded by applying the mean
value theorem.

The functions £(8, ¢) and its dual £*(3, S) are closely related. In particular, for given § their first
derivatives with respect to the second argument S(f, ¢) and ®(3, S) are inverse functions of each other.
We can therefore express partial derivatives of £*(8, S) in terms of partial derivatives of £(3, ¢). This
is done in Lemma S.2. The norms [|0gsssL* (8, 9)l|,, [|0ssssL* (B, 5)||,, etc., are defined as in equation
(A.1) and (A.2).

Lemma S.2. Let assumption B.1 be satisfied.
(i) The function L*(B,S) is well-defined and is four times continuously differentiable in SB,.(8°,¢°),
wpal.
(ii) For L* = L*(8°,S),

OsL* = —qbo, 8/35* = 8BE, Ogsr LT = —(84)4)/5)*1 = 'Hil, a,BS/E* = —(85(25/5)7'[71,
Oppr L7 = ppr L+ (Do LYH ™ (09 L), Ds505,L" ==Y H  (Oprg LVH ™ (H ") g,
h

Ops5L" =M Do L)H "+ > H (0p,00 6 L)H " [H ™ 0p,0L],,
g

o L5 = (08,0 LYH ™ = (03,0 LYH ™ (0p, 000 LYH " — (9,0 LYH " (05,0 s L)H ™
= (O LYH Dy 6 LYH M 0p,6L],,
g

0818 L° = 0 L+ Y (03,00 LYH (0,000 LYH ™ (0p10L)[H " D, L]
g

+ (0,00 LYH (0,000 LYH O, L+ (05,00 LYH ™ (0p, 006 LYH ™ Dy, L
+ (03,0 LYH (05,010 LYH ' Opp, L
+ (08816 LYH (013, L) + (08,8, LYH (013, L) + (05,8, 00 LYH (D15, L),
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and
-1 -1
0s5'5,5,L" —ZH (O pro LYH T H ) g (H™ he
—1/q,—1 -1
+3ZH (Do 6. LYH (D00, LYH T (H ™) g (K e,
Op.55'5,L" = ZH (D s LYH ™ (Dpgron LYHTH H  gn
—ZH (Dpprsn LYH ™ (Dppr s LYH T H gn
—ZH (Dppr s LYH T [H™ (D0 LYH gn
- ZH (g5 s LYH ™ (Dpgr g, LYH ™ M gn[H ™ 05,6 L] s
- Z H ™ (Dppr o LM (000 L)H ™ M gn[H 95,6 L] s
fZH (Do LYH T HT (D006 YH g [H ™ 95,0L];
—ZH (s on LYH T H gn

—ZH (Dpor oo, LYH M gn[H ™ (0p,0L)] 5

(#ii) Moreover,

P 1055 L7 (8, 9)]| = Op ((NT)1/2+1/(2q)+e) 7
(B,8)eSB,(89,¢0)
swp 95 L(8,9), = Op ((NT)Y7)
(8,5)eSB(89,¢°)
sup 108ssL™(B, S)Il, = Op ((NT)l/(2q)+e)
(8,5)€SB,.(8°,¢°)
sup 10s555L7 (B, S)Il, = Op (( NT)1/<2q>+25) 7
(8,5)eSB,(8°,4°)
Sup 10ssssL*(B,9), = Op (NT)*) .

(B,8)€SB(8°,4°)

Proof of Lemma S.2. #Part (i): According to the definition (S.3), £*(8,S) = L(8,®(8,S))—®(3,S)'S
where ®(8,.5) solves the FOC, §(3,®(3,5)) =5, i.e. S(8,.) and ®(f,.) are inverse functions for every
B. Taking the derivative of S(5, ®(8,S5)) = S wrt to both S and 3 yields

[0s2(8,5)1[055(8,2(8, 5))]
[055(8,2(8,9))'] + [0s2(8, S)'][0sS (8, ®(8, 9))']

(S.4)

By definition, S = S(BY, ¢°). Therefore, ®(3,5) is the unique function that satisfies the boundary
condition ®(3°,8) = ¢° and the system of partial differential equations (PDE) in (S.4). Those PDE’s

11



can equivalently be written as

0s®(B,S) = —~[H(B,2(8,9)] "

(8, 5) = [0py L(B, (B, 9))I[H(B, (8, 5))] . (S.5)
This shows that ®(3,S) (and thus £*(3,S)) are well-defined in any neighborhood of (3,59) = (3°,S) in
which H (5, ®(8,.9)) is invertible (inverse function theorem). Lemma S.1 shows that H(/3, ¢) is invertible
in B(rg, %) x By(rs, ¢°), wpal. The inverse function theorem thus guarantee that ®(8,.S) and £*(83, S)
are well-defined in SB,.(8°, #°). The partial derivatives of £*(3, S) of up to fourth order can be expressed
as continuous transformations of the partial derivatives of L£(8,¢) up to fourth order (see e.g. proof of
part (i¢) of the lemma). Hence, £*(3, S) is four times continuously differentiable because L£(3, ¢) is four

times continuously differentiable.

#Part (4i): Differentiating £*(8,S) = L(8, ®(5,5)) — ®(8,S)'S wrt § and S and using the FOC of the
maximization over ¢ in the definition of £*(8,S) gives 95L*(3,5) = 9sL(8, ®(8,5)) and dsL*(8,S) =
—®(,S), respectively. Evaluating this expression at (3,5) = (8°,S) gives the first two statements of
part (i).
Using dsL*(5,5) = —®(p, S), the PDE (S.5) can be written as
aSS’L*(ﬁas) = Hil(ﬁa@(ﬂ,s))a
Opsr L*(8,S) = —[0pe L(B, (B, 9))|H (8, 9(8,5)).
Evaluating this expression at (3,5) = (8°,S) gives the next two statements of part (ii).
Taking the derivative of 9gL*(8,S) = 0L(B, ®(B,S)) wrt to § and using the second equation of
(S.5) gives the next statement when evaluated at (3,5) = (8°,S).
Taking the derivative of dgs/ L*(8,5) = —[0e L(B, ®(3,5))] 7! wrt to S, and using the first equation
of (S.5) gives the next statement when evaluated at (3,S) = (8°,S).
Taking the derivative of dss L*(3,5) = —[0pe L(B,P(B,5))]"! wrt to By and using the second
equation of (S.5) gives
Dps5/L7(8,8) = H™(B,8)[0p006 L (B, 0)H (B, 9)
+ > HT(B, ) [0p,60L(B, OHT (B, ){H (8, 0)[05,0L(B, )]}, (5.6)

g
where ¢ = ®(j3,S). This becomes the next statement when evaluated at (3, 5) = (8°,S).
We omit the proofs for dg, 5,5/ L*, 0, 5,sL", Os55,5, L™ and g, s5'5,L" because they are analogous.

##Part (iii): We only show the result for [[0gssL*(8, S)|,, the proof of the other statements is analogous.
By equation (S.6)

108s5L* (8, ), < [[H™'(B,9) H 19566 L(B, D), + || H™ (8, ) H 10666 L(B, D)4 1080 L(B, D)

where ¢ = ®(3,5). Then, by Lemma S.1

sup [ 9pssL7(B,9)], < sup sup | KB, 0)[} 19500L(8, D),
(6,5)€88B,(8°,6%) BEB(r5,6°) 6EB4 (r4,6°)

+ [H1 B 19606L (B, S, 19500 LB, )] } O ((NT)Y/ ).
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To derive the rest of the bounds we can use that the expressions from part (i¢) hold not only for
(8°,S), but also for other values (3,.59), provided that (3, ®(3,S) is used as the argument on the rhs

expressions. |

S.3.2 Proofs of Theorem B.1, Corollary B.2, and Theorem B.3

Proof of Theorem B.1, Part 1: Expansion of 5(6) Let 8 = Bnr € B(B% 1r5). A Taylor expan-
sion of dgL*(f3,0) around (3%, S) gives

~ 1
0(B) = ~0sL7(8.0) = —0sL" ~ (D5 L7)AB + (Ds5/L7)S = 5 D (9s505,L7)8S, + R (B),
g
where we first expand in 8 holding S = S fixed, and then expand in S. For any v € R4™ ¢ the remainder
term satisfies
1 ~ -
v'R(B) = v’{ — 5 D 10555, L7(B, S)|(AB)(ABr) + D _[0s55,L7(5°, 5)|S(ABK)
k

2
k

1 . B
5 ;[655'595;! (8 S)}SSgSh},

where /3 is between 39 and 8, and S and S are between 0 and S. By part (it) of Lemma S.2,
6(B) = ¢° = H (Do LYAB+HT'S + 3H 'Y (Os0r0, LIH ' S(HT'S)g + R(B).
g

Using that the vector norm ||.||q/(—1) is the dual to the vector norm |.||,, Assumption B.1, and Lem-
mas S.1 and S.2 yields
lBe@)ll, = suwp WRY(B)

q
ollg/q—1y=1

1 ~ ~ 1 _
< 5 [|sssL* (3.8 1881 + 955578, 5)| 18141281 + G [9sss5L” (8. S, IS

= Op [(NT)/*erg || A| + (NT) V40t Ag| 4+ (NT)~3/4+3/ a2
= op ((NT)71/20/CD) 4 op (NT)Y @05 - 7)),
uniformly over 3 € B(8°,r3) by Lemma S.2. |

Proof of Theorem B.1, Part 2: Expansion of profile score. Let 8 = Sy € B(3° 73). A Taylor
expansion of 95L*(3,0) around (8%, S) gives

