Fernández-Val, Iván; Weidner, Martin

Working Paper
Individual and time effects in nonlinear panel models with large N, T
cemmap working paper, No. CWP17/15

Provided in Cooperation with:
Institute for Fiscal Studies (IFS), London

This Version is available at:
http://hdl.handle.net/10419/130032

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.
You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.
If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.

Standard-Nutzungsbedingungen:
Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.
Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.
Sollten die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.
Individual and time effects in nonlinear panel models with large N, T

Iván Fernández-Val
Martin Weidner

The Institute for Fiscal Studies
Department of Economics, UCL

cemmap working paper CWP17/15
Individual and Time Effects in Nonlinear Panel Models with Large N, T^*

Iván Fernández-Val‡ Martin Weidner§

April 1, 2015

Abstract

Fixed effects estimators of nonlinear panel data models can be severely biased because of the incidental parameter problem. We develop analytical and jackknife bias corrections for nonlinear models with both individual and time effects. Under asymptotic sequences where the time-dimension (T) grows with the cross-sectional dimension (N), the time effects introduce additional incidental parameter bias. As the existing bias corrections apply to models with only individual effects, we derive the appropriate corrections for the case when both effects are present. The basis for the corrections are general asymptotic expansions of fixed effects estimators with incidental parameters in multiple dimensions. We apply the expansions to conditional maximum likelihood estimators with concave objective functions in parameters for panel models with additively separable individual and time effects. These estimators cover fixed effects estimators of the most popular limited dependent variable models such as logit, probit, ordered probit, Tobit and Poisson models. Our analysis therefore extends the use of large-T bias adjustments to an important class of models.

We also analyze the properties of fixed effects estimators of functions of the data, parameters and individual and time effects including average partial effects. Here, we uncover that the incidental parameter bias is asymptotically of second order, because the rate of the convergence of the fixed effects estimators is slower for average partial effects than for model parameters. The bias corrections are still effective to improve finite-sample properties.

Keywords: Panel data, nonlinear model, dynamic model, asymptotic bias correction, fixed effects, time effects.

JEL: C13, C23.

‡ Department of Economics, Boston University, 270 Bay State Road, Boston, MA 02215-1403, USA. Email: ivanf@bu.edu

§ Department of Economics, University College London, Gower Street, London WC1E 6BT, UK, and and CeMMaP. Email: m.weidner@ucl.ac.uk

*We would like to thank the editor Jianqing Fan, an associate editor, two anonymous referees, Richard Blundell, Ben Boury, Mingli Chen, Geert Dhaene, Andreas Dzemski, Antonio Galvao, Jinyong Hahn, Bo Honoré, Koen Jochmans, Hiroaki Kaido, Dennis Kristensen, Guido Kuersteiner, Kevin Lang, Roger Moon, Fabien Postel-Vinay, Zhongjun Qu, Bernard Salanié, Sami Stouli, Francis Vella, and Jeff Wooldridge for very useful comments that helped improve the paper. We also benefitted from discussions with seminar participants at Berkeley, Boston University, Brown, Cambridge, Columbia, Georgetown, Iowa, John Hopkins, Maryland, Michigan State, Princeton, Stanford, UCL, and USC, and by conference participants at the 16th and 19th International Conference on Panel Data, as well as the 2013 North American Summer Meetings of the Econometric Society. Financial support from the National Science Foundation and the Economic and Social Research Council through the ESRC Centre for Microdata Methods and Practice grant RES-589-28-0002 is gratefully acknowledged.

1Department of Economics, Boston University, 270 Bay State Road, Boston, MA 02215-1403, USA. Email: ivanf@bu.edu

2Department of Economics, University College London, Gower Street, London WC1E 6BT, UK, and and CeMMaP. Email: m.weidner@ucl.ac.uk
1 Introduction

Fixed effects estimators of nonlinear panel data models can be severely biased because of the incidental parameter problem (Neyman and Scott (1948), Heckman (1981), Lancaster (2000), and Greene (2004)). A recent literature, surveyed in Arellano and Hahn (2007) and including Phillips and Moon (1999), Hahn and Kuersteiner (2002), Lancaster (2002), Woutersen (2002), Alvarez and Arellano (2003), Hahn and Newey (2004), Carro (2007), Arellano and Bonhomme (2009), Fernandez-Val (2009), Hahn and Kuersteiner (2011), Fernandez-Val and Vella (2011), and Kato, Galvao and Montes-Rojas (2012), provides a range of solutions, so-called large-T bias corrections, to reduce the incidental parameter problem in long panels. These papers derive the analytical expression of the bias (up to a certain order of the time dimension T), which can be employed to adjust the biased fixed effects estimators. While the existing large-T methods cover a large class of models with individual effects, they do not apply to panel models with individual and time effects. An exception is Woutersen (2002), which considers a special type of grouped time effects whose number is fixed with T. We instead consider an unrestricted set of T time effects, one for each time period. Time effects are important for economic modeling because they allow the researcher to control for aggregate common shocks and to parsimoniously introduce dependence across individuals.

We develop analytical and jackknife bias corrections for nonlinear semiparametric models with both individual and time effects. To justify the corrections, we rely on asymptotic sequences where T grows with the cross-sectional dimension N, as an approximation to the properties of the estimators in econometric applications where T is moderately large relative to N. Examples include empirical applications that use U.S. state or country level panel data, or pseudo panels of trade flows across countries where the panel dimensions correspond to importer and exporter countries. Under these asymptotics, the incidental parameter problem becomes a finite-sample bias problem in the time dimension and the presence of time effects introduces additional bias in the cross sectional dimension. As the existing bias corrections apply to models with only individual effects, we derive the appropriate correction.

In addition to model parameters, we provide bias corrections for average partial effects, which are often the ultimate quantities of interest in nonlinear models. These effects are functions of the data, parameters and individual and time effects in nonlinear models. The asymptotic distribution of the fixed effects estimators of these quantities depends on the sampling properties of the individual and time effects, unlike for model parameters. We find that in general the incidental parameters problem for average effects is of second order asymptotically, because the rate of convergence of the fixed effect estimator is slower for these effects than for model parameters. To the best of our knowledge, this rate result is new for fixed effects estimators of average partial effects in nonlinear panel models with individual and time effects. The bias corrections, while not necessary to center the asymptotic distribution, do improve the finite-sample properties of the estimators specially in dynamic models.

The basis for the bias corrections are asymptotic expansions of fixed effects estimators with incidental parameters in multiple dimensions. Bai (2009) and Moon and Weidner (2013a; 2013b) derive similar

\footnote{Galvao and Kato (2013) also found slow rates of convergence for fixed effects estimators in linear models with individual effects under misspecification. Fernandez-Val and Lee (2013) pointed out this issue in nonlinear models with only individual effects.}
expansions for least squares estimators of linear models with interactive individual and time effects. We consider non-linear models, which produce similar bias patterns, but require different methods to derive the asymptotic expansions. We focus on conditional maximum likelihood estimators with concave objective functions in all parameters and additively separable individual and time effects. Concavity greatly facilitates showing consistency in our setting where the dimension of the parameter space grows with the sample size. The most popular limited dependent variable models, including logit, probit, ordered probit, Tobit and Poisson models have concave log-likelihood functions (Olsen (1978), and Pratt (1981)). By additively separable effects, we mean that the individual effect α_i and the time effect γ_t enter the likelihood for the observation (i,t) as $\alpha_i + \gamma_t$. This is the most common specification for the individual and time effects in linear models and is a natural specification in the nonlinear models that we consider. Our analysis therefore extends the use of large-T bias adjustments to an important class of models.

Our corrections eliminate the leading term of the bias from the asymptotic expansions. Under asymptotic sequences where N and T grow at the same rate, we find that this term has two components: one of order $O(T^{-1})$ coming from the estimation of the individual effects; and one of order $O(N^{-1})$ coming from the estimation of the time effects. We consider analytical methods similar to Hahn and Newey (2004) and Hahn and Kuersteiner (2011), and suitable modifications of the split panel jackknife of Dhaene and Jochmans (2010). However, the theory of the previous papers does not cover the models that we consider, because, in addition to not allowing for time effects, they assume either identical distribution or stationarity over time for the processes of the observed variables, conditional on the unobserved effects. These assumptions are violated in our models due to the presence of the time effects, so we need to adjust the asymptotic theory accordingly. The individual and time effects introduce strong correlation in both dimensions of the panel. Conditional on the unobserved effects, we impose cross-sectional independence and weak time-serial dependence, and we allow for heterogeneity in both dimensions.

Simulation evidence indicates that our corrections improve the estimation and inference performance of the fixed effects estimators of parameters and average effects. The analytical corrections dominate the jackknife corrections in a probit model for sample sizes that are relevant for empirical practice. In the online supplement Fernández-Val and Weidner (2015), we illustrate the corrections with an empirical application on the relationship between competition and innovation using a panel of U.K. industries, following Aghion, Bloom, Blundell, Griffith and Howitt (2005). We find that the inverted-U pattern relationship found by Aghion et al is robust to relaxing the strict exogeneity assumption of competition with respect to the innovation process and to the inclusion of innovation dynamics. We also uncover substantial state dependence in the innovation process.

The large-T panel literature on models with individual and time effects is sparse. Regarding linear regression models, there is a literature on interactive fixed effects that includes some of the papers mentioned above (e.g. Pesaran (2006), Bai (2009), Moon and Weidner (2013a; 2013b)). Furthermore, Hahn and Moon (2006) considered bias corrected fixed effects estimators in panel linear autoregressive

\footnote{Here conditional refers to the initial conditions, exogenous variables and unobserved effects. This meaning is different from the estimators that condition on sufficient statistics for the unobserved effects such as the conditional logit estimator.}

\footnote{A similar split panel jackknife bias correction method was outlined in Hu (2002).}
models with additive individual and time effects. Regarding non-linear models, there is independent and contemporaneous work by Charbonneau (2012), which extended the conditional fixed effects estimators to logit and Poisson models with exogenous regressors and additively separable individual and time effects. She differences out the individual and time effects by conditioning on sufficient statistics. The conditional approach completely eliminates the asymptotic bias coming from the estimation of the incidental parameters, but it does not permit estimation of average partial effects and has not been developed for models with predetermined regressors. We instead consider estimators of model parameters and average partial effects in nonlinear models with predetermined regressors. The two approaches can therefore be considered as complementary. Chernozhukov, Fernández-Val, Hahn and Newey (2013) analyzed semiparametric multinomial choice panel models under asymptotic sequences where T is fixed. They showed that the parameters and average partial effects are only partially identified in models with discrete regressors, but the identification sets shrink very quickly to a point with T. We consider general semiparametric models with discrete and continuous covariates under large-T.

The rest of the paper is organized as follows. Section 2 introduces the model and fixed effects estimators. Section 3 describes the bias corrections to deal with the incidental parameters problem and illustrates how the bias corrections work through an example. Section 4 provides the asymptotic theory. Section 5 presents Monte Carlo results. The Appendix collects the proofs of the main results, and the online supplement to the paper contains additional technical derivations, numerical examples, and an empirical application (Fernández-Val and Weidner, 2015).

2 Model and Estimators

2.1 Model

The data consist of $N \times T$ observations $\{(Y_{it}, X_{it}') : 1 \leq i \leq N, 1 \leq t \leq T\}$, for a scalar outcome variable of interest Y_{it} and a vector of explanatory variables X_{it}. We assume that the outcome for individual i at time t is generated by the sequential process:

$$Y_{it} | X_{it}' , \alpha, \gamma, \beta \sim f_Y(\cdot | X_{it}' \alpha_i + \gamma_t + \beta), \ (i = 1, \ldots, N; t = 1, \ldots, T),$$

where $X_{it}' = (X_{i1}, \ldots, X_{iT})$, $\alpha = (\alpha_1, \ldots, \alpha_N)$, $\gamma = (\gamma_1, \ldots, \gamma_T)$, f_Y is a known probability function, and β is a finite dimensional parameter vector. The variables α_i and γ_t are unobserved individual and time effects that in economic applications capture individual heterogeneity and aggregate shocks, respectively. The model is semiparametric because we do not specify the distribution of these effects nor their relationship with the explanatory variables. The conditional distribution f_Y represents the parametric part of the model. The vector X_{it} contains predetermined variables with respect to Y_{it}. Note that X_{it} can include lags of Y_{it} to accommodate dynamic models.

We consider two running examples throughout the analysis:

Example 1 (Binary response model). Let Y_{it} be a binary outcome and F be a cumulative distribution function, e.g. the standard normal or logistic distribution. We can model the conditional distribution of Y_{it} using the single-index specification

$$f_Y(y | X_{it}' , \alpha_i, \gamma_t, \beta) = F(X_{it}' \beta + \alpha_i + \gamma_t)^y [1 - F(X_{it}' \beta + \alpha_i + \gamma_t)]^{1-y}, \ y \in \{0, 1\}.$$
In a labor economics application, Y can be an indicator for female labor force participation and X can include fertility indicators and other socio-economic characteristics.

Example 2 (Count response model). Let Y_{it} be a non-negative integer-valued outcome, and $f(\cdot; \lambda)$ be the probability mass function of a Poisson random variable with mean $\lambda > 0$. We can model the conditional distribution of Y_{it} using the single index specification

$$f_Y(y | X_{it}, \alpha_i, \gamma_i, \beta) = f(y; \exp[X_{it}' \beta + \alpha_i + \gamma_i]), \quad y \in \{0, 1, 2, \ldots\}.$$

In an industrial organization application, Y can be the number of patents that a firm produces and X can include investment in R&D and other firm characteristics.

For estimation, we adopt a fixed effects approach treating the realization of the unobserved individual and time effects as parameters to be estimated. We collect all these effects in the vector $\phi_{NT} = (\alpha_1, \ldots, \alpha_N, \gamma_1, \ldots, \gamma_T)'$. The model parameter β usually includes regression coefficients of interest, while the unobserved effects ϕ_{NT} are treated as a nuisance parameter. The true values of the parameters, denoted by β^0 and $\phi_{NT}^0 = (\alpha_1^0, \ldots, \alpha_N^0, \gamma_1^0, \ldots, \gamma_T^0)'$, are the solution to the population conditional maximum likelihood problem

$$\max_{(\beta, \phi_{NT}) \in \mathbb{R}^{\dim \beta + \dim \phi_{NT}}} \mathbb{E}_\phi[\mathcal{L}_{NT}(\beta, \phi_{NT})],$$

$$\mathcal{L}_{NT}(\beta, \phi_{NT}) := (NT)^{-1/2} \left\{ \sum_{i,t} \log f_Y(Y_{it} | X_{it}, \alpha_i, \gamma_i, \beta) - b(\phi_{NT}^0)^2 / 2 \right\}, \quad (2.1)$$

for every N, T, where \mathbb{E}_ϕ denotes the expectation with respect to the distribution of the data conditional on the unobserved effects and initial conditions including strictly exogenous variables, $b > 0$ is an arbitrary constant, $\phi_{NT} = (1_N', -1_T')'$, and 1_N and 1_T denote vectors of ones with dimensions N and T. Existence and uniqueness of the solution to the population problem will be guaranteed by our assumptions in Section 4 below, including concavity of the objective function in all parameters. The second term of \mathcal{L}_{NT} is a penalty that imposes a normalization needed to identify ϕ_{NT} in models with scalar individual and time effects that enter additively into the log-likelihood function as $\alpha_i + \gamma_i$. In this case, adding a constant to all α_i, while subtracting it from all γ_i, does not change $\alpha_i + \gamma_i$. To eliminate this ambiguity, we normalize ϕ_{NT}^0 to satisfy $\phi_{NT}^0 = 0$, i.e. $\sum_i \alpha_i^0 = \sum_t \gamma_t^0$. The penalty produces a maximizer of \mathcal{L}_{NT} that is automatically normalized. We could equivalently impose $\phi_{NT}^0 = 0$ as a constraint, but for technical reasons we prefer to work with an unconstrained optimization problem. There are other possible normalizations for ϕ_{NT} such as $\alpha_1 = 0$. The model parameter β is invariant to the choice of normalization. Our choice is convenient for certain intermediate results that involve the incidental parameter ϕ_{NT}, its score vector and its Hessian matrix. The pre-factor $(NT)^{-1/2}$ in $\mathcal{L}_{NT}(\beta, \phi_{NT})$ is just a rescaling.

In Appendix B we derive asymptotic expansions that apply to more general models. In order to use these expansions to obtain the asymptotic distribution of the panel fixed effects estimators, we need to derive the properties of the expected Hessian of the incidental parameters, a matrix with increasing dimension, and to show the consistency of the estimator of the incidental parameter vector. The additive specification $\alpha_i + \gamma_i$ is useful to characterize the Hessian and we impose strict concavity of the objective function to show the consistency.
Other quantities of interest involve averages over the data and unobserved effects

\[
\delta^0_{NT} = \mathbb{E}[\Delta_{NT}(\beta^0, \phi^0_{NT})], \quad \Delta_{NT}(\beta, \phi_{NT}) = (NT)^{-1} \sum_{i,t} \Delta(X_{it}, \beta, \alpha_i, \gamma_t),
\]

(2.2)

where \(\mathbb{E}\) denotes the expectation with respect to the joint distribution of the data and the unobserved effects, provided that the expectation exists. \(\delta^0_{NT}\) is indexed by \(N\) and \(T\) because the marginal distribution of \(\{(X_{it}, \alpha_i, \gamma_t) : 1 \leq i \leq N, 1 \leq t \leq T\}\) can be heterogeneous across \(i\) and/or \(t\); see Section 4.2. These averages include average partial effects (APEs), which are often the ultimate quantities of interest in nonlinear models. The APEs are invariant to the choice of normalization for \(\phi_{NT}\) if \(\alpha_i\) and \(\gamma_t\) enter \(\Delta(X_{it}, \beta, \alpha_i, \gamma_t)\) as \(\alpha_i + \gamma_t\). Some examples of partial effects that satisfy this condition are the following:

Example 1 (Binary response model). If \(X_{it,k}\), the \(k\)th element of \(X_{it}\), is binary, its partial effect on the conditional probability of \(Y_{it}\) is

\[
\Delta(X_{it}, \beta, \alpha_i, \gamma_t) = F(\beta_k + X'_{it,-k} \beta_{-k} + \alpha_i + \gamma_t) - F(X'_{it,-k} \beta_{-k} + \alpha_i + \gamma_t),
\]

(2.3)

where \(\beta_k\) is the \(k\)th element of \(\beta\), and \(X_{it,-k}\) and \(\beta_{-k}\) include all elements of \(X_{it}\) and \(\beta\) except for the \(k\)th element. If \(X_{it,k}\) is continuous and \(F\) is differentiable, the partial effect of \(X_{it,k}\) on the conditional probability of \(Y_{it}\) is

\[
\Delta(X_{it}, \beta, \alpha_i, \gamma_t) = \beta_k \partial F(X'_{it} \beta + \alpha_i + \gamma_t),
\]

(2.4)

where \(\partial F\) is the derivative of \(F\).

Example 2 (Count response model). If \(X_{it}\) includes \(Z_{it}\) and some known transformation \(H(Z_{it})\) with coefficients \(\beta_k\) and \(\beta_j\), the partial effect of \(Z_{it}\) on the conditional expectation of \(Y_{it}\) is

\[
\Delta(X_{it}, \beta, \alpha_i, \gamma_t) = [\beta_k + \beta_j \partial H(Z_{it})] \exp(X'_{it} \beta + \alpha_i + \gamma_t).
\]

(2.5)

2.2 Fixed effects estimators

We estimate the parameters by solving the sample analog of problem (2.1), i.e.

\[
\max_{(\beta, \phi_{NT}) \in \mathbb{R}^{\dim \beta + \dim \phi_{NT}}} L_{NT}(\beta, \phi_{NT}).
\]

(2.6)

As in the population case, we shall impose conditions guaranteeing that the solutions to this maximization problem exist and are unique with probability approaching one as \(N\) and \(T\) become large. For computational purposes, we note that the solution to the program (2.6) for \(\beta\) is the same as the solution to the program that imposes \(v'_{NT} \phi_{NT} = 0\) directly as a constraint in the optimization, and is invariant to the normalization. In our numerical examples we impose either \(\alpha_1 = 0\) or \(\gamma_1 = 0\) directly by dropping the first individual or time effect. This constrained program has good computational properties because its objective function is concave and smooth in all the parameters. We have developed the commands **probitfe** and **logitfe** for Stata to implement the methods of the paper for probit and logit models (Cruz-González et al., 2015). We recommend

We refer to this companion work for computational details.
the use of optimization routines that exploit the sparsity of the design matrix of the model to speed up computation such as the package \texttt{Speedglm} in \texttt{R} (Enea, 2012). For a probit model with $N = 2,000$ and $T = 52$, \texttt{Speedglm} computes the fixed effects estimator in less than 2 minutes with a 2 x 2.66 GHz 6-Core Intel Xeon processor, more than 7.5 times faster than our \texttt{Stata} command \texttt{probitfe} and more than 30 times faster than the \texttt{R} command \texttt{glm}.6

To analyze the statistical properties of the estimator of β it is convenient to first concentrate out the nuisance parameter ϕ_{NT}. For given β, we define the optimal $\hat{\phi}_{NT}(\beta)$ as

$$\hat{\phi}_{NT}(\beta) = \arg\max_{\phi_{NT} \in \mathbb{R}^{\dim \phi_{NT}}} \mathcal{L}_{NT}(\beta, \phi_{NT}).$$

The fixed effects estimators of β^0 and ϕ^0_{NT} are

$$\hat{\beta}_{NT} = \arg\max_{\beta \in \mathbb{R}^{\dim \beta}} \mathcal{L}_{NT}(\beta, \hat{\phi}_{NT}(\beta)), \quad \hat{\phi}_{NT} = \hat{\phi}_{NT}(\hat{\beta}).$$

Estimators of APEs can be formed by plugging-in the estimators of the model parameters in the sample version of (2.2), i.e.

$$\hat{\delta}_{NT} = \Delta_{NT}(\hat{\beta}, \hat{\phi}_{NT}).$$

Again, $\hat{\delta}_{NT}$ is invariant to the normalization chosen for ϕ_{NT} if α_i and γ_t enter $\Delta(\mathbf{X}_{it}, \beta, \alpha_i, \gamma_t)$ as $\alpha_i + \gamma_t$.

