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Abstract

Fixed effects estimators of nonlinear panel data models can be severely biased because of the incidental

parameter problem. We develop analytical and jackknife bias corrections for nonlinear models with

both individual and time effects. Under asymptotic sequences where the time-dimension (T ) grows

with the cross-sectional dimension (N), the time effects introduce additional incidental parameter bias.

As the existing bias corrections apply to models with only individual effects, we derive the appropriate

corrections for the case when both effects are present. The basis for the corrections are general asymptotic

expansions of fixed effects estimators with incidental parameters in multiple dimensions. We apply the

expansions to conditional maximum likelihood estimators with concave objective functions in parameters

for panel models with additively separable individual and time effects. These estimators cover fixed

effects estimators of the most popular limited dependent variable models such as logit, probit, ordered

probit, Tobit and Poisson models. Our analysis therefore extends the use of large-T bias adjustments

to an important class of models.

We also analyze the properties of fixed effects estimators of functions of the data, parameters and

individual and time effects including average partial effects. Here, we uncover that the incidental pa-

rameter bias is asymptotically of second order, because the rate of the convergence of the fixed effects

estimators is slower for average partial effects than for model parameters. The bias corrections are still

effective to improve finite-sample properties.
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1 Introduction

Fixed effects estimators of nonlinear panel data models can be severely biased because of the incidental

parameter problem (Neyman and Scott (1948), Heckman (1981), Lancaster (2000), and Greene (2004)).

A recent literature, surveyed in Arellano and Hahn (2007) and including Phillips and Moon (1999), Hahn

and Kuersteiner (2002), Lancaster (2002), Woutersen (2002), Alvarez and Arellano (2003), Hahn and

Newey (2004), Carro (2007), Arellano and Bonhomme (2009), Fernandez-Val (2009), Hahn and Kuer-

steiner (2011), Fernandez-Val and Vella (2011), and Kato, Galvao and Montes-Rojas (2012), provides

a range of solutions, so-called large-T bias corrections, to reduce the incidental parameter problem in

long panels. These papers derive the analytical expression of the bias (up to a certain order of the time

dimension T ), which can be employed to adjust the biased fixed effects estimators. While the existing

large-T methods cover a large class of models with individual effects, they do not apply to panel models

with individual and time effects. An exception is Woutersen (2002), which considers a special type of

grouped time effects whose number is fixed with T . We instead consider an unrestricted set of T time

effects, one for each time period. Time effects are important for economic modeling because they allow

the researcher to control for aggregate common shocks and to parsimoniously introduce dependence

across individuals.

We develop analytical and jackknife bias corrections for nonlinear semiparametric models with both

individual and time effects. To justify the corrections, we rely on asymptotic sequences where T grows

with the cross-sectional dimension N , as an approximation to the properties of the estimators in econo-

metric applications where T is moderately large relative to N . Examples include empirical applications

that use U.S. state or country level panel data, or pseudo panels of trade flows across countries where the

panel dimensions correspond to importer and exporter countries. Under these asymptotics, the inciden-

tal parameter problem becomes a finite-sample bias problem in the time dimension and the presence of

time effects introduces additional bias in the cross sectional dimension. As the existing bias corrections

apply to models with only individual effects, we derive the appropriate correction.

In addition to model parameters, we provide bias corrections for average partial effects, which are

often the ultimate quantities of interest in nonlinear models. These effects are functions of the data,

parameters and individual and time effects in nonlinear models. The asymptotic distribution of the

fixed effects estimators of these quantities depends on the sampling properties of the individual and

time effects, unlike for model parameters. We find that in general the incidental parameters problem

for average effects is of second order asymptotically, because the rate of convergence of the fixed effect

estimator is slower for these effects than for model parameters. To the best of our knowledge, this rate

result is new for fixed effects estimators of average partial effects in nonlinear panel models with individual

and time effects.1 The bias corrections, while not necessary to center the asymptotic distribution, do

improve the finite-sample properties of the estimators specially in dynamic models.

The basis for the bias corrections are asymptotic expansions of fixed effects estimators with incidental

parameters in multiple dimensions. Bai (2009) and Moon and Weidner (2013a; 2013b) derive similar

1Galvao and Kato (2013) also found slow rates of convergence for fixed effects estimators in linear models with individual

effects under misspecification. Fernandez-Val and Lee (2013) pointed out this issue in nonlinear models with only individual

effects.
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expansions for least squares estimators of linear models with interactive individual and time effects.

We consider non-linear models, which produce similar bias patterns, but require different methods to

derive the asymptotic expansions. We focus on conditional maximum likelihood estimators with concave

objective functions in all parameters and additively separable individual and time effects.2 Concavity

greatly facilitates showing consistency in our setting where the dimension of the parameter space grows

with the sample size. The most popular limited dependent variable models, including logit, probit,

ordered probit, Tobit and Poisson models have concave log-likelihood functions (Olsen (1978), and

Pratt (1981)). By additively separable effects, we mean that the individual effect αi and the time effect

γt enter the likelihood for the observation (i, t) as αi+γt. This is the most common specification for the

individual and time effects in linear models and is a natural specification in the nonlinear models that

we consider. Our analysis therefore extends the use of large-T bias adjustments to an important class

of models.

Our corrections eliminate the leading term of the bias from the asymptotic expansions. Under

asymptotic sequences where N and T grow at the same rate, we find that this term has two components:

one of order O(T−1) coming from the estimation of the individual effects; and one of order O(N−1)

coming from the estimation of the time effects. We consider analytical methods similar to Hahn and

Newey (2004) and Hahn and Kuersteiner (2011), and suitable modifications of the split panel jackknife

of Dhaene and Jochmans (2010).3 However, the theory of the previous papers does not cover the

models that we consider, because, in addition to not allowing for time effects, they assume either

identical distribution or stationarity over time for the processes of the observed variables, conditional

on the unobserved effects. These assumptions are violated in our models due to the presence of the

time effects, so we need to adjust the asymptotic theory accordingly. The individual and time effects

introduce strong correlation in both dimensions of the panel. Conditional on the unobserved effects, we

impose cross-sectional independence and weak time-serial dependence, and we allow for heterogeneity

in both dimensions.

Simulation evidence indicates that our corrections improve the estimation and inference performance

of the fixed effects estimators of parameters and average effects. The analytical corrections dominate the

jackknife corrections in a probit model for sample sizes that are relevant for empirical practice. In the

online supplement Fernández-Val and Weidner (2015), we illustrate the corrections with an empirical

application on the relationship between competition and innovation using a panel of U.K. industries,

following Aghion, Bloom, Blundell, Griffith and Howitt (2005). We find that the inverted-U pattern

relationship found by Aghion et al is robust to relaxing the strict exogeneity assumption of competition

with respect to the innovation process and to the inclusion of innovation dynamics. We also uncover

substantial state dependence in the innovation process.

The large-T panel literature on models with individual and time effects is sparse. Regarding linear

regression models, there is a literature on interactive fixed effects that includes some of the papers

mentioned above (e.g. Pesaran (2006), Bai (2009), Moon and Weidner (2013a; 2013b)). Furthermore,

Hahn and Moon (2006) considered bias corrected fixed effects estimators in panel linear autoregressive

2Here conditional refers to the initial conditions, exogenous variables and unobserved effects. This meaning is different

from the estimators that condition on sufficient statistics for the unobserved effects such as the conditional logit estimator.
3A similar split panel jackknife bias correction method was outlined in Hu (2002).
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models with additive individual and time effects. Regarding non-linear models, there is independent and

contemporaneous work by Charbonneau (2012), which extended the conditional fixed effects estimators

to logit and Poisson models with exogenous regressors and additively separable individual and time

effects. She differences out the individual and time effects by conditioning on sufficient statistics. The

conditional approach completely eliminates the asymptotic bias coming from the estimation of the

incidental parameters, but it does not permit estimation of average partial effects and has not been

developed for models with predetermined regressors. We instead consider estimators of model parameters

and average partial effects in nonlinear models with predetermined regressors. The two approaches can

therefore be considered as complementary. Chernozhukov, Fernández-Val, Hahn and Newey (2013)

analyzed semiparametric multinomial choice panel models under asymptotic sequences where T is fixed.

They showed that the parameters and average partial effects are only partially identified in models with

discrete regressors, but the identification sets shrink very quickly to a point with T . We consider general

semiparametric models with discrete and continuous covariates under large-T .

The rest of the paper is organized as follows. Section 2 introduces the model and fixed effects

estimators. Section 3 describes the bias corrections to deal with the incidental parameters problem and

illustrates how the bias corrections work through an example. Section 4 provides the asymptotic theory.

Section 5 presents Monte Carlo results. The Appendix collects the proofs of the main results, and the

online supplement to the paper contains additional technical derivations, numerical examples, and an

empirical application (Fernández-Val and Weidner, 2015).

2 Model and Estimators

2.1 Model

The data consist of N×T observations {(Yit, X ′it)′ : 1 ≤ i ≤ N, 1 ≤ t ≤ T}, for a scalar outcome variable

of interest Yit and a vector of explanatory variables Xit. We assume that the outcome for individual i

at time t is generated by the sequential process:

Yit | Xt
i , α, γ, β ∼ fY (· | Xit, αi, γt, β), (i = 1, ..., N ; t = 1, ..., T ),

where Xt
i = (Xi1, . . . , Xit), α = (α1, . . . , αN ), γ = (γ1, . . . , γT ), fY is a known probability function,

and β is a finite dimensional parameter vector. The variables αi and γt are unobserved individual

and time effects that in economic applications capture individual heterogeneity and aggregate shocks,

respectively. The model is semiparametric because we do not specify the distribution of these effects

nor their relationship with the explanatory variables. The conditional distribution fY represents the

parametric part of the model. The vector Xit contains predetermined variables with respect to Yit. Note

that Xit can include lags of Yit to accommodate dynamic models.

We consider two running examples throughout the analysis:

Example 1 (Binary response model). Let Yit be a binary outcome and F be a cumulative distribution

function, e.g. the standard normal or logistic distribution. We can model the conditional distribution of

Yit using the single-index specification

fY (y | Xit, αi, γt, β) = F (X ′itβ + αi + γt)
y[1− F (X ′itβ + αi + γt)]

1−y, y ∈ {0, 1}.
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In a labor economics application, Y can be an indicator for female labor force participation and X can

include fertility indicators and other socio-economic characteristics.

Example 2 (Count response model). Let Yit be a non-negative interger-valued outcome, and f(·;λ)

be the probability mass function of a Poisson random variable with mean λ > 0. We can model the

conditional distribution of Yit using the single index specification

fY (y | Xit, αi, γt, β) = f(y; exp[X ′itβ + αi + γt]), y ∈ {0, 1, 2, ....}.

In an industrial organization application, Y can be the number of patents that a firm produces and X

can include investment in R&D and other firm characteristics.

For estimation, we adopt a fixed effects approach treating the realization of the unobserved in-

dividual and time effects as parameters to be estimated. We collect all these effects in the vector

φNT = (α1, ..., αN , γ1, ..., γT )′. The model parameter β usually includes regression coefficients of in-

terest, while the unobserved effects φNT are treated as a nuisance parameter. The true values of the

parameters, denoted by β0 and φ0
NT = (α0

1, ..., α
0
N , γ

0
1 , ..., γ

0
T )′, are the solution to the population condi-

tional maximum likelihood problem

max
(β,φNT )∈Rdim β+dimφNT

Eφ[LNT (β, φNT )],

LNT (β, φNT ) := (NT )−1/2

∑
i,t

log fY (Yit | Xit, αi, γt, β)− b(v′NTφNT )2/2

 , (2.1)

for every N,T , where Eφ denotes the expectation with respect to the distribution of the data conditional

on the unobserved effects and initial conditions including strictly exogenous variables, b > 0 is an

arbitrary constant, vNT = (1′N ,−1′T )′, and 1N and 1T denote vectors of ones with dimensions N and

T . Existence and uniqueness of the solution to the population problem will be guaranteed by our

assumptions in Section 4 below, including concavity of the objective function in all parameters. The

second term of LNT is a penalty that imposes a normalization needed to identify φNT in models with

scalar individual and time effects that enter additively into the log-likelihood function as αi+γt.
4 In this

case, adding a constant to all αi, while subtracting it from all γt, does not change αi + γt. To eliminate

this ambiguity, we normalize φ0
NT to satisfy v′NTφ

0
NT = 0, i.e.

∑
i α

0
i =

∑
t γ

0
t . The penalty produces

a maximizer of LNT that is automatically normalized. We could equivalently impose v′NTφNT = 0 as

a constraint, but for technical reasons we prefer to work with an unconstrained optimization problem.

There are other possible normalizations for φNT such as α1 = 0. The model parameter β is invariant

to the choice of normalization. Our choice is convenient for certain intermediate results that involve

the incidental parameter φNT , its score vector and its Hessian matrix. The pre-factor (NT )−1/2 in

LNT (β, φNT ) is just a rescaling.

4In Appendix B we derive asymptotic expansions that apply to more general models. In order to use these expansions

to obtain the asymptotic distribution of the panel fixed effects estimators, we need to derive the properties of the expected

Hessian of the incidental parameters, a matrix with increasing dimension, and to show the consistency of the estimator of

the incidental parameter vector. The additive specification αi + γt is useful to characterize the Hessian and we impose strict

concavity of the objective function to show the consistency.
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Other quantities of interest involve averages over the data and unobserved effects

δ0
NT = E[∆NT (β0, φ0

NT )], ∆NT (β, φNT ) = (NT )−1
∑
i,t

∆(Xit, β, αi, γt), (2.2)

where E denotes the expectation with respect to the joint distribution of the data and the unobserved

effects, provided that the expectation exists. δ0
NT is indexed by N and T because the marginal distri-

bution of {(Xit, αi, γt) : 1 ≤ i ≤ N, 1 ≤ t ≤ T} can be heterogeneous across i and/or t; see Section 4.2.

These averages include average partial effects (APEs), which are often the ultimate quantities of interest

in nonlinear models. The APEs are invariant to the choice of normalization for φNT if αi and γt enter

∆(Xit, β, αi, γt) as αi+γt. Some examples of partial effects that satisfy this condition are the following:

Example 1 (Binary response model). If Xit,k, the kth element of Xit, is binary, its partial effect on

the conditional probability of Yit is

∆(Xit, β, αi, γt) = F (βk +X ′it,−kβ−k + αi + γt)− F (X ′it,−kβ−k + αi + γt), (2.3)

where βk is the kth element of β, and Xit,−k and β−k include all elements of Xit and β except for the

kth element. If Xit,k is continuous and F is differentiable, the partial effect of Xit,k on the conditional

probability of Yit is

∆(Xit, β, αi, γt) = βk∂F (X ′itβ + αi + γt), (2.4)

where ∂F is the derivative of F .

Example 2 (Count response model). If Xit includes Zit and some known transformation H(Zit) with

coefficients βk and βj, the partial effect of Zit on the conditional expectation of Yit is

∆(Xit, β, αi, γt) = [βk + βj∂H(Zit)] exp(X ′itβ + αi + γt). (2.5)

2.2 Fixed effects estimators

We estimate the parameters by solving the sample analog of problem (2.1), i.e.

max
(β,φNT )∈Rdim β+dimφNT

LNT (β, φNT ). (2.6)

As in the population case, we shall impose conditions guaranteeing that the solutions to this maximiza-

tion problem exist and are unique with probability approaching one as N and T become large. For

computational purposes, we note that the solution to the program (2.6) for β is the same as the solution

to the program that imposes v′NTφNT = 0 directly as a constraint in the optimization, and is invariant

to the normalization. In our numerical examples we impose either α1 = 0 or γ1 = 0 directly by dropping

the first individual or time effect. This constrained program has good computational properties because

its objective function is concave and smooth in all the parameters. We have developed the commands

probitfe and logitfe for Stata to implement the methods of the paper for probit and logit models

(Cruz-González et al., 2015).5 When N and T are large, e.g., N > 2, 000 and T > 50, we recommend

5We refer to this companion work for computational details.
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the use of optimization routines that exploit the sparsity of the design matrix of the model to speed

up computation such as the package Speedglm in R (Enea, 2012). For a probit model with N = 2, 000

and T = 52, Speedglm computes the fixed effects estimator in less than 2 minutes with a 2 x 2.66 GHz

6-Core Intel Xeon processor, more than 7.5 times faster than our Stata command probitfe and more

than 30 times faster than the R command glm.6

To analyze the statistical properties of the estimator of β it is convenient to first concentrate out the

nuisance parameter φNT . For given β, we define the optimal φ̂NT (β) as

φ̂NT (β) = argmax
φNT∈RdimφNT

LNT (β, φNT ) . (2.7)

The fixed effects estimators of β0 and φ0
NT are

β̂NT = argmax
β∈Rdim β

LNT (β, φ̂NT (β)) , φ̂NT = φ̂NT (β̂). (2.8)

Estimators of APEs can be formed by plugging-in the estimators of the model parameters in the

sample version of (2.2), i.e.