O5L(B,5(5)) = DL (8,0) = D" + (Do LVAB — D55 £)S + 5 3 (s, £7)SS, + Ra(9),

g

where we first expand in 3 for fixed S = S, and then expand in S. For any v € R1™# the remainder

term satisfies

VR (B) = v’{l > (0865, L7 (B, S)(AB)ABK) = > [0pp,.5 L7 (8%, 9)IS(AB)

2
k k

1 —
— 5 2 l0ssrs5,5,L7 (8", S)]ssqsh},
g,h

13



where f is between 49 and 3, and S and S are between 0 and S. By Lemma S.2,
05 L(B,6(B)) = 0L + [9p5 L + (Dper LYH  (Dr5L)] (B — B°) + (Ops LYH 'S

1 _ _ _
5D (9866, £+ 05 L H ™ Opa15, L]) [ SgHTS + Ru(B),
g

where for any v € R4™ A,

[R1(B)|l = sup v'Ri(B)

HvH 1
< 5 [0nate G.5) 12817 + VD)2V 0gasr 50, 3| ISlalag)
+6(NT)1/2 Y l|0ssss L (8% 9)||, IS5

= Op [(NT) /2 @D g AB| + (NT)V/4H1/ G| Ag| 4 (NT) /41 a4 ]

= op(1) +op(VNT| 8 - 5°|),

uniformly over 3 € B(3° r3) by Lemma S.2. We can also write

~ — 1 e |

dsL(B,¢(B)) = 0L = VNTW(AP) + (s LYH S+ (Oppr LYH S — (Oper LYH HH S
1 — —=—1 I (p—
52 (9s0r0, L+ (030 LV 10si00,L)) SIS + R(B),
g
=U—VNTW(AB)+ R(B),
where we decompose the term linear in S into multiple terms by using that
* ~1 v 1 [5-1 g-1l75-1

~(Os5rL") = Opor YU = |05 L) + Opp O)| [HT=FHH "+ ...

The new remainder term is

R(8) = Ra(B) + (05 £)AB + [(9s LYH ™ (O L) — (050 DI (95E)] AB
+ (9ppr L) [H‘l - (ﬂ’l - ﬁ’lﬁﬁ”)} S— (03 LYH 'HH 'S

Zaw% HTIS - Zaﬁw LH S| H 31

+ [Z[@Wﬂﬁ1[%@%&[%15]9%13Z[aﬂwﬁm_ [Osr0, LIS H S|,

g9

DO | =

14



By Assumption B.1 and Lemma S.1,
~ 1 a1
IR < 1R (B)] + |05 ]| 18811 + 105021 [ = 7| 00521 128

o+ |[Fssr Z|| |7 (h0watli + 00sZ]) 1281

st [t — (=m0 o £

17 st
+ 5 10aastll (1 + 7 ]) e =7 s
] N

L1
2

- - _ a1 S R
> (085 LI H  0p00, LIH ' SgH 'S = [0ss LIH  [0p00, LI[H S|gH S
g

g9

l

= [Ry(8)]| + 0p(1) + op(VNTB = 8°])) + Op [(NT)~V/+e+1/20)]
= op(1) + op(VNT| 8 - 8°|),
uniformly over 3 € B(3°,r3). Here we use that

- _ _ S I Y—
> (085 LV H [0p00, LIH ' SgH 'S = [0ps LIH  [0p00, LI[H Sl,H S

g9 g9

< losarcll [t =2 (It + |72 s

‘Z Dpprg, LH'S]g
g

+l0sorl [ =T |7 s

—1
|Z o, LIH Sy
g

] 15[,
g
ol [ Hzamzm-lagm-lah |
g,h

Proof of Corollary B.2. B\ solves the FOC

-~

93L (B, 6(B)) = 0.
By HB— 50H = op(rg) and Theorem B.1,
0= 05L(B,0(B)) = U = WVNT(B — 8°) + op(1) + op(VNT|5 - 5°).

Thus, VNT(3 ~ 8°) = W U+ 0p(1) + op(VNT|B = 8°)) = WU + 0p(1) + op(vVNT|B — 5°),
where we use that W = Wao + op(1) is invertible wpal and that W = = W;ol +op(1). We conclude
that VNT(B — 8°) = Op(1) because U = Op(1), and therefore v NT(3 — 8°) = W;U +op(1). [ |

Proof of Theorem B.3. # Consistency of gg(ﬂ): Let n = nnr > 0 be such that n = op(ry),
(NT)~1/4+1/ (29 = op(n), and (NT)YDr5 = op(n). For B € B(rg, 3°), define

o~

¢"(B) = argmin_[[S(5,9)l4- (S.7)
{91 6=¢°lla<n}
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Then, ||S(3, 5*(ﬂ))||q < |I8(B,9")|l4, and therefore by a Taylor expansion of S(3,¢°) around 3 = 3°,
I1S(8,6(8)) = S(B,8")lg < IS(B. 6" (B))llg + IS(B, )l < 2/IS(B.6°) 4
< 2|l +2 [2up £(5.0)]| 18- I
= Op (V)71 1 (V)Y D)5 — 5] ],

uniformly over 8 € B(rg, 3°), where B is between 8° and B, and we use Assumption B.1(v) and
Lemma S.1. Thus,

sup_[[S(8,8"(8)) — S8, 6")ly = Op [(NT)71/H1/E0 4 (NT)V/ G0y
BEB(rs,B°)

By a Taylor expansion of ®(j3,.9) around S = S(3, ¢°),
|63 - || = [ow.s6.53)) - 2(8.50.6") s ~ 8.0
= 28,90 [505.8°(8) - 5(8.6") = 0r(1)][5(8.3(8)) - 5(8.0")

\q < |as@(s, 5y

q

q7
where S is between S(3, ¢*(3)) and S(3, ¢°) and we use Lemma S.1(7). Thus,

sup
BEB(rs,6°)

" (8) - ¢0Hq = Op [(NT) V4 CD 4 (NT)Y @] = op(s).

This shows that ¢* (8) is an interior solution of the minimization problem (S.7), wpal. Thus, S(8, o (B) =
0, because the objective function L£(f, ¢) is strictly concave and differentiable, and therefore 5* B) =

608) =" = Op(n) = or(ro).

~

#(B). We conclude that  sup
BEB(rp,B°)

# Consistency of B\: We have already shown that Assumption B.1(ii) is satisfied, in addition to the
remaining parts of Assumption B.1, which we assume. The bounds on the spectral norm in Assump-
tion B.1(vi) and in part (i) of Lemma S.1 can be used to show that U = Op((NT)'/4).

First, we consider the case dim(/3) = 1 first. The extension to dim(g) > 1 is discussed below. Let
n= 2(NT)_1/2W71\U|. Our goal is to show that 3 € [3° — 5, 8° + n]. By Theorem B.1,

FpL(B° +n,6(8° + 1)) =U — WVNTH + op(1) + 0p(VNTy) = op(VNTy) — W/ NTn,
95L(B° —n,6(8° — ) = U + W VNTn + op(1) + op(VNTy) = op(vVNTy) + W VNTn,

and therefore for sufficiently large N, T
OpL(B° +1,6(8° +1)) <0< s L(B° — 0, 6(8° — ).
Thus, since 93L(B,(B)) = 0, for sufficiently large N, T,
LB +n, (8" +n)) < LB, H(B)) < 0sL(B° — 1. H(8° — ).

The profile objective E(B,QAS(B)) is strictly concave in 8 because L(f,¢) is strictly concave in (3, ¢).
Thus, JgL(B, qAS(ﬁ)) is strictly decreasing. The previous set of inequalities implies that for sufficiently
large N, T

BO+n>pB>p—n.
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We conclude that |8 — %] <1 = Op((NT)~/4). This concludes the proof for dim(8) = 1.
To generalize the proof to dim(3) > 1 we define B+ = 8° £ 7 ngzﬁlel' Let (B_,B4+) ={rf-+ (1 —
r)B+ | r € [0,1]} be the line segment between S_ and ;. By restricting attention to values 5 € (5_, 54)

we can repeat the above argument for the case dim(3) = 1 and thus show that Be (B_, B4), which
implies |3 — 59 < n = Op((NT)~1/4). n
S.3.3 Proof of Theorem B.4
Proof of Theorem B.4. A Taylor expansion of A(j3,$) around (3°,¢°) yields

AB,¢) = A+ (05 A1(B = 8°) + [0 Al(¢ — ¢°) + 5(6 — ¢°) [0ss Al(¢ — ¢°) + R (B, ),

with remainder term

R{ (B, ¢) = (B — B [0s5 A(B, $)](B — %) + (B — B°) [056: A(B°, §)](¢ — 8°)

+ 2 (6= 0" 0o, AB%, D)](¢ — 6”6 — ¢,

where 3 is between 8 and 8%, and ¢ and ¢ are between ¢ and ¢°.
By assumption, |8 — 8°|| = op((NT)~1/4), and by the expansion of ¢ = ¢(3) in Theorem B.1,

16 = ¢°llg < M|, ISl + 17, I9ep £,

B+ I 10600Ll, IS + || B2 B
— OP((NT)71/4+1/(2(])).
Thus, for ElA = RlA(B, a),

RS <181 s sw [955A(8,0)]
BEB(rp,B8°) pEB,(r4,4°)

+(NT)V27H9)B = B[|¢ — ¢°lly  sup sup |9se A(B, D),
,@EB(T@,,@O) ¢EB(1(T¢7¢O)

+ LN 9§ — ¢O)3 sup sup (996 (8,9),
BEB(rp,B°) pEB(r¢,4°)

= Op(l/ \% NT)
Again by the expansion of ¢ = QAS(B) from Theorem B.1,

§—6=A(B3,0) — A= (95 A+ [0pA"H 1 sp L]) (B — 5°)

dim ¢
+ [0 A H (5 +3 > [aw%cmlsml&g) + S8 H Oy AITHTIS + RS, (S.8)

g=1

where
|RS| =[RS + [0,AV R (B) + 16 — 6" + H718) 05 Al(6 — 6° = H7'S)|
<[BP |+ (NT) Y 0,4, [ B2B)||

+ L(NT) V2

6=+ 18| 1900, |6 0 —H7'S|

= Op(l/\/ﬁ),
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that uses H(E— ¢ —HLS

= Op ((NT)~V/2+1/a+€) | From equation (S.8), the terms of the expansion
q

for 6 — & are analogous to the terms of the expansion for the score in Theorem B.1, with A(j3, ¢) taking
the role of ﬁ@gkﬁ(ﬁ, ?). |

S.4 Proofs of Appendix C (Theorem C.1)

Proof of Theorem C.1, Part (i). Assumption B.1(z) is satisfied because limy 700 % = limy 700 % =

Iﬁ:-l—li_l.