\section{Incidental parameter problem and bias corrections}

In this section we give a heuristic discussion of the main results, leaving the technical details to Section 4. We illustrate the analysis with numerical calculations based on a variation of the classical Neyman and Scott (1948) variance example.

\subsection{Incidental parameter problem}

Fixed effects estimators in nonlinear models suffer from the incidental parameter problem (Neyman and Scott, 1948). The source of the problem is that the dimension of the nuisance parameter ϕ_{NT} increases with the sample size under asymptotic approximations where either N or T pass to infinity. To describe the problem let

$$\overline{\beta}_{NT} := \arg\max_{\beta \in \mathbb{R}^{\dim \beta}} \mathbb{E}_{\phi} \left[\mathcal{L}_{NT}(\beta, \hat{\phi}_{NT}(\beta)) \right].$$

The fixed effects estimator is inconsistent under the traditional Neyman and Scott asymptotic sequences where $N \to \infty$ and T is fixed, i.e., $\lim_{N \to \infty} \overline{\beta}_{NT} \neq \beta^0$. Similarly, the fixed effect estimator is inconsistent under asymptotic sequences where $T \to \infty$ and N is fixed, i.e., $\lim_{T \to \infty} \overline{\beta}_{NT} \neq \beta^0$. Note that $\overline{\beta}_{NT} = \beta^0$ if $\hat{\phi}_{NT}(\beta)$ is replaced by $\phi_{NT}(\beta) = \arg\max_{\phi_{NT} \in \mathbb{R}^{\dim \phi_{NT}}} \mathbb{E}_{\phi} [\mathcal{L}_{NT}(\beta, \phi_{NT})]$. Under asymptotic approximations where either N or T are fixed, there is only a fixed number of observations to estimate some of the components of ϕ_{NT}, T for each individual effect or N for each time effect, rendering the estimator $\hat{\phi}_{NT}(\beta)$ inconsistent for $\phi_{NT}(\beta)$. The nonlinearity of the model propagates the inconsistency to the estimator of β.

6Additional comparisons of computational times are available from the authors upon request.
A key insight of the large-T panel data literature is that the incidental parameter problem becomes an asymptotic bias problem under an asymptotic approximation where \(N \to \infty \) and \(T \to \infty \) (e.g., Arellano and Hahn, (2007)). For models with only individual effects, this literature derived the expansion

\[
\bar{\beta}_{NT} = \beta^0 + B/T + o_P(T^{-1}) \quad \text{as } N, T \to \infty,
\]

for some constant \(B \). The fixed effects estimator is consistent because plim \(N,T \to \infty \) \(\bar{\beta}_{NT} = \beta^0 \), but has bias in the asymptotic distribution if \(B/T \) is not negligible relative to \(1/\sqrt{NT} \), the order of the standard deviation of the estimator. This asymptotic bias problem, however, is easier to correct than the inconsistency problem that arises under the traditional Neyman and Scott asymptotic approximation. We show that the same insight still applies to models with individual and time effects, but with a different expansion for \(\bar{\beta}_{NT} \). We characterize the expansion and develop bias corrections.

3.2 Bias Expansions and Bias Corrections

Some expansions can be used to explain our corrections. For smooth likelihoods and under appropriate regularity conditions, as \(N,T \to \infty \),

\[
\bar{\beta}_{NT} = \beta^0 + \frac{B}{T} + \frac{D}{N} + o_P(T^{-1} \lor N^{-1}),
\]

(3.2)

for some \(B \) and \(D \) that we characterize in Theorem 4.1, where \(a \lor b := \max(a, b) \). Unlike in nonlinear models without incidental parameters, the order of the bias is higher than the inverse of the sample size \((NT)^{-1} \) due to the slow rate of convergence of \(\hat{\phi}_{NT} \). Note also that by the properties of the maximum likelihood estimator

\[
\sqrt{NT}(\hat{\beta}_{NT} - \beta^0) \overset{d}{\to} N(0, V_\infty),
\]

for some \(V_\infty \) that we also characterize in Theorem 4.1. Under asymptotic sequences where \(N/T \to \kappa^2 \) as \(N, T \to \infty \), the fixed effects estimator is asymptotically biased because

\[
\sqrt{NT}(\hat{\beta}_{NT} - \beta^0) = \sqrt{NT}(\hat{\beta}_{NT} - \beta^0) + \sqrt{NT}(B^\beta_{\infty}/T + D^\beta_{\infty}/N + o_P(T^{-1} \lor N^{-1}))
\]

\[
\to_d N(\kappa B^\beta_{\infty} + \kappa^{-1} D^\beta_{\infty}, V_\infty).
\]

(3.3)

Relative to fixed effects estimators with only individual effects, the presence of time effects introduces additional asymptotic bias through \(D^\beta_{\infty} \). This asymptotic result predicts that the fixed effects estimator can have significant bias relative to its dispersion. Moreover, confidence intervals constructed around the fixed effects estimator can severely undercover the true value of the parameter even in large samples. We show that these predictions provide a good approximations to the finite sample behavior of the fixed effects estimator through analytical and simulation examples in Sections 3.3 and 5.

The analytical bias correction consists of removing estimates of the leading terms of the bias from the fixed effect estimator of \(\beta^0 \). Let \(\hat{B}^\beta_{NT} \) and \(\hat{D}^\beta_{NT} \) be estimators of \(B^\beta_{\infty} \) and \(D^\beta_{\infty} \) as defined in (4.8). The bias corrected estimator can be formed as

\[
\bar{\beta}^A_{NT} = \hat{\beta}_{NT} - \frac{\hat{B}^\beta_{NT}}{T} - \frac{\hat{D}^\beta_{NT}}{N}.
\]

If \(N/T \to \kappa^2 \), \(\hat{B}^\beta_{NT} \to_P B^\beta_{\infty} \), and \(\hat{D}^\beta_{NT} \to_P D^\beta_{\infty} \), then

\[
\sqrt{NT}(\bar{\beta}^A_{NT} - \beta^0) \overset{d}{\to} N(0, V_\infty).
\]
The analytical correction therefore centers the asymptotic distribution at the true value of the parameter, without increasing asymptotic variance. This asymptotic result predicts that in large samples the corrected estimator has small bias relative to dispersion, the correction does not increase dispersion, and the confidence intervals constructed around the corrected estimator have coverage probabilities close to the nominal levels. We show that these predictions provide a good approximations to the behavior of the corrections in Sections 3.3 and 5 even in small panels with $N < 60$ and $T < 15$.

We also consider a jackknife bias correction method that does not require explicit estimation of the bias. This method is based on the split panel jackknife (SPJ) of Dhaene and Jochmans (2010) applied to the time and cross-section dimension of the panel. Alternative jackknife corrections based on the leave-one-observation-out panel jackknife (PJ) of Hahn and Newey (2004) and combinations of PJ and SPJ are also possible. We do not consider corrections based on PJ because they are theoretically justified by second-order expansions of $\tilde{\beta}_{NT}$ that are beyond the scope of this paper.

To describe our generalization of the SPJ, let $\tilde{\beta}_{N,T/2}$ be the average of the 2 split jackknife estimators that use all the individuals and leave out the first and second halves of the time periods of the panel, and let $\tilde{\beta}_{N/2,T}$ be the average of the 2 split jackknife estimators that use all the time periods and leave out half of the individuals of the panel. In choosing the cross sectional division of the panel, one might want to take into account individual clustering structures to preserve and account for cross sectional dependencies. If there are no cross sectional dependencies, $\tilde{\beta}_{N/2,T}$ can be constructed as the average of the estimators obtained from all possible partitions of $N/2$ individuals to avoid ambiguity and arbitrariness in the choice of the division.

The bias corrected estimator is

$$\tilde{\beta}_{NT} = 3\tilde{\beta}_{NT} - \tilde{\beta}_{N,T/2} - \tilde{\beta}_{N/2,T}. \quad (3.4)$$

To give some intuition about how the corrections works, note that

$$\tilde{\beta}_{NT} - \beta_0 = (\tilde{\beta}_{NT} - \beta_0) - (\tilde{\beta}_{N,T/2} - \beta_{NT}) - (\tilde{\beta}_{N/2,T} - \beta_{NT}),$$

where $\tilde{\beta}_{N,T/2} - \beta_{NT} = B_\infty^3 / T + o_P(T^{-1} \vee N^{-1})$ and $\tilde{\beta}_{N/2,T} - \beta_{NT} = D_\infty^3 / N + o_P(T^{-1} \vee N^{-1})$. Relative to β_{NT}, $\tilde{\beta}_{N,T/2}$ has double the bias coming from the estimation of the individual effects because it is based on subpanels with half of the time periods, and $\tilde{\beta}_{N/2,T}$ has double the bias coming from the estimation of the time effects because it is based on subpanels with half of the individuals. The time series split removes the bias term B_∞^3 and the cross sectional split removes the bias term D_∞^3.

3.3 Illustrative Example

To illustrate how the bias corrections work in finite samples, we consider a simple model where the solution to the population program (3.1) has closed form. This model corresponds to a variation of the classical Neyman and Scott (1948) variance example that includes both individual and time effects.

7When T is odd we define $\tilde{\beta}_{N,T/2}$ as the average of the 2 split jackknife estimators that use overlapping subpanels with $t \leq (T + 1)/2$ and $t \geq (T + 1)/2$. We define $\tilde{\beta}_{N/2,T}$ similarly when N is odd.

8There are $P = \left(\frac{N}{2}\right)$ different cross sectional partitions with $N/2$ individuals. When N is large, we can approximate the average over all possible partitions by the average over $S \ll P$ randomly chosen partitions to speed up computation.
$Y_{it} \mid \alpha, \gamma, \beta \sim N(\alpha_t + \gamma_i, \beta)$. It is well-known that in this case

$$\hat{\beta}_{NT} = (NT)^{-1} \sum_{i,t} \left(Y_{it} - \bar{Y}_i - \bar{Y}_t + \bar{Y} \right)^2,$$

where $\bar{Y}_i = T^{-1} \sum_i Y_{it}$, $\bar{Y}_t = N^{-1} \sum_i Y_{it}$, and $\bar{Y} = (NT)^{-1} \sum_{i,t} Y_{it}$. Moreover, from the well-known results on the degrees of freedom adjustment of the estimated variance we know that

$$\bar{\sigma}^2_{NT} = \mathbb{E}_\phi[\hat{\beta}^2_{NT}] = \beta^0 \frac{(N-1)(T-1)}{NT} = \beta^0 \left(1 - \frac{1}{N} + \frac{1}{NT} \right),$$

so that $\bar{\sigma}_{\infty}^2 = -\beta^0$ and $\bar{\sigma}_{\infty}^2 = -\beta^0$.9

To form the analytical bias correction we can set $\hat{B}_{NT} = -\hat{\beta}_{NT}$ and $\hat{D}_{NT} = -\hat{\beta}_{NT}$. This yields $\hat{\beta}_{NT}^A = \hat{\beta}_{NT}(1 + 1/T + 1/N)$ with

$$\hat{\beta}^A_{NT} = \mathbb{E}_\phi[\hat{\beta}^A_{NT}] = \beta^0 \left(1 - \frac{1}{T^2} - \frac{1}{N^2} - \frac{1}{NT^2} + \frac{1}{N^2T} \right).$$

This correction reduces the order of the bias from $(T^{-1} \lor N^{-1})$ to $(T^{-2} \lor N^{-2})$, and introduces additional higher order terms. The analytical correction increases finite-sample variance because the factor $(1 + 1/T + 1/N) > 1$. We compare the biases and standard deviations of the fixed effects estimator and the corrected estimator in a numerical example below.

For the Jackknife correction, straightforward calculations give

$$\hat{\beta}^J_{NT} = \mathbb{E}_\phi[\hat{\beta}^J_{NT}] = 3\bar{\beta}_{NT} - \bar{\beta}_{NT/2} - \bar{\beta}_{N/2,T} = \beta^0 \left(1 - \frac{1}{NT} \right).$$

The correction therefore reduces the order of the bias from $(T^{-1} \lor N^{-1})$ to $(TN)^{-1}$.10

Table 1 presents numerical results for the bias and standard deviations of the fixed effects and bias corrected estimators in finite samples. We consider panels with $N, T \in \{10, 25, 50\}$, and only report the results for $T \leq N$ since all the expressions are symmetric in N and T. All the numbers in the table are in percentage of the true parameter value, so we do not need to specify the value of β^0. We find that the analytical and jackknife corrections offer substantial improvements over the fixed effects estimator in terms of bias. The first and fourth row of the table show that the bias of the fixed effects estimator is of the same order of magnitude as the standard deviation, where $\bar{V}_{NT} = \text{Var}[\hat{\beta}_{NT}] = 2(N-1)(T-1)(\beta^0)^2/(NT)^2$ under independence of Y_{it} over i and t conditional on the unobserved effects. The fifth row shows the increase in standard deviation due to analytical bias correction is small compared to the bias reduction, where $\bar{V}^A_{NT} = \text{Var}[\hat{\beta}^A_{NT}] = (1 + 1/N + 1/T)^2 \bar{V}_{NT}$. The last row shows that the jackknife yields less precise estimates than the analytical correction in small panels.

Table 2 illustrates the effect of the bias on the inference based on the asymptotic distribution. It shows the coverage probabilities of 95% asymptotic confidence intervals for β^0 constructed in the usual way as

$$\text{CI}_{95}(\hat{\beta}) = \hat{\beta} \pm 1.96 \hat{V}_{NT}^{1/2} = \hat{\beta}(1 \pm 1.96 \sqrt{2/(NT)}),$$

9Okui (2013) derives the bias of fixed effects estimators of autocovariances and autocorrelations in this model.

10In this example it is possible to develop higher-order jackknife corrections that completely eliminate the bias because we know the entire expansion of $\hat{\beta}_{NT}$. For example, $\mathbb{E}_\phi[4\hat{\beta}_{NT} - 2\bar{\beta}_{NT/2} - 2\bar{\beta}_{N/2,T} + \bar{\beta}_{N/2,T/2}] = \beta^0$, where $\bar{\beta}_{N/2,T/2}$ is the average of the four split jackknife estimators that leave out half of the individuals and the first or the second halves of the time periods. See Dhaene and Jochmans (2010) for a discussion on higher-order bias corrections of panel fixed effects estimators.
Table 1: Biases and Standard Deviations for $Y_{it} | \alpha, \gamma, \beta \sim \mathcal{N}(\alpha_i + \gamma t, \beta)$

<table>
<thead>
<tr>
<th></th>
<th>N = 10</th>
<th>N=25</th>
<th>N=50</th>
</tr>
</thead>
<tbody>
<tr>
<td>T = 10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$(\beta_{NT} - \beta^0)/\beta^0$</td>
<td>-.19</td>
<td>-.14</td>
<td>-.08</td>
</tr>
<tr>
<td>$(\beta_A^N - \beta^0)/\beta^0$</td>
<td>-.03</td>
<td>-.02</td>
<td>.00</td>
</tr>
<tr>
<td>$(\beta_J^N - \beta^0)/\beta^0$</td>
<td>-.01</td>
<td>.00</td>
<td>.00</td>
</tr>
<tr>
<td>$\sqrt{V_{NT}}/\beta^0$</td>
<td>.13</td>
<td>.08</td>
<td>.05</td>
</tr>
<tr>
<td>$\sqrt{V_A^N}/\beta^0$</td>
<td>.14</td>
<td>.09</td>
<td>.06</td>
</tr>
<tr>
<td>$\sqrt{V_J^N}/\beta^0$</td>
<td>.17</td>
<td>.10</td>
<td>.06</td>
</tr>
</tbody>
</table>

Notes: V_{NT}^J obtained by 50,000 simulations with $\beta^0 = 1$

where $\tilde{\beta} = \{\tilde{\beta}_{NT}, \tilde{\beta}_{NT}^A, \tilde{\beta}_{NT}^J\}$ and $\tilde{V}_{NT} = 2\tilde{\beta}^2/(NT)$ is an estimator of the asymptotic variance $\tilde{V}_\infty/(NT) = 2(\beta^0)^2/(NT)$. To find the coverage probabilities, we use that $NT\tilde{\beta}_{NT}/\beta^0 \sim \chi^2_{(N-1)(T-1)}$ and $\tilde{\beta}_{NT}^A = (1 + 1/N + 1/T)\tilde{\beta}_{NT}$. These probabilities do not depend on the value of β^0 because the limits of the intervals are proportional to $\tilde{\beta}$. For the Jackknife we compute the probabilities numerically by simulation with $\beta^0 = 1$. As a benchmark of comparison, we also consider confidence intervals constructed from the unbiased estimator $\tilde{\beta}_{NT} = NT\tilde{\beta}_{NT}/[(N-1)(T-1)]$. Here we find that the confidence intervals based on the fixed effect estimator display severe undercoverage for all the sample sizes. The confidence intervals based on the corrected estimators have high coverage probabilities, which approach the nominal level as the sample size grows. Moreover, the bias corrected estimators produce confidence intervals with very similar coverage probabilities to the ones from the unbiased estimator.

Table 2: Coverage probabilities for $Y_{it} | \alpha, \gamma, \beta \sim \mathcal{N}(\alpha_i + \gamma t, \beta)$

<table>
<thead>
<tr>
<th></th>
<th>N = 10</th>
<th>N=25</th>
<th>N=50</th>
</tr>
</thead>
<tbody>
<tr>
<td>T = 10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CI_{95}(\tilde{\beta}_{NT})</td>
<td>.56</td>
<td>.55</td>
<td>.65</td>
</tr>
<tr>
<td>CI_{95}(\tilde{\beta}_{NT}^A)</td>
<td>.89</td>
<td>.92</td>
<td>.93</td>
</tr>
<tr>
<td>CI_{95}(\tilde{\beta}_{NT}^J)</td>
<td>.89</td>
<td>.91</td>
<td>.93</td>
</tr>
<tr>
<td>CI_{95}(\tilde{\beta}_{NT})</td>
<td>.91</td>
<td>.93</td>
<td>.94</td>
</tr>
</tbody>
</table>

Notes: Nominal coverage probability is .95. CI_{95}(\tilde{\beta}_{NT}) obtained by 50,000 simulations with $\beta^0 = 1$
4 Asymptotic Theory for Bias Corrections

In nonlinear panel data models the population problem (3.1) generally does not have closed form solution, so we need to rely on asymptotic arguments to characterize the terms in the expansion of the bias (3.2) and to justify the validity of the corrections.

4.1 Asymptotic distribution of model parameters

We consider panel models with scalar individual and time effects that enter the likelihood function additively through \(\pi_{it} = \alpha_i + \gamma_t \). In these models the dimension of the incidental parameters is \(\dim \phi_{NT} = N + T \). The leading cases are single index models, where the dependence of the likelihood function on the parameters is through an index \(X_i^\prime \beta + \alpha_i + \gamma_t \). These models cover the probit and Poisson specifications of Examples 1 and 2. The additive structure only applies to the unobserved effects, so we can allow for scale parameters to cover the Tobit and negative binomial models. We focus on these additive models for computational tractability and because we can establish the consistency of the fixed effects estimators under a concavity assumption in the log-likelihood function with respect to all the parameters.

The parametric part of our panel models takes the form

\[
\log f_Y(Y_{it} \mid X_{it}, \alpha_i, \gamma_t, \beta) =: \ell_{it}(\beta, \pi_{it}).
\]

We denote the derivatives of the log-likelihood function \(\ell_{it} \) by \(\partial_{\beta} \ell_{it}(\beta, \pi) := \partial_\beta \ell_{it}(\beta, \pi) / \partial_\beta \partial_\beta^2 \ell_{it}(\beta, \pi) := \partial_\pi \ell_{it}(\beta, \pi) / \partial_\pi \partial_\pi^2 \ell_{it}(\beta, \pi), q = 1, 2, 3, \ldots \). We drop the arguments \(\beta \) and \(\pi \) when the derivatives are evaluated at the true parameters \(\beta^0 \) and \(\pi_{it}^0 := \alpha_i^0 + \gamma_t^0 \), e.g. \(\partial_\pi \ell_{it} := \partial_\pi \ell_{it}(\beta^0, \pi_{it}^0) \). We also drop the dependence on \(NT \) from all the sequences of functions and parameters, e.g. we use \(\mathcal{L} \) for \(\mathcal{L}_{NT} \) and \(\phi \) for \(\phi_{NT} \).