δ̂NT = ∆NT (β̂, φ̂NT ). (2.9)

Again, δ̂NT is invariant to the normalization chosen for φNT if αi and γt enter ∆(Xit, β, αi, γt) as αi+γt.

3 Incidental parameter problem and bias corrections

In this section we give a heuristic discussion of the main results, leaving the technical details to Section 4.

We illustrate the analysis with numerical calculations based on a variation of the classical Neyman and

Scott (1948) variance example.

3.1 Incidental parameter problem

Fixed effects estimators in nonlinear models suffer from the incidental parameter problem (Neyman and

Scott, 1948). The source of the problem is that the dimension of the nuisance parameter φNT increases

with the sample size under asymptotic approximations where either N or T pass to infinity. To describe

the problem let

βNT := argmax
β∈Rdim β

Eφ
[
LNT (β, φ̂NT (β))

]
. (3.1)

The fixed effects estimator is inconsistent under the traditional Neyman and Scott asymptotic sequences

where N → ∞ and T is fixed, i.e., plimN→∞ βNT 6= β0. Similarly, the fixed effect estimator is in-

consistent under asymptotic sequences where T → ∞ and N is fixed, i.e., plimT→∞ βNT 6= β0. Note

that βNT = β0 if φ̂NT (β) is replaced by φNT (β) = argmaxφNT∈RdimφNT Eφ[LNT (β, φNT )]. Under

asymptotic approximations where either N or T are fixed, there is only a fixed number of observations

to estimate some of the components of φNT , T for each individual effect or N for each time effect,

rendering the estimator φ̂NT (β) inconsistent for φNT (β). The nonlinearity of the model propagates the

inconsistency to the estimator of β.

6Additional comparisons of computational times are available from the authors upon request.
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A key insight of the large-T panel data literature is that the incidental parameter problem becomes

an asymptotic bias problem under an asymptotic approximation where N → ∞ and T → ∞ (e.g.,

Arellano and Hahn, (2007)). For models with only individual effects, this literature derived the expansion

βNT = β0 +B/T +oP (T−1) as N,T →∞, for some constant B. The fixed effects estimator is consistent

because plimN,T→∞ βNT = β0, but has bias in the asymptotic distribution if B/T is not negligible

relative to 1/
√
NT , the order of the standard deviation of the estimator. This asymptotic bias problem,

however, is easier to correct than the inconsistency problem that arises under the traditional Neyman and

Scott asymptotic approximation. We show that the same insight still applies to models with individual

and time effects, but with a different expansion for βNT . We characterize the expansion and develop

bias corrections.

3.2 Bias Expansions and Bias Corrections

Some expansions can be used to explain our corrections. For smooth likelihoods and under appropriate

regularity conditions, as N,T →∞,

βNT = β0 +B
β

∞/T +D
β

∞/N + oP (T−1 ∨N−1), (3.2)

for some B
β

∞ and D
β

∞ that we characterize in Theorem 4.1, where a∨b := max(a, b). Unlike in nonlinear

models without incidental parameters, the order of the bias is higher than the inverse of the sample size

(NT )−1 due to the slow rate of convergence of φ̂NT . Note also that by the properties of the maximum

likelihood estimator √
NT (β̂NT − βNT )→d N (0, V∞),

for some V∞ that we also characterize in Theorem 4.1. Under asymptotic sequences where N/T → κ2

as N,T →∞, the fixed effects estimator is asymptotically biased because

√
NT (β̂NT − β0) =

√
NT (β̂NT − βNT ) +

√
NT (B

β

∞/T +D
β

∞/N + oP (T−1 ∨N−1))

→d N (κB
β

∞ + κ−1D
β

∞, V∞). (3.3)

Relative to fixed effects estimators with only individual effects, the presence of time effects introduces

additional asymptotic bias through D
β

∞. This asymptotic result predicts that the fixed effects estimator

can have significant bias relative to its dispersion. Moreover, confidence intervals constructed around

the fixed effects estimator can severely undercover the true value of the parameter even in large samples.

We show that these predictions provide a good approximations to the finite sample behavior of the fixed

effects estimator through analytical and simulation examples in Sections 3.3 and 5.

The analytical bias correction consists of removing estimates of the leading terms of the bias from

the fixed effect estimator of β0. Let B̂βNT and D̂β
NT be estimators of B

β

∞ and D
β

∞ as defined in (4.8).

The bias corrected estimator can be formed as

β̃ANT = β̂NT − B̂βNT /T − D̂
β
NT /N.

If N/T → κ2, B̂βNT →P B
β

∞, and D̂β
NT →P D

β

∞, then

√
NT (β̃ANT − β0)→d N (0, V∞).
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The analytical correction therefore centers the asymptotic distribution at the true value of the param-

eter, without increasing asymptotic variance. This asymptotic result predicts that in large samples the

corrected estimator has small bias relative to dispersion, the correction does not increase dispersion, and

the confidence intervals constructed around the corrected estimator have coverage probabilities close to

the nominal levels. We show that these predictions provide a good approximations to the behavior of

the corrections in Sections 3.3 and 5 even in small panels with N < 60 and T < 15.

We also consider a jackknife bias correction method that does not require explicit estimation of the

bias. This method is based on the split panel jackknife (SPJ) of Dhaene and Jochmans (2010) applied

to the time and cross-section dimension of the panel. Alternative jackknife corrections based on the

leave-one-observation-out panel jackknife (PJ) of Hahn and Newey (2004) and combinations of PJ and

SPJ are also possible. We do not consider corrections based on PJ because they are theoretically justified

by second-order expansions of βNT that are beyond the scope of this paper.

To describe our generalization of the SPJ, let β̃N,T/2 be the average of the 2 split jackknife estimators

that use all the individuals and leave out the first and second halves of the time periods of the panel,

and let β̃N/2,T be the average of the 2 split jackknife estimators that use all the time periods and

leave out half of the individuals of the panel.7 In choosing the cross sectional division of the panel,

one might want to take into account individual clustering structures to preserve and account for cross

sectional dependencies. If there are no cross sectional dependencies, β̃N/2,T can be constructed as the

average of the estimators obtained from all possible partitions of N/2 individuals to avoid ambiguity

and arbitrariness in the choice of the division.8 The bias corrected estimator is

β̃JNT = 3β̂NT − β̃N,T/2 − β̃N/2,T . (3.4)

To give some intuition about how the corrections works, note that

β̃JNT − β0 = (β̂NT − β0)− (β̃N,T/2 − β̂NT )− (β̃N/2,T − β̂NT ),

where β̃N,T/2−β̂NT = B
β

∞/T+oP (T−1∨N−1) and β̃N/2,T−β̂NT = D
β

∞/N+oP (T−1∨N−1). Relative to

β̂NT , β̃N,T/2 has double the bias coming from the estimation of the individual effects because it is based

on subpanels with half of the time periods, and β̃N/2,T has double the bias coming from the estimation

of the time effects because it is based on subpanels with half of the individuals. The time series split

removes the bias term B
β

∞ and the cross sectional split removes the bias term D
β

∞.

3.3 Illustrative Example

To illustrate how the bias corrections work in finite samples, we consider a simple model where the

solution to the population program (3.1) has closed form. This model corresponds to a variation of

the classical Neyman and Scott (1948) variance example that includes both individual and time effects,

7When T is odd we define β̃N,T/2 as the average of the 2 split jackknife estimators that use overlapping subpanels with

t ≤ (T + 1)/2 and t ≥ (T + 1)/2. We define β̃N/2,T similarly when N is odd.
8There are P =

(
N
2

)
different cross sectional partitions with N/2 individuals. When N is large, we can approximate the

average over all possible partitions by the average over S � P randomly chosen partitions to speed up computation.
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Yit | α, γ, β ∼ N (αi + γt, β). It is well-know that in this case

β̂NT = (NT )−1
∑
i,t

(
Yit − Ȳi. − Ȳ.t + Ȳ..

)2
,

where Ȳi. = T−1
∑
t Yit, Ȳ.t = N−1

∑
i Yit, and Ȳ.. = (NT )−1

∑
i,t Yit. Moreover, from the well-known

results on the degrees of freedom adjustment of the estimated variance we know that

βNT = Eφ[β̂NT ] = β0 (N − 1)(T − 1)

NT
= β0

(
1− 1

T
− 1

N
+

1

NT

)
,

so that B
β

∞ = −β0 and D
β

∞ = −β0.9

To form the analytical bias correction we can set B̂βNT = −β̂NT and D̂β
NT = −β̂NT . This yields

β̃ANT = β̂NT (1 + 1/T + 1/N) with

β
A

NT = Eφ[β̃ANT ] = β0

(
1− 1

T 2
− 1

N2
− 1

NT
+

1

NT 2
+

1

N2T

)
.

This correction reduces the order of the bias from (T−1∨N−1) to (T−2∨N−2), and introduces additional

higher order terms. The analytical correction increases finite-sample variance because the factor (1 +

1/T + 1/N) > 1. We compare the biases and standard deviations of the fixed effects estimator and the

corrected estimator in a numerical example below.

For the Jackknife correction, straightforward calculations give

β
J

NT = Eφ[β̃JNT ] = 3βNT − βN,T/2 − βN/2,T = β0

(
1− 1

NT

)
.

The correction therefore reduces the order of the bias from (T−1 ∨N−1) to (TN)−1.10

Table 1 presents numerical results for the bias and standard deviations of the fixed effects and bias

corrected estimators in finite samples. We consider panels with N,T ∈ {10, 25, 50}, and only report

the results for T ≤ N since all the expressions are symmetric in N and T . All the numbers in the

table are in percentage of the true parameter value, so we do not need to specify the value of β0. We

find that the analytical and jackknife corrections offer substantial improvements over the fixed effects

estimator in terms of bias. The first and fourth row of the table show that the bias of the fixed effects

estimator is of the same order of magnitude as the standard deviation, where V NT = Var[β̂NT ] =

2(N − 1)(T − 1)(β0)2/(NT )2 under independence of Yit over i and t conditional on the unobserved

effects. The fifth row shows the increase in standard deviation due to analytical bias correction is small

compared to the bias reduction, where V
A

NT = Var[β̃ANT ] = (1 + 1/N + 1/T )2V NT . The last row shows

that the jackknife yields less precise estimates than the analytical correction in small panels.

Table 2 illustrates the effect of the bias on the inference based on the asymptotic distribution. It

shows the coverage probabilities of 95% asymptotic confidence intervals for β0 constructed in the usual

way as

CI.95(β̂) = β̂ ± 1.96V̂
1/2
NT = β̂(1± 1.96

√
2/(NT )),

9Okui (2013) derives the bias of fixed effects estimators of autocovariances and autocorrelations in this model.
10In this example it is possible to develop higher-order jackknife corrections that completely eliminate the bias because we

know the entire expansion of βNT . For example, Eφ[4β̂NT −2β̃N,T/2−2β̃N/2,T + β̃N/2,T/2] = β0, where β̃N/2,T/2 is the average

of the four split jackknife estimators that leave out half of the individuals and the first or the second halves of the time periods.

See Dhaene and Jochmans (2010) for a discussion on higher-order bias corrections of panel fixed effects estimators.
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Table 1: Biases and Standard Deviations for Yit | α, γ, β ∼ N (αi + γt, β)

N = 10 N=25 N=50

T = 10 T=10 T=25 T=10 T=25 T=50

(βNT − β0)/β0 -.19 -.14 -.08 -.12 -.06 -.04

(β
A
NT − β0)/β0 -.03 -.02 .00 -.01 -.01 .00

(β
J
NT − β0)/β0 -.01 .00 .00 .00 .00 .00√
V NT /β

0 .13 .08 .05 .06 .04 .03√
V

A
NT /β

0 .14 .09 .06 .06 .04 .03√
V

J
NT /β

0 .17 .10 .06 .07 .04 .03

Notes: V
J
NT obtained by 50,000 simulations with β0 = 1

where β̂ = {β̂NT , β̃ANT , β̃JNT } and V̂NT = 2β̂2/(NT ) is an estimator of the asymptotic variance V∞/(NT ) =

2(β0)2/(NT ). To find the coverage probabilities, we use that NTβ̂NT /β
0 ∼ χ2

(N−1)(T−1) and β̃ANT =

(1 + 1/N + 1/T )β̂NT . These probabilities do not depend on the value of β0 because the limits of the

intervals are proportional to β̂. For the Jackknife we compute the probabilities numerically by simulation

with β0 = 1. As a benchmark of comparison, we also consider confidence intervals constructed from the

unbiased estimator β̃NT = NTβ̂NT /[(N−1)(T −1)]. Here we find that the confidence intervals based on

the fixed effect estimator display severe undercoverage for all the sample sizes. The confidence intervals

based on the corrected estimators have high coverage probabilities, which approach the nominal level as

the sample size grows. Moreover, the bias corrected estimators produce confidence intervals with very

similar coverage probabilities to the ones from the unbiased estimator.

Table 2: Coverage probabilities for Yit | α, γ, β ∼ N (αi + γt, β)

N = 10 N=25 N=50

T = 10 T=10 T=25 T=10 T=25 T=50

CI.95(β̂NT ) .56 .55 .65 .44 .63 .68

CI.95(β̃ANT ) .89 .92 .93 .92 .94 .94

CI.95(β̃JNT ) .89 .91 .93 .92 .93 .94

CI.95(β̃NT ) .91 .93 .94 .93 .94 .94

Notes: Nominal coverage probability is .95. CI.95(β̃JNT ) obtained by

50,000 simulations with β0 = 1
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4 Asymptotic Theory for Bias Corrections

In nonlinear panel data models the population problem (3.1) generally does not have closed form solution,

so we need to rely on asymptotic arguments to characterize the terms in the expansion of the bias (3.2)

and to justify the validity of the corrections.

4.1 Asymptotic distribution of model parameters

We consider panel models with scalar individual and time effects that enter the likelihood function

additively through πit = αi+γt. In these models the dimension of the incidental parameters is dimφNT =

N+T . The leading cases are single index models, where the dependence of the likelihood function on the

parameters is through an index X ′itβ+αi+γt. These models cover the probit and Poisson specifications

of Examples 1 and 2. The additive structure only applies to the unobserved effects, so we can allow for

scale parameters to cover the Tobit and negative binomial models. We focus on these additive models for

computational tractability and because we can establish the consistency of the fixed effects estimators

under a concavity assumption in the log-likelihood function with respect to all the parameters.

The parametric part of our panel models takes the form

log fY (Yit | Xit, αi, γt, β) =: `it(β, πit). (4.1)

We denote the derivatives of the log-likelihood function `it by ∂β`it(β, π) := ∂`it(β, π)/∂β, ∂ββ′`it(β, π) :=

∂2`it(β, π)/(∂β∂β′), ∂πq`it(β, π) := ∂q`it(β, π)/∂πq, q = 1, 2, 3, etc. We drop the arguments β and π

when the derivatives are evaluated at the true parameters β0 and π0
it := α0

i + γ0
t , e.g. ∂πq`it :=

∂πq`it(β
0, π0

it). We also drop the dependence on NT from all the sequences of functions and parameters,

e.g. we use L for LNT and φ for φNT .