Assumption B.1(i4) is satisfied because £;;(3,m) and (v'$)? are four times continuously differentiable
and the same is true for £(5, ¢).
Let D = diag (ﬁzm),ﬁ? ) Then, Hf_IH = Op(1) by Assumption 4.1(v). By the properties

of the matrix norms and Lemma D.1, Hﬁ_l —5_1H < (N+T) Hﬂ_l -D

YY)

= Op(1). Thus,
”ﬁ_lu < Hﬁ_lH < Hf_lu + Hﬂ_l —5_1H = Op(1) by Lemma S.4 and the triangle inequality.
q o 00 00
We conclude that Assumption B.1(iv) holds.

We now show that the assumptions of Lemma S.7 are satisfied:
(i) By Lemma S.2, x; = ﬁ >, 95, Ly satisfies E4(x?7) < B. Thus, by independence across i

2

2
1 1 1
E —— ) 9.4 =E — i = — Y Eu?<B,
(s |- {(G) |- w e

and therefore ﬁ > i1 08 li = Op(1). Analogously, 7 > it 108plit — Eg (05,5, L]} = Op(1/VNT) =

op(1). Next,
2
1
E, sup sup —= Y 98,88, Lit(B,Tit)
BEB(rs,6°) $€Bq(r,00) NT Zt: e
2 2
1 1
<E4 sup sup  —— 108,88 lit (Bsmit)| | <Eg | w5 > M(Zy)
BEB(rp.B0) $€B, (ro.00) NT E; o NT Zt

1 1
< By ZM(Z#)Q =NT ZE¢M(Zit)2 = 0p(1),
it

it
and therefore supgep(r,,30) SUPgeB, (r,,60) = > it 081818, Lit (B, mit) = Op(1). A similar argument
gives = > it s lie = Op(1).
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(ii) For fit(ﬁ, (Z)) = a,gkﬂfit(ﬁ,ﬂ'it) or fit(ﬁa ¢) = 8Bkﬁlﬂzit(677rit)’
q
. ¥ 2 6l5:9) ]
o *Z (N > l€i(8.9) ) ]
q

1 1 1 1
T2 (N ZM(Z”) T2y 2 M)

t i t ¢

1 1
-T zt: N Zi:]EaﬁM(Zit)q = Op(1),

Le. SUPgep(ry,50) SUPGEB, (ry,00) 3% Eit(ﬁ,qﬁ)‘q = Op(1). Analogously, it follows that
SUD BB (ry,50) SUPGEB, (ry 60) T 2ot | T 2o Sit (B, 0)|" = Op (1).

(iil) For &i+(B,¢) = Oxrlit(B,mit), with r € {3,4}, or £i(B,¢) = 0,arlit(S, ™), with r € {2,3}, or
§it(5a¢) = aﬁk[}l'ﬂfit(ﬁﬂrit)v

1 (8+v)
Eg ( sup sup m?X T zt: 1€t (B, ¢)>

BEB(rp,B) By (ry,¢°)

Es sup
BEB(rs,B°) d)EB 7¢7¢0)

<Es

<Es

(8+v)
=E,; |max sup - Z €t (B3, 8)]
¢ BEB(r5,8°) <1>El3 (7"¢7¢>“

(8+v)
<E, Z( sup meM ) <E, ZGZM(Z“))

(8+v)

BEB(rp,B°) d)EB (T¢7¢°

< Eq Z ZM ) ] =y % > EeM(Zi) ¥t = Op(N).

Thus, SUPges(ry,50) SUPGEB, (ry.00) MaXi 7 >y €t (B, ¢)| = Op (NV/E)) = Op (N?).  Analo-
gously, it follows that supgep(,,,30) SUPgeB, (r,,¢0) MaAX¢ + 3 1€ (B, )| = Op (N?).
(iv) Let x; = ﬁZz Orlit. By cross-sectional independence and E¢(8ﬂ€it)8 < E¢M(Zit)8 = 0p(1),

q
ﬁ Zz aﬂ"eit

EgX§ = Op(1) uniformly over t. Thus, E4~% >, x§ = Op(1) and therefore 1 Y,
Op (1), with ¢ = 8.
Let x; = f >, 0xlin (B0, 7)), By Lemma S.2 and Ey, (9:0;4)3T" < E,M(Z;)¥" = Op(1), Epx$ =
Op(1) uniformly over i. Here we use p > 4/[1 — 8/(8 + v)] = 4(8 + v)/v that is imposed in
Assumption B.1. Thus, E,% >, x% = Op(1) 3ﬂ€¢t‘q = Op (1), with
q=28.

2
The proofs for % Do ﬁ Y i 08urlit —Eg [0, lit)]| = Op(1)and 1
Op (1) are analogous.

2
aﬁkﬂgit_ﬂlb [aﬁkﬂgit] =

(v) It follows by the independence of {(¢;1,...,¢;r) : 1 < i < N} across i, conditional on ¢, in
Assumption B.1(ii).

(vi) Let & = Onrliy(BY,7%,) —Ey [0rrli], with 7 € {2,3}, or & = 5'5kﬂ2€it( ,To) — Eq [‘%mzevt] For

19



Tl

= v, max; Eg4 [58"”’] Op(1) by assumption. By Lemma S.1,

I| = Z [Covy (its &is)

-~ v v11/(8+v »11/(8+v
< Yo Ballt - s [Byle 5] [Ble

o0 [eS)
=0 G < 6N et = Crt 90,
m=1 m=1

where C is a constant. Here we use that > 4(8 4 v) /v implies u[1 — 2/(8 4+ v) > 4. We thus have
shown max; max; Y Eg [§i€s] < C~’7T4/9O =:C.

8
Analogous to the proof of part (iv), we can use Lemma S.2 to obtain max; E { [% > &t} } <C

8
and independence across ¢ to obtain max; Eg { [ﬁ > fit] } < C. Similarly, by Lemma S.2

4
max Eg % Z [fitfjt —Ey <§it5jtﬂ] <C,
L t

]

which requires p > 2/[1 — 4/(4 + v/2)], which is implied by the assumption that u > 4(8 + v)/v.
=0p(1).

(vii) We have already shown that Hﬁ_l ’
q

Therefore, we can apply Lemma S.7, which shows that Assumption B.1(v) and (vi) hold. We have already
shown that Assumption B.1(i), (ii), (4v), (v) and (vi) hold. One can also check that (NT)~1/4+1/(20) =
op(ry) and (NT)Y/PDyrg = op(ry) are satisfied. In addition, £(3, ¢) is strictly concave. We can therefore
invoke Theorem B.3 to show that Assumption B.1(4i¢) holds and that ||B —B% = O0p((NT)"V/%). ®

Proof of Theorem C.1, Part (ii). For any N xT matrix A we define the N x T matrix IPA as follows

(PA); = af +7;, (a",7") € argmin Y " Ey(—0r2lir) (Aie — o — 7)° . (S.1)
aY ot
Here, the minimization is over o € RY and v € R”. The operator [P is a linear projection, i.e. we have

PP = IP. It is also convenient to define

~ ~ - m
PA=PA h Ap= ————.
. where ‘= ot

(S.2)
PP is a linear operator, but not a projection. Note that A and = defined in (C.1) and (4.3) can be written
as A = PA and Z), = PBy, where Ay = —0,0;; and Byit = —Eg(0p,xlit), for k=1,...,dim3.°
By Lemma S.8(i4),
| NI
WZZ [Ey (355 lit) + By (—0p2bit) ErZly] .

i=1 t=1

— 1 _ _
W=——= (08 L+ [0 LI H ~ [Opp =
m(ﬁﬁ (050 L) 7 [0 L )

°By, and Zj, are N x T matrices with entries By iz and Zj i, respectively, while B;; and Z;; are dim S-vectors with entries

By,it and Ej it
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By Lemma S.8(7),

N T
o 1 1
U =95 + [034 L H S:—}@& Zit Opliy) E:E:D&.
5L+ [Oss L] \/NTit(Bt t Onlit) VNT At

=1 t=1

We decompose UM = U(1e) 4 718 | with

U0 = 050 LI 'S ~ 05 IR HH 'S,
dim ¢
— — 1 =\ 751 571
U0 = 3 (05000, C + 050 TV [0p0, L)) ' SH 'Sy /2
g=1

By Lemma S.8(7) and (i),

N T
Z Z Azt DﬁTr it E(ﬁ(Dﬂﬂ'Ezt)]

=1 t=1

U(la) — _\/% ; Ait (857|—Eit + Eit a7r2git) = -

3l
N

and

R DY [Bo(@sr0) + 055 LI By 09050
7,t

where for each i,t, 050,2¢;; is a dim ¢-vector, which can be written as 0y0,20;; = (A’l ) foran N x T
matrix A with elements Aj, = Orsl;, if j =i and 7 = ¢, and Aj; = 0 otherwise. Thus, Lemma S.8(¢)
gives [0py L] ﬁ_lﬁgﬁ@ﬂa&t =- Zj; Ei-1(i = 5)1(t = 7)0rsliyy = —E;0rsl;;. Therefore

Ut — ZA By (Opm2lis — ZirOnsliy) = ZZA”Ed) Dgr2lit)-
2 =1 t=1

Proof of Theorem C.1, Part (iii). Showing that Assumption B.2 is satisfied is analogous to the
proof of Lemma S.7 and of part (ii) of this Theorem.