We make the following assumptions:

Assumption 4.1 (Panel models). Let \(\nu > 0 \) and \(\mu > 4(8 + \nu) / \nu \). Let \(\varepsilon > 0 \) and let \(B_\varepsilon^0 \) be a subset of \(\mathbb{R}^{\dim \beta + 1} \) that contains an \(\varepsilon \)-neighbourhood of \((\beta^0, \pi_{it}^0) \) for all \(i, t, N, T \).\(^{11}\)

(i) Asymptotics: we consider limits of sequences where \(N/T \to \kappa^2, 0 < \kappa < \infty \), as \(N, T \to \infty \).

(ii) Sampling: conditional on \(\phi \), \(\{(Y_{it}^T, X_{it}^T) : 1 \leq i \leq N\} \) is independent across \(i \) and, for each \(i \), \(\{(Y_{it}, X_{it}) : 1 \leq t \leq T\} \) is \(\alpha \)-mixing with mixing coefficients satisfying \(\sup_i a_i(m) = \mathcal{O}(m^{-\mu}) \) as \(m \to \infty \), where

\[
a_i(m) := \sup_{A \in A_i} \sup_{B \in B_i^{m}} |P(A \cap B) - P(A)P(B)|,
\]

and for \(Z_{it} = (Y_{it}, X_{it}) \), \(A_{it}^i \) is the sigma field generated by \((Z_{it}, Z_{i,t-1}, \ldots) \), and \(B_{it}^i \) is the sigma field generated by \((Z_{it}, Z_{i,t+1}, \ldots) \).

(iii) Model: for \(X_{it}^i \) \(\{X_{it}^i : s = 1, \ldots, t\} \), we assume that for all \(i, t, N, T \),

\[
Y_{it} \mid X_{it}^i, \phi, \beta \sim \exp[\ell_{it}(\beta, \alpha_i + \gamma_t)].
\]

\(^{11}\)For example, \(B_\varepsilon^0 \) can be chosen to be the Cartesian product of the \(\varepsilon \)-ball around \(\beta^0 \) and the interval \([\pi_{\min}, \pi_{\max}]\), with \(\pi_{\min} \leq \pi_{it} - \varepsilon \) and \(\pi_{\max} \geq \pi_{it} + \varepsilon \) for all \(i, t, N, T \). We can have \(\pi_{\min} = -\infty \) and \(\pi_{\max} = \infty \), as long as this is compatible with Assumption 4.1 (iv) and (v).
The realizations of the parameters and unobserved effects that generate the observed data are denoted by β^0 and ϕ^0.

(iv) Smoothness and moments: We assume that $(\beta, \pi) \mapsto \ell_{it}(\beta, \pi)$ is four times continuously differentiable over \mathcal{E}_v^ϕ a.s. The partial derivatives of $\ell_{it}(\beta, \pi)$ with respect to the elements of (β, π) up to fourth order are bounded in absolute value uniformly over $(\beta, \pi) \in \mathcal{E}_v^\phi$ by a function $M(Z_{it}) > 0$ a.s., and $\max_{i,t} \mathbb{E}_\phi[M(Z_{it})^{4+v}]$ is a.s. uniformly bounded over N, T.

(v) Concavity: For all N, T, $(\beta, \phi) \mapsto \mathcal{L}(\beta, \phi) = (NT)^{-1/2}\left\{ \sum_{i,t} \ell_{it}(\beta, \alpha_i + \gamma_t) - b(v')^2/2 \right\}$ is strictly concave over $\mathbb{R}^{\dim \beta + \dim \gamma + 2}$ a.s. Furthermore, there exist constants b_{\min} and b_{\max} such that for all $(\beta, \pi) \in \mathcal{E}_v^\phi$, $0 < b_{\min} \leq -\mathbb{E}_\phi[\partial_{\pi^2} \ell_{it}(\beta, \pi)] \leq b_{\max}$ a.s. uniformly over i, t, N, T.

Remark 1 (Assumption 4.1). Assumption 4.1(i) defines the large-T asymptotic framework and is the same as in Hahn and Kuersteiner (2011). The relative rate of N and T exactly balances the order of the bias and variance producing a non-degenerate asymptotic distribution.

Assumption 4.1(ii) does not impose identical distribution nor stationarity over the time series dimension, conditional on the unobserved effects, unlike most of the large-T panel literature, e.g., Hahn and Newey (2004) and Hahn and Kuersteiner (2011). These assumptions are violated by the presence of the time effects, because they are treated as parameters. The mixing condition is used to bound covariances and moments in the application of laws of large numbers and central limit theorems – it could replaced by other conditions that guarantee the applicability of these results.

Assumption 4.1(iii) is the parametric part of the panel model. We rely on this assumption to guarantee that $\partial_\beta \ell_{it}$ and $\partial_\pi \ell_{it}$ have martingale difference properties. Moreover, we use certain Bartlett identities implied by this assumption to simplify some expressions, but those simplifications are not crucial for our results. We provide expressions for the asymptotic bias and variance that do not apply these simplifications in Remark 3 below.

Assumption 4.1(iv) imposes smoothness and moment conditions in the log-likelihood function and its derivatives. These conditions guarantee that the higher-order stochastic expansions of the fixed effect estimator that we use to characterize the asymptotic bias are well-defined, and that the remainder terms of these expansions are bounded.

The most commonly used nonlinear models in applied economics such as logit, probit, ordered probit, Poisson, and Tobit models have smooth log-likelihoods functions that satisfy the concavity condition of Assumption 4.1(v), provided that all the elements of X_{it} have cross sectional and time series variation. Assumption 4.1(v) guarantees that β^0 and ϕ^0 are the unique solution to the population problem (2.1), that is all the parameters are point identified.

To describe the asymptotic distribution of the fixed effects estimator $\hat{\beta}$, it is convenient to introduce some additional notation. Let ∇ be the $(N+T) \times (N+T)$ expected Hessian matrix of the log-likelihood with respect to the nuisance parameters evaluated at the true parameters, i.e.

$$
\nabla = \mathbb{E}_\phi[-\partial_{\phi'\phi} \mathcal{L}] = \begin{pmatrix}
\nabla_{(\alpha\alpha)} & \nabla_{(\alpha\gamma)} \\
\nabla_{(\gamma\alpha)} & \nabla_{(\gamma\gamma)}
\end{pmatrix} + \frac{b}{\sqrt{NT}} vv',
$$

where $\nabla_{(\alpha\alpha)} = \text{diag}(\sum_{i,t} \mathbb{E}_\phi[-\partial_{\pi^2} \ell_{it}]/\sqrt{NT})$, $\nabla_{(\alpha\gamma)}^{it} = \mathbb{E}_\phi[-\partial_{\pi^2} \ell_{it}]/\sqrt{NT}$, and $\nabla_{(\gamma\gamma)} = \text{diag}(\sum_{i,t} \mathbb{E}_\phi[-\partial_{\pi^2} \ell_{it}]/\sqrt{NT})$. Furthermore, let $\nabla_{(\alpha\alpha)}^{-1}, \nabla_{(\alpha\gamma)}^{-1}, \nabla_{(\gamma\alpha)}^{-1}, \nabla_{(\gamma\gamma)}^{-1}$ denote the $N \times N$,
We define the \(\dim \beta \)-vector \(\Xi_{it} \) and the operator \(D_{\beta \pi \varepsilon} \) as
\[
\Xi_{it} := -\frac{1}{\sqrt{NT}} \sum_{j=1}^{N} \sum_{\tau=1}^{T} \left(\mathcal{H}^{-1}_{(\alpha \alpha)ij} + \mathcal{H}^{-1}_{(\gamma \alpha)ij} + \mathcal{H}^{-1}_{(\alpha \gamma)ij} + \mathcal{H}^{-1}_{(\gamma \gamma)ij} \right) \mathbb{E}_\phi (\partial_{\beta \pi \varepsilon} \ell_{j\tau}),
\]
\[
D_{\beta \pi \varepsilon} \ell_{it} := \partial_{\beta \pi \varepsilon} \ell_{it} - \partial_{\pi \varepsilon} \ell_{it} \Xi_{it}, \tag{4.3}
\]
with \(q = 0, 1, 2 \). The \(k \)-th component of \(\Xi_{it} \) corresponds to the population least squares projection of \(\mathbb{E}_\phi (\partial_{\beta \pi \varepsilon} \ell_{it})/\mathbb{E}_\phi (\partial_{\pi \varepsilon} \ell_{it}) \) on the space spanned by the incidental parameters under a metric given by \(\mathbb{E}_\phi (-\partial_{\pi \varepsilon} \ell_{it}^2) \), i.e.
\[
\Xi_{it, k} = \alpha_{it, k}^* + \gamma_{it, k}^*, \quad (\alpha_{it, k}^*, \gamma_{it, k}^*) = \arg\min_{\alpha_{it, k}, \gamma_{it, k}} \sum_{it} \mathbb{E}_\phi (-\partial_{\pi \varepsilon} \ell_{it}^2) \left(\frac{\mathbb{E}_\phi (\partial_{\beta \pi \varepsilon} \ell_{it})}{\mathbb{E}_\phi (\partial_{\pi \varepsilon} \ell_{it})} - \alpha_{it, k} - \gamma_{it, k} \right)^2.
\]

The operator \(D_{\beta \pi \varepsilon} \) partials out individual and time effects in nonlinear models. It corresponds to individual and time differing when the model is linear. To see this, consider the normal linear model \(Y_{it} | X_{it}^I, \alpha_i, \gamma_i \sim N(X_{it}^I \beta + \alpha_i + \gamma_i, 1) \). Then, \(\Xi_{it} = (T^{-1} \sum_{t=1}^{T} \mathbb{E}_\phi [X_{it}] + N^{-1} \sum_{i=1}^{N} \mathbb{E}_\phi [X_{it}] - (NT)^{-1} \sum_{i=1}^{N} \sum_{t=1}^{T} \mathbb{E}_\phi [X_{it}], D_{\beta \pi \varepsilon} \ell_{it} = -\hat{X}_{it} \varepsilon_{it}, D_{\beta \pi \varepsilon} \ell_{it} = -\hat{X}_{it}, \) and \(D_{\beta \pi \varepsilon} \ell_{it} = 0 \), where \(\varepsilon_{it} = Y_{it} - X_{it}^I \beta - \alpha_i - \gamma_i \) and \(\hat{X}_{it} = X_{it} - \Xi_{it} \) is the individual and time demeaned explanatory variable.

Let \(\overline{\Xi} := \text{plim}_{N, T \to \infty} \). The following theorem establishes the asymptotic distribution of the fixed effects estimator \(\hat{\beta} \).

Theorem 4.1 (Asymptotic distribution of \(\hat{\beta} \)). Suppose that Assumption 4.1 holds, that the following limits exist
\[
\mathcal{B}_\infty = -\mathbb{E} \left[\frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \mathbb{E}_\phi (\partial_{\pi \varepsilon} \ell_{it} D_{\beta \pi \varepsilon} \ell_{it}) + \frac{1}{T} \sum_{t=1}^{T} \mathbb{E}_\phi (D_{\beta \pi \varepsilon} \ell_{it}) \right],
\]
\[
\mathcal{D}_\infty = -\mathbb{E} \left[\frac{1}{T} \sum_{t=1}^{T} \mathbb{E}_\phi (\partial_{\varepsilon} \ell_{it} D_{\beta \pi \varepsilon} \ell_{it}) + \frac{1}{T} D_{\beta \pi \varepsilon} \ell_{it} \right],
\]
\[
\mathcal{W}_\infty = -\mathbb{E} \left[\frac{1}{NT} \sum_{i=1}^{N} \sum_{t=1}^{T} \mathbb{E}_\phi (\partial_{\beta \pi \varepsilon} \ell_{it} - \partial_{\pi \varepsilon} \ell_{it} \Xi_{it}^{'}) \right],
\]
and that \(\mathcal{W}_\infty > 0 \). Then,
\[
\sqrt{NT} \left(\hat{\beta} - \beta^0 \right) \to_d \mathcal{W}_\infty^{-1} \mathcal{N}(\kappa \mathcal{B}_\infty + \kappa^{-1} \mathcal{D}_\infty, \mathcal{W}_\infty),
\]
so that \(\mathcal{B}_\infty^\beta = \mathcal{W}_\infty^{-1} \mathcal{B}_\infty, \mathcal{D}_\infty^\beta = \mathcal{W}_\infty^{-1} \mathcal{D}_\infty, \) and \(\mathcal{V}_\infty = \mathcal{W}_\infty^{-1} \) in (3.2) and (3.3).

Remark 2 (Proof of Theorem 4.1). The complete proof of Theorem 4.1 is provided in the Appendix. Here we include some comments pointing out the differences with the analogous proof for models with only individual effects, and describe the steps of the proof highlighting how the assumptions are used.

(i) The existing results for large \(N, T \) panels, which were developed for models with only individual effects, cannot be sequentially applied to the two dimensions of the panel to derive the asymptotic distribution of our estimators. These results usually start with a consistency proof that relies
on partitioning the log-likelihood in the sum of individual log-likelihoods that depend on a fixed number of parameters, the model parameter β and the corresponding individual effect α_i. Then, the maximizers of the individual log-likelihood are shown to be consistent estimators of all the parameters as T becomes large using standard arguments. In the presence of time effects there is no partition of the data that is only affected by a fixed number of parameters, and whose size grows with the sample size. We thus require a new approach.

(ii) Step 1 (consistency of $\widehat{\beta}$): we derive an asymptotic approximation to the score of the profile log-likelihood, $\partial_\beta \mathcal{L}(\beta, \widehat{\phi}(\beta))$, which is valid locally around $\beta = \beta^0$. We use this approximation to show that there is a solution to the first order condition $\partial_\beta \mathcal{L}(\beta, \widehat{\phi}(\beta)) = 0$ that is close to β^0 asymptotically, and to characterize the asymptotic properties of this solution. Under Assumption 4.1(v), the solution to $\partial_\beta \mathcal{L}(\beta, \widehat{\phi}(\beta)) = 0$ uniquely determines the maximizer $\widehat{\beta}$, thus implying that $\widehat{\beta}$ is consistent. Note that the global concavity condition in Assumption 4.1(v) can be replaced by another condition that allows one to show the consistency of $\widehat{\beta}$.

(iii) Step 2 (Stochastic expansions of $\partial_\beta \mathcal{L}(\beta^0, \widehat{\phi}(\beta^0))$ and $\widehat{\phi}(\beta^0)$): A Taylor second order approximation to $\partial_\beta \mathcal{L}(\beta^0, \widehat{\phi}(\beta^0))$ around ϕ^0 gives

\[
\partial_\beta \mathcal{L}(\beta^0, \widehat{\phi}(\beta^0)) \approx \partial_\beta \mathcal{L} + \partial_{\phi^0} \mathcal{L}[\widehat{\phi}(\beta^0) - \phi^0] + \sum_{g=1}^{\dim \phi} \partial_{\phi^g} \mathcal{L}[\widehat{\phi}(\beta^0) - \phi^0] [\widehat{\phi}_g(\beta^0) - \phi^0_0]/2, \tag{4.4}
\]

where $\partial_{\phi^g} \mathcal{L} = \mathbb{E}_\phi[\partial_{\phi^g} \mathcal{L}]$. Similarly, a Taylor second order approximation to the first order condition of $\phi(\beta^0), \partial_\phi \mathcal{L}(\beta^0, \widehat{\phi}(\beta^0)) = 0$, around ϕ^0 gives

\[
\widehat{\phi}(\beta^0) - \phi^0 \approx \mathbb{H}^{-1} S - \mathbb{H}^{-1} \mathbb{H} \mathbb{H}^{-1} S + \mathbb{H}^{-1} \sum_{g=1}^{\dim \phi} \partial_{\phi^g} \mathcal{L}[\mathbb{H}^{-1} S][\mathbb{H}^{-1} S]_{\phi^g}/2, \tag{4.5}
\]

where \mathbb{H} is the expected incidental parameter Hessian introduced in (4.2), $\mathbb{H} = -\partial_{\phi^g} \mathcal{L} - \mathbb{H}$, $\partial_{\phi^g} \mathcal{L} = \mathbb{E}_\phi[\partial_{\phi^g} \mathcal{L}]$, and S is the score of the incidental parameters,

\[
S := \partial_\phi \mathcal{L}(\beta^0, \phi^0) = \left(\begin{array}{c} \frac{1}{\sqrt{NT}} \sum_{t=1}^{T} \partial_{\pi^t} \ell_{it} \left(\frac{1}{1,...,N} \right) \\ \frac{1}{\sqrt{NT}} \sum_{i=1}^{N} \partial_{\pi^t} \ell_{it} \left(\frac{1}{1,...,T} \right) \end{array} \right).
\]

We bound the terms and remainders of the expansions (4.4) and (4.5) using the properties of S and \mathbb{H}^{-1}, together with Assumption 4.1(iv). The components of S are of orders $1/\sqrt{N}$ and $1/\sqrt{T}$ because they are sums over t and i of the mean-zero process $\partial_{\pi^t} \ell_{it}$. For this conclusion it is crucial that each element of the incidental parameter vector affects a subset of observations (namely α_i affects all observations from individual i, and γ_{it} affects all observations from time period t) whose size grows with the sample size. For models with only individual effects, the Hessian \mathbb{H} is diagonal.

\[12\]The expansions (4.4) and (4.5) can be derived in different ways. We obtain them through the Legendre-transformed objective function $\mathcal{L}^*(\beta, S) = \max_{\phi} [\mathcal{L}(\beta, \phi) - \phi^0 S]$. This function has the properties: $\mathcal{L}^*(\beta, 0) = \mathcal{L}(\beta, \widehat{\phi}(\beta)), \mathcal{L}^*(\beta, S) = \mathcal{L}(\beta, \phi^0) - \phi^0 S$, and $\partial_{\phi} \mathcal{L}(\beta, \phi^0) = \partial_{\phi} \mathcal{L}^*(\beta, S)$. The expansion of $\partial_{\phi} \mathcal{L}(\beta, \widehat{\phi}(\beta)) = \partial_{\phi} \mathcal{L}^*(\beta, 0)$ can therefore be obtained as a Taylor stochastic expansion of $\partial_{\phi} \mathcal{L}^*(\beta, S)$ in (β, S) around (β^0, S) and evaluated at $(\beta, 0)$. For details we refer to the proof of Theorem B.1, which is contained in the online supplementary material.
and its inversion poses no difficulty. In our case H has strong diagonal elements of order 1 and off-diagonal elements of order $(NT)^{-1/2}$. The off-diagonal elements reflect that the individual and time effects are compounded in a non-trivial way. They are of smaller order than the strong diagonal elements, but cannot simply be ignored in the inversion because the number of them is very large and grows with the sample size. For example, the expected Hessian H^* without penalty has the same order of diagonal and off-diagonal elements as H, but is not invertible. Lemma D.1 in the appendix shows that H is invertible, and that H^{-1} has the same structure as H, namely strong diagonal elements of order 1 and off-diagonal elements of order $(NT)^{-1/2}$. We make use of the additive separability of the individual and time effects of Assumption 4.1(iii) to prove Lemma D.1.

(iv) Step 3 (Stochastic expansion of $\hat{\beta}$): substituting the expansions (4.4) and (4.5) in a first order Taylor approximation to the first order condition of $\hat{\beta}$, $\partial_\beta L(\hat{\beta}, \hat{\phi}(\hat{\beta})) = 0$, around β^0 yields

$$0 \approx \partial_\beta L(\beta^0, \hat{\phi}(\beta^0)) + \partial_{\beta \beta'} L(\beta^0, \hat{\phi}(\beta^0))(\hat{\beta} - \beta^0) \approx U^{(0)} + U^{(1)} - W_\infty \sqrt{NT}(\hat{\beta} - \beta^0),$$

where $U^{(0)}$ is a variance term with $U^{(0)} = \partial_\beta L + [\partial_{\beta \phi'} \tilde{L}] H^{-1} S \rightarrow d \mathcal{N}(0, W_\infty)$, $U^{(1)}$ is a bias term with

$$U^{(1)} = [\partial_{\beta \phi'} \tilde{L}] H^{-1} S - [\partial_{\beta \phi'} \tilde{L}] H^{-1} \tilde{H} \tilde{H}^{-1} S$$

$$+ \frac{1}{2} \sum_{g=1}^{\dim \phi} (\partial_{\beta \phi'_g} \tilde{L} + [\partial_{\beta \phi'_g} \tilde{L}] H^{-1} [\partial_{\phi'_g \phi'_g} \tilde{L}]) [H^{-1} S]_g H^{-1} S \rightarrow \rho \mathcal{F}_\infty + \kappa^{-1} D_\infty,$$

and $\partial_{\beta \phi'} \tilde{L} = E_{\phi}[\partial_{\beta \phi'} \tilde{L}]$, and $\partial_{\beta \phi'} \tilde{L} = \partial_{\beta \phi'} \tilde{L} - \partial_{\beta \phi'} \tilde{L}$. We refer to the proof of Theorem 4.1 for more details on the derivation and notation. Here we use Assumptions 4.1(iii) to characterize the expressions of the limits \mathcal{F}_∞, D_∞, and W_∞.