We make the following assumptions:

Assumption 4.1 (Panel models). Let ν > 0 and µ > 4(8 + ν)/ν. Let ε > 0 and let B0
ε be a subset of

R
dim β+1 that contains an ε-neighbourhood of (β0, π0

it) for all i, t,N, T .11

(i) Asymptotics: we consider limits of sequences where N/T → κ2, 0 < κ <∞, as N,T →∞.

(ii) Sampling: conditional on φ, {(Y Ti , XT
i ) : 1 ≤ i ≤ N} is independent across i and, for each i,

{(Yit, Xit) : 1 ≤ t ≤ T} is α-mixing with mixing coefficients satisfying supi ai(m) = O(m−µ) as

m→∞, where

ai(m) := sup
t

sup
A∈Ait,B∈Bit+m

|P (A ∩B)− P (A)P (B)|,

and for Zit = (Yit, Xit), Ait is the sigma field generated by (Zit, Zi,t−1, . . .), and Bit is the sigma

field generated by (Zit, Zi,t+1, . . .).

(iii) Model: for Xt
i = {Xis : s = 1, ..., t}, we assume that for all i, t,N, T,

Yit | Xt
i , φ, β ∼ exp[`it(β, αi + γt)].

11For example, B0
ε can be chosen to be the Cartesian product of the ε-ball around β0 and the interval [πmin, πmax], with

πmin ≤ πit− ε and πmax ≥ πit + ε for all i, t, N, T . We can have πmin = −∞ and πmax =∞, as long as this is compatible with

Assumption 4.1 (iv) and (v).
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The realizations of the parameters and unobserved effects that generate the observed data are de-

noted by β0 and φ0.

(iv) Smoothness and moments: We assume that (β, π) 7→ `it(β, π) is four times continuously differen-

tiable over B0
ε a.s. The partial derivatives of `it(β, π) with respect to the elements of (β, π) up to

fourth order are bounded in absolute value uniformly over (β, π) ∈ B0
ε by a function M(Zit) > 0

a.s., and maxi,t Eφ[M(Zit)
8+ν ] is a.s. uniformly bounded over N,T .

(v) Concavity: For all N,T, (β, φ) 7→ L(β, φ) = (NT )−1/2{
∑
i,t `it(β, αi + γt)− b(v′φ)2/2} is strictly

concave over Rdim β+N+T a.s. Furthermore, there exist constants bmin and bmax such that for all

(β, π) ∈ B0
ε , 0 < bmin ≤ −Eφ [∂π2`it(β, π)] ≤ bmax a.s. uniformly over i, t,N, T .

Remark 1 (Assumption 4.1). Assumption 4.1(i) defines the large-T asymptotic framework and is the

same as in Hahn and Kuersteiner (2011). The relative rate of N and T exactly balances the order of

the bias and variance producing a non-degenerate asymptotic distribution.

Assumption 4.1(ii) does not impose identical distribution nor stationarity over the time series dimen-

sion, conditional on the unobserved effects, unlike most of the large-T panel literature, e.g., Hahn and

Newey (2004) and Hahn and Kuersteiner (2011). These assumptions are violated by the presence of the

time effects, because they are treated as parameters. The mixing condition is used to bound covariances

and moments in the application of laws of large numbers and central limit theorems – it could replaced

by other conditions that guarantee the applicability of these results.

Assumption 4.1(iii) is the parametric part of the panel model. We rely on this assumption to guar-

antee that ∂β`it and ∂π`it have martingale difference properties. Moreover, we use certain Bartlett

identities implied by this assumption to simplify some expressions, but those simplifications are not cru-

cial for our results. We provide expressions for the asymptotic bias and variance that do not apply these

simplifications in Remark 3 below.

Assumption 4.1(iv) imposes smoothness and moment conditions in the log-likelihood function and its

derivatives. These conditions guarantee that the higher-order stochastic expansions of the fixed effect

estimator that we use to characterize the asymptotic bias are well-defined, and that the remainder terms

of these expansions are bounded.

The most commonly used nonlinear models in applied economics such as logit, probit, ordered probit,

Poisson, and Tobit models have smooth log-likelihoods functions that satisfy the concavity condition of

Assumption 4.1(v), provided that all the elements of Xit have cross sectional and time series variation.

Assumption 4.1(v) guarantees that β0 and φ0 are the unique solution to the population problem (2.1),

that is all the parameters are point identified.

To describe the asymptotic distribution of the fixed effects estimator β̂, it is convenient to introduce

some additional notation. Let H be the (N +T )× (N +T ) expected Hessian matrix of the log-likelihood

with respect to the nuisance parameters evaluated at the true parameters, i.e.

H = Eφ[−∂φφ′L] =

(
H∗(αα) H∗(αγ)

[H∗(αγ)]
′
H∗(γγ)

)
+

b√
NT

vv′, (4.2)

where H∗(αα) = diag(
∑
t Eφ[−∂π2`it])/

√
NT , H∗(αγ)it = Eφ[−∂π2`it]/

√
NT , and H∗(γγ) =

diag(
∑
i Eφ[−∂π2`it])/

√
NT . Furthermore, let H−1

(αα), H
−1

(αγ), H
−1

(γα), and H−1

(γγ) denote the N × N ,
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N × T , T × N and T × T blocks of the inverse H−1
of H. We define the dimβ-vector Ξit and the

operator Dβπq as

Ξit := − 1√
NT

N∑
j=1

T∑
τ=1

(
H−1

(αα)ij +H−1

(γα)tj +H−1

(αγ)iτ +H−1

(γγ)tτ

)
Eφ (∂βπ`jτ ) ,

Dβπq`it := ∂βπq`it − ∂πq+1`itΞit, (4.3)

with q = 0, 1, 2. The k-th component of Ξit corresponds to the population least squares projection

of Eφ(∂βkπ`it)/Eφ(∂π2`it) on the space spanned by the incidental parameters under a metric given by

Eφ(−∂π2`it), i.e.

Ξit,k = α∗i,k + γ∗t,k, (α∗k, γ
∗
k) = argmin

αi,k,γt,k

∑
i,t

Eφ(−∂π2`it)

(
Eφ(∂βkπ`it)

Eφ(∂π2`it)
− αi,k − γt,k

)2

.

The operator Dβπq partials out individual and time effects in nonlinear models. It corresponds to

individual and time differencing when the model is linear. To see this, consider the normal linear

model Yit | Xt
i , αi, γt ∼ N (X ′itβ + αi + γt, 1). Then, Ξit = T−1

∑T
t=1 Eφ[Xit] + N−1

∑N
i=1 Eφ[Xit] −

(NT )−1
∑N
i=1

∑T
t=1 Eφ[Xit], Dβ`it = −X̃itεit, Dβπ`it = −X̃it, and Dβπ2`it = 0, where εit = Yit −

X ′itβ − αi − γt and X̃it = Xit − Ξit is the individual and time demeaned explanatory variable.

Let E := plimN,T→∞. The following theorem establishes the asymptotic distribution of the fixed

effects estimator β̂.

Theorem 4.1 (Asymptotic distribution of β̂). Suppose that Assumption 4.1 holds, that the following

limits exist

B∞ = −E

[
1

N

N∑
i=1

∑T
t=1

∑T
τ=t Eφ (∂π`itDβπ`iτ ) + 1

2

∑T
t=1 Eφ(Dβπ2`it)∑T

t=1 Eφ (∂π2`it)

]
,

D∞ = −E

[
1

T

T∑
t=1

∑N
i=1 Eφ

(
∂π`itDβπ`it + 1

2Dβπ2`it
)∑N

i=1 Eφ (∂π2`it)

]
,

W∞ = −E

[
1

NT

N∑
i=1

T∑
t=1

Eφ (∂ββ′`it − ∂π2`itΞitΞ
′
it)

]
,

and that W∞ > 0. Then,

√
NT

(
β̂ − β0

)
→d W

−1

∞ N (κB∞ + κ−1D∞, W∞),

so that B
β

∞ = W
−1

∞ B∞, D
β

∞ = W
−1

∞ D∞, and V∞ = W
−1

∞ in (3.2) and (3.3).

Remark 2 (Proof of Theorem 4.1). The complete proof of Theorem 4.1 is provided in the Appendix.

Here we include some comments pointing out the differences with the analogous proof for models with

only individual effects, and describe the steps of the proof highlighting how the assumptions are used.

(i) The existing results for large N,T panels, which were developed for models with only individual

effects, cannot be sequentially applied to the two dimensions of the panel to derive the asymptotic

distribution of our estimators. These results usually start with a consistency proof that relies
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on partitioning the log-likelihood in the sum of individual log-likelihoods that depend on a fixed

number of parameters, the model parameter β and the corresponding individual effect αi. Then,

the maximizers of the individual log-likelihood are shown to be consistent estimators of all the

parameters as T becomes large using standard arguments. In the presence of time effects there is

no partition of the data that is only affected by a fixed number of parameters, and whose size grows

with the sample size. We thus require a new approach.

(ii) Step 1 (consistency of β̂): we derive an asymptotic approximation to the score of the profile log-

likelihood, ∂βL(β, φ̂(β)), which is valid locally around β = β0. We use this approximation to

show that there is a solution to the first order condition ∂βL(β, φ̂(β)) = 0 that is close to β0

asymptotically, and to characterize the asymptotic properties of this solution. Under Assumption

4.1(v), the solution to ∂βL(β, φ̂(β)) = 0 uniquely determines the maximizer β̂, thus implying that

β̂ is consistent. Note that the global concavity condition in Assumption 4.1(v) can be replaced by

another condition that allows one to show the consistency of β̂.

(iii) Step 2 (Stochastic expansions of ∂βL(β0, φ̂(β0)) and φ̂(β0)): A Taylor second order approximation

to ∂βL(β0, φ̂(β0)) around φ0 gives

∂βL(β0, φ̂(β0)) ≈ ∂βL+ ∂βφ′L[φ̂(β0)− φ0] +

dimφ∑
g=1

∂βφ′φgL[φ̂(β0)− φ0][φ̂g(β
0)− φ0

g]/2, (4.4)

where ∂βφ′φgL = Eφ[∂βφ′φgL]. Similarly, a Taylor second order approximation to the first order

condition of φ̂(β0), ∂φL(β0, φ̂(β0)) = 0, around φ0 gives

φ̂(β0)− φ0 ≈ H−1S −H−1H̃H−1S +H−1
dimφ∑
g=1

∂φφ′φgL[H−1S][H−1S]g/2, (4.5)

where H is the expected incidental parameter Hessian introduced in (4.2), H̃ = −∂φφ′L − H,

∂φφ′φgL = Eφ[∂φφ′φgL], and S is the score of the incidental parameters,

S := ∂φL(β0, φ0) =


[

1√
NT

∑T
t=1 ∂π`it

]
i=1,...,N[

1√
NT

∑N
i=1 ∂π`it

]
t=1,...,T

 .

We bound the terms and remainders of the expansions (4.4) and (4.5) using the properties of S and

H−1
, together with Assumption 4.1(iv).12 The components of S are of orders 1/

√
N and 1/

√
T

because they are sums over t and i of the mean-zero process ∂π`it. For this conclusion it is crucial

that each element of the incidental parameter vector affects a subset of observations (namely αi

affects all observations from individual i, and γt affects all observations from time period t) whose

size grows with the sample size. For models with only individual effects, the Hessian H is diagonal

12The expansions (4.4) and (4.5) can be derived in different ways. We obtain them through the Legendre-transformed

objective function L∗(β, S) = maxφ [L(β, φ)− φ′S]. This function has the properties: L∗(β, 0) = L(β, φ̂(β)), L∗(β, S) =

L(β, φ0) − φ0′S, and ∂βL(β, φ0) = ∂βL∗(β, S). The expansion of ∂βL(β, φ̂(β)) = ∂βL∗(β, 0) can therefore be obtained as a

Taylor stochastic expansion of ∂βL∗(β, S) in (β, S) around (β0,S) and evaluated at (β, 0). For details we refer to the proof

of Theorem B.1, which is contained in the online supplementary material.
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and its inversion poses no difficulty. In our case H has strong diagonal elements of order 1 and

off-diagonal elements of order (NT )−1/2. The off-diagonal elements reflect that the individual

and time effects are compounded in a non-trivial way. They are of smaller order than the strong

diagonal elements, but cannot simply be ignored in the inversion because the number of them is very

large and grows with the sample size. For example, the expected Hessian H∗ without penalty has

the same order of diagonal and off-diagonal elements as H, but is not invertible. Lemma D.1 in

the appendix shows that H is invertible, and that H−1
has the same structure as H, namely strong

diagonal elements of order 1 and off-diagonal elements of order (NT )−1/2. We make use of the

additive separability of the individual and time effects of Assumption 4.1(iii) to prove Lemma D.1.

(iv) Step 3 (Stochastic expansion of β̂): substituting the expansions (4.4) and (4.5) in a first order

Taylor approximation to the first order condition of β̂, ∂βL(β̂, φ̂(β̂)) = 0, around β0 yields

0 ≈ ∂βL(β0, φ̂(β0)) + ∂ββ′L(β0, φ̂(β0))(β̂ − β0) ≈ U (0) + U (1) −W∞
√
NT (β̂ − β0), (4.6)

where U (0) is a variance term with U (0) = ∂βL+[∂βφ′L]H−1S →d N (0, W∞), U (1) is a bias term

with

U (1) = [∂βφ′L̃]H−1S − [∂βφ′L]H−1 H̃H−1 S

+
1

2

dimφ∑
g=1

(
∂βφ′φgL+ [∂βφ′L]H−1

[∂φφ′φgL]
)

[H−1S]gH
−1S →P κ B∞ + κ−1 D∞,

∂βφ′L = Eφ[∂βφ′L], and ∂βφ′L̃ = ∂βφ′L − ∂βφ′L. We refer to the proof of Theorem 4.1 for

more details on the derivation and notation. Here we use Assumptions 4.1(iii) to characterize the

expressions of the limits B∞, D∞, and W∞.

Remark 3 (Bias and Variance expressions for Conditional Moment Models). In the derivation of the

asymptotic distribution, we apply Bartlett identities implied by Assumption 4.1(iii) to simplify the ex-

pressions. The following expressions of the asymptotic bias and variance do not make use of these

identities and therefore remain valid in conditional moment models that do not specify the entire condi-

tional distribution of Yit:

B∞ = −E

[
1

N

N∑
i=1

∑T
t=1

∑T
τ=t Eφ (∂π`itDβπ`iτ )∑T
t=1 Eφ (∂π2`it)

]

+
1

2
E

 1

N

N∑
i=1

∑T
t=1 Eφ[(∂π`it)

2]
∑T
t=1 Eφ(Dβπ2`it)[∑T

t=1 Eφ (∂π2`it)
]2

 ,

D∞ = −E

[
1

T

T∑
t=1

∑N
i=1 Eφ [∂π`itDβπ`it]∑N

i=1 Eφ (∂π2`it)

]

+
1

2
E

 1

T

T∑
t=1

∑N
i=1 Eφ[(∂π`it)

2]
∑N
i=1 Eφ(Dβπ2`it)[∑N

i=1 Eφ (∂π2`it)
]2

 ,
V∞ = W

−1

∞ E

{
1

NT

N∑
i=1

T∑
t=1

Eφ [Dβ`it(Dβ`it)
′]

}
W
−1

∞ .
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For example, consider the least squares fixed effects estimator in a linear model Yit = X ′itβ+αi+γt+εit

with E[εit | Xt
i , φ, β] = 0. Applying the previous expressions of the bias to `it(β, π) = −(Yit − X ′itβ −

αi − γt)2 yields

B∞ = −E

[
1

NT

N∑
i=1

T∑
t=1

T∑
τ=t+1

Eφ (Xiτεit)

]
and D∞ = 0. The expression for B∞ corresponds to Nickell (1981) bias formula when Xit = Yi,t−1. If

E[εit | XT
i , φ, β] = 0, i.e. Xit is strictly exogenous with respect to εit, then we get the well-known result

for linear models of no asymptotic bias, B∞ = D∞ = 0.