In the proof of Theorem 4.1 we show that Assumption 4.1 implies that U = Op(1). This fact
together with part (¢) of this theorem show that Corollary B.2 is applicable, so that \/ﬁ(é - B9 =
W;U + op(1) = Op(1), and we can apply Theorem B.4.

By Lemma S.8 and the result for \/W(B - BY),

VNT |05 A + (9 DYH (94 L)| (B — B°) = [N}ZMDﬁA“) W (U0 +U0D) +o0p(1),

2,t

(S.3)
We apply Lemma S.8 to U(AO) and U(Al) defined in Theorem B.4 to give
1
VNTUY = ———= 3 " Ey(Wir) Ol
A TNT Z ¢(Wit)Orliy
VNT U = F Z At (U302 liy — By (W30 Egy (D52 Liy)]
(On20it) — Ey(0r3lit) By (Uyy)] - (S.4)

S 2 A By
2 \/NT -
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The derivation of (S.3) and (S.4) is analogous to the proof of the part (ii) of the Theorem. Combining
Theorem B.4 with equations (S.3) and (S.4) gives the result. |

S.5 Proofs of Appendix D (Lemma D.1)

The following Lemmas are useful to prove Lemma D.1. Let £*(3,¢) = (NT)~ /2 > i lit(By i + ).

Lemma S.1. If the statement of Lemma D.1 holds for some constant b > 0, then it holds for any
constant b > 0.

Proof of Lemma S.1. Write H = H +

v, where H' = =Eq [ L* } Since H v = 0,

TNT 6¢a¢'
_ T b T\t  VNT ot VNT
H 12(7{) +< vv’) z(H> 72111/:(?—[) s 0
VNT bllvv’|] b(N+T)
where 1 refers to the Moore-Penrose pseudo-inverse. Thus, if H; is the expected Hessian for b = b; > 0
and Ho is the expected Hessian for b = by > 0, “ﬂl_l —ﬁ;l‘ . = H(% - é) (Nj_VTT)zvv i =
O ((NT)=1/?). ]
—1
Lemma S.2. Let Assumption 4.1 hold and let 0 < b < byin (1 + %Z’?”) . Then,
—1 = —1 = b

Proof of Lemma S.2. Let hy; = E4(—0r2¢;), and define

it = hi —

=Y <z hjr) 122 hﬁ

By definition, H(aa) = Haa) + b1n1y/VNT and Hiay) = Hiany — bly1y/VNT. The matrix H
is diagonal with elements >, h;;/v NT. The matrix ﬁ?av) has elements h; /v NT. The Woodbury
identity states that

. _ -1

o) = ooy = Hiaay v (VNT T+ I H o)1) I H{aa.
Then, ﬁ(_ala) Hiary) = ﬁ?;;)ﬁ/\/ NT, where H is the N x T matrix with elements h;;. Therefore

>, |hit

771 —
Hol He H — max <.
H () Tt (ay) Zt i
Assumption 4.1(iv) guarantees that bmax > hiz > bmin, which implies hjy — b > bmin — b > 0, and
7 N bmax
h;e > h; >bmin—0b (1 —— ] >0.
v e blzzhﬂ (*T%)
We conclude that
— 1 — Dot R ¢ —0b
Hiowa H H = max =1- mln b+ J
H (axa) T (ay) Zt it Zthzt b1+Z(Z ] 122 hj,
b
<1-
bmax

<1l-

Analogously,

bmax ’

— 1 —
Him Hiza) o
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Proof of Lemma D.1. We choose b < bin (1 + max(x?, 5_2)%)71. Then, b < bpin (1 + % Z‘z*:’:) -
for large enough N and T, so that Lemma S.2 becomes applicable. The choice of b has no effect on the
general validity of the lemma for all b > 0 by Lemma S.1.
By the inversion formula for partitioned matrices,
T Ay gy
“HemHoa A Hiy +Hiy Hiva) ARy By

with A := (H(aa) — ﬁ(aw)ﬂalﬂ/)ﬂ(va))’l. The Woodbury identity states that

1 —x—1

—_—— —k—1 —x—1 -1 —kx—1
H(aa) — H(aa) - H(aa)lN (\/ NT/b + 1/1VH(aa)]-N> ].GVIH(QQ),

=:1Claa)

—1 [ —— — — e
Hiyy) = Hiym) = HigpIr ( NT/b+ 1/TH(W)IT) 17 () -

=:Cyy)
. —x—1 —*—1 =%
By Assumption 4.1(v), [Haa)llec = Or(1), [[H 1y llc = Or(1), [[H(ay)llmax = Op(1/V NT). There-
fore®
—x—1 —x—1 -1
Gyl < 12 1 e (VAT b+ 1y 1) = Op(1/VNT),
— 1 —k—1
HH(aa)”OO < ||H(aa)HOO + N”C(aa)”max - OP(]')
— 1 — —x
Analogously, [|C(y)llmax = Op(1/VNT) and [H(,.)llcc = Op(1). Furthermore, |H (ary)llmax < [[H(aqy) lmax+
b/VNT = Op(1/V/NT). Define
—1 = =1 = -1 S [ - n
b= (HN - H(aa)”(awﬂmﬂi(w)) —lv=) (H(aa)H(av)H(w)H("m)>
n=1
Then, A = Hag) + Hiam B = Hiaa) — Claa) + Hiaa)B- By Lemma 8.2, [H ooy Ham) Hismy Hira oo <
—1 — —1 — 2
”H(aa)H(a'y)HOOHH(AW)H('W)HOO < (1 - &) < 1, and

i [ — ——1 —
1Blmax < 3 (1o Heam Hirm Fne e ) 1Pyl [P o Py o i lmae
n=0

§l§§<1bim)%

n=0

— 1 — 1 —
T I H o o H () o [H (0 e = O (1/VNT).

By the triangle inequality,
—1 —1
[Allse < 17 (aaylloc + Nl[H (aa) llsol| Bllmax = Op(1).
Thus, for the different blocks of
i - —%—1 —_— —1
T ( Hioo) 0 ) _ ( Ay AR Hy ) ,
0 Hiy “Hom Hom A Hiy Hia) AR Hiy = Com

SHere and in the following me make use of the inequalities || AB||max < ||A|lco || Bllmasx; [|AB|lmax < || Allmax|| B |loos [|Alloo <

n||A||max, which hold for any m X n matrix A and n X p matrix B.
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we find

—k—1

—1

max

-1
< P oo 1Bl ~ IC(a e = Op (1/VNT),
— — 1 — ——1
|~ AT T |, = 1A P e P oo = Op(1/VNT),

1 = — =1 —1 — —
HH(’Y’Y) H(’Y‘l) AH(O"‘/) H(’Y’)’) o C("/’Y) s < HH(’y'y)”io”rH("/a)HOOHA”OO”H(a'y)”Inax + HC(v'y)Hmax
771 —
< NIH () 2 Alloc [H ay Fax + 1€ lmax = Op(1/VNT).

The bound Op(1/v NT) for the max-norm of each block of the matrix yields the same bound for the

max-norm of the matrix itself. [ |

S.6 Useful Lemmas

S.6.1 Some Properties of Stochastic Processes
Here we collect some known properties of a-mixing processes, which are useful for our proofs.
Lemma S.1. Let {&} be an a-mizing process with mizing coefficients a(m). Let E|&|P < oo and
E|ét4m|? < 0o for some p,q > 1 and 1/p+1/q < 1. Then,
[Cov (&, &eam)| < 8 a(m)V/ Bl Bl
where r = (1—1/p—1/q)~1 .
Proof of Lemma S.1. See, for example, Proposition 2.5 in Fan and Yao (2003). |

The following result is a simple modification of Theorem 1 in Cox and Kim (1995).