Remark 3 (Bias and Variance expressions for Conditional Moment Models). In the derivation of the asymptotic distribution, we apply Bartlett identities implied by Assumption 4.1(iii) to simplify the expressions. The following expressions of the asymptotic bias and variance do not make use of these identities and therefore remain valid in conditional moment models that do not specify the entire conditional distribution of Y_{it}:

$$B_\infty = -\mathbb{E} \left[\frac{1}{N} \sum_{i=1}^{N} \sum_{t=T+1}^{T} \mathbb{E}_{\phi} \left(\partial_{\pi \ell_{it}} D_{\pi \ell_{it}} \right) \right]$$

$$+ \frac{1}{2} \mathbb{E} \left[\frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \mathbb{E}_{\phi} \left(\partial_{\pi \ell_{it}}^2 \right) \left(\sum_{i=1}^{N} \mathbb{E}_{\phi} \left(\partial_{\pi \ell_{it}}^2 \right) \right) \right],$$

$$D_\infty = -\mathbb{E} \left[\frac{1}{T} \sum_{t=1}^{T} \sum_{i=1}^{N} \mathbb{E}_{\phi} \left(\partial_{\pi \ell_{it}} D_{\pi \ell_{it}} \right) \right]$$

$$+ \frac{1}{2} \mathbb{E} \left[\frac{1}{T} \sum_{t=1}^{T} \sum_{i=1}^{N} \mathbb{E}_{\phi} \left(\partial_{\pi \ell_{it}}^2 \right) \left(\sum_{i=1}^{N} \mathbb{E}_{\phi} \left(\partial_{\pi \ell_{it}}^2 \right) \right) \right],$$

$$V_\infty = W_\infty^{-1} \mathbb{E} \left\{ \frac{1}{NT} \sum_{i=1}^{N} \sum_{t=1}^{T} \mathbb{E}_{\phi} \left[D_{\beta \ell_{it}} D_{\beta \ell_{it}}' \right] \right\} W_\infty^{-1}.$$
For example, consider the least squares fixed effects estimator in a linear model \(Y_{it} = X_{it}' \beta + \alpha_i + \gamma_t + \varepsilon_{it} \) with \(\mathbb{E}[\varepsilon_{it} | X_{it}', \phi, \beta] = 0 \). Applying the previous expressions of the bias to \(\ell_{it}(\beta, \pi) = -(Y_{it} - X_{it}' \beta - \alpha_i - \gamma_t)^2 \) yields

\[
\mathbb{B}_\infty = -\mathbb{E} \left[\frac{1}{NT} \sum_{i=1}^{N} \sum_{t=1}^{T} \sum_{\tau=t+1}^{T} \mathbb{E}_\phi(X_{it} \varepsilon_{it}) \right]
\]

and \(\mathbb{D}_\infty = 0 \). The expression for \(\mathbb{B}_\infty \) corresponds to Nickell (1981) bias formula when \(Y_{it} = Y_{i,t-1} \). If \(\mathbb{E}[\varepsilon_{it} | X_{it}', \phi, \beta] = 0 \), i.e. \(X_{it} \) is strictly exogenous with respect to \(\varepsilon_{it} \), then we get the well-known result for linear models of no asymptotic bias, \(\mathbb{B}_\infty = \mathbb{D}_\infty = 0 \).

It is instructive to evaluate the expressions of the bias in our running examples.

Example 1 (Binary response model). In this case

\[
\ell_{it}(\beta, \pi) = Y_{it} \log(F(X_{it}' \beta + \pi)) + (1 - Y_{it}) \log[1 - F(X_{it}' \beta + \pi)],
\]

so that \(\partial_\pi \ell_{it} = H_{it}(Y_{it} - F_{it}) \), \(\partial_\beta \ell_{it} = \partial_\beta X_{it} \), \(\partial_\alpha \ell_{it} = -H_{it} \partial F_{it} + \partial H_{it}(Y_{it} - F_{it}) \), \(\partial_\beta^2 \ell_{it} = \partial_\beta \partial_\beta X_{it} \), \(\partial_\beta \pi \ell_{it} = \partial_\beta F_{it} \), \(\partial_\pi \ell_{it} = -H_{it} \partial^2 F_{it} - 2 \partial H_{it} \partial F_{it} + \partial^2 H_{it}(Y_{it} - F_{it}) \), and \(\partial_\pi \beta \ell_{it} = \partial_\pi X_{it} \), where \(H_{it} = \partial F_{it} \). For the probit model where all the components of \(X_{it} \) are strictly exogenous,

\[
\mathbb{B}_\infty = -\mathbb{E} \left[\frac{1}{2N} \sum_{i=1}^{N} \sum_{t=1}^{T} \left\{ \mathbb{E}_\phi[H_{it} \partial^2 F_{it} \hat{X}_{it}] + 2 \sum_{\tau=t+1}^{T} \mathbb{E}_\phi \left[H_{it}(Y_{it} - F_{it}) \omega_{it} \hat{X}_{it} \right] \right\} \right],
\]

\[
\mathbb{D}_\infty = -\mathbb{E} \left[\frac{1}{2T} \sum_{i=1}^{N} \sum_{t=1}^{T} \mathbb{E}_\phi[H_{it} \partial^2 F_{it} \hat{X}_{it}] \right],
\]

\[
\mathbb{W}_\infty = \mathbb{E} \left[\frac{1}{NT} \sum_{i=1}^{N} \sum_{t=1}^{T} \mathbb{E}_\phi[\omega_{it} \hat{X}_{it} \hat{X}_{it}'] \right],
\]

where \(\omega_{it} = H_{it} \partial F_{it} \) and \(\hat{X}_{it} \) is the residual of the population projection of \(X_{it} \) on the space spanned by the incidental parameters under a metric weighted by \(\mathbb{E}_\phi(\omega_{it}) \). For the probit model where all the components of \(X_{it} \) are strictly exogenous,

\[
\mathbb{B}_\infty = \mathbb{E} \left[\frac{1}{2N} \sum_{i=1}^{N} \sum_{t=1}^{T} \mathbb{E}_\phi[\omega_{it} \hat{X}_{it} \hat{X}_{it}'] \right] \beta^0, \quad \mathbb{D}_\infty = \mathbb{E} \left[\frac{1}{2T} \sum_{i=1}^{N} \sum_{t=1}^{T} \mathbb{E}_\phi(\omega_{it} \hat{X}_{it} \hat{X}_{it}') \right] \beta^0.
\]

The asymptotic bias is therefore a positive definite matrix weighted average of the true parameter value as in the case of the probit model with only individual effects (Fernández-Val, 2009).

Example 2 (Count response model). In this case

\[
\ell_{it}(\beta, \pi) = (X_{it}' \beta + \pi) Y_{it} - \exp(X_{it}' \beta + \pi) - \log Y_{it},
\]

so that \(\partial_\pi \ell_{it} = Y_{it} - \omega_{it} \), \(\partial_\beta \ell_{it} = \partial_\beta \ell_{it} \), \(\partial_\alpha \ell_{it} = \partial_\alpha \beta \ell_{it} = \partial_\alpha \gamma \ell_{it} = -\omega_{it} \), \(\partial_\beta^2 \ell_{it} = \partial_\beta \beta \ell_{it} = \partial_\beta \gamma \ell_{it} = \partial_\beta \gamma_t \ell_{it} = \partial_\beta \gamma_t \ell_{it} \), \(\partial_\pi \beta \ell_{it} = \partial_\pi \gamma \ell_{it} = \partial_\pi \gamma_t \ell_{it} = \partial_\pi \gamma_t \ell_{it} \), \(\partial_\pi \gamma \ell_{it} = \partial_\pi \gamma_t \ell_{it} \), where \(\omega_{it} = \exp(X_{it}' \beta + \pi_{it}^0) \). Substituting these values in the expressions of the
bias of Theorem 4.1 yields

\[\mathcal{B}_\infty = -E \left[\frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \sum_{\tau=t+1}^{T} \mathbb{E}_\phi \left((Y_{it} - \omega_{it}) \omega_{i\tau} \hat{X}_{i\tau} \right) \right], \]

\[\mathcal{W}_\infty = E \left[\frac{1}{NT} \sum_{i=1}^{N} \sum_{t=1}^{T} \mathbb{E}_\phi [\omega_{it} \hat{X}_{it} \hat{X}'_{it}] \right], \]

and \(\overline{D}_\infty = 0, \) where \(\hat{X}_{it} \) is the residual of the population projection of \(X_{it} \) on the space spanned by the incidental parameters under a metric weighted by \(\mathbb{E}_\phi (\omega_{it}) \). If in addition all the components of \(X_{it} \) are strictly exogenous, then we get the no asymptotic bias result \(\mathcal{B}_\infty = \overline{D}_\infty = 0. \)

4.2 Asymptotic distribution of APEs

In nonlinear models we are often interested in APEs, in addition to model parameters. These effects are averages of the data, parameters and unobserved effects; see expression (2.2). For the panel models of Assumption 4.1 we specify the partial effects as \(\Delta(X_{it}, \beta, \alpha_i, \gamma_t) = \Delta_{it}(\beta, \pi_{it}) \). The restriction that the partial effects depend on \(\alpha_i \) and \(\gamma_t \) through \(\pi_{it} \) is natural in our panel models since

\[\mathbb{E}[Y_{it} \mid X_{it}', \alpha_i, \gamma_t, \beta] = \int y \exp[\ell_{it}(\beta, \pi_{it})] dy, \]

and the partial effects are usually defined as differences or derivatives of this conditional expectation with respect to the components of \(X_{it} \). For example, the partial effects for the probit and Poisson models described in Section 2 satisfy this restriction.

The distribution of the unobserved individual and time effects is not ancillary for the APEs, unlike for model parameters. We therefore need to make assumptions on this distribution to define and interpret the APEs, and to derive the asymptotic distribution of their estimators. Here, there are several possibilities depending on whether we define the APE conditional or unconditional on the unobserved effects. For conditional APEs, we treat the unobserved effects as deterministic. In this case \(\mathbb{E}[\Delta_{it}] = \mathbb{E}_\phi [\Delta_{it}] \) and \(\delta_{NT}^0 = (NT)^{-1} \sum_{i,t} \mathbb{E}_\phi [\Delta_{it}] \) can change over \(T \) and \(N \) in a deterministic fashion. For unconditional APEs, we control the heterogeneity of the partial effects assuming that the individual effects and explanatory variables are identically distributed cross sectionally and/or stationary over time. If \((X_{it}, \alpha_i, \gamma_t) \) is identically distributed over \(i \) and can be heterogeneously distributed over \(t \), \(\mathbb{E}[\Delta_{it}] = \delta_t^0 \) and \(\delta_{NT}^0 = T^{-1} \sum_{t=1}^{T} \delta_t^0 \) changes only with \(T \). If \((X_{it}, \alpha_i, \gamma_t) \) is stationary over \(t \) and can be heterogeneously distributed over \(i \), \(\mathbb{E}[\Delta_{it}] = \delta_t^0 \) and \(\delta_{NT}^0 = N^{-1} \sum_{i=1}^{N} \delta_i^0 \) changes only with \(N \). Finally, if \((X_{it}, \alpha_i, \gamma_t) \) is identically distributed over \(i \) and stationary over \(t \), \(\mathbb{E}[\Delta_{it}] = \delta_{NT}^0 \) and \(\delta_{NT}^0 = \delta^0 \) does not change with \(N \) and \(T \).

We also impose smoothness and moment conditions on the function \(\Delta \) that defines the partial effects. We use these conditions to derive higher-order stochastic expansions for the fixed effect estimator of the APEs and to bound the remainder terms in these expansions. Let \(\{\alpha_i\}_N := \{\alpha_i : 1 \leq i \leq N\} \), \(\{\gamma_t\}_T := \{\gamma_t : 1 \leq t \leq T\} \), and \(\{X_{it}, \alpha_i, \gamma_t\}_{NT} := \{(X_{it}, \alpha_i, \gamma_t) : 1 \leq i \leq N, 1 \leq t \leq T\} \).

Assumption 4.2 (Partial effects). Let \(\nu > 0 \), \(\epsilon > 0 \), and \(B^0 \) all be as in Assumption 4.1.
(i) **Sampling:** for all \(N, T \), (a) \(\{\alpha_i\}_N \) and \(\{\gamma_t\}_T \) are deterministic; or (b) \(\{X_{it}, \alpha_i, \gamma_t\}_{NT} \) is identically distributed across \(i \) and/or stationary across \(t \).

(ii) **Model:** for all \(i, t, N, T \), the partial effects depend on \(\alpha_i \) and \(\gamma_t \) through \(\alpha_i + \gamma_t \):

\[
\Delta(X_{it}, \beta, \alpha_i, \gamma_t) = \Delta_{it}(\beta, \alpha_i + \gamma_t).
\]

The realizations of the partial effects are denoted by \(\Delta_{it} := \Delta_{it}(\beta^0, \alpha^0 + \gamma^0) \).

(iii) **Smoothness and moments:** The function \((\beta, \pi) \mapsto \Delta_{it}(\beta, \pi) \) is four times continuously differentiable over \(B^0_\pi \) a.s. The partial derivatives of \(\Delta_{it}(\beta, \pi) \) with respect to the elements of \((\beta, \pi) \) up to fourth order are bounded in absolute value uniformly over \((\beta, \pi) \in B^0_\pi \) by a function \(M(Z_{it}) > 0 \) a.s., and \(\max_{i,t} \mathbb{E}_\phi[M(Z_{it})^{8+\nu}] \) is a.s. uniformly bounded over \(N, T \).

(iv) **Non-degeneracy and moments:** \(0 < \min_{i,t} \mathbb{E}(\Delta_{it}^4) - \mathbb{E}(\Delta_{it})^2 \leq \max_{i,t} \mathbb{E}(\Delta_{it}^2) - \mathbb{E}(\Delta_{it})^2 < \infty \), uniformly over \(N, T \).

Analogous to \(\Xi_{it} \) in equation (4.3) we define

\[
\Psi_{it} = -\frac{1}{\sqrt{N}T} \sum_{j=1}^N \sum_{t=1}^T \left(\Pi_{(\alpha\alpha)tj}^{-1} + \Pi_{(\gamma\gamma)tj}^{-1} + \Pi_{(\alpha\gamma)t\tau}^{-1} + \Pi_{(\gamma\gamma)t\tau}^{-1} \right) \partial_\pi \Delta_{it},
\]

(4.7)

which is the population projection of \(\partial_\pi \Delta_{it}/\mathbb{E}_\phi[\partial_\pi \ell_{it}] \) on the space spanned by the incidental parameters under the metric given by \(\mathbb{E}_\phi[\partial_\pi \ell_{it}] \). We use analogous notation to the previous section for the derivatives with respect to \(\beta \) and higher order derivatives with respect to \(\pi \).

Let \(\delta_{NT}^0 \) and \(\hat{\delta} \) be the APE and its fixed effects estimator, defined as in equations (2.2) and (2.9) with \(\Delta(X_{it}, \beta, \alpha_i, \gamma_t) = \Delta_{it}(\beta, \alpha_i + \gamma_t) \).\(^\dagger\) The following theorem establishes the asymptotic distribution of \(\hat{\delta} \).

Theorem 4.2 (Asymptotic distribution of \(\hat{\delta} \)). Suppose that the assumptions of Theorem 4.1 and Assumption 4.2 hold, and that the following limits exist:

\[
(D_\beta \Delta)_{\infty} = \mathbb{E} \left[\frac{1}{NT} \sum_{i=1}^N \sum_{t=1}^T \mathbb{E}_\phi(\partial_\beta \Delta_{it} - \Xi_{it} \partial_\pi \Delta_{it}) \right],
\]

\[
(B_\infty') = (D_\beta \Delta)' \mathbb{W}^{-1} B_{\infty}' + \mathbb{E} \left[\frac{1}{N} \sum_{i=1}^N \sum_{t=1}^T \mathbb{E}_\phi(\partial_{x\ell_{it}} \partial_{x\ell_{it}} \Psi_{it}) \right],
\]

\[
(D_\pi \Delta)' \mathbb{W}^{-1} D_{\infty}' + \mathbb{E} \left[\frac{1}{T} \sum_{t=1}^T \sum_{i=1}^N \mathbb{E}_\phi(\partial_{x\ell_{it}} \partial_{x\ell_{it}} \Psi_{it}) \right],
\]

\[
(D_\pi \Delta)' \mathbb{W}^{-1} D_{\infty}' + \mathbb{E} \left[\frac{1}{2T} \sum_{t=1}^T \sum_{i=1}^N \mathbb{E}_\phi(\partial_{x\ell_{it}} \partial_{x\ell_{it}} \Psi_{it}) \right],
\]

\[
(V_\infty') = \mathbb{E} \left\{ \frac{r^2}{N^2 T^2} \mathbb{E} \left[\left(\sum_{i=1}^N \sum_{t=1}^T \Delta_{it} \right) \left(\sum_{i=1}^N \sum_{t=1}^T \Delta_{it} \right)' + \sum_{i=1}^N \sum_{t=1}^T \Gamma_{it} \Gamma_{it}' \right] \right\},
\]

\(^\dagger\)We keep the dependence of \(\delta_{NT}^0 \) on \(NT \) to distinguish \(\delta_{NT}^0 \) from \(\delta^0 = \lim_{N,T \to \infty} \delta_{NT}^0 \).
for some deterministic sequence \(r_{NT} \to \infty \) such that \(r_{NT} = O(\sqrt{NT}) \) and \(V_\infty^j > 0 \), where \(\Delta_{it} = E(\Delta_{it}) \) and \(\Gamma_{it} = (D_j \Delta_{it})_\infty W^{-1}_\infty D_j \epsilon_{it} - E_i(\phi(\epsilon_{it}) \partial_i \epsilon_{it}) \). Then,

\[
r_{NT}(\hat{\delta} - \delta_{NT}^0 - T^{-1} \bar{B}_\infty^j - N^{-1} \bar{D}_\infty^j) \to_d N(0, V_\infty^j).
\]

Remark 4 (Convergence rate, bias and variance). The rate of convergence \(r_{NT} \) is determined by the inverse of the first term of \(V_\infty^j \), which corresponds to the asymptotic variance of \(\delta := (NT)^{-1} \sum_{i=1}^N \sum_{t=1}^T \Delta_{it} \),

\[
r_{NT} = O \left(\frac{1}{NT^2} \sum_{i,j=1}^N \sum_{t,s=1}^T \mathbb{E}[\Delta_{it}^j \Delta_{js}^t] \right)^{-1}
\]

Assumption 4.2(iv) and the condition \(r_{NT} \to \infty \) ensure that we can apply a central limit theorem to \(\delta \). Under Assumption 4.2(i)(a), \(\{\Delta_{it} : 1 \leq i \leq N, 1 \leq t \leq T\} \) is independent across \(i \) and \(\alpha \)-mixing across \(t \) by Assumption 4.1(ii), so that \(r_{NT} = \sqrt{NT} \) and

\[
V_\infty^j = \mathbb{E} \left\{ \frac{r_{NT}^2}{N^2T^2} \sum_{i=1}^N \sum_{t=1}^T \mathbb{E}[\Delta_{it}^j \Delta_{it}^t] + \sum_{i=1}^N \mathbb{E}(\Gamma_{it}^j \Gamma_{it}^t) \right\}.
\]

Bias and variance are of the same order asymptotically under the asymptotic sequences of Assumption 4.1(i). Under Assumption 4.2(i)(b), the rate of convergence depends on the sampling properties of the unobserved effects. For example, if \(\{\alpha_i\}_N \) and \(\{\gamma_t\}_T \) are independent sequences, and \(\alpha_i \) and \(\gamma_t \) are independent for all \(i, t \), then \(r_{NT} = \sqrt{NT/(N + T - 1)} \),

\[
V_\infty^j = \mathbb{E} \left\{ \frac{r_{NT}^2}{N^2T^2} \sum_{i=1}^N \sum_{t=1}^T \mathbb{E}[\Delta_{it}^j \Delta_{it}^t] + \sum_{i=1}^N \sum_{j=1}^N \mathbb{E}[\Delta_{it}^j \Delta_{jt}^i] + \sum_{i=1}^N \mathbb{E}(\Gamma_{it}^j \Gamma_{it}^t) \right\}.
\]

and the asymptotic bias is of order \(T^{-1/2} + N^{-1/2} \). The bias and the last term of \(V_\infty^j \) are asymptotically negligible in this case under the asymptotic sequences of Assumption 4.1(i).

Remark 5 (Average effects from bias corrected estimators). The first term in the expressions of the biases \(\bar{B}_\infty^j \) and \(\bar{D}_\infty^j \) comes from the bias of the estimator of \(\beta \). It drops out when the APEs are constructed from asymptotically unbiased or bias corrected estimators of the parameter \(\beta \), i.e.

\[
\tilde{\delta} = \Delta(\tilde{\beta}, \tilde{\phi}(\tilde{\beta}))
\]

where \(\tilde{\beta} \) is such that \(\sqrt{NT}(\tilde{\beta} - \beta^0) \to_d N(0, W^{-1}_\infty) \). The asymptotic variance of \(\tilde{\delta} \) is the same as in Theorem 4.2.

In the following examples we assume that the APEs are constructed from asymptotically unbiased estimators of the model parameters.