It is instructive to evaluate the expressions of the bias in our running examples.

Example 1 (Binary response model). In this case

`it(β, π) = Yit logF (X ′itβ + π) + (1− Yit) log[1− F (X ′itβ + π)],

so that ∂π`it = Hit(Yit − Fit), ∂β`it = ∂π`itXit, ∂π2`it = −Hit∂Fit + ∂Hit(Yit − Fit), ∂ββ′`it =

∂π2`itXitX
′
it, ∂βπ`it = ∂π2`itXit, ∂π3`it = −Hit∂

2Fit − 2∂Hit∂Fit + ∂2Hit(Yit − Fit), and ∂βπ2`it =

∂π3`itXit, where Hit = ∂Fit/[Fit(1 − Fit)], and ∂jGit := ∂jG(Z)|Z=X′
itβ

0+π0
it

for any function G and

j = 0, 1, 2. Substituting these values in the expressions of the bias of Theorem 4.1 yields

B∞ = −E

 1

2N

N∑
i=1

∑T
t=1

{
Eφ[Hit∂

2FitX̃it] + 2
∑T
τ=t+1 Eφ

[
Hit(Yit − Fit)ωiτ X̃iτ

]}
∑T
t=1 Eφ (ωit)

 ,
D∞ = −E

[
1

2T

T∑
t=1

∑N
i=1 Eφ[Hit∂

2FitX̃it]∑N
i=1 Eφ (ωit)

]
,

W∞ = E

[
1

NT

N∑
i=1

T∑
t=1

Eφ[ωitX̃itX̃
′
it]

]
,

where ωit = Hit∂Fit and X̃it is the residual of the population projection of Xit on the space spanned

by the incidental parameters under a metric weighted by Eφ(ωit). For the probit model where all the

components of Xit are strictly exogenous,

B∞ = E

[
1

2N

N∑
i=1

∑T
t=1 Eφ[ωitX̃itX̃

′
it]∑T

t=1 Eφ (ωit)

]
β0, D∞ = E

[
1

2T

T∑
t=1

∑N
i=1 Eφ[ωitX̃itX̃

′
it]∑N

i=1 Eφ (ωit)

]
β0.

The asymptotic bias is therefore a positive definite matrix weighted average of the true parameter value

as in the case of the probit model with only individual effects (Fernández-Val, 2009).

Example 2 (Count response model). In this case

`it(β, π) = (X ′itβ + π)Yit − exp(X ′itβ + π)− log Yit!,

so that ∂π`it = Yit − ωit, ∂β`it = ∂π`itXit, ∂π2`it = ∂π3`it = −ωit, ∂ββ′`it = ∂π2`itXitX
′
it, and ∂βπ`it =

∂βπ2`it = ∂π3`itXit, where ωit = exp(X ′itβ
0 + π0

it). Substituting these values in the expressions of the
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bias of Theorem 4.1 yields

B∞ = −E

 1

N

N∑
i=1

∑T
t=1

∑T
τ=t+1 Eφ

[
(Yit − ωit)ωiτ X̃iτ

]
∑T
t=1 Eφ (ωit)

 ,
W∞ = E

[
1

NT

N∑
i=1

T∑
t=1

Eφ[ωitX̃itX̃
′
it]

]
,

and D∞ = 0, where X̃it is the residual of the population projection of Xit on the space spanned by the

incidental parameters under a metric weighted by Eφ(ωit). If in addition all the components of Xit are

strictly exogenous, then we get the no asymptotic bias result B∞ = D∞ = 0.

4.2 Asymptotic distribution of APEs

In nonlinear models we are often interested in APEs, in addition to model parameters. These effects are

averages of the data, parameters and unobserved effects; see expression (2.2). For the panel models of

Assumption 4.1 we specify the partial effects as ∆(Xit, β, αi, γt) = ∆it(β, πit). The restriction that the

partial effects depend on αi and γt through πit is natural in our panel models since

E[Yit | Xt
i , αi, γt, β] =

∫
y exp[`it(β, πit)]dy,

and the partial effects are usually defined as differences or derivatives of this conditional expectation

with respect to the components of Xit. For example, the partial effects for the probit and Poisson models

described in Section 2 satisfy this restriction.

The distribution of the unobserved individual and time effects is not ancillary for the APEs, unlike for

model parameters. We therefore need to make assumptions on this distribution to define and interpret

the APEs, and to derive the asymptotic distribution of their estimators. Here, there are several possi-

bilities depending on whether we define the APE conditional or unconditional on the unobserved effects.

For conditional APEs, we treat the unobserved effects as deterministic. In this case E[∆it] = Eφ[∆it]

and δ0
NT = (NT )−1

∑
i,t Eφ[∆it] can change over T and N in a deterministic fashion. For uncondi-

tional APEs, we control the heterogeneity of the partial effects assuming that the individual effects

and explanatory variables are identically distributed cross sectionally and/or stationary over time. If

(Xit, αi, γt) is identically distributed over i and can be heterogeneously distributed over t, E[∆it] = δ0
t

and δ0
NT = T−1

∑T
t=1 δ

0
t changes only with T . If (Xit, αi, γt) is stationary over t and can be hetero-

geneously distributed over i, E[∆it] = δ0
i and δ0

NT = N−1
∑N
i=1 δ

0
i changes only with N . Finally, if

(Xit, αi, γt) is identically distributed over i and stationary over t, E[∆it] = δ0
NT and δ0

NT = δ0 does not

change with N and T.

We also impose smoothness and moment conditions on the function ∆ that defines the partial effects.

We use these conditions to derive higher-order stochastic expansions for the fixed effect estimator of the

APEs and to bound the remainder terms in these expansions. Let {αi}N := {αi : 1 ≤ i ≤ N},
{γt}T := {γt : 1 ≤ t ≤ T}, and {Xit, αi, γt}NT := {(Xit, αi, γt) : 1 ≤ i ≤ N, 1 ≤ t ≤ T}.

Assumption 4.2 (Partial effects). Let ν > 0, ε > 0, and B0
ε all be as in Assumption 4.1.
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(i) Sampling: for all N,T, (a) {αi}N and {γt}T are deterministic; or (b) {Xit, αi, γt}NT is identically

distributed across i and/or stationary across t.

(ii) Model: for all i, t,N, T, the partial effects depend on αi and γt through αi + γt:

∆(Xit, β, αi, γt) = ∆it(β, αi + γt).

The realizations of the partial effects are denoted by ∆it := ∆it(β
0, α0

i + γ0
t ).

(iii) Smoothness and moments: The function (β, π) 7→ ∆it(β, π) is four times continuously differentiable

over B0
ε a.s. The partial derivatives of ∆it(β, π) with respect to the elements of (β, π) up to fourth

order are bounded in absolute value uniformly over (β, π) ∈ B0
ε by a function M(Zit) > 0 a.s., and

maxi,t Eφ[M(Zit)
8+ν ] is a.s. uniformly bounded over N,T .

(iv) Non-degeneracy and moments: 0 < mini,t[E(∆2
it) − E(∆it)

2] ≤ maxi,t[E(∆2
it) − E(∆it)

2] < ∞,
uniformly over N,T.

Analogous to Ξit in equation (4.3) we define

Ψit = − 1√
NT

N∑
j=1

T∑
τ=1

(
H−1

(αα)ij +H−1

(γα)tj +H−1

(αγ)iτ +H−1

(γγ)tτ

)
∂π∆jτ , (4.7)

which is the population projection of ∂π∆it/Eφ[∂π2`it] on the space spanned by the incidental parameters

under the metric given by Eφ[−∂π2`it]. We use analogous notation to the previous section for the

derivatives with respect to β and higher order derivatives with respect to π.

Let δ0
NT and δ̂ be the APE and its fixed effects estimator, defined as in equations (2.2) and (2.9)

with ∆(Xit, β, αi, γt) = ∆it(β, αi + γt).
13 The following theorem establishes the asymptotic distribution

of δ̂.

Theorem 4.2 (Asymptotic distribution of δ̂). Suppose that the assumptions of Theorem 4.1 and As-

sumption 4.2 hold, and that the following limits exist:

(Dβ∆)∞ = E

[
1

NT

N∑
i=1

T∑
t=1

Eφ(∂β∆it − Ξit∂π∆it)

]
,

B
δ

∞ = (Dβ∆)
′
∞W

−1

∞ B∞ + E

[
1

N

N∑
i=1

∑T
t=1

∑T
τ=t Eφ (∂π`it∂π2`iτΨiτ )∑T
t=1 Eφ (∂π2`it)

]

− E

[
1

2N

N∑
i=1

∑T
t=1 [Eφ(∂π2∆it)− Eφ(∂π3`it)Eφ(Ψit)]∑T

t=1 Eφ (∂π2`it)

]
,

D
δ

∞ = (Dβ∆)
′
∞W

−1

∞ D∞ + E

[
1

T

T∑
t=1

∑N
i=1 Eφ (∂π`it∂π2`itΨit)∑N

i=1 Eφ (∂π2`it)

]

− E

[
1

2T

T∑
t=1

∑N
i=1 [Eφ(∂π2∆it)− Eφ(∂π3`it)Eφ(Ψit)]∑N

i=1 Eφ (∂π2`it)

]
,

V
δ

∞ = E

 r2
NT

N2T 2
E

( N∑
i=1

T∑
t=1

∆̃it

)(
N∑
i=1

T∑
t=1

∆̃it

)′
+

N∑
i=1

T∑
t=1

ΓitΓ
′
it

 ,

13We keep the dependence of δ0NT on NT to distinguish δ0NT from δ0 = limN,T→∞ δ
0
NT .
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for some deterministic sequence rNT → ∞ such that rNT = O(
√
NT ) and V

δ

∞ > 0, where ∆̃it =

∆it − E(∆it) and Γit = (Dβ∆)
′
∞W

−1

∞ Dβ`it − Eφ(Ψit)∂π`it. Then,

rNT (δ̂ − δ0
NT − T−1B

δ

∞ −N−1D
δ

∞)→d N (0, V
δ

∞).

Remark 4 (Convergence rate, bias and variance). The rate of convergence rNT is determined by the in-

verse of the first term of V
δ

∞, which corresponds to the asymptotic variance of δ := (NT )−1
∑N
i=1

∑T
t=1 ∆it,

r2
NT = O

 1

N2T 2

N∑
i,j=1

T∑
t,s=1

E[∆̃it∆̃
′
js]

−1

.

Assumption 4.2(iv) and the condition rNT → ∞ ensure that we can apply a central limit theorem to δ.

Under Assumption 4.2(i)(a), {∆it : 1 ≤ i ≤ N, 1 ≤ t ≤ T} is independent across i and α-mixing across

t by Assumption 4.1(ii), so that rNT =
√
NT and

V
δ

∞ = E

{
r2
NT

N2T 2

N∑
i=1

[
T∑

t,τ=1

E(∆̃it∆̃
′
iτ ) +

T∑
t=1

E(ΓitΓ
′
it)

]}
.

Bias and variance are of the same order asymptotically under the asymptotic sequences of Assump-

tion 4.1(i). Under Assumption 4.2(i)(b), the rate of convergence depends on the sampling properties of

the unobserved effects. For example, if {αi}N and {γt}T are independent sequences, and αi and γt are

independent for all i, t, then rNT =
√
NT/(N + T − 1),

V
δ

∞ = E

 r2
NT

N2T 2

N∑
i=1

 T∑
t,τ=1

E(∆̃it∆̃
′
iτ ) +

∑
j 6=i

T∑
t=1

E(∆̃it∆̃
′
jt) +

T∑
t=1

E(ΓitΓ
′
it)

 ,

and the asymptotic bias is of order T−1/2 +N−1/2. The bias and the last term of V
δ

∞ are asymptotically

negligible in this case under the asymptotic sequences of Assumption 4.1(i).

Remark 5 (Average effects from bias corrected estimators). The first term in the expressions of the

biases B
δ

∞ and D
δ

∞ comes from the bias of the estimator of β. It drops out when the APEs are constructed

from asymptotically unbiased or bias corrected estimators of the parameter β, i.e.

δ̃ = ∆(β̃, φ̂(β̃)),

where β̃ is such that
√
NT (β̃ − β0) →d N(0,W

−1

∞ ). The asymptotic variance of δ̃ is the same as in

Theorem 4.2.

In the following examples we assume that the APEs are constructed from asymptotically unbiased

estimators of the model parameters.

Example 1 (Binary response model). Consider the partial effects defined in (2.3) and (2.4) with

∆it(β, π) = F (βk +X ′it,−kβ−k + π)− F (X ′it,−kβ−k + π) and ∆it(β, π) = βk∂F (X ′itβ + π).
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Using the notation previously introduced for this example, the components of the asymptotic bias of δ̃

are

B
δ

∞ = E

[
1

2N

N∑
i=1

∑T
t=1[2

∑T
τ=t+1 Eφ(Hit(Yit−Fit)ωiτ Ψ̃iτ)−Eφ(Ψit)Eφ(Hit∂

2Fit)+Eφ(∂π2∆it)]∑T
t=1 Eφ(ωit)

]
,

D
δ

∞ = E

[
1

2T

T∑
t=1

∑N
i=1

[
−Eφ(Ψit)Eφ(Hit∂

2Fit) + Eφ(∂π2∆it)
]∑N

i=1 Eφ (ωit)

]
,

where Ψ̃it is the residual of the population regression of −∂π∆it/Eφ[ωit] on the space spanned by the inci-

dental parameters under the metric given by Eφ[ωit]. If all the components of Xit are strictly exogenous,

the first term of B
δ

∞ is zero.

Example 2 (Count response model). Consider the partial effect

∆it(β, π) = git(β) exp(X ′itβ + π),

where git does not depend on π. For example, git(β) = βk + βjh(Zit) in (2.5). Using the notation

previously introduced for this example, the components of the asymptotic bias are

B
δ

∞ = E

[
1

N

N∑
i=1

∑T
t=1

∑T
τ=t+1 Eφ [(Yit − ωit)ωiτ g̃iτ ]∑T

t=1 Eφ (ωit)

]
,

and D
δ

∞ = 0, where g̃it is the residual of the population projection of git on the space spanned by

the incidental parameters under a metric weighted by Eφ[ωit]. The asymptotic bias is zero if all the

components of Xit are strictly exogenous or git(β) is constant. The latter arises in the leading case of

the partial effect of the k-th component of Xit since git(β) = βk. This no asymptotic bias result applies

to any type of regressor, strictly exogenous or predetermined.

4.3 Bias corrected estimators

The results of the previous sections show that the asymptotic distributions of the fixed effects estimators

of the model parameters and APEs can have biases of the same order as the variances under sequences

where T grows at the same rate as N . This is the large-T version of the incidental parameters problem

that invalidates any inference based on the fixed effect estimators even in large samples. In this section

we describe how to construct analytical and jackknife bias corrections for the fixed effect estimators and

give conditions for the asymptotic validity of these corrections.

The jackknife correction for the model parameter β in equation (3.4) is generic and applies to the

panel model. For the APEs, the jackknife correction is formed similarly as

δ̃JNT = 3δ̂NT − δ̃N,T/2 − δ̃N/2,T ,

where δ̃N,T/2 is the average of the 2 split jackknife estimators of the APE that use all the individuals

and leave out the first and second halves of the time periods, and δ̃N/2,T is the average of the 2 split

jackknife estimators of the APE that use all the time periods and leave out half of the individuals.