Lemma S.2. Let {&} be an a-mizing process with mizing coefficients a(m). Let r > 1 be an integer,
and let § > 2r, u>1/(1—2r/8), ¢ > 0 and C > 0. Assume that sup, E |&,|° < C and that a(m) < cm™"
for allm € {1,2,3,...}. Then there exists a constant B > 0 depending on r, §, u, ¢ and C, but not
depending on T or any other distributional characteristics of &, such that for any T > 0,

1 T 2r
E||—= &t <B.
The following is a central limit theorem for martingale difference sequences.

Lemma S.3. Consider the scalar process & = Enryit, 1 =1,...,N, t =1,...,T. Let {(&a,-.-, &) :
1 < i < N} be independent across i, and be a martingale difference sequence for each i, N, T. Let
E|¢:|?T0 be uniformly bounded across i,t, N, T for some § > 0. Let@ =Gyt > A > 0 for all sufficiently
large NT, and let = Dt 2 —35%—p0as NT — c0.” Then,

1
oVvNT

> i —=a N(0,1).
it

"Here can allow for an arbitrary sequence of (N,T) with NT — oo.
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Proof of Lemma S.3. Define &, = {pm = Enryit, With M = NT and m=T(i—1)+t € {1,..., M}.

Then {&,,, m = 1,..., M} is a martingale difference sequence. With this redefinition the statement of

the Lemma is equal to Corollary 5.26 in White (2001), which is based on Theorem 2.3 in Mcleish (1974),
. M

and which shows that E\}M o1 &m —a N(0,1). [ ]

S.6.2 Some Bounds for the Norms of Matrices and Tensors

The following lemma provides bounds for the matrix norm ||.||4 in terms of the matrix norms ||.||1, ||.|2,
[|-lloo, and a bound for |||z in terms of ||.|[; and [|.|[q/(q—1). For sake of clarity we use notation |.||2 for

the spectral norm in this lemma, which everywhere else is denoted by |||, without any index. Recall
that [|Al|oe = max; 3 [Aij| and [|A]ly = [|A"]|oc-

Lemma S.4. For any matriz A we have

1 _

1Al < (1Al [1Al1L 9, forq>1,
2 _

1Al < (1Al AlIL 2/, forq>2,

[All2 < 4/l Allgl[Allg/q-1): forq=>1.

Note also that ||Allq/(q—1) = [|A"|lq for ¢ > 1. Thus, for a symmetric matriz A, we have ||All2 < [|Allq <
[Alloo for any ¢ > 1.

Proof of Lemma S.4. The statements follow from the fact that log||All, is a convex function of

1/q, which is a consequence of the Riesz-Thorin theorem. For more details and references see e.g.
Higham (1992). |

The following lemma shows that the norm ||.||, applied to higher-dimensional tensors with a special
structure can be expressed in terms of matrix norms ||.||. In our panel application all higher dimensional
tensors have such a special structure, since they are obtained as partial derivatives wrt to o and - from
the likelihood function.

Lemma S.5. Let a be an N-vector with entries a;, let b be a T-vector with entries by, and let ¢ be an

N x T matrixz with entries c;z. Let A be an N x N x ... x N tensor with entries

p times
ail ifilzigz...:ip,
Ailig...ip = )
0 otherwise.
Let BbeanT xT x ... x T tensor with entries
[ —
r times
by, ifti=to=...=t,,
Bt1t2...t7- = .
0 otherwise.
LetCbean N X N x ... x NxT xT x...xT tensor with entries
p times r times
Ciitq ifi1:i2:...:ipandtlztzz...:t“
Ciliz‘..iptltz...tr = .
0 otherwise.
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Let CbeanT xT x ... x Tx N x N x ... x N tensor with entries

r times p times
~ Ciitq ifi1:i2:...:ipandt1:t2:.”:tr’
CtltZ-'~t'r'ili2~~~ip = )
0 otherwise.
Then,

1Al = max |ail, forp>2,
||B\|q:mtax|bt\, forr>2,
1Cllg < llellg forp>1,r>1,
ICllq < NI llgs forp>1,r>1,

where ||.||4 Tefers to the g-norm defined in (A.1) with ¢ > 1.

Proof of Lemma S.5. Since the vector norm ||.||4/(4—1) is dual to the vector norm ||.||; we can rewrite

the definition of the tensor norm [|C], as follows

||CHq = max max max
le®lg/a-n=1 JuPg=1  [Jo@|s=1

k=2,...,p l=1,...,r
N T
Z u(.l)ug) . u(_p)v(l)vt(z) . Ulg:)ciliz...iptltg...tr

i1 ip 41 2
i1%2...0p=1 tito...t,.=1

The specific structure of C' yields

N
S WU oD ol

cl, = max max_ max
e lla/@-n=1 Jlu®flg =1 JoWlq =1 |i7 =
k;:?,...,p l:l,...,’/‘
N T
max max Zzuwz‘cit = [lellqs

lullg/(q—1y <1 lvllg<1 i=1 t=1
where we define v € RN with elements u; = uﬁl)uz(?) e ul(p) and v € RT with elements v; = Ut(l)Ut(Q) e ”t(r)7
and we use that [[u™]|, =1, for k = 2,...,p, and "], = 1, for | = 2,...,7, implies |u;| < |U£1)|

1)|, and therefore [Jullq/1—q) < ||u(1)||q/(1,q) =1 and |v|, < [[v™V|, = 1. The proof of

and |v| < \vt(
||5|\q < ||d|lq is analogous.

Let A®) = A, as defined above, for a particular value of p. For p = 2, A® is a diagonal N x N
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matrix with diagonal elements a;, so that [[A®) |, < A |1/ A@||1 Y = max; |a,|. For p > 2,

N
_ ), ® (p)
HA(P)H = max max g wi, g, g Aiy..iy
¢ Nu®llas@-n=t Ju®lg =1 |; 75
k=2,...,p
N
1) (2 -1 2
= max max E uE )ug )~o~ul(p )ugp)Az(.j)
Hu(l)”q/(q—l):1 ||’u,(k)||q =1 ij=1
k = 27"'7p
N T
2
max max E E uiviAEj) = ||A®)||, < max |a;],
lulla/a-1 <1 lloll=1 | & i

where we define u € RY with elements u; = ugl)ugz) e ul(.p_l) and v = u(P), and we use that |[u®|, = 1,

for k =2,...,p— 1, implies |u;| < |ul(-1)\ and therefore

ullg/g—1) < llu®]l4/q—1) = 1. We have thus
shown HA(p)H < max; |a;|. From the definition of HA(T’)Hq above, we obtain HA(p)Hq > max; |a;| by
choosing all u®) equal to the standard basis vector, whose i*’th component equals one, where i* €

argmax; |a;|. Thus, ||A(p) ||q = max; |a;| for p > 2. The proof for | B||, = max; |b;| is analogous. |

The following lemma provides an asymptotic bound for the spectral norm of N x T matrices, whose

entries are mean zero, and cross-sectionally independent and weakly time-serially dependent conditional

on ¢.

Lemma S.6. Let e be an N x T matriz with entries e;;. Let 67 = 23:1 Ey(e2,), let Q be the T x T
matriz with entries Qs = % Zfil Ey(eiress), and let n;; = %thl leitejt — Eg(eire;i)]. Consider
asymptotic sequences where N, T — oo such that N/T converges to a finite positive constant. Assume
that

(i) The distribution of e;; is independent across i, conditional on ¢, and satisfies Eg(e;) = 0.

(i) XN, (62) = 0p(1), ETe(Q)=0p(1), LXN Ey (k) =0p1), =20 Es(h) =
Op(1).

Then, Eg4lle||® = Op(N®), and therefore |le|]| = Op(N°/®).

Proof of Lemma S.6. Let ||.||r be the Frobenius norm of a matrix, i.e. [|A||p = y/Tr(4A’). For

27



7 =(z

lel® = llee’ee’|? < [lee’ee’ |7 = >

7t and §j, = 1(j = k),

N

N T
E § €itCLtCErEjr

i,j=1 \k=1t,r=1
N [N 2
ZTQZl (nzk+T/5ku)(77k+T/6] )]
i,j=1 Lk=1
N N 2
=T° Z <Z ninix + 27?062 + T5ij0f>
1,j=1 \k=1
N N 2
<3 Z <ank77]k + 4T} 6} + 176,567
j=1 | \k=1
N N 2 N
S P RREUD SRR o
Jj=1 \k=1 i,j=1 i=1
where we used that (a + b+ ¢)? < 3(a? + b? + ¢3). By the Cauchy Schwarz inequality,
[~ N 27 N N N
EolelP <97°E, | 3 (z o) | 12, (83222 32 matay | #0273
i.j=1 \k=1 | i=1 ij=1 i=1
[~ N 2]
= 3T2E¢ Z (Z 771]@’17]']@) + OP(T3N2) + OP(T?’N).
i.7=1 \k=1 ]
Moreover,
2 N N
Z (Z mkmk) = Z Eg (miknjknunj) = Z B (i nskmmimis)
1,j=1 i,J,k,1=1 i,4,k,1=1
N
<‘ Z Eg (mijnienema) | + 4 Z aijkBe(Miamijniemki)| ,
i,5,k,1 i,,k=1
mutually different
3y 1/4
N N
< > Eg (nijnjxnmma) | + 4 ST EsH) || DL Eslniy)
i7j7k7l ’i,j,k:l ’L] k=1
mutually different
3y 1/4
1 & -
= Z Eg (0ignjknmeimi) +4N? lN ZE¢(U?¢)1 N2 Z Ed:(fi?j)
i,7,k, 1 i=1 i,j=1

mutually different

D
1,5, k,1

mutually different

where in the second step we just renamed the indices and used that n;; is symmetric in 4,j; and

aijk € [0,1] in the second line is a combinatorial pre-factor; and in the third step we applied the

Cauchy-Schwarz inequality.