Example 1 (Binary response model). Consider the partial effects defined in (2.3) and (2.4) with

\[
\Delta_{it}(\beta, \pi) = F(\beta_k + X'_{it-k}\beta_{-k} + \pi) - F(X'_{it-k}\beta_{-k} + \pi) \quad \text{and} \quad \Delta_{it}(\beta, \pi) = \beta_k \partial F(X'_{it}\beta + \pi).
\]
Using the notation previously introduced for this example, the components of the asymptotic bias of $\tilde{\delta}$ are

$$
\overline{B}_\infty^{i} = \mathbb{E} \left[\frac{1}{2N} \sum_{t=1}^{T} \sum_{i=1}^{N} \sum_{\tau=t+1}^{T} \mathbb{E}_\phi \left(H_{it}(Y_{it} - F_{it}\omega_{it})\tilde{\Psi}_{it} - \mathbb{E}_\phi (\tilde{\Psi}_{it}) \mathbb{E}_\phi (H_{it}\partial^2 F_{it}) + \mathbb{E}_\phi (\partial^2 \Delta_{it}) \right) \right],
$$

$$
\overline{D}_\infty^{i} = \mathbb{E} \left[\frac{1}{2T} \sum_{t=1}^{T} \sum_{i=1}^{N} \sum_{\tau=t+1}^{T} \mathbb{E}_\phi \left(\frac{-\mathbb{E}_\phi (\tilde{\Psi}_{it}) \mathbb{E}_\phi (H_{it}\partial^2 F_{it}) + \mathbb{E}_\phi (\partial^2 \Delta_{it})}{\sum_{i=1}^{N} \mathbb{E}_\phi (\omega_{it})} \right) \right],
$$

where $\tilde{\Psi}_{it}$ is the residual of the population regression of $-\partial \Delta_{it}/\mathbb{E}_\phi [\omega_{it}]$ on the space spanned by the incidental parameters under the metric given by $\mathbb{E}_\phi [\omega_{it}]$. If all the components of X_{it} are strictly exogenous, the first term of \overline{B}_∞ is zero.

Example 2 (Count response model). Consider the partial effect

$$
\Delta_{it}(\beta, \pi) = g_{it}(\beta) \exp(X'_{it}\beta + \pi),
$$

where g_{it} does not depend on π. For example, $g_{it}(\beta) = \beta_k + \beta_j h(Z_{it})$ in (2.5). Using the notation previously introduced for this example, the components of the asymptotic bias are

$$
\overline{B}_\infty^{i} = \mathbb{E} \left[\frac{1}{N} \sum_{t=1}^{T} \sum_{i=1}^{N} \sum_{\tau=t+1}^{T} \mathbb{E}_\phi \left(\frac{(Y_{it} - \omega_{it})\omega_{it}\tilde{\chi}_{it}}{\sum_{i=1}^{N} \mathbb{E}_\phi (\omega_{it})} \right) \right],
$$

and $\overline{D}_\infty^{i} = 0$, where $\tilde{\chi}_{it}$ is the residual of the population projection of g_{it} on the space spanned by the incidental parameters under a metric weighted by $\mathbb{E}_\phi [\omega_{it}]$. The asymptotic bias is zero if all the components of X_{it} are strictly exogenous or $g_{it}(\beta)$ is constant. The latter arises in the leading case of the partial effect of the k-th component of X_{it} since $g_{it}(\beta) = \beta_k$. This no asymptotic bias result applies to any type of regressor, strictly exogenous or predetermined.

4.3 Bias corrected estimators

The results of the previous sections show that the asymptotic distributions of the fixed effects estimators of the model parameters and APEs can have biases of the same order as the variances under sequences where T grows at the same rate as N. This is the large-T version of the incidental parameters problem that invalidates any inference based on the fixed effect estimators even in large samples. In this section we describe how to construct analytical and jackknife bias corrections for the fixed effect estimators and give conditions for the asymptotic validity of these corrections.

The jackknife correction for the model parameter β in equation (3.4) is generic and applies to the panel model. For the APEs, the jackknife correction is formed similarly as

$$
\overline{\delta}_{NT}^{J} = 3\overline{\delta}_{NT} - \overline{\delta}_{N,T/2} - \overline{\delta}_{N/2,T},
$$

where $\overline{\delta}_{N,T/2}$ is the average of the 2 split jackknife estimators of the APE that use all the individuals and leave out the first and second halves of the time periods, and $\overline{\delta}_{N/2,T}$ is the average of the 2 split jackknife estimators of the APE that use all the time periods and leave out half of the individuals.

The analytical corrections are constructed using sample analogs of the expressions in Theorems 4.1 and 4.2, replacing the true values of β and ϕ by the fixed effects estimators. To describe these corrections,
we introduce some additional notation. For any function of the data, unobserved effects and parameters
\(g_{itj}(\beta, \alpha_i + \gamma_i, \alpha_t, \gamma_t)\) with 0 ≤ j < t, let \(g_{itj} = g_{it}^{(\hat{\beta}, \hat{\alpha}_i + \hat{\gamma}_i, \hat{\alpha}_t + \hat{\gamma}_t)}\) denote the fixed effects estimator, e.g., \(E_{\phi}[\partial_{x}^t \ell_{it}]\) denotes the fixed effects estimator of \(E_{\phi}[\partial_{x} \ell_{it}]\). Let \(\hat{H}^{-1}_{(\alpha\alpha)}, \hat{H}^{-1}_{(\alpha\gamma)}, \hat{H}^{-1}_{(\gamma\gamma)}\), and \(\hat{H}^{-1}_{(\gamma\gamma)}\) denote the blocks of the matrix \(\hat{H}^{-1}\), where
\[
\hat{H}^{-1} = \left(\begin{array}{cc} \hat{H}^{-1}_{(\alpha\alpha)} & \hat{H}^{-1}_{(\alpha\gamma)} \\ \hat{H}^{-1}_{(\alpha\gamma)} & \hat{H}^{-1}_{(\gamma\gamma)} \end{array} \right),
\]
and
\[
\hat{H}^{-1}_{(\alpha\alpha)} = \text{diag}(\sum_{i=1}^{N} \frac{\partial_{x} \ell_{it} t_{t}}{\sqrt{NT}}) \\
\hat{H}^{-1}_{(\alpha\gamma)} = \text{diag}(\sum_{i=1}^{N} \frac{\partial_{x} \ell_{it} \gamma_{it}}{\sqrt{NT}}) \\
\hat{H}^{-1}_{(\gamma\gamma)} = \text{diag}(\sum_{i=1}^{N} \frac{\partial_{x}^{2} \ell_{it} t_{t}}{\sqrt{NT}}),
\]
where
\[
\hat{H}^{-1}_{(\alpha\alpha)} = \frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{T} \left(\hat{H}^{-1}_{(\alpha\alpha)ij} + \hat{H}^{-1}_{(\alpha\gamma)ij} + \hat{H}^{-1}_{(\gamma\gamma)ij} \right) E_{\phi}(\partial_{x} \ell_{it} \ell_{it}).
\]
The k-th component of \(\hat{\xi}_{it}\) corresponds to a least squares regression of \(E_{\phi}(\partial_{x} \ell_{it})/E_{\phi}(\partial_{x} \ell_{it})\) on the space spanned by the incidental parameters weighted by \(E_{\phi}(\partial_{x} \ell_{it})\).

The analytical bias corrected estimator of \(\beta^0\) is
\[
\hat{\beta}^A = \hat{\beta} - \hat{B}_{NT}/T - \hat{D}_{NT}/N,
\]
where \(\hat{B}_{NT} = \hat{W}^{-1} \hat{B}, \hat{D}_{NT} = \hat{W}^{-1} \hat{D},\)
\[
\hat{B} = -\frac{1}{N} \sum_{i=1}^{N} \sum_{j=0}^{L} \left([T/(T-j)] \sum_{t=j+1}^{T} \frac{\sum_{i=1}^{N} E_{\phi}(\partial_{x} \ell_{it} D_{\beta x} \ell_{it}) - 1/2 \sum_{i=1}^{N} E_{\phi}(D_{\beta x} \ell_{it})}{\sum_{i=1}^{N} E_{\phi}(\partial_{x} \ell_{it})} \right),
\]
\[
\hat{D} = -\frac{1}{T} \sum_{t=1}^{T} \sum_{i=1}^{N} \left[\frac{E_{\phi}(\partial_{x} \ell_{it} D_{\beta x} \ell_{it}) - 1/2 E_{\phi}(D_{\beta x} \ell_{it})}{\sum_{i=1}^{N} E_{\phi}(\partial_{x} \ell_{it})} \right],
\]
\[
\hat{W} = -(NT)^{-1} \sum_{i=1}^{N} \sum_{t=1}^{T} \left[E_{\phi}(\partial_{x} \ell_{it} \ell_{it}) - E_{\phi}(\partial_{x} \ell_{it} \ell_{it}) \right],
\]
and \(L\) is a trimming parameter for estimation of spectral expectations such that \(L \to \infty\) and \(L/T \to 0\) (Hahn and Kuersteiner, 2011). We refer to Hahn and Kuersteiner (2007) for a theoretical discussion on the choice of \(L\) and to the numerical examples in Section 5 for a sensitivity analysis to the choice of \(L\) in small samples. The factor \(T/(T-j)\) is a degrees of freedom adjustment that rescales the time series averages \(T^{-1} \sum_{i=j+1}^{T} \) by the number of observations instead of by \(T\). Unlike for variance estimation, we do not need to use a kernel function because the bias estimator does not need to be positive. Asymptotic \((1-p)\)-confidence intervals for the components of \(\beta^0\) can be formed as
\[
\hat{\beta}_k^A \pm z_{1-p} \sqrt{\hat{W}^{-1}_{kk}/(NT)}, \quad k = \{1, \ldots, \dim \beta^0\},
\]
where \(z_{1-p}\) is the \((1-p)\)-quantile of the standard normal distribution, and \(\hat{W}^{-1}_{kk}\) is the \((k,k)\)-element of the matrix \(\hat{W}^{-1}\).

We have implemented the analytical correction at the level of the estimator. Alternatively, we can implement the correction at the level of the first order conditions by solving
\[
(NT)^{-1/2} \partial_{\beta} \mathcal{L}(\beta, \hat{\phi}(\beta)) = \hat{B} T + \hat{D}/N,
\]
(4.10)
for β. The expansion (4.6) together with the consistency of \hat{B} and \hat{D} shows that the solution to these adjusted first order conditions yields a bias corrected estimator that is asymptotically equivalent to $\hat{\beta}^A$. Global concavity of the objective function guarantees that the solution to (4.10) is unique. Other possible extensions such as corrections at the level of the objective function or iterative corrections are left to future research.

The analytical bias corrected estimator of d^{0}_{NT} is

$$\hat{\delta}^A = \hat{\delta} - \hat{B}^\delta / T - \hat{D}^\delta / N,$$

where $\hat{\delta}$ is the APE constructed from a bias corrected estimator of β. Let

$$\hat{\Psi}_{it} = - \frac{1}{\sqrt{NT}} \sum_{j=1}^{N} \sum_{\tau=1}^{T} \left(\hat{H}_{(\alpha\alpha)it\tau} - \hat{H}_{(\gamma\gamma)it\tau} + \hat{H}_{(\alpha\gamma)it\tau} + \hat{H}_{(\gamma\alpha)it\tau} \right) \hat{\partial}_{i\tau}. $$

The fixed effects estimators of the components of the asymptotic bias are

$$\hat{B}^\delta = \frac{1}{N} \sum_{i=1}^{N} \sum_{j=0}^{T} \left(\frac{T}{T-j} \right) \sum_{\tau=1}^{T} \frac{\hat{\Psi}_{it}}{1} \hat{\partial}_{i\tau} \hat{\partial}_{i\tau}$$

$$\hat{D}^\delta = \frac{1}{T} \sum_{t=1}^{T} \sum_{\tau=1}^{T} \left(\frac{N}{T} \right) \sum_{i=1}^{N} \frac{\hat{\partial}_{i\tau}}{1} \hat{\partial}_{i\tau}$$

The estimator of the asymptotic variance depends on the assumptions about the distribution of the unobserved effects and explanatory variables. Under Assumption 4.2(i)(a) we need to impose a homogeneity assumption on the distribution of the explanatory variables to estimate the first term of the asymptotic variance. For example, if $\{X_{it} : 1 \leq i \leq N, 1 \leq t \leq T\}$ is identically distributed over i, we can form

$$\hat{V}^\delta = \frac{r^2_{NT}}{N^2 T^2} \sum_{i=1}^{N} \sum_{t=1}^{T} \hat{\Delta}_{it} \hat{\Delta}_{it}' + \sum_{t=1}^{T} \hat{\Psi}_{it} \hat{\Gamma}_{it}' $$

(4.11)

for $\hat{\Delta}_{it} = \hat{\Delta}_{it} - \hat{\Delta}_{it} - \sum_{i=1}^{N} \hat{\Delta}_{it}$. Under Assumption 4.2(i)(b) and the independence assumption on the unobserved effects of Remark 4,

$$\hat{V}^\delta = \frac{r^2_{NT}}{N^2 T^2} \sum_{i=1}^{N} \sum_{t=1}^{T} \hat{\Delta}_{it} \hat{\Delta}_{it}' + \sum_{t=1}^{T} \sum_{j \neq i}^{T} \hat{\Delta}_{it} \hat{\Delta}_{jt}' + \sum_{t=1}^{T} \hat{\Psi}_{it} \hat{\Gamma}_{it}'$$

(4.12)

where $\hat{\Delta}_{it} = \hat{\Delta}_{it} - \hat{\Delta}_{it} - \sum_{i=1}^{N} \hat{\Delta}_{it} \hat{\Delta}_{it}$ under identical distribution over i, $\hat{\Delta}_{it} = \hat{\Delta}_{it} - \hat{\delta} - \hat{\Delta}_{it}$ under stationarity over t, and $\hat{\Delta}_{it} = \hat{\Delta}_{it} - \hat{\delta}$ under both. Note that we do not need to specify the convergence rate r_{NT} to make inference because the standard errors $\sqrt{\hat{V}^\delta / r_{NT}^2}$ do not depend on r_{NT}. Bias corrected estimators and confidence intervals can be constructed in the same fashion as for the model parameter.

We use the following homogeneity assumption to show the validity of the jackknife corrections for the model parameters and APEs. It implies that $\hat{\beta}_{N,T/2} - \hat{\beta}_{NT} = \hat{B}_{\infty}^\delta / T + o_P(T^{-1} \vee N^{-1})$ and $\hat{\beta}_{N/2,T} - \hat{\beta}_{NT} = \hat{D}_{\infty}^\delta / N + o_P(T^{-1} \vee N^{-1})$, which are weaker but higher level sufficient conditions for the validity of the
jackknife for the model parameter. For APEs, Assumption 4.3 also ensures that these effects do not change with T and N, i.e. $\delta_{NT}^0 = \delta^0$. The analytical corrections do not require this assumption.

Assumption 4.3 (Unconditional homogeneity). The sequence $\{(Y_{it}, X_{it}, \alpha_i, \gamma_t) : 1 \leq i \leq N, 1 \leq t \leq T\}$ is identically distributed across i and strictly stationary across t, for each N,T.

This assumption might seem restrictive for dynamic models where X_{it} includes lags of the dependent variable because in this case it restricts the unconditional distribution of the initial conditions of Y_{it}. Note, however, that Assumption 4.3 allows the initial conditions to depend on the unobserved effects. In other words, it does not impose that the initial conditions are generated from the stationary distribution of Y_{it} conditional on X_{it} and ϕ. Assumption 4.3 rules out time trends and structural breaks in the processes for the unobserved effects and observed variables.

Remark 6 (Test of homogeneity). Assumption 4.3 is a sufficient condition for the validity of the jackknife corrections. It has the testable implications that the probability limits of the fixed effects estimator are the same in all the partitions of the panel. For example, it implies that $\beta_{N,T/2}^1 = \beta_{N,T/2}^2$, where $\beta_{N,T/2}^1$ and $\beta_{N,T/2}^2$ are the probability limits of the fixed effects estimators of β in the subpanels that include all the individuals and the first and second halves of the time periods, respectively. These implications can be tested using variations of the Chow-type test proposed in Dhaene and Jochmans (2010). We provide an example of the application of these tests to our setting in Section S.1.1 of the supplemental material.

The following theorems are the main result of this section. They show that the analytical and jackknife bias corrections eliminate the bias from the asymptotic distribution of the fixed effects estimators of the model parameters and APEs without increasing variance, and that the estimators of the asymptotic variances are consistent.

Theorem 4.3 (Bias corrections for $\hat{\beta}$). Under the conditions of Theorems 4.1,

$$\hat{W} \to_p W_\infty,$$

and, if $L \to \infty$ and $L/T \to 0$,

$$\sqrt{NT}(\tilde{\beta}^A - \beta^0) \to_d N(0, W_\infty^{-1}).$$

Under the conditions of Theorems 4.1 and Assumption 4.3,

$$\sqrt{NT}(\tilde{\beta}^J - \beta^0) \to_d N(0, W_\infty^{-1}).$$

Theorem 4.4 (Bias corrections for $\hat{\delta}$). Under the conditions of Theorems 4.1 and 4.2,

$$\hat{V}^\delta \to_p V^\delta_\infty,$$

and, if $L \to \infty$ and $L/T \to 0$,

$$r_{NT}(\tilde{\delta}^A - \delta_{NT}^0) \to_d N(0, V^\delta_\infty).$$

Under the conditions of Theorems 4.1 and 4.2, and Assumption 4.3,

$$r_{NT}(\tilde{\delta}^J - \delta^0) \to_d N(0, V^\delta_\infty).$$

Remark 7 (Rate of convergence). The rate of convergence r_{NT} depends on the properties of the sampling process for the explanatory variables and unobserved effects (see remark 4).
5 Monte Carlo Experiments

This section reports evidence on the finite sample behavior of fixed effects estimators of model parameters and APEs in static models with strictly exogenous regressors and dynamic models with predetermined regressors such as lags of the dependent variable. We analyze the performance of uncorrected and bias-corrected fixed effects estimators in terms of bias and inference accuracy of their asymptotic distribution. In particular we compute the biases, standard deviations, and root mean squared errors of the estimators, the ratio of average standard errors to the simulation standard deviations (SE/SD); and the empirical coverages of confidence intervals with 95% nominal value (p; .95). Overall, we find that the analytically corrected estimators dominate the uncorrected and jackknife corrected estimators. The jackknife corrections are more sensitive than the analytical corrections to Assumption 4.3. All the results are based on 500 replications. The designs correspond to static and dynamic probit models. We consider panels with a cross sectional size of 52 individuals, motivated by applications to U.S. states. As in the analytical example of Section 3.3, we find that our large T asymptotic approximations capture well the behavior of the fixed effects estimator and the bias corrections in moderately long panels with $T = 14$.

5.1 Static probit model

The data generating process is

$$Y_{it} = 1 \{X_{it} \beta + \alpha_i + \gamma_t > \varepsilon_{it}\}, \ (i = 1, ..., N; \ t = 1, ..., T),$$

where $\alpha_i \sim N(0, 1/16)$, $\gamma_t \sim N(0, 1/16)$, $\varepsilon_{it} \sim N(0, 1)$, and $\beta = 1$. We consider two alternative designs for X_{it}: autoregressive process and linear trend process both with individual and time effects. In the first design, $X_{it} = X_{i,t-1}/2 + \alpha_i + \gamma_t + v_{it}$, $v_{it} \sim N(0,1/2)$, and $X_{i0} \sim N(0,1)$. In the second design, $X_{it} = 2t/T + \alpha_i + \gamma_t + v_{it}$, $v_{it} \sim N(0,3/4)$, which violates Assumption 4.3. In both designs X_{it} is strictly exogenous with respect to ε_{it} conditional on the individual and time effects. The variables α_i, γ_t, ε_{it}, v_{it}, and X_{i0} are independent and i.i.d. across individuals and time periods. We generate panel data sets with $N = 52$ individuals and three different numbers of time periods T: 14, 26 and 52.

Table 3 reports the results for the probit coefficient β, and the APE of X_{it}. We compute the APE using (2.4). Throughout the table, MLE-FETE corresponds to the probit maximum likelihood estimator with individual and time fixed effects, Analytical is the bias corrected estimator that uses the analytical correction, and Jackknife is the bias corrected estimator that uses SPJ in both the individual and time dimensions. The cross-sectional division in the jackknife follows the order of the observations. All the results are reported in percentage of the true parameter value.

We find that the bias is of the same order of magnitude as the standard deviation for the uncorrected estimator of the probit coefficient causing severe undercoverage of the confidence intervals. This result holds for both designs and all the sample sizes considered. The bias corrections, specially Analytical,
remove the bias without increasing dispersion, and produce substantial improvements in rmse and coverage probabilities. For example, Analytical reduces rmse by more than 40% and increases coverage by 20% in the first design with $T = 14$. As in Hahn and Newey (2004) and Fernandez-Val (2009), we find very little bias in the uncorrected estimates of the APE, despite the large bias in the probit coefficients. Jackknife performs relatively worse in the second design that does not satisfy Assumption 4.3.