The analytical corrections are constructed using sample analogs of the expressions in Theorems 4.1

and 4.2, replacing the true values of β and φ by the fixed effects estimators. To describe these corrections,
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we introduce some additional notation. For any function of the data, unobserved effects and parameters

gitj(β, αi + γt, αi + γt−j) with 0 ≤ j < t, let ĝitj = git(β̂, α̂i + γ̂t, α̂i + γ̂t−j) denote the fixed effects

estimator, e.g., ̂Eφ[∂π2`it] denotes the fixed effects estimator of Eφ[∂π2`it]. Let Ĥ−1
(αα), Ĥ

−1
(αγ), Ĥ

−1
(γα), and

Ĥ−1
(γγ) denote the blocks of the matrix Ĥ−1, where

Ĥ =

(
Ĥ∗(αα) Ĥ∗(αγ)

[Ĥ∗(αγ)]
′
Ĥ∗(γγ)

)
+

b√
NT

vv′,

Ĥ∗(αα) = diag(−
∑
t

̂Eφ[∂π2`it])/
√
NT , Ĥ∗(αα) = diag(−

∑
i

̂Eφ[∂π2`it])/
√
NT , and Ĥ∗(αγ)it = − ̂Eφ[∂π2`it]/

√
NT .

Let

Ξ̂it = − 1√
NT

N∑
j=1

T∑
τ=1

(
Ĥ−1

(αα)ij + Ĥ−1
(γα)tj + Ĥ−1

(αγ)iτ + Ĥ−1
(γγ)tτ

)
̂Eφ (∂βπ`jτ ).

The k-th component of Ξ̂it corresponds to a least squares regression of ̂Eφ (∂βkπ`it)/
̂Eφ(∂π2`it) on the

space spanned by the incidental parameters weighted by ̂Eφ(−∂π2`it).

The analytical bias corrected estimator of β0 is

β̃A = β̂ − B̂βNT /T − D̂
β
NT /N, (4.8)

where B̂βNT = Ŵ−1B̂, D̂β
NT = Ŵ−1D̂,

B̂ = − 1

N

N∑
i=1

∑L
j=0[T/(T − j)]

∑T
t=j+1

̂Eφ (∂π`i,t−jDβπ`it) + 1
2

∑T
t=1

̂Eφ(Dβπ2`it)∑T
t=1

̂Eφ (∂π2`it)
,

D̂ = − 1

T

T∑
t=1

∑N
i=1

[
̂Eφ (∂π`itDβπ`it) + 1

2
̂Eφ
(
Dβπ2`it

)]
∑N
i=1

̂Eφ (∂π2`it)
,

Ŵ = −(NT )−1
N∑
i=1

T∑
t=1

[
̂Eφ (∂ββ′`it)− ̂Eφ (∂π2`itΞitΞ′it)

]
, (4.9)

and L is a trimming parameter for estimation of spectral expectations such that L→∞ and L/T → 0

(Hahn and Kuersteiner, 2011). We refer to Hahn and Kuersteiner (2007) for a theoretical discussion on

the choice of L and to the numerical examples in Section 5 for a sensitivity analysis to the choice of L

in small samples. The factor T/(T − j) is a degrees of freedom adjustment that rescales the time series

averages T−1
∑T
t=j+1 by the number of observations instead of by T . Unlike for variance estimation, we

do not need to use a kernel function because the bias estimator does not need to be positive. Asymptotic

(1− p)–confidence intervals for the components of β0 can be formed as

β̃Ak ± z1−p

√
Ŵ−1
kk /(NT ), k = {1, ...,dimβ0},

where z1−p is the (1 − p)–quantile of the standard normal distribution, and Ŵ−1
kk is the (k, k)-element

of the matrix Ŵ−1.

We have implemented the analytical correction at the level of the estimator. Alternatively, we can

implement the correction at the level of the first order conditions by solving

(NT )−1/2∂βL(β, φ̂(β)) = B̂/T + D̂/N, (4.10)
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for β. The expansion (4.6) together with the consistency of B̂ and D̂ shows that the solution to these

adjusted first order conditions yields a bias corrected estimator that is asymptotically equivalent to

β̃A. Global concavity of the objective function guarantees that the solution to (4.10) is unique. Other

possible extensions such as corrections at the level of the objective function or iterative corrections are

left to future research.

The analytical bias corrected estimator of δ0
NT is

δ̃A = δ̂ − B̂δ/T − D̂δ/N,

where δ̃ is the APE constructed from a bias corrected estimator of β. Let

Ψ̂it = − 1√
NT

N∑
j=1

T∑
τ=1

(
Ĥ−1

(αα)ij + Ĥ−1
(γα)tj + Ĥ−1

(αγ)iτ + Ĥ−1
(γγ)tτ

)
∂̂π∆jτ .

The fixed effects estimators of the components of the asymptotic bias are

B̂δ =
1

N

N∑
i=1

∑L
j=0[T/(T − j)]

∑T
t=j+1

̂Eφ (∂π`i,t−j∂π2`itΨit)∑T
t=1

̂Eφ (∂π2`it)

− 1

2N

N∑
i=1

∑T
t=1

[
̂Eφ(∂π2∆it)− ̂Eφ(∂π3`it)Êφ(Ψit)

]
∑T
t=1

̂Eφ (∂π2`it)
,

D̂δ =
1

T

T∑
t=1

∑N
i=1

[
̂Eφ (∂π`it∂π2`itΨit)− 1

2
̂Eφ(∂π2∆it) + 1

2
̂Eφ(∂π3`it)Êφ(Ψit)

]
∑N
i=1

̂Eφ (∂π2`it)
.

The estimator of the asymptotic variance depends on the assumptions about the distribution of the

unobserved effects and explanatory variables. Under Assumption 4.2(i)(a) we need to impose a homo-

geneity assumption on the distribution of the explanatory variables to estimate the first term of the

asymptotic variance. For example, if {Xit : 1 ≤ i ≤ N, 1 ≤ t ≤ T} is identically distributed over i, we

can form

V̂ δ =
r2
NT

N2T 2

N∑
i=1

[
T∑

t,τ=1

̂̃∆it
̂̃∆′iτ +

T∑
t=1

̂Eφ(ΓitΓ′it)

]
, (4.11)

for ̂̃∆it = ∆̂it − N−1
∑N
i=1 ∆̂it. Under Assumption 4.2(i)(b) and the independence assumption on the

unobserved effects of Remark 4,

V̂ δ =
r2
NT

N2T 2

N∑
i=1

 T∑
t,τ=1

̂̃∆it
̂̃∆′iτ +

T∑
t=1

∑
j 6=i

̂̃∆it
̂̃∆′jt +

T∑
t=1

̂Eφ(ΓitΓ′it)

 , (4.12)

where ̂̃∆it = ∆̂it −N−1
∑N
i=1 ∆̂it under identical distribution over i, ̂̃∆it = ∆̂it − T−1

∑T
t=1 ∆̂it under

stationarity over t, and ̂̃∆it = ∆̂it − δ̂ under both. Note that we do not need to specify the convergence

rate rNT to make inference because the standard errors
√
V̂ δ/rNT do not depend on rNT . Bias corrected

estimators and confidence intervals can be constructed in the same fashion as for the model parameter.

We use the following homogeneity assumption to show the validity of the jackknife corrections for the

model parameters and APEs. It implies that β̃N,T/2−β̂NT = B
β

∞/T+oP (T−1∨N−1) and β̃N/2,T−β̂NT =

D
β

∞/N + oP (T−1 ∨N−1), which are weaker but higher level sufficient conditions for the validity of the
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jackknife for the model parameter. For APEs, Assumption 4.3 also ensures that these effects do not

change with T and N , i.e. δ0
NT = δ0. The analytical corrections do not require this assumption.

Assumption 4.3 (Unconditional homogeneity). The sequence {(Yit, Xit, αi, γt) : 1 ≤ i ≤ N, 1 ≤ t ≤ T}
is identically distributed across i and strictly stationary across t, for each N,T.

This assumption might seem restrictive for dynamic models where Xit includes lags of the dependent

variable because in this case it restricts the unconditional distribution of the initial conditions of Yit.

Note, however, that Assumption 4.3 allows the initial conditions to depend on the unobserved effects. In

other words, it does not impose that the initial conditions are generated from the stationary distribution

of Yit conditional on Xit and φ. Assumption 4.3 rules out time trends and structural breaks in the

processes for the unobserved effects and observed variables.

Remark 6 (Test of homogeneity). Assumption 4.3 is a sufficient condition for the validity of the jack-

knife corrections. It has the testable implications that the probability limits of the fixed effects estimator

are the same in all the partitions of the panel. For example, it implies that β1
N,T/2 = β2

N,T/2, where β1
N,T/2

and β2
N,T/2 are the probability limits of the fixed effects estimators of β in the subpanels that include all

the individuals and the first and second halves of the time periods, respectively. These implications can

be tested using variations of the Chow-type test proposed in Dhaene and Jochmans (2010). We provide

an example of the application of these tests to our setting in Section S.1.1 of the supplemental material.

The following theorems are the main result of this section. They show that the analytical and jack-

knife bias corrections eliminate the bias from the asymptotic distribution of the fixed effects estimators of

the model parameters and APEs without increasing variance, and that the estimators of the asymptotic

variances are consistent.

Theorem 4.3 (Bias corrections for β̂). Under the conditions of Theorems 4.1,

Ŵ →P W∞,

and, if L→∞ and L/T → 0, √
NT (β̃A − β0)→d N (0,W

−1

∞ ).

Under the conditions of Theorems 4.1 and Assumption 4.3,

√
NT (β̃J − β0)→d N (0,W

−1

∞ ).

Theorem 4.4 (Bias corrections for δ̂). Under the conditions of Theorems 4.1 and 4.2,

V̂ δ →P V
δ

∞,

and, if L→∞ and L/T → 0,

rNT (δ̃A − δ0
NT )→d N (0, V

δ

∞).

Under the conditions of Theorems 4.1 and 4.2, and Assumption 4.3,

rNT (δ̃J − δ0)→d N (0, V
δ

∞).

Remark 7 (Rate of convergence). The rate of convergence rNT depends on the properties of the sampling

process for the explanatory variables and unobserved effects (see remark 4).
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5 Monte Carlo Experiments

This section reports evidence on the finite sample behavior of fixed effects estimators of model parameters

and APEs in static models with strictly exogenous regressors and dynamic models with predetermined

regressors such as lags of the dependent variable. We analyze the performance of uncorrected and bias-

corrected fixed effects estimators in terms of bias and inference accuracy of their asymptotic distribution.

In particular we compute the biases, standard deviations, and root mean squared errors of the estimators,

the ratio of average standard errors to the simulation standard deviations (SE/SD); and the empirical

coverages of confidence intervals with 95% nominal value (p; .95).14 Overall, we find that the analytically

corrected estimators dominate the uncorrected and jackknife corrected estimators.15 The jackknife

corrections are more sensitive than the analytical corrections to Assumption 4.3. All the results are

based on 500 replications. The designs correspond to static and dynamic probit models. We consider

panels with a cross sectional size of 52 individuals, motivated by applications to U.S. states. As in the

analytical example of Section 3.3, we find that our large T asymptotic approximations capture well the

behavior of the fixed effects estimator and the bias corrections in moderately long panels with T = 14.

5.1 Static probit model

The data generating process is

Yit = 1 {Xitβ + αi + γt > εit} , (i = 1, ..., N ; t = 1, ..., T ),

where αi ∼ N (0, 1/16), γt ∼ N (0, 1/16), εit ∼ N (0, 1), and β = 1. We consider two alternative designs

for Xit: autoregressive process and linear trend process both with individual and time effects. In the

first design, Xit = Xi,t−1/2 + αi + γt + υit, υit ∼ N (0, 1/2), and Xi0 ∼ N (0, 1). In the second design,

Xit = 2t/T + αi + γt + υit, υit ∼ N (0, 3/4), which violates Assumption 4.3. In both designs Xit is

strictly exogenous with respect to εit conditional on the individual and time effects. The variables αi,

γt, εit, υit, and Xi0 are independent and i.i.d. across individuals and time periods. We generate panel

data sets with N = 52 individuals and three different numbers of time periods T : 14, 26 and 52.

Table 3 reports the results for the probit coefficient β, and the APE of Xit. We compute the APE

using (2.4). Throughout the table, MLE-FETE corresponds to the probit maximum likelihood estimator

with individual and time fixed effects, Analytical is the bias corrected estimator that uses the analytical

correction, and Jackknife is the bias corrected estimator that uses SPJ in both the individual and time

dimensions. The cross-sectional division in the jackknife follows the order of the observations. All the

results are reported in percentage of the true parameter value.

We find that the bias is of the same order of magnitude as the standard deviation for the uncorrected

estimator of the probit coefficient causing severe undercoverage of the confidence intervals. This result

holds for both designs and all the sample sizes considered. The bias corrections, specially Analytical,

14The standard errors are computed using the expressions (4.9), (4.11) and (4.12) evaluated at uncorrected estimates of the

parameters. We find little difference in performance of constructing standard errors based on corrected estimates.
15Kristensen and Salanié (2013) also found that analytical corrections dominate jackknife corrections to reduce the bias of

approximate estimators.
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remove the bias without increasing dispersion, and produce substantial improvements in rmse and cov-

erage probabilities. For example, Analytical reduces rmse by more than 40% and increases coverage by

20% in the first design with T = 14. As in Hahn and Newey (2004) and Fernandez-Val (2009), we find

very little bias in the uncorrected estimates of the APE, despite the large bias in the probit coefficients.

Jackknife performs relatively worse in the second design that does not satisfy Assumption 4.3.

5.2 Dynamic probit model

The data generating process is

Yit = 1 {Yi,t−1βY + ZitβZ + αi + γt > εit} , (i = 1, ..., N ; t = 1, ..., T ),

Yi0 = 1 {Zi0βZ + αi + γ0 > εi0} ,

where αi ∼ N (0, 1/16), γt ∼ N (0, 1/16), εit ∼ N (0, 1), βY = 0.5, and βZ = 1. We consider two

alternative designs for Zit: autoregressive process and linear trend process both with individual and

time effects. In the first design, Zit = Zi,t−1/2 + αi + γt + υit, υit ∼ N (0, 1/2), and Zi0 ∼ N (0, 1). In

the second design, Zit = 1.5t/T + αi + γt + υit, υit ∼ N (0, 3/4), which violates Assumption 4.3. The

variables αi, γt, εit, υit, and Zi0 are independent and i.i.d. across individuals and time periods. We

generate panel data sets with N = 52 individuals and three different numbers of time periods T : 14, 26

and 52.

Table 4 reports the simulation results for the probit coefficient βY and the APE of Yi,t−1. We

compute the partial effect of Yi,t−1 using the expression in equation (2.3) with Xit,k = Yi,t−1. This

effect is commonly reported as a measure of state dependence for dynamic binary processes. Table 5

reports the simulation results for the estimators of the probit coefficient βZ and the APE of Zit. We

compute the partial effect using (2.4) with Xit,k = Zit. Throughout the tables, we compare the same

estimators as for the static model. For the analytical correction we consider two versions, Analytical

(L=1) sets the trimming parameter to estimate spectral expectations L to one, whereas Analytical (L=2)

sets L to two.16 Again, all the results in the tables are reported in percentage of the true parameter

value.

The results in table 4 show important biases toward zero for both the probit coefficient and the

APE of Yi,t−1 in the two designs. This bias can indeed be substantially larger than the corresponding

standard deviation for short panels yielding coverage probabilities below 70% for T = 14. The analytical

corrections significantly reduce biases and rmse, bring coverage probabilities close to their nominal

level, and have little sensitivity to the trimming parameter L. The jackknife corrections reduce bias

but increase dispersion, producing less drastic improvements in rmse and coverage than the analytical

corrections. The results for the APE of Zit in table 5 are similar to the static probit model. There

are significant bias and undercoverage of confidence intervals for the coefficient βZ , which are removed

by the corrections, whereas there are little bias and undercoverage in the APE. As in the static model,

Jackknife performs relatively worse in the second design.

16In results not reported for brevity, we find little difference in performance of increasing the trimming parameters to L = 3

and L = 4. These results are available from the authors upon request.
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6 Concluding remarks

In this paper we develop analytical and jackknife corrections for fixed effects estimators of model pa-

rameters and APEs in semiparametric nonlinear panel models with additive individual and time effects.

Our analysis applies to conditional maximum likelihood estimators with concave log-likelihood functions,

and therefore covers logit, probit, ordered probit, ordered logit, Poisson, negative binomial, and Tobit

estimators, which are the most popular nonlinear estimators in empirical economics.