Eg (0inxk1mi)

+ Op(N?).
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Let ©; be the T' x T matrix with entries €; ;s = Ey(ejeis) such that Q = % vazl Q;. For i, j,k,l

mutually different,

T
1
Eg (nijnjknemi) = T2 Z Eg(eitejiejserseruciuCiviv)
t,s,u,v=1
R 1
= ﬁ Z E¢(eiveit)]E¢(ejtejs)E¢(ekseku)E¢(eluelv) = ﬁTI‘(QinQle) Z O

t,s,u,v=1

because €; > 0 for all 4. Thus,

1
Z E¢ (mijnjkmemi) | = Z Eg (migniemrima) = T2 Z Tr(€2:€2;Q28Y)
i’j’k7l i9j7k7l 1:7j7k7l
mutually different mutually different mut. different
1 & Nt .
< 75 > Tr(9,;Q0) = 7z Te(Q) = Op(N*/T).
i,k 1=1

Combining all the above results gives Eylle||® = Op(N®), since N and T are assumed to grow at the

same rate. [

S.6.3 Verifying the Basic Regularity Conditions in Panel Models

The following Lemma provides sufficient conditions under which the panel fixed effects estimators in the

main text satisfy the high-level regularity conditions in Assumptions B.1(v) and (vi).

Lemma S.7. Let L(B,¢) = \/% [Zzt Ci(B, i) — g(v’qs)Q], where Ty = a; + v, @ = (a1,...,an),
v = Ys--01), ¢ = (&), and v = (I, 1%). Assume that £;(.,.) is four times continuously
differentiable in an appropriate neighborhood of the true parameter values (8°,¢°). Consider limits as
N, T — oo with N/T — % > 0. Let 4 < ¢ < 8 and 0 < e < 1/8 —1/(2q). Let 13 = rgnT > 0,
re =roNT >0, with rg =0 [(NT)"Y/CD=¢] and ry, = o[(NT)~¢]. Assume that

(i) For k,l,m e {1,2,...,dim S},
1 1 1
JNT ;aﬁkéit = Op(1), ~NT ;%méit = 0p(1), NT ; {088, it — E¢ [0p,8,lit]} = op(1),

1
sup sup  —= ¥ 0888, lit(B,mit) = Op(1).
BEB(r3,8%) 6€By (r,e0) NT zt: o

(”) Let kvl S {1727 s 7d1m6} For fzt(ﬁa(b) = 6Bk7r£it(677rit) or fzt(ﬁaqb) = 8Bk517r£it(677rit);

q
1 1
sup sup = ~ &u(B,0)| =0p(1),
BEB(rs,8°) p€Bq(re,4°) T Et: N zz:
q
1 1
sup sup - s 5it(ﬁ7 ¢) =0p (1) :
BEB(rg,B°) p€Bq(re,4°) N zz: T zt:
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(i11) Letk,l € {1,2,...,dimB}. For&y(B,¢) = Orxrlit(B,mir), withr € {3,4}, or&ii(8,¢) = 0gynrlit(B, mit),
with r € {23 3}7 or git(/Bv (rb) = aﬁkﬁlﬂ'2£it(ﬂ’7rit)7

1
sup sup  max — Y [&:(B,9)| = Op (N*),
BEB(rp,89) pEBy(rg,0°) th:
1
sup sup  max — Y [&(B,¢)| = Op (N*).
BEB(r,8%) $€By(re,#°) Nzi:

(iv) Moreover,

a q
1 1 1 1
72| 7w 2Ot =0p (D), G 175D Onlu| = Op (1),
TS |\/N ; NS IVT 5
1 1 ’
7 2| 7 20 mrlin = By [Opntid]| = Op (1),
4 ’\/N :
1 1 ’
=D 1= Openlit — Eg [0p,alia]| = Op (1).
V| T2
(v) The sequence {(€;1,...,4ir): 1 <i< N} is independent across i conditional on ¢.

(Ui) Let k € {1,2,...,dimﬁ}. For &‘t = 871#&75 — E¢ [871—74&75}, with r € {2,3}, or git = 8ﬂkw2€it —
Ey [ang&t], and some U > 0,

8
% Z&it] < Ca

max Eg [gft"";} <C, max mtaXZ]E¢ [€i&is) < C, max Eq

mtax Eg

1
% Z [€it&jt — Eg (fitfjt)]] <,

8
1
— i <C, max E
E6| pee e,

uniformly in N, T, where C > 0 is a constant.
(vii) Hﬁ‘lH —0p(1).
q

Then, Assumptions B.1(v) and (vi) are satisfied with the same parameters q, €, rg = rg N7 and Ty =

ro,NT used here.

Proof of Lemma S.7. The penalty term (v'¢)? is quadratic in ¢ and does not depend on 3. This
term thus only enters 0,L(8, ¢) and Ope L(B, ¢), but it does not effect any other partial derivative of
L(j, $). Furthermore, the contribution of the penalty drops out of S = 9,L£(5°%, ¢°), because we impose
the normalization v'¢° = 0. It also drops out of H, because it contributes the same to # and H. We can
therefore ignore the penalty term for the purpose of proving the lemma (but it is necessary to satisfy
the assumption Hﬁ_lu = Op (1)).
q
# Assumption (7) implies that ||03L] = Op(1), ||0ss L] = Op(VNT), 85@5“ = op(VNT), and
sup sup  ||0gssL(B, ¢)|| = Op (\/ NT). Note that it does not matter which norms we use
)

BEB(rg,B°) 9By (re,¢°
here because dim f is fixed.
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# By Assumption (i), [|0ps L], = Op (NT)Y/(29) and  sup sup  [[0ps L(B, D), =
BEB(T["»BO) ¢€Bq(r¢)¢o)

Op ((NT)l/(Qq)>. For example, 0p,0,L = ﬁ >, Opprlit and therefore

a\ 1/a
) — 0p (N'14) = 0 ((NT) )

sl (| St
i t

Analogously, |0, L]|, = Op ((NT)Y29)), and therefore 1080 Ll, < 1980 Lll,+08:7Lll, = Op ((NT)V/ ).
This also implies that [|9s4 L], = Op ((NT)Y/(29)) because dim § is fixed.
4 By Assumption (i), [0s05L], = Op (NT)), [9556L]l, = Op(NT)"),

sup sup  0spg0 LB, 9)ll, = Op (NT)),  sup sup  ||0sg90 L5, 0)ll, = Op (NT)*),
BEB(rs,8%) dEBy(ry,¢°) BEB(rp,B°) p€B¢(ry,4°)
and  sup sup  [|0ppps L(B, @), = Op ((NT)°). For example,

BEB(rp,B8°) pEBy(r4,4°)
19606 Lll, < N10acalll, + |10aarLll, + 10aralll, + 1PasmLll,
+10yaalll, + 1850, L1, + 1050 Ll + 10507 L]l,
< NOraallly + [10mryLll, + 3 |0mar L], + 3 10nsaLll,
1— 1 1 1—
< 0raaLllog + 10ryn Ll + 3 10mar LI N0mra LIS + 3 1|0ran LI 10rya £l 2

1-1/q 1/q
zt: Opaly Z Onsliy| +3 (mlax Zt: |a,,selt|> <mtax§t: |aﬂsezt|>
1/q 1-1/q
+3 (m;ax zt: |8ﬂ3€it|> (mtax zt: |8ﬂ3€it|> ]
1-1/q 1/q
m?xzt: |03 it + m;axzi: |Or3lit| + 3 (m?xzt: |8ﬂ3€it|> <mtaxzt: 8,@@,55)
1/q 1-1/q
+3 (mzax Z |8,T3£it|> (mtax Z |8ﬂ3£it|>
¢ t

Here, we use Lemma S.5 to bound the norms of the 3-tensors in terms of the norms of matrices,
8. [[0aarLll, < [|0rarLll,, because Oa,a,+, L = 0if i # j and Ja,a,4,L = (NT)"Y20r0,4,-5 Then,

we use Lemma S.4 to bound g-norms in terms of oo-norms, and then explicitly expressed those oco-

1
= ——— | max -+ max
VNT i t

IN

1
VNT

— Op(N*) = Op((NT)).

norm in terms of the elements of the matrices. Finally, we use that |Y, Oxsly| < >, [0x30;| and
1> Oxsliy| < >, |0x3lir|, and apply Assumption (4ii).
# By Assumption (iv), [|S||l; = Op ((NT)~1/4+1/(29) and Hagqs/ZH = Op (1). For example,

a\ /4
) — Op (Nfl/zﬂ/q) — Op ((NT)*l/‘”l/(Qq)) .

q
ISllg = \/% (Z D 0cli| + YD 0nlis
T t |

# By Assumption (v) and (vi), | H|| = Op ((NT)=3/16) = op ((NT)~1/®) and H35¢¢2H = Op ((NT)3/1%) =
op ((NT)~'/8). We now show it |H||. The proof for HaﬂMEH is analogous.