5.2 Dynamic probit model

The data generating process is

$$\begin{align*}
Y_{it} &= \mathbf{1}\{Y_{i,t-1}\beta_Y + Z_{it}\beta_Z + \alpha_i + \gamma_t > \varepsilon_{it}\}, \quad (i = 1, \ldots, N; \ t = 1, \ldots, T), \\
Y_{i0} &= \mathbf{1}\{Z_{i0}\beta_Z + \alpha_i + \gamma_0 > \varepsilon_{i0}\},
\end{align*}$$

where $\alpha_i \sim \mathcal{N}(0,1/16)$, $\gamma_t \sim \mathcal{N}(0,1/16)$, $\varepsilon_{it} \sim \mathcal{N}(0,1)$, $\beta_Y = 0.5$, and $\beta_Z = 1$. We consider two alternative designs for Z_{it}: autoregressive process and linear trend process both with individual and time effects. In the first design, $Z_{it} = Z_{i,t-1}/2 + \alpha_i + \gamma_t + \upsilon_{it}$, $\upsilon_{it} \sim \mathcal{N}(0,1/2)$, and $Z_{i0} \sim \mathcal{N}(0,1)$. In the second design, $Z_{it} = 1.5t/T + \alpha_i + \gamma_t + \upsilon_{it}$, $\upsilon_{it} \sim \mathcal{N}(0,3/4)$, which violates Assumption 4.3. The variables α_i, γ_t, ε_{it}, υ_{it}, and Z_{i0} are independent and i.i.d. across individuals and time periods. We generate panel data sets with $N = 52$ individuals and three different numbers of time periods T: 14, 26 and 52.

Table 4 reports the simulation results for the probit coefficient β_Y and the APE of $Y_{i,t-1}$. We compute the partial effect of $Y_{i,t-1}$ using the expression in equation (2.3) with $X_{it,k} = Y_{i,t-1}$. This effect is commonly reported as a measure of state dependence for dynamic binary processes. Table 5 reports the simulation results for the estimators of the probit coefficient β_Z and the APE of Z_{it}. We compute the partial effect using (2.4) with $X_{it,k} = Z_{it}$. Throughout the tables, we compare the same estimators as for the static model. For the analytical correction we consider two versions, Analytical (L=1) sets the trimming parameter to estimate spectral expectations L to one, whereas Analytical (L=2) sets L to two.\(^{16}\) Again, all the results in the tables are reported in percentage of the true parameter value.

The results in table 4 show important biases toward zero for both the probit coefficient and the APE of $Y_{i,t-1}$ in the two designs. This bias can indeed be substantially larger than the corresponding standard deviation for short panels yielding coverage probabilities below 70% for $T = 14$. The analytical corrections significantly reduce biases and rmse, bring coverage probabilities close to their nominal level, and have little sensitivity to the trimming parameter L. The jackknife corrections reduce bias but increase dispersion, producing less drastic improvements in rmse and coverage than the analytical corrections. The results for the APE of Z_{it} in table 5 are similar to the static probit model. There are significant bias and undercoverage of confidence intervals for the coefficient β_Z, which are removed by the corrections, whereas there are little bias and undercoverage in the APE. As in the static model, Jackknife performs relatively worse in the second design.

\(^{16}\)In results not reported for brevity, we find little difference in performance of increasing the trimming parameters to $L = 3$ and $L = 4$. These results are available from the authors upon request.
6 Concluding remarks

In this paper we develop analytical and jackknife corrections for fixed effects estimators of model parameters and APEs in semiparametric nonlinear panel models with additive individual and time effects. Our analysis applies to conditional maximum likelihood estimators with concave log-likelihood functions, and therefore covers logit, probit, ordered probit, ordered logit, Poisson, negative binomial, and Tobit estimators, which are the most popular nonlinear estimators in empirical economics.

We are currently developing similar corrections for nonlinear models with interactive individual and time effects (Chen, Fernández-Val, and Weidner (2013)). Another interesting avenue of future research is to derive higher-order expansions for fixed effects estimators with individual and time effects. These expansions are needed to justify theoretically the validity of alternative corrections based on the leave-one-observation-out panel jackknife method of Hahn and Newey (2004).

Appendix

A Notation and Choice of Norms

We write A' for the transpose of a matrix or vector A. We use I_n for the $n \times n$ identity matrix, and 1_n for the column vector of length n whose entries are all unity. For square $n \times n$ matrices B, C, we use $B > C$ (or $B \geq C$) to indicate that $B - C$ is positive (semi) definite. We write wpa1 for “with probability approaching one” and wrt for “with respect to”. All the limits are taken as $N,T \to \infty$ jointly.

As in the main text, we usually suppress the dependence on NT of all the sequences of functions and parameters to lighten the notation, e.g. we write L for L_{NT} and ϕ for ϕ_{NT}. Let

$$S(\beta, \phi) = \partial_\phi L(\beta, \phi), \quad H(\beta, \phi) = -\partial_{\phi \phi} L(\beta, \phi),$$

where $\partial_x f$ denotes the partial derivative of f with respect to x, and additional subscripts denote higher-order partial derivatives. We refer to the dim ϕ-vector $S(\beta, \phi)$ as the incidental parameter score, and to the dim $\phi \times$ dim ϕ matrix $H(\beta, \phi)$ as the incidental parameter Hessian. We omit the arguments of the functions when they are evaluated at the true parameter values (β^0, ϕ^0), e.g. $H = H(\beta^0, \phi^0)$. We use a bar to indicate expectations conditional on ϕ, e.g. $\partial_\beta \bar{L} = \mathbb{E}_\phi[\partial_\beta L]$, and a tilde to denote variables in deviations with respect to expectations, e.g. $\partial_\beta \tilde{L} = \partial_\beta L - \partial_\beta \bar{L}$.

We use the Euclidian norm $\| \cdot \|$ for vectors of dimension dim β, and we use the norm induced by the Euclidian norm for the corresponding matrices and tensors, which we also denote by $\| \cdot \|$. For matrices of dimension dim $\beta \times$ dim β this induced norm is the spectral norm. The generalization of the spectral norm to higher order tensors is straightforward, e.g. the induced norm of the dim $\beta \times$ dim $\beta \times$ dim β tensor of third partial derivatives of $L(\beta, \phi)$ wrt β is given by

$$\| \partial_{\beta \beta \beta} L(\beta, \phi) \| = \max_{\{u, v \in \mathbb{R}^{\text{dim } \beta}, \|u\|=1, \|v\|=1\}} \left\| \sum_{k,l=1}^{\text{dim } \beta} u_k v_l \partial_{\beta \beta_k \beta_l} L(\beta, \phi) \right\|_2.$$
This choice of norm is immaterial for the asymptotic analysis because dim β is fixed with the sample size.

In contrast, it is important what norms we choose for vectors of dimension dim ϕ, and their corresponding matrices and tensors, because dim ϕ is increasing with the sample size. For vectors of dimension dim ϕ, we use the ℓ_q-norm

$$||\phi||_q = \left(\sum_{g=1}^{\text{dim } \phi} |\phi_g|^q \right)^{1/q},$$

where $2 \leq q \leq \infty$.17 The particular value $q = 8$ will be chosen later.18 We use the norms that are induced by the ℓ_q-norm for the corresponding matrices and tensors, e.g. the induced q-norm of the dim $\phi \times \text{dim } \phi \times \text{dim } \phi$ tensor of third partial derivatives of $L(\beta, \phi)$ wrt ϕ is

$$||\partial_{\phi^3} L(\beta, \phi)||_q = \max_{\{u, v \in \mathbb{R}^{\text{dim } \phi}, \|u\|_q = 1, \|v\|_q = 1\}} \left(\sum_{g,h=1}^{\text{dim } \phi} u_g v_h \partial_{\phi^3} L(\beta, \phi) \right). \quad (A.1)$$

Note that in general the ordering of the indices of the tensor would matter in the definition of this norm, with the first index having a special role. However, since partial derivatives like ∂_{ϕ^3} of the corresponding matrices and tensors, because dim ϕ is increasing with the sample size.

For higher-order tensors, we use the notation $\partial_{\phi^p} L(\beta, \phi)$ inside the q-norm $\|\cdot\|_q$ defined above, while we rely on standard index and matrix notation for all other expressions involving those partial derivatives, e.g. $\partial_{\phi^p} L(\beta, \phi)$ is a dim $\phi \times \text{dim } \phi$ matrix for every $g = 1, \ldots, \text{dim } \phi$. Occasionally, e.g. in

17We use the letter q instead of p to avoid confusion with the use of p for probability.

18The main reason not to choose $q = \infty$ is the assumption $\|\mathcal{H}\|_q = \mathcal{O}(1)$ below, which is used to guarantee that $\|\mathcal{H}^{-1}\|_q$ is of the same order as $\|\mathcal{H}^{-1}\|_q$. If we assume $\|\mathcal{H}^{-1}\|_q = \mathcal{O}(1)$ directly instead of $\|\mathcal{H}^{-1}\|_q = \mathcal{O}(1)$, then we can set $q = \infty$.

Assumption B.1(vi) below, we use the Euclidian norm for \(\dim \phi \) -vectors, and the spectral norm for \(\dim \phi \times \dim \phi \) -matrices, denoted by \(\| \cdot \| \), and defined as \(\| \cdot \|_q \) with \(q = 2 \). Moreover, we employ the matrix infinity norm \(\| A \|_\infty = \max_i \sum_j |A_{ij}| \), and the matrix maximum norm \(\| A \|_{\max} = \max_{ij} |A_{ij}| \) to characterize the properties of the inverse of the expected Hessian of the incidental parameters in Section D.

For \(r \geq 0 \), we define the sets \(B(r, \beta^0) = \{ \beta : \| \beta - \beta^0 \| \leq r \} \), and \(B_q(r, \phi^0) = \{ \phi : \| \phi - \phi^0 \|_q \leq r \} \), which are closed balls of radius \(r \) around the true parameter values \(\beta^0 \) and \(\phi^0 \), respectively.

B Asymptotic Expansions

In this section, we derive asymptotic expansions for the score of the profile objective function, \(L(\beta, \hat{\phi}(\beta)) \), and for the fixed effects estimators of the parameters and APEs, \(\hat{\beta} \) and \(\hat{\delta} \). We do not employ the panel structure of the model, nor the particular form of the objective function given in Section 4. Instead, we consider the estimation of an unspecified model based on a sample of size \(NT \) and a generic objective function \(L(\beta, \phi) \), which depends on the parameter of interest \(\beta \) and the incidental parameter \(\phi \). The estimators \(\hat{\phi}(\beta) \) and \(\hat{\beta} \) are defined in (2.7) and (2.8). The proof of all the results in this Section are given in the supplementary material.

We make the following high-level assumptions. These assumptions might appear somewhat abstract, but will be justified by more primitive conditions in the context of panel models.

Assumption B.1 (Regularity conditions for asymptotic expansion of \(\hat{\beta} \)). Let \(q > 4 \) and \(0 \leq \epsilon < 1/8 - 1/(2q) \). Let \(r_{\beta} = r_{\beta, NT} > 0 \), \(r_{\phi} = r_{\phi, NT} > 0 \), with \(r_{\beta} = o\left((NT)^{-1/(2q) - \epsilon}\right) \) and \(r_{\phi} = o\left((NT)^{-\epsilon}\right) \). We assume that

(i) \(\frac{\dim \phi}{\sqrt{NT}} \to a, 0 < a < \infty \).

(ii) \((\beta, \phi) \to L(\beta, \phi) \) is four times continuously differentiable in \(B(r_{\beta, \beta^0}) \times B_q(r_{\phi, \phi^0}) \), wpa1.

(iii) \(\sup_{\beta \in B(r_{\beta, \beta^0})} \| \hat{\phi}(\beta) - \phi^0 \|_q = o_P(r_{\phi}) \).

(iv) \(H > 0 \), and \(\| H^{-1} \|_q = O_P(1) \).

(v) For the q-norm defined in Appendix A,

\[
\| S \|_q = O_P\left((NT)^{-1/4+1/(2q)}\right), \quad \| \partial_\beta L \| = O_P(1), \quad \| \hat{H} \|_q = o_P(1), \\
\| \partial_\beta \phi L \|_q = O_P\left((NT)^{1/(2q)}\right), \quad \| \partial_\beta \phi L \| = o_P(1), \quad \| \partial_\beta \phi L \|_q = o_P((NT)^{\epsilon}), \\
\| \partial_\phi \phi L \|_q = O_P((NT)^{\epsilon}),
\]
Note that where Theorem B.1 (Asymptotic expansions of result of this appendix.

Remark 8. The remainder terms of the expansions satisfy

\sup_{\beta \in B(r_\beta, \beta^0)} \sup_{\phi \in B_q(r_\phi, \phi^0)} \| \partial_\beta \partial_\phi \mathcal{L}(\beta, \phi) \| = o_P \left(\sqrt{NT} \right),

\sup_{\beta \in B(r_\beta, \beta^0)} \sup_{\phi \in B_q(r_\phi, \phi^0)} \| \partial_\beta \phi \mathcal{L}(\beta, \phi) \|_q = o_P \left((NT)^{1/(2q)} \right),

\sup_{\beta \in B(r_\beta, \beta^0)} \sup_{\phi \in B_q(r_\phi, \phi^0)} \| \partial_\beta \partial_\phi \mathcal{L}(\beta, \phi) \|_q = o_P \left((NT)^r \right),

\sup_{\beta \in B(r_\beta, \beta^0)} \sup_{\phi \in B_q(r_\phi, \phi^0)} \| \partial_\phi \phi \mathcal{L}(\beta, \phi) \|_q = o_P \left((NT)^r \right).

(vi) For the spectral norm \(\| \| = \| \|_2 \),

\| \mathcal{H} \| = o_P \left((NT)^{-1/8} \right), \quad \| \partial_\beta \mathcal{L} \| = o_P (\sqrt{NT}), \quad \| \partial_\phi \mathcal{L} \| = o_P \left((NT)^{-1/8} \right),

\| \partial_\phi \mathcal{L} \| = o_P (1), \quad \sum_{g,h=1}^{\dim \phi} \partial_{\phi_g \phi_h} \mathcal{L} [\mathcal{H}^{-1} S]_g [\mathcal{H}^{-1} S]_h = o_P \left((NT)^{-1/4} \right).

Let \(\partial_\beta \mathcal{L}(\beta, \hat{\phi}(\beta)) \) be the score of the profile objective function. The following theorem is the main result of this appendix.

Theorem B.1 (Asymptotic expansions of \(\hat{\phi}(\beta) \) and \(\partial_\beta \mathcal{L}(\beta, \hat{\phi}(\beta)) \)). Let Assumption B.1 hold. Then

\[\hat{\phi}(\beta) - \phi^0 = \mathcal{H}^{-1} S + \mathcal{H}^{-1} [\partial_\beta \mathcal{L}(\beta - \beta^0) + \frac{1}{2} \mathcal{H}^{-1} \sum_{g=1}^{\dim \phi} [\partial_{\phi_g \phi} \mathcal{L} \mathcal{H}^{-1} S]_g \mathcal{H}^{-1} S]_g + R(\beta), \]

and

\[\partial_\beta \mathcal{L}(\beta, \hat{\phi}(\beta)) = U - \mathcal{W} \sqrt{NT} (\beta - \beta^0) + R(\beta), \]

where \(U = U^{(0)} + U^{(1)} \), and

\[\mathcal{W} = - \frac{1}{\sqrt{NT}} \left(\partial_\beta \mathcal{L} + [\partial_{\phi_g \phi} \mathcal{L}] \mathcal{H}^{-1} \partial_\phi \mathcal{L} \right), \]

\[U^{(0)} = \partial_\beta \mathcal{L} + [\partial_{\phi_g \phi} \mathcal{L}] \mathcal{H}^{-1} S, \]

\[U^{(1)} = [\partial_{\phi_g \phi} \mathcal{L}] \mathcal{H}^{-1} S - [\partial_{\phi_g \phi} \mathcal{L}] [\partial_\phi \mathcal{L}] \mathcal{H}^{-1} \mathcal{H}^{-1} S + \frac{1}{2} \sum_{g=1}^{\dim \phi} \left([\partial_{\phi_g \phi} \mathcal{L} + [\partial_{\phi_g \phi} \mathcal{L}] \mathcal{H}^{-1} [\partial_{\phi_g \phi} \mathcal{L}]] [\mathcal{H}^{-1} S]_g \mathcal{H}^{-1} S. \]

The remainder terms of the expansions satisfy

\[\sup_{\beta \in B(r_\beta, \beta^0)} (NT)^{1/2 - 1/(2q)} \| R(\beta) \|_q = o_P (1), \quad \sup_{\beta \in B(r_\beta, \beta^0)} \frac{\| R(\beta) \|}{1 + \sqrt{NT} \| \beta - \beta^0 \|} = o_P (1). \]

Remark 8. The result for \(\hat{\phi}(\beta) - \phi^0 \) does not rely on Assumption B.1(vi). Without this assumption we can also show that

\[\partial_\beta \mathcal{L}(\beta, \hat{\phi}(\beta)) = \partial_\beta \mathcal{L}(\beta, \hat{\phi}(\beta)) \text{ by the envelope theorem}. \]
with $R_1(\beta)$ satisfying the same bound as $R(\beta)$. Thus, the spectral norm bounds in Assumption B.1(vi) for dim ϕ-vectors, matrices and tensors are only used after separating expectations from deviations of expectations for certain partial derivatives. Otherwise, the derivation of the bounds is purely based on the q-norm for dim ϕ-vectors, matrices and tensors.

The proofs are given in Section S.3 of the supplementary material. Theorem B.1 characterizes asymptotic expansions for the incidental parameter estimator and the score of the profile objective function in the incidental parameter score S up to quadratic order. The theorem provides bounds on the remainder terms $R_{\phi}(\beta)$ and $R(\beta)$, which make the expansions applicable to estimators of β that take values within a shrinking r_{β}-neighborhood of β^0. Given such an r_{β}-consistent estimator $\hat{\beta}$ that solves the first order condition $\partial_{\beta} L(\beta, \hat{\phi}(\beta)) = 0$, we can use the expansion of the profile objective score to obtain an asymptotic expansion for $\hat{\beta}$. This gives rise to the following corollary of Theorem B.1.

Corollary B.2 (Asymptotic expansion of $\hat{\beta}$). Let Assumption B.1 be satisfied. In addition, let $U = O_P(1)$, let W_∞ exist with $W_\infty > 0$, and let $\|\hat{\beta} - \beta^0\| = o_P(r_{\beta})$. Then

$$\sqrt{NT}(\hat{\beta} - \beta^0) = W_\infty^{-1}U + o_P(1).$$

The following theorem states that for strictly concave objective functions no separate consistency proof is required for $\hat{\phi}(\beta)$ and for $\hat{\beta}$.

Theorem B.3 (Consistency under Concavity). Let Assumption B.1(i), (ii), (iv), (v) and (vi) hold, and let $(\beta, \phi) \mapsto L(\beta, \phi)$ be strictly concave over $(\beta, \phi) \in \mathbb{R}^{\dim \beta + \dim \phi}$, wpa1. Assume furthermore that $(NT)^{-1/4 + 1/(2q)} = o_P(r_{\beta})$ and $(NT)^{1/(2q)} r_{\beta} = o_P(r_{\phi})$. Then,

$$\sup_{\beta \in B(r_{\beta}, \beta^0)} \left\| \hat{\phi}(\beta) - \phi^0 \right\|_q = o_P(r_{\phi}),$$

i.e. Assumption B.1(iii) is satisfied. If, in addition, W_∞ exists with $W_\infty > 0$, then $\|\hat{\beta} - \beta^0\| = O_P((NT)^{-1/4}).$

In the application of Theorem B.1 to panel models, we focus on estimators with strictly concave objective functions. By Theorem B.3, we only need to check Assumption B.1(i), (ii), (iv), (v) and (vi), as well as $U = O_P(1)$ and $W_\infty > 0$, when we apply Corollary B.2 to derive the limiting distribution of $\hat{\beta}$. We give the proofs of Corollary B.2 and Theorem B.3 in Section S.3.

Expansion for Average Effects

We invoke the following high-level assumption, which is verified under more primitive conditions for panel data models in the next section.

Assumption B.2 (Regularity conditions for asymptotic expansion of $\hat{\delta}$). Let q, r_{β} and r_{ϕ} be defined as in Assumption B.1. We assume that

(i) $(\beta, \phi) \mapsto \Delta(\beta, \phi)$ is three times continuously differentiable in $B(r_{\beta}, \beta^0) \times B_q(r_{\phi}, \phi^0)$, wpa1.
\[(\text{ii}) \| \partial_\beta \Delta \| = O_P(1), \| \partial_\phi \Delta \|_q = O_P \left((NT)^{1/(2q) - 1/2} \right), \| \partial_{\phi \phi} \Delta \|_q = O_P \left((NT)^{\epsilon - 1/2} \right), \text{ and} \]
\[
\sup_{\beta \in B(r_3, \beta^0)} \sup_{\phi \in B_3(r_3, \phi^0)} \| \partial_\beta \Delta(\beta, \phi) \| = O_P(1), \quad \sup_{\beta \in B(r_3, \beta^0)} \sup_{\phi \in B_3(r_3, \phi^0)} \| \partial_{\phi \beta} \Delta(\beta, \phi) \|_q = O_P \left((NT)^{1/(2q) - 1/2} \right), \quad \sup_{\beta \in B(r_3, \beta^0)} \sup_{\phi \in B_3(r_3, \phi^0)} \| \partial_{\phi \phi} \Delta(\beta, \phi) \|_q = O_P \left((NT)^{\epsilon - 1/2} \right). \]

\[(\text{iii}) \| \partial_\beta \tilde{\Delta} \| = o_p(1), \| \partial_\phi \tilde{\Delta} \| = O_P \left((NT)^{-1/2} \right), \text{ and} \| \partial_{\phi \phi} \tilde{\Delta} \| = o_P \left((NT)^{-5/8} \right). \]

The following result gives the asymptotic expansion for the estimator, \(\hat{\delta} = \Delta(\beta, \hat{\phi}(\beta)) \), wrt \(\delta = \Delta(\beta^0, \phi^0) \).