We are currently developing similar corrections for nonlinear models with interactive individual and

time effects (Chen, Fernández-Val, and Weidner (2013)). Another interesting avenue of future research

is to derive higher-order expansions for fixed effects estimators with individual and time effects. These

expansions are needed to justify theoretically the validity of alternative corrections based on the leave-

one-observation-out panel jackknife method of Hahn and Newey (2004).

Appendix

A Notation and Choice of Norms

We write A′ for the transpose of a matrix or vector A. We use 1n for the n × n identity matrix, and

1n for the column vector of length n whose entries are all unity. For square n × n matrices B, C, we

use B > C (or B ≥ C) to indicate that B − C is positive (semi) definite. We write wpa1 for “with

probability approaching one” and wrt for “with respect to”. All the limits are taken as N,T → ∞
jointly.

As in the main text, we usually suppress the dependence on NT of all the sequences of functions

and parameters to lighten the notation, e.g. we write L for LNT and φ for φNT . Let

S(β, φ) = ∂φL(β, φ), H(β, φ) = −∂φφ′L(β, φ),

where ∂xf denotes the partial derivative of f with respect to x, and additional subscripts denote higher-

order partial derivatives. We refer to the dimφ-vector S(β, φ) as the incidental parameter score, and to

the dimφ × dimφ matrix H(β, φ) as the incidental parameter Hessian. We omit the arguments of the

functions when they are evaluated at the true parameter values (β0, φ0), e.g. H = H(β0, φ0). We use

a bar to indicate expectations conditional on φ, e.g. ∂βL = Eφ[∂βL], and a tilde to denote variables in

deviations with respect to expectations, e.g. ∂βL̃ = ∂βL − ∂βL.

We use the Euclidian norm ‖.‖ for vectors of dimension dimβ, and we use the norm induced by the

Euclidian norm for the corresponding matrices and tensors, which we also denote by ‖.‖. For matrices

of dimension dimβ × dimβ this induced norm is the spectral norm. The generalization of the spectral

norm to higher order tensors is straightforward, e.g. the induced norm of the dimβ × dimβ × dimβ

tensor of third partial derivatives of L(β, φ) wrt β is given by

‖∂βββL(β, φ)‖ = max
{u,v∈Rdim β , ‖u‖=1, ‖v‖=1}

∥∥∥∥∥∥
dim β∑
k,l=1

uk vl ∂ββkβlL(β, φ)

∥∥∥∥∥∥ .
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This choice of norm is immaterial for the asymptotic analysis because dimβ is fixed with the sample

size.

In contrast, it is important what norms we choose for vectors of dimension dimφ, and their corre-

sponding matrices and tensors, because dimφ is increasing with the sample size. For vectors of dimension

dimφ, we use the `q-norm

‖φ‖q =

(
dimφ∑
g=1

|φg|q
)1/q

,

where 2 ≤ q ≤ ∞.17 The particular value q = 8 will be chosen later.18 We use the norms that are

induced by the `q-norm for the corresponding matrices and tensors, e.g. the induced q-norm of the

dimφ× dimφ× dimφ tensor of third partial derivatives of L(β, φ) wrt φ is

‖∂φφφL(β, φ)‖q = max
{u,v∈Rdimφ, ‖u‖q=1, ‖v‖q=1}

∥∥∥∥∥∥
dimφ∑
g,h=1

ug vh ∂φφgφhL(β, φ)

∥∥∥∥∥∥
q

. (A.1)

Note that in general the ordering of the indices of the tensor would matter in the definition of this norm,

with the first index having a special role. However, since partial derivatives like ∂φgφhφlL(β, φ) are fully

symmetric in the indices g, h, l, the ordering is not important in their case.

For mixed partial derivatives of L(β, φ) wrt β and φ, we use the norm that is induced by the Euclidian

norm on dimβ-vectors and the q-norm on dimφ-indices, e.g.

‖∂ββφφφL(β, φ)‖q = max
{u,v∈Rdim β , ‖u‖=1, ‖v‖=1}

max
{w,x∈Rdimφ, ‖w‖q=1, ‖x‖q=1}∥∥∥∥∥∥

dim β∑
k,l=1

dimφ∑
g,h=1

uk vl wg xh ∂βkβlφφgφhL(β, φ)

∥∥∥∥∥∥
q

, (A.2)

where we continue to use the notation ‖.‖q, even though this is a mixed norm.

Note that for w, x ∈ Rdimφ and q ≥ 2,

|w′x| ≤ ‖w‖q‖x‖q/(q−1) ≤ (dimφ)(q−2)/q‖w‖q‖x‖q.

Thus, whenever we bound a scalar product of vectors, matrices and tensors in terms of the above norms

we have to account for this additional factor (dimφ)(q−2)/q. For example,∣∣∣∣∣∣
dim β∑
k,l=1

dimφ∑
f,g,h=1

uk vl wf xh yf ∂βkβlφfφgφhL(β, φ)

∣∣∣∣∣∣ ≤ (dimφ)(q−2)/q‖u‖ ‖v‖ ‖w‖q ‖x‖q ‖y‖q ‖∂ββφφφL(β, φ)‖q .

For higher-order tensors, we use the notation ∂φφφL(β, φ) inside the q-norm ‖.‖q defined above, while

we rely on standard index and matrix notation for all other expressions involving those partial deriva-

tives, e.g. ∂φφ′φgL(β, φ) is a dimφ × dimφ matrix for every g = 1, . . . ,dimφ. Occasionally, e.g. in

17We use the letter q instead of p to avoid confusion with the use of p for probability.
18The main reason not to choose q =∞ is the assumption ‖H̃‖q = oP (1) below, which is used to guarantee that ‖H−1‖q is

of the same order as ‖H−1‖q. If we assume ‖H−1‖q = OP (1) directly instead of ‖H−1‖q = OP (1), then we can set q =∞.
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Assumption B.1(vi) below, we use the Euclidian norm for dimφ-vectors, and the spectral norm for

dimφ × dimφ-matrices, denoted by ‖.‖, and defined as ‖.‖q with q = 2. Moreover, we employ the

matrix infinity norm ‖A‖∞ = maxi
∑
j |Aij |, and the matrix maximum norm ‖A‖max = maxij |Aij |

to characterize the properties of the inverse of the expected Hessian of the incidental parameters in

Section D.

For r ≥ 0, we define the sets B(r, β0) =
{
β : ‖β − β0‖ ≤ r

}
, and Bq(r, φ0) =

{
φ : ‖φ− φ0‖q ≤ r

}
,

which are closed balls of radius r around the true parameter values β0 and φ0, respectively.

B Asymptotic Expansions

In this section, we derive asymptotic expansions for the score of the profile objective function, L(β, φ̂(β)),

and for the fixed effects estimators of the parameters and APEs, β̂ and δ̂. We do not employ the panel

structure of the model, nor the particular form of the objective function given in Section 4. Instead, we

consider the estimation of an unspecified model based on a sample of size NT and a generic objective

function L(β, φ), which depends on the parameter of interest β and the incidental parameter φ. The

estimators φ̂(β) and β̂ are defined in (2.7) and (2.8). The proof of all the results in this Section are

given in the supplementary material.

We make the following high-level assumptions. These assumptions might appear somewhat abstract,

but will be justified by more primitive conditions in the context of panel models.

Assumption B.1 (Regularity conditions for asymptotic expansion of β̂). Let q > 4 and 0 ≤ ε <

1/8 − 1/(2q). Let rβ = rβ,NT > 0, rφ = rφ,NT > 0, with rβ = o
[
(NT )−1/(2q)−ε] and rφ = o [(NT )−ε].

We assume that

(i) dimφ√
NT
→ a, 0 < a <∞.

(ii) (β, φ) 7→ L(β, φ) is four times continuously differentiable in B(rβ , β
0)× Bq(rφ, φ0), wpa1.

(iii) sup
β∈B(rβ ,β0)

∥∥∥φ̂(β)− φ0
∥∥∥
q

= oP (rφ).

(iv) H > 0, and
∥∥∥H−1

∥∥∥
q

= OP (1).

(v) For the q-norm defined in Appendix A,

‖S‖q = OP
(

(NT )−1/4+1/(2q)
)
, ‖∂βL‖ = OP (1), ‖H̃‖q = oP (1),

‖∂βφ′L‖q = OP
(

(NT )1/(2q)
)
, ‖∂ββ′L‖ = OP (

√
NT ), ‖∂βφφL‖q = OP ((NT )ε),

‖∂φφφL‖q = OP ((NT )ε) ,
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and

sup
β∈B(rβ ,β0)

sup
φ∈Bq(rφ,φ0)

‖∂βββL(β, φ)‖ = OP
(√

NT
)
,

sup
β∈B(rβ ,β0)

sup
φ∈Bq(rφ,φ0)

‖∂ββφL(β, φ)‖q = OP
(

(NT )1/(2q)
)
,

sup
β∈B(rβ ,β0)

sup
φ∈Bq(rφ,φ0)

‖∂ββφφL(β, φ)‖q = OP ((NT )ε) ,

sup
β∈B(rβ ,β0)

sup
φ∈Bq(rφ,φ0)

‖∂βφφφL(β, φ)‖q = OP ((NT )ε) ,

sup
β∈B(rβ ,β0)

sup
φ∈Bq(rφ,φ0)

‖∂φφφφL(β, φ)‖q = OP ((NT )ε) .

(vi) For the spectral norm ‖.‖ = ‖.‖2,

‖H̃‖ = oP

(
(NT )−1/8

)
,
∥∥∥∂ββ′L̃

∥∥∥ = oP (
√
NT ),

∥∥∥∂βφφL̃∥∥∥ = oP

(
(NT )−1/8

)
,

∥∥∥∂βφ′L̃
∥∥∥ = OP (1) ,

∥∥∥∥∥∥
dimφ∑
g,h=1

∂φφgφhL̃ [H−1S]g[H
−1S]h

∥∥∥∥∥∥ = oP

(
(NT )−1/4

)
.

Let ∂βL(β, φ̂(β)) be the score of the profile objective function.19 The following theorem is the main

result of this appendix.

Theorem B.1 (Asymptotic expansions of φ̂(β) and ∂βL(β, φ̂(β))). Let Assumption B.1 hold. Then

φ̂(β)− φ0 = H−1S +H−1[∂φβ′L](β − β0) + 1
2H
−1

dimφ∑
g=1

[∂φφ′φgL]H−1S[H−1S]g +Rφ(β),

and

∂βL(β, φ̂(β)) = U −W
√
NT (β − β0) +R(β),

where U = U (0) + U (1), and

W = − 1√
NT

(
∂ββ′L+ [∂βφ′L] H−1

[∂φβ′L]
)
,

U (0) = ∂βL+ [∂βφ′L]H−1S,

U (1) = [∂βφ′L̃]H−1S − [∂βφ′L]H−1 H̃H−1 S +
1

2

dimφ∑
g=1

(
∂βφ′φgL+ [∂βφ′L]H−1

[∂φφ′φgL]
)

[H−1S]gH
−1S.

The remainder terms of the expansions satisfy

sup
β∈B(rβ ,β0)

(NT )1/2−1/(2q)
∥∥Rφ(β)

∥∥
q

1 +
√
NT‖β − β0‖

= oP (1) , sup
β∈B(rβ ,β0)

‖R(β)‖
1 +
√
NT‖β − β0‖

= oP (1) .

Remark 8. The result for φ̂(β)−φ0 does not rely on Assumption B.1(vi). Without this assumption we

can also show that

∂βL(β, φ̂(β)) = ∂βL+
[
∂ββ′L+ (∂βφ′L)H−1(∂φ′βL)

]
(β − β0) + (∂βφ′L)H−1S

+
1

2

∑
g

(
∂βφ′φgL+ [∂βφ′L]H−1[∂φφ′φgL]

)
[H−1S]gH−1S +R1(β),

19Note that d
dβ
L(β, φ̂(β)) = ∂βL(β, φ̂(β)) by the envelope theorem.
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with R1(β) satisfying the same bound as R(β). Thus, the spectral norm bounds in Assumption B.1(vi)

for dimφ-vectors, matrices and tensors are only used after separating expectations from deviations of

expectations for certain partial derivatives. Otherwise, the derivation of the bounds is purely based on

the q-norm for dimφ-vectors, matrices and tensors.

The proofs are given in Section S.3 of the supplementary material. Theorem B.1 characterizes

asymptotic expansions for the incidental parameter estimator and the score of the profile objective

function in the incidental parameter score S up to quadratic order. The theorem provides bounds on

the the remainder terms Rφ(β) and R(β), which make the expansions applicable to estimators of β that

take values within a shrinking rβ-neighborhood of β0 wpa1. Given such an rβ-consistent estimator β̂

that solves the first order condition ∂βL(β, φ̂(β)) = 0, we can use the expansion of the profile objective

score to obtain an asymptotic expansion for β̂. This gives rise to the following corollary of Theorem B.1

. Let W∞ := limN,T→∞W .

Corollary B.2 (Asymptotic expansion of β̂). Let Assumption B.1 be satisfied. In addition, let U =

OP (1), let W∞ exist with W∞ > 0, and let ‖β̂ − β0‖ = oP (rβ). Then

√
NT (β̂ − β0) = W

−1

∞ U + oP (1).

The following theorem states that for strictly concave objective functions no separate consistency

proof is required for φ̂(β) and for β̂.

Theorem B.3 (Consistency under Concavity). Let Assumption B.1(i), (ii), (iv), (v) and (vi) hold,

and let (β, φ) 7→ L(β, φ) be strictly concave over (β, φ) ∈ Rdim β+dimφ, wpa1. Assume furthermore that

(NT )−1/4+1/(2q) = oP (rφ) and (NT )1/(2q)rβ = oP (rφ). Then,

sup
β∈B(rβ ,β0)

∥∥∥φ̂(β)− φ0
∥∥∥
q

= oP (rφ),

i.e. Assumption B.1(iii) is satisfied. If, in addition, W∞ exists with W∞ > 0, then ‖β̂ − β0‖ =

OP
(
(NT )−1/4

)
.

In the application of Theorem B.1 to panel models, we focus on estimators with strictly concave

objective functions. By Theorem B.3, we only need to check Assumption B.1(i), (ii), (iv), (v) and (vi),

as well as U = OP (1) and W∞ > 0, when we apply Corollary B.2 to derive the limiting distribution of

β̂. We give the proofs of Corollary B.2 and Theorem B.3 in Section S.3.

Expansion for Average Effects

We invoke the following high-level assumption, which is verified under more primitive conditions for

panel data models in the next section.

Assumption B.2 (Regularity conditions for asymptotic expansion of δ̂). Let q, ε, rβ and rφ be defined

as in Assumption B.1. We assume that

(i) (β, φ) 7→ ∆(β, φ) is three times continuously differentiable in B(rβ , β
0)× Bq(rφ, φ0), wpa1.
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(ii) ‖∂β∆‖ = OP (1), ‖∂φ∆‖q = OP
(
(NT )1/(2q)−1/2

)
, ‖∂φφ∆‖q = OP ((NT )ε−1/2), and

sup
β∈B(rβ ,β0)

sup
φ∈Bq(rφ,φ0)

‖∂ββ∆(β, φ)‖ = OP (1) ,

sup
β∈B(rβ ,β0)

sup
φ∈Bq(rφ,φ0)

‖∂βφ′∆(β, φ)‖q = OP
(

(NT )1/(2q)−1/2
)
,

sup
β∈B(rβ ,β0)

sup
φ∈Bq(rφ,φ0)

‖∂φφφ∆(β, φ)‖q = OP
(

(NT )ε−1/2
)
.

(iii)
∥∥∥∂β∆̃

∥∥∥ = oP (1),
∥∥∥∂φ∆̃

∥∥∥ = OP
(
(NT )−1/2

)
, and

∥∥∥∂φφ∆̃
∥∥∥ = oP

(
(NT )−5/8

)
.

The following result gives the asymptotic expansion for the estimator, δ̂ = ∆(β, φ̂(β)), wrt δ =

∆(β0, φ0).