SWith a slight abuse of notation we write dra~L for the N x T matrix with entries (NT) ™29, 3¢;; = (NT)*/28,354;;, and
analogously for Oraal, Oryy L, and Orya L.
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By the triangle inequality,
1H]| = 1056 £ = Eg [0 LIl < [|10aar £ = Eg [Daar LI + 104y L = By (0597 L[| + 2 Oy £ = Egs (B £]]] -

Let &; = On2liyy — Eg [Or20;]. Since Ouo L is a diagonal matrix with diagonal entries \/%Zt Eits
1000’ £ — Ey [Oaa L]|| = max; ﬁ >+ &it, and therefore

8
E¢ ”aaa’ﬁ - E¢> [aaa’ﬁ]Hg = ]E¢> max (\/7 Z&t)

8
S (wlw ;a) <oN (jﬁ) — Op(N?).

Thus, [|0aa’ L — Eg [Oaar L]|| = Op(N73/8). Analogously, |04 L — Eg [0y, L] = Op(N3/8).
Let € be the N x T matrix with entries &;;. We now show that £ satisfies all the regularity condition of

Lemma S.6 with e;; = &;;. Independence across i is assumed. Furthermore, 52 = % Zthl Ey( 2y<cC 1/4

so that N 21 1 ( ) - OP( ) For Qs = % Ziil Ezb(fitgiS)v
4
%Tr(m) <JQl* < llels = (mng% {@:@4) < C=0p(1).

For n;; = ﬁ SO [k — By (Er€je)] we assume Egny; < C, which implies 4 SN Ey (nh) = O0p(1)
d 1= 30 Ey (n) = Op(1). Then, Lemma S.6 gives [|]| = Op(N*/%). Note that ¢ = T2z 0oy L=
Ey [Our L] and therefore |0p L — Eg [0ay L]|| = Op(N73/8). We conclude that |H| = Op(N3/8) =
Op ((NT)=3/16).
# Moreover, for £ = 02l — By [0r20]

8410 84v
~ - 1
E¢||H||c8>:>ry = E¢ (\/ﬁ m?‘X E |£Zt> = E¢ m?x < T E gzt )
t t

sm@(ﬁ@gﬂ)gﬁgm;( ) (TZM“”)— P(V),

and therefore |H||oc = 0p(N'/®). Thus, by Lemma S.4
1Flly < RIS IFIA Y = op (NYEZ0/ar0=200)) — o, (NTHIHS) = 0p(1),

where we use that ¢ < 8.
# Finally we show that HZ 0 Dpsyin L [ﬁ_IS]g[ﬁ_lS]hH =op ((NT)~1/*). First,

dim ¢
~— 1 =1
> Ovs,on LIH Slg[H S
g,h=1
dim ¢ _ L L dim ¢ _ L L
> Oavyen LH SlgH Slh||+ || D Ovaen LH  Slg[H  Sla
g,h=1 g,h=1
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= Op(1). By

q

1 . . -1
Let (v,w) :=H S, where v is a N-vector and w is a T-vector. We assume HH

Lemma S.1 this also implies Hﬂ”H = Op (1) and ||S|| = Op (1). Thus, ||v]| < Hﬁ* I1S|| = Op (1),

el < |7 181 = 0 (1), ol < llelly < 77181, = Op (NT)7/451/@0), w)uc < ol <

Hﬁ_l Hq [Sllq = Op (NT)~1/4+1/(29)) | Furthermore, by an analogous argument to the above proof for

OnaarL|| = Op(N-3/%), |

Orar £ = Op(N-3/%), |

||71||, Assumption (v) and (vi) imply that ‘ aﬂW/EH =

Op(N~3/8). Then,

dim ¢ N N T T
N Oty LH ST Sl = Y ey L)vive +23 > Oy L)vjwe + Y (Doyypn, L)wew,
g,h=1 jk=1 =1 t=1 ts=1

T T
(On20, L)02 + 2 (Onary L)0iwy + Y (Ora, L)wF,

-

j=1 t=1 t=1
and therefore
dim ¢ B . . N ~ N
>~ atyon LI Sy Sh|| < ||OaarZ| I0ll10lloc +2 [ Dnan Z]| Il 10l + || Orar ]| ol
g,h=1

= Op(N~3®0p ((NT)—1/4+1/(2q)) — 0p ((NT)—1/4—3/16+1/(2q)) —op ((NT)‘”‘*) ’

gy Ovogon L [H 1S]g[ﬂ_15]hH = op ((NT)~/*) and thus
also || S92, Do, LI SIS = op (NT)1/%).0 .

where we use that ¢ > 4. Analogously, ‘

S.6.4 A Useful Algebraic Result

Let P be the linear operator defined in equation (S.2), and and let P be the related projection operator
defined in (S.1). Lemma S.8 shows how in the context of panel data models some expressions that
appear in the general expansion of Appendix B can be conveniently expressed using the operator P.

This lemma is used extensively in the proof of part (i7) of Theorem C.1.

Lemma S.8. Let A, B and C be N x T matrices, and let the expected incidental parameter Hessian H
be invertible. Define the N + T wvectors A and B and the (N +T) x (N + T) matriz C as follows*°

A_i A].T B_i BlT C—i diag(ClT) C
T NT\A'ly)’  NT\B'lyx)’  NT C' diag (C'1y))

Then,

9Given the structure of this last part of the proof of Lemma S.7 one might wonder why, instead of
szlzﬂjl 5¢¢g¢h[,~[ﬂ—15]g[ﬂ—15]h ’ = op ((NT)71/4) , we did not directly impose 3, 8¢g¢¢/£~H = op ((NT)*l/(2q)) as
a high-level condition in Assumption B.1(vi). While this alternative high-level assumption would indeed be more elegant and
8,1”&7/2" and

sufficient to derive our results, it would not be satisfied for panel models, because it involves bounding 3,

2

ONote that Alr is simply the N-vectors with entries Zt A and A’ly is simply the T-vector with entries ZI Ajt, and

&HQQIZ , which was avoided in the proof of Lemma S.7.

analogously for B and C.

33



. , —1 1 ~ 1 ~
(i) AHB= s Zt(IPA)itBit = NTp Zt(]PB)itAitz
) j— 1 S s

(”) A H ! B = W ZE¢(_87r2£7,t)(]PA)7At(IPB)1t}
it
(i) AH CH  B= ﬁ > (P A)Ci(PB)a.
it

Proof. Let af+7; = (PA); = (PA);, with A as defined in equation (S.2). The first order condition of
the minimization problem in the (ileﬁnition of (IPfl)it can be written as \/]lvaﬁ* (f:: ) = A. One solution to
this equation is (:3:) =V NTH A (this is the solution that imposes the normalization Y, & = Y, 3,

but this is of no importance in the following). Thus,

*

~ /
gl (Yo L n. | = L NBALB
VNT A" H B(ﬁy*)BNT ;aiBzﬂr;%Blt fNTZ(IPA)nB“.

7,t

This gives the first equality of Statement (7). The second equality of Statement (i) follows by symmetry.
Statement (i) is a special case of of Statement (i74) with C = ﬁﬂ*, so we only need to prove
Statement (7i1).

Let af +vf = (Pg)it = (HSB)it, where B = By an argument analogous to the one

Bit
DA CEET
. * 771 . e . .
given above, we can choose (:*) =+ NTH "B as one solution to the minimization problem. Then,

—1 1
NTAH ' CH ' B=<= Y [a:Cuai +&;Cunf +7; Cunctt + 3 Caryi|

it

1 - -
= N7 Z(IPA)itOit(IPB)it-
NT 1,t
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Table S1: Poisson model for patents

(1) (2) (3) (4) (5) (6)

Dependent variable: citation-
weighted patents

Static model

Competition 165.12 152.81 387.46 389.99 401.88 401.51
(54.77)  (55.74) (67.74)

-20.00 -6.43 -5.98 -5.49 -6.25 -4.74
(7.74) (8.61) (19.68)

Competition squared -88.55 -80.99 -204.55 -205.84 -212.15 -214.03

(29.08) (29.61)  (36.17)

Dynamic model

Lag-patents 1.05 1.07 0.46 0.48 0.50 0.70
(0.02) (0.03) (0.05)

0.86 0.87 0.36 0.38 0.39 0.56
(0.02) (0.03) (0.07)

Competition 62.95 95.70 199.68 184.70 184.64 255.44
(62.68) (65.08) (76.66)

-12.78 -9.03 -1.68 -0.15 -0.43 -18.45
(7.54) (8.18) (15.53)

Competition squared -34.15 -51.09 -105.24 -97.23 -97.22 -136.97

(33.21) (34.48)  (40.87)

Year effects Yes Yes Yes Yes Yes
Industry effects Yes Yes Yes Yes
Bias correction A A J
(number of lags) 1 2

Notes: Data set obtained from ABBGH. Competition is measured by (1-Lerner index) in the
industry-year. All columns are estimated using an unbalanced panel of seventeen industries
over the period 1973 to 1994. First year available used as initial condition in dynamic
model. The estimates of the coefficients for the static model in columns (2) and (3) replicate
the results in ABBGH. A is the bias corrected estimator that uses an analytical correction
with a number lags to estimate the spectral expectations specified at the bottom cell. Jis
the jackknife bias corrected estimator that uses split panel jackknife in both the individual
and time dimensions. Standard errors in parentheses and average partial effects in italics.
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Table S.2: Homogeneity test for the jackknife

Cross section Time series
Static Model 10.49 13.37
(0.01) (0.00)
Dynamic Model 1.87 12.41
(0.60) (0.01)

Notes: Wald test for equality of common parameters across sub panels.