Theorem B.4 (Asymptotic expansion of \(\hat{\delta} \)). Let Assumptions B.1 and B.2 hold and let \(\| \hat{\beta} - \beta^0 \| = O_P \left((NT)^{-1/2} \right) = o_p(r_3) \). Then
\[
\hat{\delta} - \delta = \left[\partial_\beta \Xi + (\partial_\phi \Xi) \overline{H}^{-1}(\partial_{\phi \beta} \Xi) \right] (\hat{\beta} - \beta^0) + U_\Delta^{(0)} + U_\Delta^{(1)} + o_p \left(1/\sqrt{NT} \right),
\]
where
\[
U_\Delta^{(0)} = (\partial_\phi \Xi) \overline{H}^{-1} S, \quad U_\Delta^{(1)} = (\partial_\phi \hat{\Delta}) \overline{H}^{-1} S - (\partial_\phi \Xi) \overline{H}^{-1} \overline{H} \overline{H}^{-1} S
\]
\[
+ \frac{1}{2} S \overline{H}^{-1} \left[\partial_\phi \hat{\Delta} + \sum_{g=1}^{\dim \phi} \left[\partial_{\phi \phi^g} \Xi \right] \overline{H}^{-1}(\partial_\phi \Xi) \right] S.
\]

Remark 9. The expansion of the profile score \(\partial_\beta \mathcal{L}(\beta, \hat{\phi}(\beta)) \) in Theorem B.1 is a special case of the expansion in Theorem B.4, for \(\Delta(\beta, \phi) = \frac{1}{\sqrt{NT}} \partial_\beta \mathcal{L}(\beta, \phi) \). Assumptions B.2 also exactly match with the corresponding subset of Assumption B.1.

C Proofs of Section 4

C.1 Application of General Expansion to Panel Estimators

We now apply the general expansion of appendix B to the panel fixed effects estimators considered in the main text. For the objective function specified in (2.1) and (4.1), the incidental parameter score evaluated at the true parameter value is
\[
S = \left(\frac{1}{\sqrt{NT}} \sum_{i=1}^{N} \left[\partial_\beta \ell_i^u \right] \right) \left(\frac{1}{\sqrt{NT}} \sum_{t=1}^{T} \left[\partial_\tau \ell_i^u \right] \right).
\]
The penalty term in the objective function does not contribute to \(S \), because at the true parameter value \(\nu^\prime \phi^0 = 0 \). The corresponding expected incidental parameter Hessian \(\overline{H} \) is given in (4.2). Section D discusses the structure of \(\overline{H} \) and \(\overline{H}^{-1} \) in more detail. Define
\[
\Lambda_i^u := - \frac{1}{\sqrt{NT}} \sum_{j=1}^{N} \sum_{\tau=1}^{T} \left(\overline{H}^{-1}_{(\alpha \alpha)ij} + \overline{H}^{-1}_{(\gamma \alpha)ij} + \overline{H}^{-1}_{(\alpha \gamma)ij\tau} + \overline{H}^{-1}_{(\gamma \gamma)ij\tau} \right) \partial_\beta \ell_i^u, \quad (C.1)
\]
and the operator \(D_\beta \Delta_{it} := \partial_\beta \Delta_{it} - \partial_\pi \Delta_{it} \Xi_{it} \), which are similar to \(\Xi_{it} \) and \(D_\beta \ell_{it} \) in equation (4.3).

The following theorem shows that Assumption 4.1 and Assumption 4.2 for the panel model are sufficient for Assumption B.1 and Assumption B.2 for the general expansion, and particularizes the terms of the expansion to the panel estimators. The proof is given in the supplementary material.

Theorem C.1. Consider an estimator with objective function given by (2.1) and (4.1). Let Assumption 4.1 be satisfied and suppose that the limit \(\mathbf{W}_\infty \) defined in Theorem 4.1 exists and is positive definite. Let \(q = 8, \epsilon = 1/(16 + 2\nu) \), \(r_{\beta,NT} = \log(NT)(NT)^{-1/8} \) and \(r_{\phi,NT} = (NT)^{-1/16} \). Then,

(i) Assumption B.1 holds and \(\| \hat{\beta} - \beta^0 \| = \mathcal{O}_p((NT)^{-1/4}). \)

(ii) The approximate Hessian and the terms of the score defined in Theorem B.1 can be written as

\[
\mathbf{W} = -\frac{1}{NT} \sum_{i=1}^{N} \sum_{t=1}^{T} \mathbb{E}_\phi (\partial_\beta \ell_{it} - \partial_\pi \ell_{it} \Xi_{it} \Xi_{it}'), \quad U^{(0)} = \frac{1}{\sqrt{NT}} \sum_{i=1}^{N} \sum_{t=1}^{T} D_\beta \ell_{it}, \quad U^{(1)} = \frac{1}{\sqrt{NT}} \sum_{i=1}^{N} \sum_{t=1}^{T} \left\{ -\Lambda_{it} [D_\beta \pi \ell_{it} - \mathbb{E}_\phi (D_\beta \pi \ell_{it})] + \frac{1}{2} \Lambda_{it}^2 \mathbb{E}_\phi (D_\beta \pi \ell_{it}) \right\}.
\]

(iii) In addition, let Assumption 4.2 hold. Then, Assumption B.2 is satisfied for the partial effects defined in (2.2). By Theorem B.4,

\[
\sqrt{NT} (\hat{\beta} - \beta) = V^{(0)} + V^{(1)} + \mathcal{O}_p(1),
\]

where

\[
V^{(0)} = \left[-\frac{1}{NT} \sum_{i,t} \mathbb{E}_\phi (D_\beta \Delta_{it}) \right]' \mathbf{W}^{-1} U^{(0)} - \frac{1}{\sqrt{NT}} \sum_{i,t} \mathbb{E}_\phi (\ell_{it}) \partial_\pi \ell_{it},
\]

\[
V^{(1)} = \left[-\frac{1}{NT} \sum_{i,t} \mathbb{E}_\phi (D_\beta \Delta_{it}) \right]' \mathbf{W}^{-1} U^{(1)} + \frac{1}{\sqrt{NT}} \sum_{i,t} \Lambda_{it} \left[\mathbb{E}_\phi (\ell_{it}) \partial_\pi \ell_{it} \Delta_{it} - \mathbb{E}_\phi (\ell_{it}) \mathbb{E}_\phi (\partial_\pi \ell_{it}) \right]
\]

\[
+ \frac{1}{2} \frac{1}{\sqrt{NT}} \sum_{i,t} \Lambda_{it}^2 \left[\mathbb{E}_\phi (\partial_\pi \Delta_{it}) - \mathbb{E}_\phi (\partial_\pi \ell_{it}) \mathbb{E}_\phi (\ell_{it}) \right].
\]

C.2 Proofs of Theorems 4.1 and 4.2

Proof of Theorem 4.1. First, we want to show that \(U^{(0)} \rightarrow_d N(0, \mathbf{W}_\infty) \). In our likelihood setting, \(\mathbb{E}_\phi \partial_\beta \mathcal{L} = 0 \), \(\mathbb{E}_\phi \mathcal{S} = 0 \), and, by the Bartlett identities, \(\mathbb{E}_\phi (\partial_\beta \mathcal{L} \partial_\beta' \mathcal{L}) = -\frac{1}{\sqrt{NT}} \partial_\beta \mathcal{L} \mathcal{L} \), \(\mathbb{E}_\phi (\partial_\beta \mathcal{L} \mathcal{S}') = -\frac{1}{\sqrt{NT}} \partial_\beta \mathcal{L} \mathcal{L} \mathcal{S}' \) and \(\mathbb{E}_\phi (\mathcal{S} \mathcal{S}') = \frac{1}{\sqrt{NT}} \left(\mathcal{H} - \frac{1}{\sqrt{NT}} \mathcal{L} \mathcal{L} \right) \mathcal{L} \). Furthermore, \(\mathcal{S}' \mathcal{L} = 0 \) and \(\partial_\beta \mathcal{L} \mathcal{L} \mathcal{S}' = 0 \). Then, by definition of \(\mathbf{W} = -\frac{1}{\sqrt{NT}} \left(\partial_\beta \mathcal{L} + [\partial_\beta \mathcal{L}] \mathcal{S}' \right) \mathcal{L} - \frac{1}{\sqrt{NT}} \mathcal{L} \mathcal{S} \) and \(U^{(0)} = \partial_\beta \mathcal{L} + [\partial_\beta \mathcal{L}] \mathcal{H}^{-1} \mathcal{S} \),

\[
\mathbb{E}_\phi \left(U^{(0)} \right) = 0, \quad \text{Var} \left(U^{(0)} \right) = \mathbf{W}.
\]
which implies that \(\lim_{N,T \to \infty} \text{Var} (U^{(0)}) = \lim_{N,T \to \infty} W = W_\infty \). Moreover, part (ii) of Theorem C.1 yields

\[
U^{(0)} = \frac{1}{\sqrt{NT}} \sum_{i=1}^{N} \sum_{t=1}^{T} D_\beta \ell_{it},
\]

where \(D_\beta \ell_{it} = \partial_\beta \ell_{it} - \partial_\phi \ell_{it} \) is a martingale difference sequence for each \(i \) and independent across \(i \), conditional on \(\phi \). Thus, by Lemma S.3 and the Cramer-Wold device we conclude that

\[
U^{(0)} \to_d \mathcal{N} \left[0, \lim_{N,T \to \infty} \text{Var} (U^{(0)}) \right] \sim \mathcal{N} (0, W_\infty).
\]

Next, we show that \(U^{(1)} \to_p \kappa B_\infty + \kappa^{-1} D_\infty \). Part (ii) of Theorem C.1 gives \(U^{(1)} = U^{(1a)} + U^{(1b)} \), with

\[
U^{(1a)} = -\frac{1}{\sqrt{NT}} \sum_{i=1}^{N} \sum_{t=1}^{T} \Lambda_{it} \left[D_\beta \phi - \mathbb{E}_\phi (D_\beta \phi) \right],
\]

\[
U^{(1b)} = \frac{1}{2 \sqrt{NT}} \sum_{i=1}^{N} \sum_{t=1}^{T} \Lambda_{it}^2 \mathbb{E}_\phi (D_\beta \phi^2).
\]

Plugging-in the definition of \(\Lambda_{it} \), we decompose \(U^{(1a)} = U^{(1a,1)} + U^{(1a,2)} + U^{(1a,3)} + U^{(1a,4)} \), where

\[
U^{(1a,1)} = \frac{1}{NT} \sum_{i,j} \mathcal{H}_{(\alpha \alpha)}^{-1} \left(\sum_{j} \partial_\alpha \ell_{j,\tau} \right) \sum_{t} \left[D_\beta \phi - \mathbb{E}_\phi (D_\beta \phi) \right],
\]

\[
U^{(1a,2)} = \frac{1}{NT} \sum_{j,t} \partial_\alpha \ell_{j,\tau} \sum_{i} \left[D_\beta \phi - \mathbb{E}_\phi (D_\beta \phi) \right],
\]

\[
U^{(1a,3)} = \frac{1}{NT} \sum_{i,\tau} \left(\sum_{j} \partial_\tau \ell_{j,\tau} \right) \sum_{t} \left[D_\beta \phi - \mathbb{E}_\phi (D_\beta \phi) \right],
\]

\[
U^{(1a,4)} = \frac{1}{NT} \sum_{\ell,\tau} \left(\sum_{j} \partial_\tau \ell_{j,\tau} \right) \sum_{t} \left[D_\beta \phi - \mathbb{E}_\phi (D_\beta \phi) \right].
\]

By the Cauchy-Schwarz inequality applied to the sum over \(t \) in \(U^{(1a,2)} \),

\[
\left(U^{(1a,2)} \right)^2 \leq \frac{1}{(NT)^2} \left[\sum_{t} \left(\sum_{j,\tau} \mathcal{H}_{(\alpha \alpha)}^{-1} \partial_\alpha \ell_{j,\tau} \right)^2 \right] \left[\sum_{t} \left[D_\beta \phi - \mathbb{E}_\phi (D_\beta \phi) \right]^2 \right].
\]

By Lemma D.1, \(\mathcal{H}_{(\alpha \alpha)}^{-1} \partial_\alpha \ell_{j,\tau} = O_P(1/\sqrt{NT}) \), uniformly over \(t,j \). Using that both \(\sqrt{NT} \mathcal{H}_{(\alpha \alpha)}^{-1} \partial_\alpha \ell_{j,\tau} \) and \(D_\beta \phi - \mathbb{E}_\phi (D_\beta \phi) \) are mean zero, independence across \(i \) and Lemma S.2 in the supplementary material across \(t \), we obtain

\[
\mathbb{E}_\phi \left(\frac{1}{\sqrt{NT}} \sum_{j,\tau} \mathcal{H}_{(\alpha \alpha)}^{-1} \partial_\alpha \ell_{j,\tau} \right)^2 = O_P(1), \quad \mathbb{E}_\phi \left(\frac{1}{\sqrt{NT}} \sum_{i} \left[D_\beta \phi - \mathbb{E}_\phi (D_\beta \phi) \right] \right)^2 = O_P(1),
\]

uniformly over \(t \). Thus, \(\sum_{t} \left(\sum_{j,\tau} \mathcal{H}_{(\alpha \alpha)}^{-1} \partial_\alpha \ell_{j,\tau} \right)^2 = O_P(T) \) and \(\sum_{t} \left(\sum_{i} \left[D_\beta \phi - \mathbb{E}_\phi (D_\beta \phi) \right] \right)^2 = O_P(NT) \). We conclude that

\[
\left(U^{(1a,2)} \right)^2 = \frac{1}{(NT)^2} O_P(T) O_P(NT) = O_P(1/N) = o_P(1),
\]
and therefore that $U^{(1a,2)} = o_P(1)$. Analogously one can show that $U^{(1a,3)} = o_P(1)$.

By Lemma D.1, $\Phi^{-1}_{(\alpha \alpha)} = -\text{diag}\left[\left(\frac{1}{\sqrt{NT}} \sum_{t=1}^{T} E\phi(\partial_{\beta \pi} \ell_{it})\right)^{-1}\right] + o_P(1/\sqrt{NT})$. Analogously to the proof of $U^{(1a,2)} = o_P(1)$, one can show that the $O_P(1/\sqrt{NT})$ part of $\Phi^{-1}_{(\alpha \alpha)}$ has an asymptotically negligible contribution to $U^{(1a,1)}$. Thus,

$$U^{(1a,1)} = -\frac{1}{\sqrt{NT}} \sum_{i} \left(\sum_{\tau} \partial_{\alpha_{i}} \ell_{it} \right) \sum_{\tau} [D_{\beta \pi} \ell_{it} - E\phi(D_{\beta \pi} \ell_{it})] + o_P(1).$$

Our assumptions guarantee that $E\phi \left\{ U^{(1a,1)} \right\} = O_P(1)$, uniformly over i. Note that both the denominator and the numerator of $U^{(1a,1)}$ are of order T. For the denominator this is obvious because of the sum over T. For the numerator there are two sums over T, but both $\partial_{\alpha_{i}} \ell_{it}$ and $D_{\beta \pi} \ell_{it} - E\phi(D_{\beta \pi} \ell_{it})$ are mean zero weakly correlated processes, so that their sums are of order \sqrt{T}. By the WLLN over i (remember that we have cross-sectional independence, conditional on ϕ, and we assume finite moments), $N^{-1} \sum_{i} U^{(1a,1)} = N^{-1} \sum_{i} E\phi U^{(1a,1)} + o_P(1)$, and therefore

$$U^{(1a,1)} = -\sqrt{\frac{NT}{T}} \sum_{i} \sum_{\tau} \left[\sum_{\tau} \partial_{\alpha_{i}} \ell_{it} D_{\beta \pi} \ell_{it} \right] + o_P(1).$$

Here, we use that $E\phi(\partial_{\alpha_{i}} \ell_{it} D_{\beta \pi} \ell_{it}) = 0$ for $t > \tau$. Analogously,

$$U^{(1a,4)} = -\sqrt{T} \sum_{i} \sum_{\tau} \left[\sum_{\tau} \partial_{\alpha_{i}} \ell_{it} D_{\beta \pi} \ell_{it} \right] + o_P(1).$$

We conclude that $U^{(1a)} = \kappa B^{(1)} + \kappa^{-1} D^{(1)} + o_P(1)$.

Next, we analyze $U^{(1b)}$. We decompose $\Lambda_{it} = \Lambda_{it}^{(1)} + \Lambda_{it}^{(2)} + \Lambda_{it}^{(3)} + \Lambda_{it}^{(4)}$, where

$$\Lambda_{it}^{(1)} = -\frac{1}{\sqrt{NT}} \sum_{j=1}^{T} \sum_{\tau=1}^{T} \partial_{\alpha_{j}} \ell_{jt}, \quad \Lambda_{it}^{(2)} = -\frac{1}{\sqrt{NT}} \sum_{j=1}^{T} \sum_{\tau=1}^{T} \partial_{\pi_{j}} \ell_{jt},$$

$$\Lambda_{it}^{(3)} = -\frac{1}{\sqrt{NT}} \sum_{j=1}^{T} \sum_{\tau=1}^{T} \partial_{\alpha_{j}} \ell_{jt}, \quad \Lambda_{it}^{(4)} = -\frac{1}{\sqrt{NT}} \sum_{j=1}^{T} \sum_{\tau=1}^{T} \partial_{\pi_{j}} \ell_{jt}.$$

This decomposition of Λ_{it} induces the following decomposition of $U^{(1b)}$

$$U^{(1b)} = \sum_{p,q=1}^{4} U^{(1b,p,q)}.$$

$$U^{(1b,p,q)} = \frac{1}{2\sqrt{NT}} \sum_{i=1}^{N} \sum_{t=1}^{T} \Lambda_{it}^{(p)} \Lambda_{it}^{(q)} E\phi(D_{\beta \pi} \ell_{it}).$$

Due to the symmetry $U^{(1b,p,q)} = U^{(1b,q,p)}$, this decomposition has 10 distinct terms. Start with $U^{(1b,1,2)}$ noting that

$$U^{(1b,1,2)} = \frac{1}{\sqrt{NT}} \sum_{i=1}^{N} U^{(1b,1,2)}.$$

$$U^{(1b,1,2)} = \frac{1}{2T} \sum_{i=1}^{T} E\phi(D_{\beta \pi} \ell_{it}) \frac{1}{N^2} \sum_{j_{1},j_{2}=1}^{N} NT \partial_{\alpha} \ell_{it} \left[\frac{1}{N^2} \sum_{j_{1},j_{2}=1}^{N} NT \partial_{\alpha} \ell_{it} \right] \left(\frac{1}{\sqrt{T}} \sum_{\tau=1}^{T} \partial_{\alpha_{j_{1}}} \ell_{jt} \right) \left(\frac{1}{\sqrt{T}} \sum_{\tau=1}^{T} \partial_{\alpha_{j_{2}}} \ell_{jt} \right).$$
By $E_\phi(\partial_x \ell_{it}) = 0$, $E_\phi(\partial_\pi \ell_{it} \partial_\pi \ell_{j\tau}) = 0$ for $(i, t) \neq (j, \tau)$, and the properties of the inverse expected Hessian from Lemma D.1, $E_\phi\left[U_i^{(1b,1,2)}\right] = O_P(1/N)$, uniformly over i, $E_\phi\left[U_i^{(1b,1,2)}\right]^2 = O_P(1)$, uniformly over i, and $E_\phi\left[U_j^{(1b,1,2)}\right] = O_P(1/N)$, uniformly over $i \neq j$. This implies that $E_\phi U^{(1b,1,2)} = O_P(1/N)$ and $E_\phi\left[U^{(1b,1,2)} - E_\phi U^{(1b,1,2)}\right]^2 = O_P(1/\sqrt{N})$, and therefore $U^{(1b,1,2)} = o_P(1)$. By similar arguments one obtains $U^{(p,q)} = o_P(1)$ for all combinations of $p, q = 1, 2, 3, 4$, except for $p = q = 1$ and $p = q = 4$.