Theorem B.4 (Asymptotic expansion of δ̂). Let Assumptions B.1 and B.2 hold and let ‖β̂ − β0‖ =

OP
(
(NT )−1/2

)
= oP (rβ). Then

δ̂ − δ =
[
∂β′∆ + (∂φ′∆)H−1

(∂φβ′L)
]

(β̂ − β0) + U
(0)
∆ + U

(1)
∆ + oP

(
1/
√
NT

)
,

where

U
(0)
∆ = (∂φ′∆)H−1S,

U
(1)
∆ = (∂φ′∆̃)H−1S − (∂φ′∆)H−1H̃H−1S

+ 1
2 S
′H−1

[
∂φφ′∆ +

dimφ∑
g=1

[
∂φφ′φgL

] [
H−1

(∂φ∆)
]
g

]
H−1S.

Remark 9. The expansion of the profile score ∂βkL(β, φ̂(β)) in Theorem B.1 is a special case of the

expansion in Theorem B.4, for ∆(β, φ) = 1√
NT

∂βkL(β, φ). Assumptions B.2 also exactly match with the

corresponding subset of Assumption B.1.

C Proofs of Section 4

C.1 Application of General Expansion to Panel Estimators

We now apply the general expansion of appendix B to the panel fixed effects estimators considered in

the main text. For the objective function specified in (2.1) and (4.1), the incidental parameter score

evaluated at the true parameter value is

S =


[

1√
NT

∑T
t=1 ∂π`it

]
i=1,...,N[

1√
NT

∑N
i=1 ∂π`it

]
t=1,...,T

 .

The penalty term in the objective function does not contribute to S, because at the true parameter

value v′φ0 = 0. The corresponding expected incidental parameter Hessian H is given in (4.2). Section D

discusses the structure of H and H−1
in more detail. Define

Λit := − 1√
NT

N∑
j=1

T∑
τ=1

(
H−1

(αα)ij +H−1

(γα)tj +H−1

(αγ)iτ +H−1

(γγ)tτ

)
∂π`jτ , (C.1)
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and the operator Dβ∆it := ∂β∆it − ∂π∆itΞit, which are similar to Ξit and Dβ`it in equation (4.3).

The following theorem shows that Assumption 4.1 and Assumption 4.2 for the panel model are

sufficient for Assumption B.1 and Assumption B.2 for the general expansion, and particularizes the

terms of the expansion to the panel estimators. The proof is given in the supplementary material.

Theorem C.1. Consider an estimator with objective function given by (2.1) and (4.1). Let Assump-

tion 4.1 be satisfied and suppose that the limit W∞ defined in Theorem 4.1 exists and is positive definite.

Let q = 8, ε = 1/(16 + 2ν), rβ,NT = log(NT )(NT )−1/8 and rφ,NT = (NT )−1/16. Then,

(i) Assumption B.1 holds and ‖β̂ − β0‖ = OP ((NT )−1/4).

(ii) The approximate Hessian and the terms of the score defined in Theorem B.1 can be written as

W = − 1

NT

N∑
i=1

T∑
t=1

Eφ (∂ββ′`it − ∂π2`itΞitΞ
′
it) ,

U (0) =
1√
NT

N∑
i=1

T∑
t=1

Dβ`it,

U (1) =
1√
NT

N∑
i=1

T∑
t=1

{
−Λit [Dβπ`it − Eφ(Dβπ`it)] +

1

2
Λ2
it Eφ(Dβπ2`it)

}
.

(iii) In addition, let Assumption 4.2 hold. Then, Assumption B.2 is satisfied for the partial effects

defined in (2.2). By Theorem B.4,

√
NT

(
δ̂ − δ

)
= V

(0)
∆ + V

(1)
∆ + oP (1),

where

V
(0)
∆ =

 1

NT

∑
i,t

Eφ(Dβ∆it)

′W−1

∞ U (0) − 1√
NT

∑
i,t

Eφ(Ψit)∂π`it,

V
(1)
∆ =

 1

NT

∑
i,t

Eφ(Dβ∆it)

′W−1

∞ U (1) +
1√
NT

∑
i,t

Λit [Ψit∂π2`it − Eφ(Ψit)Eφ(∂π2`it)]

+
1

2
√
NT

∑
i,t

Λ2
it [Eφ(∂π2∆it)− Eφ(∂π3`it)Eφ(Ψit)] .

C.2 Proofs of Theorems 4.1 and 4.2

Proof of Theorem 4.1. # First, we want to show that U (0) →d N (0, W∞). In our likelihood setting,

Eφ∂βL = 0, EφS = 0, and, by the Bartlett identities, Eφ(∂βL∂β′L) = − 1√
NT

∂ββ′L, Eφ(∂βLS ′) =

− 1√
NT

∂βφ′L and Eφ(SS ′) = 1√
NT

(
H− b√

NT
vv′
)

. Furthermore, S ′v = 0 and ∂βφ′Lv = 0. Then, by

definition of W = − 1√
NT

(
∂ββ′L+ [∂βφ′L] H−1

[∂φβ′L]
)

and U (0) = ∂βL+ [∂βφ′L]H−1S,

Eφ
(
U (0)

)
= 0, Var

(
U (0)

)
= W,
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which implies that limN,T→∞Var
(
U (0)

)
= limN,T→∞W = W∞. Moreover, part (ii) of Theorem C.1

yields

U (0) =
1√
NT

N∑
i=1

T∑
t=1

Dβ`it,

where Dβ`it = ∂β`it − ∂π`itΞit is a martingale difference sequence for each i and independent across i,

conditional on φ. Thus, by Lemma S.3 and the Cramer-Wold device we conclude that

U (0) →d N
[
0, lim

N,T→∞
Var

(
U (0)

)]
∼ N (0, W∞).

# Next, we show that U (1) →P κB∞+κ−1D∞. Part (ii) of Theorem C.1 gives U (1) = U (1a) +U (1b),

with

U (1a) = − 1√
NT

N∑
i=1

T∑
t=1

Λit [Dβπ`it − Eφ(Dβπ`it)] ,

U (1b) =
1

2
√
NT

N∑
i=1

T∑
t=1

Λ2
it Eφ(Dβπ2`it).

Plugging-in the definition of Λit, we decompose U (1a) = U (1a,1) + U (1a,2) + U (1a,3) + U (1a,4), where

U (1a,1) =
1

NT

∑
i,j

H−1

(αα)ij

(∑
τ

∂π`jτ

)∑
t

[Dβπ`it − Eφ(Dβπ`it)] ,

U (1a,2) =
1

NT

∑
j,t

H−1

(γα)tj

(∑
τ

∂π`jτ

)∑
i

[Dβπ`it − Eφ(Dβπ`it)] ,

U (1a,3) =
1

NT

∑
i,τ

H−1

(αγ)iτ

∑
j

∂π`jτ

∑
t

[Dβπ`it − Eφ(Dβπ`it)] ,

U (1a,4) =
1

NT

∑
t,τ

H−1

(γγ)tτ

∑
j

∂π`jτ

∑
i

[Dβπ`it − Eφ(Dβπ`it)] .

By the Cauchy-Schwarz inequality applied to the sum over t in U (1a,2),

(
U (1a,2)

)2

≤ 1

(NT )2

∑
t

∑
j,τ

H−1

(γα)tj∂π`jτ

2

∑

t

(∑
i

[Dβπ`it − Eφ(Dβπ`it)]

)2
 .

By Lemma D.1, H−1

(γα)tj = OP (1/
√
NT ), uniformly over t, j. Using that both

√
NT H−1

(γα)tj∂π`jτ and

Dβπ`it−Eφ(Dβπ`it) are mean zero, independence across i and Lemma S.2 in the supplementary material

across t, we obtain

Eφ

 1√
NT

∑
j,τ

[
√
NT H−1

(γα)tj ]∂π`jτ

2

= OP (1), Eφ

(
1√
N

∑
i

[Dβπ`it − Eφ(Dβπ`it)]

)2

= OP (1),

uniformly over t. Thus,
∑
t

(∑
j,τ H

−1

(γα)tj∂π`jτ

)2

= OP (T ) and
∑
t (
∑
i [Dβπ`it − Eφ(Dβπ`it)])

2
=

OP (NT ). We conclude that(
U (1a,2)

)2

=
1

(NT )2
OP (T )OP (NT ) = OP (1/N) = oP (1),
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and therefore that U (1a,2) = oP (1). Analogously one can show that U (1a,3) = oP (1).

By Lemma D.1, H−1

(αα) = −diag

[(
1√
NT

∑T
t=1 Eφ(∂π2`it

)−1
]

+ OP (1/
√
NT ). Analogously to the

proof of U (1a,2) = oP (1), one can show that the OP (1/
√
NT ) part of H−1

(αα) has an asymptotically

negligible contribution to U (1a,1). Thus,

U (1a,1) = − 1√
NT

∑
i

(
∑
τ ∂π`iτ )

∑
t [Dβπ`it − Eφ(Dβπ`it)]∑
t Eφ(∂π2`it)︸ ︷︷ ︸
=:U

(1a,1)
i

+oP (1).

Our assumptions guarantee that Eφ
[(
U

(1a,1)
i

)2
]

= OP (1), uniformly over i. Note that both the de-

nominator and the numerator of U
(1a,1)
i are of order T . For the denominator this is obvious because of

the sum over T . For the numerator there are two sums over T , but both ∂π`iτ and Dβπ`it−Eφ(Dβπ`it)

are mean zero weakly correlated processes, so that their sums are of order
√
T . By the WLLN over i

(remember that we have cross-sectional independence, conditional on φ, and we assume finite moments),

N−1
∑
i U

(1a,1)
i = N−1

∑
i EφU

(1a,1)
i + oP (1), and therefore

U (1a,1) = −
√
N

T

1

N

N∑
i=1

∑T
t=1

∑T
τ=t Eφ (∂π`itDβπ`iτ )∑T
t=1 Eφ (∂π2`it)︸ ︷︷ ︸

=:
√

N
T B

(1)

+oP (1).

Here, we use that Eφ (∂π`itDβπ`iτ ) = 0 for t > τ . Analogously,

U (1a,4) = −
√
T

N

1

T

T∑
t=1

∑N
i=1 Eφ (∂π`itDβπ`it)∑N

i=1 Eφ (∂π2`it)︸ ︷︷ ︸
=:
√

T
ND

(1)

+oP (1).

We conclude that U (1a) = κB
(1)

+ κ−1D
(1)

+ oP (1).

Next, we analyze U (1b). We decompose Λit = Λ
(1)
it + Λ

(2)
it + Λ

(3)
it + Λ

(4)
it , where

Λ
(1)
it = − 1√

NT

N∑
j=1

H−1

(αα)ij

T∑
τ=1

∂π`jτ , Λ
(2)
it = − 1√

NT

N∑
j=1

H−1

(γα)tj

T∑
τ=1

∂π`jτ ,

Λ
(3)
it = − 1√

NT

T∑
τ=1

H−1

(αγ)iτ

T∑
τ=1

∂π`jτ , Λ
(4)
it = − 1√

NT

T∑
τ=1

H−1

(γγ)tτ

T∑
τ=1

∂π`jτ .

This decomposition of Λit induces the following decomposition of U (1b)

U (1b) =

4∑
p,q=1

U (1b,p,q), U (1b,p,q) =
1

2
√
NT

N∑
i=1

T∑
t=1

Λ
(p)
it Λ

(q)
it Eφ(Dβπ2`it).

Due to the symmetry U (1b,p,q) = U (1b,q,p), this decomposition has 10 distinct terms. Start with U (1b,1,2)

noting that

U (1b,1,2) =
1√
NT

N∑
i=1

U
(1b,1,2)
i ,

U
(1b,1,2)
i =

1

2T

T∑
t=1

Eφ(Dβπ2`it)
1

N2

N∑
j1,j2=1

[
NTH−1

(αα)ij1H
−1

(γα)tj2

]( 1√
T

T∑
τ=1

∂π`j1τ

)(
1√
T

T∑
τ=1

∂π`j2τ

)
.
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By Eφ(∂π`it) = 0, Eφ(∂π`it∂π`jτ ) = 0 for (i, t) 6= (j, τ), and the properties of the inverse expected Hessian

from Lemma D.1, Eφ
[
U

(1b,1,2)
i

]
= OP (1/N), uniformly over i, Eφ

[(
U

(1b,1,2)
i

)2
]

= OP (1), uniformly

over i, and Eφ
[
U

(1b,1,2)
i U

(1b,1,2)
j

]
= OP (1/N), uniformly over i 6= j. This implies that Eφ U (1b,1,2) =

OP (1/N) and Eφ
[(
U (1b,1,2) − Eφ U (1b,1,2)

)2]
= OP (1/

√
N), and therefore U (1b,1,2) = oP (1). By similar

arguments one obtains U (1b,p,q) = oP (1) for all combinations of p, q = 1, 2, 3, 4, except for p = q = 1 and

p = q = 4.

For p = q = 1,

U (1b,1,1) =
1√
NT

N∑
i=1

U
(1b,1,1)
i ,

U
(1b,1,1)
i =

1

2T

T∑
t=1

Eφ(Dβπ2`it)
1

N2

N∑
j1,j2=1

[
NTH−1

(αα)ij1H
−1

(αα)ij2

]( 1√
T

T∑
τ=1

∂π`j1τ

)(
1√
T

T∑
τ=1

∂π`j2τ

)
.

Analogous to the result for U (1b,1,2), Eφ
[(
U (1b,1,1) − Eφ U (1b,1,1)

)2]
= OP (1/

√
N), and therefore U (1b,1,1) =

Eφ U (1b,1,1) + o(1). Furthermore,

Eφ U (1b,1,1) =
1

2
√
NT

N∑
i=1

∑T
t=1 Eφ(Dβπ2`it)

∑T
τ=1 Eφ

[
(∂π`iτ )

2
]

[∑T
t=1 Eφ (∂π2`it)

]2 + o(1)

= −
√
N

T

1

2N

N∑
i=1

∑T
t=1 Eφ(Dβπ2`it)∑T
t=1 Eφ (∂π2`it)︸ ︷︷ ︸

=:
√

N
T B

(2)

+o(1).

Analogously,

U (1b,4,4) = Eφ U (1b,4,4) + oP (1) = −
√
T

N

1

2T

T∑
t=1

∑N
i=1 Eφ(Dβπ2`it)∑N
i=1 Eφ (∂π2`it)︸ ︷︷ ︸

=:
√

T
ND

(2)

+o(1).

We have thus shown that U (1b) = κB
(2)

+ κ−1D
(2)

+ oP (1). Since B∞ = limN,T→∞[B
(1)

+ B
(2)

] and

D∞ = limN,T→∞[D
(1)

+D
(2)

] we thus conclude U (1) = κB∞ + κ−1D∞ + oP (1).

# We have shown U (0) →d N (0, W∞), and U (1) →P κB∞+κ−1D∞. Then, part (ii) of Theorem C.1

yields
√
NT (β̂ − β0) →d W

−1

∞ N (κB∞ + κ−1D∞, W∞). �

Proof of Theorem 4.2. We consider the case of scalar ∆it to simplify the notation. Decompose

rNT (δ̂ − δ0
NT −B

δ

∞/T −D
δ

∞/N) = rNT (δ − δ0
NT ) +

rNT√
NT

√
NT (δ̂ − δ −Bδ∞/T −D

δ

∞/N).

# Part (1): Limit of
√
NT (δ̂ − δ − Bδ∞/T − D

δ

∞/N). An argument analogous to to the proof of

Theorem 4.1 using Theorem C.1(iii) yields

√
NT (δ̂ − δ)→d N

(
κB

δ

∞ + κ−1D
δ

∞, V
δ(1)

∞

)
,
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where V
δ(1)

∞ = E
{

(NT )−1
∑
i,t Eφ[Γ2

it]
}
, for the expressions of B

δ

∞, D
δ

∞, and Γit given in the statement

of the theorem. Then, by Mann-Wald theorem

√
NT (δ̂ − δ −Bδ∞/T −D

δ

∞/N)→d N
(

0, V
δ(1)

∞

)
.