P-values in parentheses
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Table S3: Finite-sample properties in static Poisson model

Coefficient of Z; Coefficient of Z;> APE of Z;

Bias _ Std. Dev. RMSE SE/SD p; .95 Bias _Std. Dev. RMSE SE/SD _p; .95 Bias _ Std. Dev. RMSE SE/SD p; .95

N =17, T = 22, unbalanced

MLE -59 14 60 1.04 0.01 -58 14 60 1.03 0.01 222 113 248 1.15 0.60
MLE-TE -62 14 64 1.01 0.01 -62 14 64 1.01 0.01 -9 139 139 1.04 0.94
MLE-FETE -2 17 17 1.02 0.96 -2 17 17 1.02 0.96 -15 226 226 1.49 1.00
Analytical (L=1) -1 17 17 1.02 0.96 -1 17 17 1.02 0.96 -9 225 225 1.50 1.00
Analytical (L=2) -1 17 17 1.02 0.96 -1 17 17 1.02 0.96 -6 225 225 1.50 1.00
Jackknife -3 25 25 0.69 0.83 -3 25 25 0.70 0.83 -15 333 333 1.01 0.95
N = 34, T = 22, unbalanced
MLE -58 10 59 1.03 0.00 -57 10 58 1.03 0.00 226 81 240 0.98 0.20
MLE-TE -61 10 62 1.00 0.00 -61 10 62 1.00 0.00 -3 97 97 0.95 0.94
MLE-FETE 0 12 12 0.99 0.96 0 13 13 0.99 0.96 -6 158 158 1.12 0.98
Analytical (L=1) 0 12 12 0.99 0.96 0 13 13 0.99 0.96 0 159 158 1.11 0.98
Analytical (L=2) 1 13 13 0.99 0.96 1 13 13 0.99 0.96 3 159 159 1.11 0.98
Jackknife -1 14 14 0.90 0.93 -1 14 14 0.90 0.93 -15 208 208 0.85 0.90
N = 51, T = 22, unbalanced
MLE -58 8 58 1.00 0.00 -57 8 57 1.00 0.00 228 66 238 0.96 0.06
MLE-TE -61 8 61 1.00 0.00 -61 8 61 1.00 0.00 -1 77 77 0.95 0.94
MLE-FETE 0 10 10 0.97 0.94 0 11 11 0.97 0.94 -4 128 128 1.04 0.96
Analytical (L=1) 0 10 10 0.97 0.94 0 11 11 0.97 0.94 2 129 128 1.04 0.96
Analytical (L=2) 1 10 11 0.96 0.94 1 11 11 0.96 0.94 5 129 129 1.04 0.96
Jackknife 0 11 11 0.90 0.93 0 11 11 0.90 0.94 -12 169 170 0.79 0.88
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Notes: All the entries are in percentage of the true parameter value. 500 repetitions. The data generating process is: Y. ~ Poisson(exp{B:Xi + B2Xi> + a; + Y¢}) with

all the variables and coefficients calibrated to the dataset of ABBGH. Average effect is E[(B; + 2B, Xit)exp(B:1Xit + me;N + a; + yy)]. MLE is the Poisson maximum
likelihood estimator without individual and time fixed effects; MLE-TE is the Poisson maximum likelihood estimator with time fixed effects; MLE-FETE is the Poisson
maximum likelihood estimator with individual and time fixed effects; Analytical (L = 1) is the bias corrected estimator that uses an analytical correction with | lags to
estimate the spectral expectations; and Jackknife is the bias corrected estimator that uses split panel jackknife in both the individual and time dimension.



Table S4: Finite-sample properties in dynamic Poisson model: lagged dependent variable

Coefficient of Y4 APE of Y
Bias Std. Dev. RMSE SE/SD p; .95 Bias Std. Dev. RMSE SE/SD p; .95
N =17,T = 21, unbalanced
MLE 135 3 135 1.82 0.00 158 2 158 3.75 0.00
MLE-TE 142 3 142 1.95 0.00 163 3 163 4.17 0.00
MLE-FETE -17 15 23 0.96 0.78 -17 15 22 1.38 0.89
Analytical (L=1) -7 15 17 0.98 0.91 -8 14 16 1.41 0.97
Analytical (L=2) -5 15 16 0.96 0.92 -5 15 16 1.38 0.98
Jackknife 4 20 21 0.73 0.85 4 20 20 1.03 0.95
N = 34, T = 21, unbalanced
MLE 135 2 135 1.76 0.00 158 2 158 2.82 0.00
MLE-TE 141 2 141 1.77 0.00 162 2 162 2.69 0.00
MLE-FETE -16 11 19 0.93 0.65 -16 10 19 1.05 0.71
Analytical (L=1) -7 11 13 0.95 0.89 -7 10 12 1.08 0.92
Analytical (L=2) -4 11 12 0.93 0.91 -4 10 11 1.05 0.94
Jackknife 3 13 14 0.77 0.85 3 13 13 0.86 0.89
N =51, T = 21, unbalanced
MLE 135 2 135 1.81 0.00 158 1 158 2.58 0.00
MLE-TE 141 2 141 1.79 0.00 162 2 162 2.41 0.00
MLE-FETE -15 8 17 0.97 0.55 -15 8 17 1.03 0.55
Analytical (L=1) -6 8 10 0.99 0.90 -6 8 10 1.05 0.91
Analytical (L=2) -3 8 9 0.97 0.93 -4 8 9 1.03 0.93
Jackknife 3 11 11 0.77 0.87 3 10 11 0.80 0.88

Notes: All the entries are in percentage of the true parameter value. 500 repetitions. The data generating process is:
Yit ~ Poisson(exp{By log(1 + Y1) + B1Z; + B,Z:*> + a, + vi}), where all the exogenous variables, initial condition and
coefficients are calibrated to the application of ABBGH, Average effect is By E[exp{((By - 1)log(1 + Y;¢1) + B1Zi +
B,Zi> + a; + Yi}]. MLE is the Poisson maximum likelihood estimator without individual and time fixed effects; MLE-TE
is the Poisson maximum likelihood estimator with time fixed effects; MLE-FETE is the Poisson maximum likelihood
estimator with individual and time fixed effects; Analytical (L = |) is the bias corrected estimator that uses an

analytical correction with | lags to estimate the spectral expectations; and Jackknife is the bias corrected estimator
that uses split panel jackknife in both the individual and time dimension.
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Table S5: Finite-sample properties in dynamic Poisson model: exogenous regressor

Coefficient of Z; Coefficient of Z;* APE of Z;

Bias Std. Dev. RMSE SE/SD p; .95 Bias Std. Dev. RMSE SE/SD p; .95 Bias Std. Dev. RMSE SE/SD p; .95

N =17, T = 21, unbalanced

MLE -76 27 81 1.13 0.29 -76 27 80 1.13 0.30 760 351 837 1.65 0.89
MLE-TE -65 28 71 1.12 0.44 -65 29 71 1.12 0.45 541 356 647 1.75 0.99
MLE-FETE 9 40 41 0.95 0.92 9 41 42 0.95 0.92 -3 1151 1150 1.08 0.99
Analytical (L=1) 4 40 40 0.97 0.94 4 40 40 0.97 0.94 11 1117 1116 1.11 0.99
Analytical (L=2) 3 39 39 0.97 0.94 3 40 40 0.97 0.94 15 1110 1109 1.12 0.99
Jackknife 3 57 57 0.68 0.82 3 57 57 0.68 0.81 24 1653 1651 0.75 0.86
N = 34, T = 21, unbalanced
MLE -75 19 77 1.18 0.04 -74 19 77 1.18 0.05 777 252 817 1.47 0.42
MLE-TE -65 19 67 1.18 0.15 -64 19 67 1.18 0.15 534 248 589 1.65 0.88
MLE-FETE 6 28 28 0.97 0.94 6 28 29 0.97 0.94 -68 734 736 1.03 0.94
Analytical (L=1) 2 27 27 0.99 0.95 2 28 28 0.99 0.95 -51 713 714 1.06 0.95
Analytical (L=2) 0 27 27 0.99 0.95 0 27 27 1.00 0.95 -47 706 707 1.07 0.95
Jackknife 2 31 31 0.87 0.92 2 31 31 0.87 0.92 -38 1012 1012 0.74 0.85
N =51, T = 21, unbalanced
MLE -74 15 76 1.17 0.00 -73 15 75 1.17 0.00 768 201 794 1.48 0.18
MLE-TE -63 16 65 1.15 0.05 -63 16 65 1.15 0.05 535 197 570 1.68 0.74
MLE-FETE 8 22 23 1.01 0.93 8 22 24 1.01 0.93 -27 606 606 0.99 0.95
Analytical (L=1) 4 21 22 1.02 0.95 4 22 22 1.02 0.95 -11 588 587 1.02 0.96
Analytical (L=2) 2 21 21 1.03 0.95 2 22 22 1.03 0.95 -5 581 580 1.03 0.96
Jackknife 3 25 25 0.89 0.91 4 25 25 0.89 0.91 8 838 837 0.71 0.83

Notes: All the entries are in percentage of the true parameter value. 500 repetitions. The data generating process is: Y;. ~ Poisson(exp{By log(1 + Y;.1) + B1Zy +
B,Zi> + a; + y}), where all the exogenous variables, initial condition and coefficients are calibrated to the application of ABBGH. Average effect is E[(B; + 2B>Z:)

exp{Bvlog(1l + Y1) + B1Zi + mNN;N + a; + v¢r]. MLE is the Poisson maximum likelihood estimator without individual and time fixed effects; MLE-TE is the Poisson
maximum likelihood estimator with time fixed effects; MLE-FETE is the Poisson maximum likelihood estimator with individual and time fixed effects; Analytical (L = 1)
is the bias corrected estimator that uses an analytical correction with | lags to estimate the spectral expectations; and Jackknife is the bias corrected estimator that
uses split panel jackknife in both the individual and time dimension.
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