For $p = q = 1$,

\[
U^{(1b,1,1)} = \frac{1}{\sqrt{NT}} \sum_{i=1}^{N} U_i^{(1b,1,1)},
\]

\[
U_i^{(1b,1,1)} = \frac{1}{2T} \sum_{t=1}^{T} E_\phi(D_{\beta \pi^2 \ell_{it}}) \frac{1}{N^2} \sum_{j_1,j_2=1}^{N} \left[N T \mathcal{H}_{(a,a)}^{-1}(j,j) \mathcal{H}_{(a,a)}^{-1}(j,j) \right] \left(\frac{1}{\sqrt{T}} \sum_{\tau=1}^{T} \partial_\pi \ell_{j_1 \tau} \right) \left(\frac{1}{\sqrt{T}} \sum_{\tau=1}^{T} \partial_\pi \ell_{j_2 \tau} \right).
\]

Analogous to the result for $U^{(1b,1,2)}$, $E_\phi\left[(U^{(1b,1,1)} - E_\phi U^{(1b,1,1)})^2\right] = O_P(1/\sqrt{N})$, and therefore $U^{(1b,1,1)} = E_\phi U^{(1b,1,1)} + o(1)$. Furthermore,

\[
E_\phi U^{(1b,1,1)} = \frac{1}{2\sqrt{NT}} \sum_{i=1}^{N} \sum_{t=1}^{T} E_\phi(D_{\beta \pi^2 \ell_{it}}) \sum_{\tau=1}^{T} E_\phi\left(\partial_\pi \ell_{i \tau}\right) + o(1)
\]

\[
= \sqrt{\frac{N}{T}} \frac{1}{2N} \sum_{i=1}^{N} \sum_{t=1}^{T} E_\phi(D_{\beta \pi^2 \ell_{it}}) + o(1).
\]

Analogously,

\[
U^{(1b,4,4)} = E_\phi U^{(1b,4,4)} + o_P(1) = \sqrt{\frac{T}{N}} \frac{1}{2T} \sum_{i=1}^{N} \sum_{t=1}^{T} E_\phi(D_{\beta \pi^2 \ell_{it}}) + o(1).
\]

We have thus shown that $U^{(1b)} = k B^{(2)} + k^{-1} D^{(2)} + o_P(1)$. Since $B_\infty = \lim_{N,T \to \infty} [B^{(1)} + B^{(2)}]$, we thus conclude $U^{(1)} = k B_\infty + k^{-1} D_\infty + o_P(1)$.

We have shown $U^{(0)} \to_d N(0, W_\infty)$, and $U^{(1)} \to_p k B_\infty + k^{-1} D_\infty$. Then, part (ii) of Theorem C.1 yields $\sqrt{NT}(\hat{\beta} - \beta^0) \to_d W^{-1}_\infty N(k B_\infty + k^{-1} D_\infty, W_\infty)$. \hfill \blacksquare

Proof of Theorem 4.2. We consider the case of scalar Δ_{it} to simplify the notation. Decompose

\[
r_{NT}(\hat{\beta} - \beta^0_{NT} - \hat{B}_\infty/T - \hat{D}_\infty/N) = r_{NT}(\beta - \beta^0_{NT}) + \frac{r_{NT}}{\sqrt{NT}} \sqrt{NT}(\hat{\beta} - \beta - \hat{B}_\infty/T - \hat{D}_\infty/N).
\]

Part (1): Limit of $\sqrt{NT}(\hat{\beta} - \beta - \hat{B}_\infty/T - \hat{D}_\infty/N)$. An argument analogous to the proof of Theorem 4.1 using Theorem C.1(iii) yields

\[
\sqrt{NT}(\hat{\beta} - \beta) \to_d N\left(k \hat{B}_\infty + k^{-1} \hat{D}_\infty, \hat{V}^{(1)}\right),
\]
where $V_{\infty}^{(1)} = \mathbb{E}\left\{ (NT)^{-1} \sum_{i,t} \mathbb{E}_\theta [\Gamma_i^2] \right\}$, for the expressions of \overline{B}_∞, \overline{D}_∞, and $\Gamma_i t$ given in the statement of the theorem. Then, by Mann-Wald theorem

$$\sqrt{NT}(\hat{\delta} - \delta - \overline{B}_\infty / T - \overline{D}_\infty / N) \rightarrow_d \mathcal{N}(0, V_{\infty}^{(1)}) .$$

Part (2): Limit of $r_{NT}(\delta - \delta^0_{NT})$. Here we show that $r_{NT}(\delta - \delta^0_{NT}) \rightarrow_d \mathcal{N}(0, V_{\infty}^{(2)})$ for the rates of convergence r_{NT} given in Remark 4, and characterize the asymptotic variance $V_{\infty}^{(2)}$. We determine r_{NT} through $\mathbb{E}[(\delta - \delta^0_{NT})^2] = \mathcal{O}(r_{NT}^2)$ and $r_{NT}^2 = \mathcal{O}(\mathbb{E}[(\delta - \delta^0_{NT})^2])$, where

$$\mathbb{E}[(\delta - \delta^0_{NT})^2] = \mathbb{E}\left[\left(\frac{1}{NT} \sum_{i,t} \check{\Delta}_it \right)^2 \right] = \frac{1}{N^2T^2} \sum_{i,t,s} \mathbb{E}\left[\check{\Delta}_it \check{\Delta}_js \right] ,$$

for $\check{\Delta}_it = \Delta_it - E(\Delta_it)$. Then, we characterize $V_{\infty}^{(2)}$ as $V_{\infty}^{(2)} = \mathbb{E}\{ r_{NT}^2 E[(\delta - \delta^0_{NT})^2] \}$, because $E[\delta - \delta^0_{NT}] = 0$. The order of $E[(\delta - \delta^0_{NT})^2]$ is equal to the number of terms of the sums in equation (C.2) that are non zero, which is determined by the sample properties of $\{(X_it, \alpha_i, \gamma_i) : 1 \leq i \leq N, 1 \leq t \leq T \}$.

Under Assumption 4.2(i)(a),

$$\mathbb{E}[(\delta - \delta^0_{NT})^2] = \frac{1}{N^2T^2} \sum_{i,t,s} \mathbb{E}\left[\check{\Delta}_it \check{\Delta}_is \right] = \mathcal{O}(N^{-1}) ,$$

because $\{\check{\Delta}_it : 1 \leq i \leq N; 1 \leq t \leq T \}$ is independent across i and α-mixing across t.

Under Assumption 4.2(i)(b), if $\{\alpha_i\}_N$ and $\{\gamma_i\}_T$ are independent sequences, and α_i and γ_t are independent for all i, t, then $\mathbb{E}[\check{\Delta}_it \check{\Delta}_jt] = \mathbb{E}[\check{\Delta}_it] \mathbb{E}[\check{\Delta}_jt] = 0$ if $i \neq j$ and $t \neq s$, so that

$$\mathbb{E}[(\delta - \delta^0_{NT})^2] = \frac{1}{N^2T^2} \left\{ \sum_{i,t} \mathbb{E}\left[\check{\Delta}_it \check{\Delta}_is \right] + \sum_{i,t} \mathbb{E}\left[\check{\Delta}_it \check{\Delta}_jt \right] - \sum_{i,t} \mathbb{E}\left[\check{\Delta}_it \check{\Delta}_jt \right] \right\} = \mathcal{O}\left(\frac{N + T - 1}{NT} \right) ,$$

because $\mathbb{E}[\check{\Delta}_it \check{\Delta}_jt] \leq \mathbb{E}[\check{\Delta}_it^2]^{1/2} \mathbb{E}[\check{\Delta}_jt^2]^{1/2} < C$ by the Cauchy-Schwarz inequality and Assumption 4.2(ii). We conclude that $r_{NT} = \sqrt{NT/(N + T - 1)}$ and

$$V_{\infty}^{(2)} = \mathbb{E}\left\{ \frac{r_{NT}^2}{N^2T^2} \left(\sum_{i,t,s} \mathbb{E}\left[\check{\Delta}_it \check{\Delta}_is \right] + \sum_{i,t} \mathbb{E}\left[\check{\Delta}_it \check{\Delta}_jt \right] \right) \right\} .$$

Note that in both cases $r_{NT} \rightarrow \infty$ and $r_{NT} = \mathcal{O}(\sqrt{NT})$.

Part (3): limit of $r_{NT}(\hat{\delta} - \delta^0_{NT} - T^{-1} \overline{B}_\infty - N^{-1} \overline{D}_\infty)$. The conclusion of the Theorem follows because $\hat{\delta} - \delta^0_{NT}$ and $\hat{\delta} - T^{-1} \overline{B}_\infty - N^{-1} \overline{D}_\infty$ are asymptotically independent and $V_{\infty} = V_{\infty}^{(2)} + V_{\infty}^{(1)} \lim_{N,T \rightarrow \infty}\left(r_{NT} / \sqrt{NT} \right)^2$. ■

D. Properties of the Inverse Expected Incidental Parameter Hessian

The expected incidental parameter Hessian evaluated at the true parameter values is

$$\mathcal{H} = \mathbb{E}_{\theta}[-\partial_{\theta'} \mathcal{L}] = \begin{pmatrix} \frac{\partial^2 \mathcal{L}}{\partial \alpha \partial \alpha'} & \frac{\partial^2 \mathcal{L}}{\partial \alpha \partial \gamma'} \\ \frac{\partial^2 \mathcal{L}}{\partial \alpha \partial \gamma'} & \frac{\partial^2 \mathcal{L}}{\partial \gamma \partial \gamma'} \end{pmatrix} + \frac{b}{\sqrt{NT}} \nu \nu',$$

37
where \(v = v_N T = (1', -1')', \ \mathcal{H}_{(\alpha\alpha)}^* = \text{diag}(\frac{1}{\sqrt{N T}} \sum_t E \phi[-\partial_{\pi z} \ell_{it}], \ \mathcal{H}_{(\alpha\gamma)}^* = \frac{1}{\sqrt{N T}} E \phi[-\partial_{\pi z} \ell_{it}], \) and \(\mathcal{H}_{(\gamma\gamma)}^* = \text{diag}(\frac{1}{\sqrt{N T}} \sum_t E \phi[-\partial_{\pi z} \ell_{it}]). \)

In panel models with only individual effects, it is straightforward to determine the order of magnitude of \(\mathcal{H}^{-1} \) in Assumption B.1(iv), because \(\mathcal{H} \) contains only the diagonal matrix \(\mathcal{H}_{(\alpha\alpha)}^* \). In our case, \(\mathcal{H} \) is no longer diagonal, but it has a special structure. The diagonal terms are of order 1, whereas the off-diagonal terms are of order \((N T)^{-1/2} \). Moreover, \(\| \mathcal{H} - \text{diag}(\mathcal{H}_{(\alpha\alpha)}^*, \mathcal{H}_{(\gamma\gamma)}^*) \|_{\max} = O_P((N T)^{-1/2}). \)

These observations, however, are not sufficient to establish the order of \(\mathcal{H}^{-1} \) because the number of non-zero off-diagonal terms is of much larger order than the number of diagonal terms; compare \(O((N T)) \) to \(O(N + T) \). Note also that the expected Hessian without penalty term \(\mathcal{H}^* \) has the same structure as \(\mathcal{H} \) itself, but is not even invertible, i.e. the observation on the relative size of diagonal vs. off-diagonal terms is certainly not sufficient to make statements about the structure of \(\mathcal{H}^{-1} \). The result of the following lemma is therefore not obvious. It shows that the diagonal terms of \(\mathcal{H} \) also dominate in determining the order of \(\mathcal{H}^{-1} \).

Lemma D.1. Under Assumptions 4.1,

\[
\left\| \mathcal{H}^{-1} - \text{diag}(\mathcal{H}_{(\alpha\alpha)}^*, \mathcal{H}_{(\gamma\gamma)}^*) \right\|_{\max} = O_P\left((N T)^{-1/2}\right).
\]

The proof of Lemma D.1 is provided in the supplementary material. The lemma result establishes that \(\mathcal{H}^{-1} \) can be uniformly approximated by a diagonal matrix, which is given by the inverse of the diagonal terms of \(\mathcal{H} \) without the penalty. The diagonal elements of \(\text{diag}(\mathcal{H}_{(\alpha\alpha)}^*, \mathcal{H}_{(\gamma\gamma)}^*)^{-1} \) are of order 1, i.e. the order of the difference established by the lemma is relatively small.

Note that the choice of penalty in the objective function is important to obtain Lemma D.1. Different penalties, corresponding to other normalizations (e.g. a penalty proportional to \(\alpha_1^2 \), corresponding to the normalization \(\alpha_1 = 0 \)), would fail to deliver Lemma D.1. However, these alternative choices do not affect the estimators \(\hat{\beta} \) and \(\hat{\delta} \), i.e. which normalization is used to compute \(\hat{\beta} \) and \(\hat{\delta} \) in practice is irrelevant (up to numerical precision errors).

References

Table 3: Finite-sample properties in static probit model (N = 52)

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>APE</th>
<th>Design 1: autoregressive with individual and time effects</th>
<th>Design 2: linear trend with individual and time effects</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>T = 14</td>
<td>T = 14</td>
</tr>
<tr>
<td>MLE-FETE</td>
<td></td>
<td>13 12 17 0.88 0.76 1 8 8 0.93 0.93</td>
<td>19 13 23 0.86 0.61 -2 10 10 0.78 0.87</td>
</tr>
<tr>
<td>Analytical</td>
<td></td>
<td>0 10 10 1.05 0.96 -1 8 8 0.95 0.95</td>
<td>1 10 10 1.12 0.98 -3 10 10 0.80 0.87</td>
</tr>
<tr>
<td>Jackknife</td>
<td></td>
<td>-7 11 13 0.89 0.85 0 9 9 0.80 0.88</td>
<td>-13 18 22 0.65 0.73 -3 11 11 0.72 0.83</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T = 26</td>
<td>T = 26</td>
</tr>
<tr>
<td>MLE-FETE</td>
<td></td>
<td>8 8 11 0.93 0.81 0 6 6 0.94 0.95</td>
<td>9 8 12 0.94 0.76 2 8 8 0.82 0.87</td>
</tr>
<tr>
<td>Analytical</td>
<td></td>
<td>0 7 7 1.03 0.95 0 6 6 0.95 0.95</td>
<td>0 7 7 1.07 0.96 1 8 8 0.82 0.88</td>
</tr>
<tr>
<td>Jackknife</td>
<td></td>
<td>-3 7 8 0.97 0.91 0 6 6 0.89 0.92</td>
<td>-5 8 10 0.90 0.88 1 8 8 0.79 0.86</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T = 52</td>
<td>T = 52</td>
</tr>
<tr>
<td>MLE-FETE</td>
<td></td>
<td>5 5 7 0.98 0.83 0 4 4 0.99 0.94</td>
<td>6 5 8 0.97 0.78 0 5 5 0.90 0.92</td>
</tr>
<tr>
<td>Analytical</td>
<td></td>
<td>0 5 5 1.05 0.96 0 4 4 0.99 0.94</td>
<td>0 5 5 1.06 0.97 0 5 5 0.90 0.92</td>
</tr>
<tr>
<td>Jackknife</td>
<td></td>
<td>-1 5 5 0.99 0.95 0 4 4 0.94 0.93</td>
<td>-2 5 6 0.96 0.94 0 5 5 0.89 0.92</td>
</tr>
</tbody>
</table>

Notes: All the entries are in percentage of the true parameter value. 500 repetitions. Data generated from the probit model: \(Y_{it} = 1(\beta X_{it} + \alpha_i + \gamma_t > \varepsilon_{it}) \), with \(\varepsilon_{it} \sim \text{i.i.d.} \ N(0,1) \), \(\alpha_i \sim \text{i.i.d.} \ N(0,1/16) \), \(\gamma_t \sim \text{i.i.d.} \ N(0, 1/16) \) and \(\beta = 1 \). In design 1, \(X_{it} = X_{i,t-1}/2 + \alpha_i + \gamma_t + \nu_{it} \), \(\nu_{it} \sim \text{i.i.d.} \ N(0, 1/2) \), and \(X_{i0} \sim N(0,1) \). In design 2, \(X_{it} = 2t/T + \alpha_i + \gamma_t + \nu_{it} \), and \(\nu_{it} \sim \text{i.i.d.} \ N(0, 3/4) \), independent of \(\alpha_i, \gamma_t \). Average effect is \(\beta \mathbb{E}[\phi(\beta X_{it} + \alpha_i + \gamma_t)] \), where \(\phi() \) is the PDF of the standard normal distribution. MLE-FETE is the probit maximum likelihood estimator with individual and time fixed effects; Analytical is the bias corrected estimator that uses an analytical correction; and Jackknife is the bias corrected estimator that uses split panel jackknife in both the individual and time dimension.
Table 4: Finite-sample properties in dynamic probit model: lagged dependent variable (N = 52)

<table>
<thead>
<tr>
<th>Coefficient of Y_{t-1}</th>
<th>APE of Y_{t-1}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bias</td>
</tr>
<tr>
<td>MLE-FETE</td>
<td>-44</td>
</tr>
<tr>
<td>Analytical (L=1)</td>
<td>-5</td>
</tr>
<tr>
<td>Analytical (L=2)</td>
<td>-4</td>
</tr>
<tr>
<td>Jackknife</td>
<td>12</td>
</tr>
<tr>
<td>MLE-FETE</td>
<td>-23</td>
</tr>
<tr>
<td>Analytical (L=1)</td>
<td>-4</td>
</tr>
<tr>
<td>Analytical (L=2)</td>
<td>-1</td>
</tr>
<tr>
<td>Jackknife</td>
<td>2</td>
</tr>
<tr>
<td>MLE-FETE</td>
<td>-9</td>
</tr>
<tr>
<td>Analytical (L=1)</td>
<td>-1</td>
</tr>
<tr>
<td>Analytical (L=2)</td>
<td>0</td>
</tr>
<tr>
<td>Jackknife</td>
<td>1</td>
</tr>
</tbody>
</table>

Notes: All the entries are in percentage of the true parameter value. 500 repetitions. Data generated from the probit model: \(Y_{it} = 1(\beta_0 Y_{it-1} + \beta_2 Z_{it} + \alpha_1 + \gamma_1 \varepsilon_{it}) \), with \(Y_0 = 1(\beta_0 Z_0 + \alpha_1 + \gamma_0 \varepsilon_0) \), \(\varepsilon_{it} \sim \text{i.i.d. } N(0,1) \), \(\alpha_1 \sim \text{i.i.d. } N(0,1/16) \), \(\gamma_0 \sim \text{i.i.d. } N(0,1/16) \), \(\beta_1 = 0.5 \), and \(\beta_2 = 1 \). In design 1, \(Z_{it} = Z_{i,t-1}/T + \alpha_1 + \gamma_1 \nu_{it} + \nu_{it} \sim \text{i.i.d. } N(0,1/16) \), and \(Z_0 \sim \text{i.i.d. } N(0,1) \). In design 2, \(Z_{it} = 1.5 T/\nu_{it} \), and \(\varepsilon_{it} \sim \text{i.i.d. } N(0,3/4) \), independent of \(\alpha_1 \), \(\gamma_1 \). Average effect is \(E[\Phi(\beta_0 + \beta_2 Z_{it} + \alpha_1 + \gamma_1)] \), where \(\Phi() \) is the CDF of the standard normal distribution. MLE-FETE is the probit maximum likelihood estimator with individual and time fixed effects; Analytical (L = 1) is the bias corrected estimator that uses an analytical correction with \(l \) lags to estimate the spectral expectations; and Jackknife is the bias corrected estimator that uses split panel jackknife in both the individual and time dimension.
Table 5: Finite-sample properties in dynamic probit model: exogenous regressor (N = 52)

<table>
<thead>
<tr>
<th>Design</th>
<th>Coefficient of Z_t</th>
<th>APE of Z_t</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bias</td>
<td>Std. Dev.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MLE-FETE</td>
<td>20</td>
<td>13</td>
</tr>
<tr>
<td>Analytical (L=1)</td>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td>Analytical (L=2)</td>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td>Jackknife</td>
<td>-9</td>
<td>14</td>
</tr>
<tr>
<td>MLE-FETE</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>Analytical (L=1)</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>Analytical (L=2)</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>Jackknife</td>
<td>-3</td>
<td>8</td>
</tr>
<tr>
<td>MLE-FETE</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>Analytical (L=1)</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Analytical (L=2)</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Jackknife</td>
<td>-1</td>
<td>5</td>
</tr>
</tbody>
</table>

Notes: All the entries are in percentage of the true parameter value. 500 repetitions. Data generated from the probit model: $Y_t = 1(\beta_i Y_{i,t-1} + \beta_Z Z_t + \alpha + \gamma_i + \epsilon_t)$, with $\epsilon_t = 1(\beta_Z Z_t + \alpha + \gamma_i + \epsilon_t)$, $\epsilon_t \sim$ i.i.d. N(0,1), $\alpha \sim$ i.i.d. N(0,1/16), $\gamma_i \sim$ i.i.d. N(0,1/2), and $Z_t \sim$ N(0,1). In design 2, $Z_t = 1.5 t / T + \psi_t$, and $\psi_t \sim$ i.i.d. N(0, 1/2), independent of α y γ_i. Average effect is $\beta_Z E[\psi(\beta_i Y_{i,t-1} + \beta_Z Z_t + \alpha + \gamma_i)]$, where $\psi()$ is the PDF of the standard normal distribution. MLE-FETE is the probit maximum likelihood estimator with individual and time fixed effects; Analytical (L = 1) is the bias corrected estimator that uses an analytical correction with 1 lags to estimate the spectral expectations; and Jackknife is the bias corrected estimator that uses split panel jackknife in both the individual and time dimension.

Design 1: autoregressive with individual and time effects

Design 2: linear trend with individual and time effects