# Part (2): Limit of rNT (δ − δ0
NT ). Here we show that rNT (δ − δ0

NT ) →d N (0, V
δ(2)

∞ ) for the rates

of convergence rNT given in Remark 4, and characterize the asymptotic variance V
δ(2)

∞ . We determine

rNT through E[(δ − δ0
NT )2] = O(r−2

NT ) and r−2
NT = O(E[(δ − δ0

NT )2]), where

E[(δ − δ0
NT )2] = E


 1

NT

∑
i,t

∆̃it

2
 =

1

N2T 2

∑
i,j,t,s

E
[
∆̃it∆̃js

]
, (C.2)

for ∆̃it = ∆it − E(∆it). Then, we characterize V
δ(2)

∞ as V
δ(2)

∞ = E{r2
NTE[(δ − δ0

NT )2]}, because E[δ −
δ0
NT ] = 0. The order of E[(δ− δ0

NT )2] is equal to the number of terms of the sums in equation (C.2) that

are non zero, which it is determined by the sample properties of {(Xit, αi, γt) : 1 ≤ i ≤ N, 1 ≤ t ≤ T )}.
Under Assumption 4.2(i)(a),

E[(δ − δ0
NT )2] =

1

N2T 2

∑
i,t,s

E
[
∆̃it∆̃is

]
= O

(
N−1

)
,

because {∆̃it : 1 ≤ i ≤ N ; 1 ≤ t ≤ T} is independent across i and α-mixing across t.

Under Assumption 4.2(i)(b), if {αi}N and {γt}T are independent sequences, and αi and γt are

independent for all i, t, then E[∆̃it∆̃js] = E[∆̃it]E[∆̃js] = 0 if i 6= j and t 6= s, so that

E[(δ − δ0
NT )2] =

1

N2T 2

∑
i,t,s

E
[
∆̃it∆̃is

]
+
∑
i,j,t

E
[
∆̃it∆̃jt

]
−
∑
i,t

E
[
∆̃2
it

] = O
(
N + T − 1

NT

)
,

because E[∆̃it∆̃is] ≤ E[Eφ(∆̃2
it)]

1/2E[Eφ(∆̃2
is)]

1/2 < C by the Cauchy-Schwarz inequality and Assump-

tion 4.2(ii). We conclude that rNT =
√
NT/(N + T − 1) and

V
δ(2)

= E

 r2
NT

N2T 2

∑
i,t,s

E
[
∆̃it∆̃is

]
+
∑
i6=j,t

E
[
∆̃it∆̃jt

] .

Note that in both cases rNT →∞ and rNT = O(
√
NT ).

# Part (3): limit of rNT (δ̂ − δ0
NT − T−1B

δ

∞ − N−1D
δ

∞). The conclusion of the Theorem follows

because (δ − δ0
NT ) and (δ̂ − δ − T−1B

δ

∞ −N−1D
δ

∞) are asymptotically independent and V
δ

∞ = V
δ(2)

+

V
δ(1)

limN,T→∞(rNT /
√
NT )2. �

D Properties of the Inverse Expected Incidental Parameter

Hessian

The expected incidental parameter Hessian evaluated at the true parameter values is

H = Eφ[−∂φφ′L] =

(
H∗(αα) H∗(αγ)

[H∗(αγ)]
′
H∗(γγ)

)
+

b√
NT

vv′,
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where v = vNT = (1′N ,−1′T )′, H∗(αα) = diag( 1√
NT

∑
t Eφ[−∂π2`it]), H

∗
(αγ)it = 1√

NT
Eφ[−∂π2`it], and

H∗(γγ) = diag( 1√
NT

∑
i Eφ[−∂π2`it]).

In panel models with only individual effects, it is straightforward to determine the order of magnitude

of H−1
in Assumption B.1(iv), because H contains only the diagonal matrix H∗(αα). In our case, H is

no longer diagonal, but it has a special structure. The diagonal terms are of order 1, whereas the

off-diagonal terms are of order (NT )−1/2. Moreover,
∥∥∥H− diag(H∗(αα),H

∗
(γγ))

∥∥∥
max

= OP ((NT )−1/2).

These observations, however, are not sufficient to establish the order of H−1
because the number of

non-zero off-diagonal terms is of much larger order than the number of diagonal terms; compare O(NT )

to O(N+T ). Note also that the expected Hessian without penalty term H∗ has the same structure as H
itself, but is not even invertible, i.e. the observation on the relative size of diagonal vs. off-diagonal terms

is certainly not sufficient to make statements about the structure of H−1
. The result of the following

lemma is therefore not obvious. It shows that the diagonal terms of H also dominate in determining the

order of H−1
.

Lemma D.1. Under Assumptions 4.1,∥∥∥∥H−1 − diag
(
H∗(αα),H

∗
(γγ)

)−1
∥∥∥∥

max

= OP
(

(NT )−1/2
)
.

The proof of Lemma D.1 is provided in the supplementary material. The lemma result establishes

that H−1
can be uniformly approximated by a diagonal matrix, which is given by the inverse of the

diagonal terms of H without the penalty. The diagonal elements of diag(H∗(αα),H
∗
(γγ))

−1 are of order 1,

i.e. the order of the difference established by the lemma is relatively small.

Note that the choice of penalty in the objective function is important to obtain Lemma D.1. Different

penalties, corresponding to other normalizations (e.g. a penalty proportional to α2
1, corresponding to

the normalization α1 = 0), would fail to deliver Lemma D.1. However, these alternative choices do

not affect the estimators β̂ and δ̂, i.e. which normalization is used to compute β̂ and δ̂ in practice is

irrelevant (up to numerical precision errors).
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Bias Std. Dev. RMSE SE/SD p; .95 Bias Std. Dev. RMSE SE/SD p; .95

 
MLE-FETE 13 12 17 0.88 0.76 1 8 8 0.93 0.93
Analytical 0 10 10 1.05 0.96 -1 8 8 0.95 0.95
Jackknife -7 11 13 0.89 0.85 0 9 9 0.80 0.88

MLE-FETE 8 8 11 0.93 0.81 0 6 6 0.94 0.95
Analytical 0 7 7 1.03 0.95 0 6 6 0.95 0.95
Jackknife -3 7 8 0.97 0.91 0 6 6 0.89 0.92

MLE-FETE 5 5 7 0.98 0.83 0 4 4 0.99 0.94
Analytical 0 5 5 1.05 0.96 0 4 4 0.99 0.94
Jackknife -1 5 5 0.99 0.95 0 4 4 0.94 0.93

 

MLE-FETE 19 13 23 0.86 0.61 -2 10 10 0.78 0.87
Analytical 1 10 10 1.12 0.98 -3 10 10 0.80 0.87
Jackknife -13 18 22 0.65 0.73 -3 11 11 0.72 0.83

MLE-FETE 9 8 12 0.94 0.76 2 8 8 0.82 0.87
Analytical 0 7 7 1.07 0.96 1 8 8 0.82 0.88
Jackknife -5 8 10 0.90 0.88 1 8 8 0.79 0.86

MLE-FETE 6 5 8 0.97 0.78 0 5 5 0.90 0.92
Analytical 0 5 5 1.06 0.97 0 5 5 0.90 0.92
Jackknife -2 5 6 0.96 0.94 0 5 5 0.89 0.92

Notes: All the entries are in percentage of the true parameter value. 500 repetitions.  Data generated 
from the probit model: Yit = 1(βXit + αi + γt > εit), with εit ~ i.i.d. N(0,1),  αi ~ i.i.d. N(0,1/16), γt ~ 
i.i.d. N(0, 1/16) and β = 1. In design 1, Xit = Xi,t-1 / 2 + αi + γt + νit, νit ~ i.i.d. N(0, 1/2), and Xi0 ~ 
N(0,1). In design 2, Xit = 2t/T + αi + γt + νit, and νit ~ i.i.d. N(0, 3/4), independent of αi y γt . Average 
effect is β E[φ(βXit + αi + γt)], where φ() is the PDF of the standard normal distribution. MLE-FETE is 
the probit maximum likelihood estimator with individual and time fixed effects; Analytical is the bias 
corrected estimator that uses an analytical correction; and Jackknife is the bias corrected estimator 
that uses split panel jackknife in both the individual and time dimension. 

Table 3: Finite-sample properties in static probit model (N = 52)

Coefficient APE

Design 1: autoregressive with individual and time effects

T = 14

T = 26

T = 52

Design 2: linear trend with individual and time effects

T = 14

T = 26

T = 52
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Bias Std. Dev. RMSE SE/SD p; .95 Bias Std. Dev. RMSE SE/SD p; .95

 
MLE-FETE -44 30 53 0.96 0.67 -52 26 58 0.96 0.43
Analytical (L=1) -5 26 26 1.10 0.96 -6 27 28 0.90 0.91
Analytical (L=2) -4 28 28 1.03 0.95 -4 29 30 0.85 0.90
Jackknife 12 33 35 0.88 0.89 -4 33 33 0.76 0.85

MLE-FETE -23 21 30 0.98 0.79 -29 19 35 0.98 0.65
Analytical (L=1) -4 19 19 1.05 0.96 -3 20 20 0.96 0.94
Analytical (L=2) -1 20 20 1.02 0.96 -1 21 21 0.92 0.93
Jackknife 2 22 22 0.93 0.94 -1 23 23 0.85 0.91

MLE-FETE -9 14 17 0.99 0.90 -14 14 20 0.98 0.82
Analytical (L=1) -1 13 13 1.04 0.95 -1 14 14 0.97 0.94
Analytical (L=2) 0 14 14 1.02 0.95 1 15 15 0.96 0.94
Jackknife 1 14 14 0.98 0.94 0 15 15 0.91 0.92

 

MLE-FETE -48 39 62 0.89 0.69 -59 31 66 0.90 0.45
Analytical (L=1) -6 33 34 1.05 0.97 -11 33 35 0.84 0.86
Analytical (L=2) -6 35 36 0.99 0.95 -10 35 37 0.79 0.85
Jackknife 16 55 57 0.64 0.84 -17 38 42 0.73 0.80

MLE-FETE -24 25 35 0.96 0.82 -31 23 39 0.96 0.71
Analytical (L=1) -3 23 23 1.05 0.96 -2 24 24 0.92 0.92
Analytical (L=2) -2 23 23 1.02 0.95 0 25 25 0.89 0.92
Jackknife 2 28 28 0.86 0.91 -3 28 28 0.81 0.89

MLE-FETE -10 17 19 1.00 0.92 -17 17 24 0.97 0.82
Analytical (L=1) -1 16 16 1.06 0.95 -2 17 17 0.95 0.93
Analytical (L=2) 0 16 16 1.04 0.95 -1 17 17 0.93 0.93
Jackknife 0 17 17 0.96 0.93 -2 18 18 0.89 0.91

Notes: All the entries are in percentage of the true parameter value. 500 repetitions.  Data generated from the probit 
model: Yit = 1(βYYi,t-1 + βZZit + αi + γt > εit), with  Yi0 = 1(βZZi0 + αi + γ0 > εi0), εit ~ i.i.d. N(0,1),  αi ~ i.i.d. N(0,1/16), 
γt ~ i.i.d. N(0, 1/16), βY = 0.5, and βZ = 1. In design 1, Zit = Zi,t-1 / 2 + αi + γt + νit, νit ~ i.i.d. N(0, 1/2), and Zi0 ~ 
N(0,1). In design 2, Zit = 1.5 t / T + νit, and νit ~ i.i.d. N(0, 3/4), independent of αi y γt.  Average effect is E[Φ(βY + 
βZZit + αi + γt) - Φ(βzZit + αi + γt)], where Φ() is the CDF of the standard normal distribution. MLE-FETE is the probit 
maximum likelihood estimator with individual and time fixed effects; Analytical (L = l) is the bias corrected estimator 
that uses an analytical correction with l lags to estimate the spectral expectations; and Jackknife is the bias corrected 
estimator that uses split panel jackknife in both the individual and time dimension. 

Table 4: Finite-sample properties in dynamic probit model: lagged dependent variable (N = 52)

Coefficient of Yi,t-1 APE of Yi,t-1

Design 1: autoregressive with individual and time effects

T = 14

T = 26

T = 52

Design 2: linear trend with individual and time effects

T = 14

T = 26

T = 52
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Bias Std. Dev. RMSE SE/SD p; .95 Bias Std. Dev. RMSE SE/SD p; .95

 
MLE-FETE 20 13 23 0.86 0.59 4 10 10 0.86 0.90
Analytical (L=1) 2 11 11 1.06 0.97 1 9 9 0.88 0.93
Analytical (L=2) 2 11 11 1.05 0.97 1 10 10 0.87 0.93
Jackknife -9 14 16 0.81 0.81 3 11 12 0.74 0.86

MLE-FETE 10 8 13 0.94 0.74 2 7 7 0.92 0.92
Analytical (L=1) 0 7 7 1.06 0.96 1 7 7 0.93 0.94
Analytical (L=2) 0 7 7 1.06 0.96 1 7 7 0.93 0.94
Jackknife -3 8 8 0.97 0.91 1 7 7 0.86 0.91

MLE-FETE 6 5 8 0.94 0.75 1 5 5 0.94 0.92
Analytical (L=1) 0 5 5 1.01 0.96 0 5 5 0.94 0.92
Analytical (L=2) 0 5 5 1.01 0.96 0 5 5 0.94 0.92
Jackknife -1 5 5 0.99 0.94 0 5 5 0.94 0.93

 

MLE-FETE 19 14 23 0.87 0.66 -3 11 12 0.75 0.84
Analytical (L=1) 1 10 10 1.15 0.98 -3 11 11 0.77 0.85
Analytical (L=2) 1 10 10 1.14 0.98 -3 11 11 0.77 0.86
Jackknife -16 20 26 0.60 0.69 -2 12 12 0.69 0.81

MLE-FETE 11 8 13 0.93 0.73 2 8 9 0.83 0.88
Analytical (L=1) 0 7 7 1.07 0.96 2 8 9 0.83 0.89
Analytical (L=2) 0 7 7 1.07 0.96 2 8 9 0.84 0.89
Jackknife -5 8 10 0.93 0.89 2 9 9 0.80 0.87

MLE-FETE 6 6 9 0.90 0.76 -1 6 7 0.83 0.89
Analytical (L=1) 0 5 5 0.99 0.95 -1 6 7 0.83 0.88
Analytical (L=2) 0 5 5 0.98 0.94 -1 6 7 0.83 0.88
Jackknife -2 6 6 0.93 0.89 -1 7 7 0.82 0.88

Notes: All the entries are in percentage of the true parameter value. 500 repetitions.  Data generated from the probit 
model: Yit = 1(βYYi,t-1 + βZZit + αi + γt > εit), with  Yi0 = 1(βZZi0 + αi + γ0 > εi0), εit ~ i.i.d. N(0,1),  αi ~ i.i.d. 
N(0,1/16), γt ~ i.i.d. N(0, 1/16), βY = 0.5, and βZ = 1. In design 1, Zit = Zi,t-1 / 2 + αi + γt + νit, νit ~ i.i.d. N(0, 1/2), 
and Zi0 ~ N(0,1). In design 2, Zit = 1.5 t / T + νit, and νit ~ i.i.d. N(0, 3/4), independent of αi y γt. Average effect is βZ 
E[φ(βYYi,t-1 + βZZit + αi + γt)], where φ() is the PDF of the standard normal distribution. MLE-FETE is the probit 
maximum likelihood estimator with individual and time fixed effects; Analytical (L = l) is the bias corrected estimator 
that uses an analytical correction with l lags to estimate the spectral expectations; and Jackknife is the bias corrected 
estimator that uses split panel jackknife in both the individual and time dimension. 

Table 5: Finite-sample properties in dynamic probit model: exogenous regressor (N = 52)

Coefficient of Zit APE of Zit

Design 1: autoregressive with individual and time effects

T = 14

T = 26

T = 52

Design 2: linear trend with individual and time effects

T = 14

T = 26

T = 52
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