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Abstract

Call an economic model incomplete if it does not generate a probabilistic
prediction even given knowledge of all parameter values. We propose a
method of inference about unknown parameters for such models that is
robust to heterogeneity and dependence of unknown form. The key is a
Central Limit Theorem for belief functions; robust confidence regions are
then constructed in a fashion paralleling the classical approach. Monte
Carlo simulations support tractability of the method and demonstrate its
enhanced robustness relative to existing methods.
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1. Introduction

1.1. Objectives and outline

In a wide class of structural models, when the analyst is not willing to make
assumptions that are driven by convenience rather than by economic theory, the
resulting economic structures are incomplete in the sense that they do not yield
unique reduced forms. In this paper, we consider the class of such models that
can be represented as follows: given a structural parameter θ ∈ Θ ⊂ Rd and the
realization u ∈ U ⊂ Rdu of an unobservable random variable, the model predicts
a nonsingleton set, denoted G(u|θ), of values for the outcome variable; that is,
G(u|θ) is a subset of the (finite) outcome space S. Examples include discrete
game models with multiple Nash equilibria (Jovanovic 1989, Tamer 2003), where
the modeler is agnostic about the way in which selection from among multiple
equilibria operates; auction models (Haile and Tamer 2003, Aradillas-Lopez 2008),
where the modeler is agnostic about the precise game form underlying the auction
data in her sample and/or she is willing to adopt only weak assumptions about
bidders’behavior; and a model of job and skill heterogeneity (Galichon and Henry
2009), where the relation between the unobservable skill level and observable job
characteristics is not well understood. A number of other applied models also
fit into the class we consider. These include discrete choice models with social
interactions (Soetevent and Kooreman 2007), matching models with externalities
(Uetake and Watanabe 2012), and some network formation models (Sheng 2014,
Miyauchi 2014). An incomplete structure arises also in a single-agent discrete
choice model when multiple alternatives maximize the agent’s utility with positive
probability and a tie-breaking rule is not specified.
The lack of a unique reduced form implies that a conventional identification

analysis based on a (single) likelihood cannot be applied, which has motivated
recent research on identification and inference in incomplete models. An impor-
tant objective of this literature is expressed by Ciliberto and Tamer (2009, p.
1800), who write in the context of entry games: "This [selection] mechanism is
not specified, and one objective of the methodology in this paper is to examine
the question of what can be learned when researchers remain agnostic about this
selection function."
A common assumption in the literature is the availability of i.i.d. samples of

outcomes. To elaborate, think of a number of experiments, or random events,
indexed by i = 1, 2, ..., each of which may be described as above, for a common
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Θ, G and S;1 then each infinite sequence of unobserved variables u∞ ≡ (u1, u2, ...)
generates a sample (s1, s2, ...) of outcomes, where si ∈ G (ui | θ) for all i. Though
seemingly standard and innocuous, the assumption that (si) is an i.i.d. sample
becomes subtle given incompleteness of the model and the declared agnosticism
about the selection mechanism. This is because if the selection mechanism in
each market is not understood, then there is no basis for taking a stand on how
such selections are related to each other across experiments. To emphasize this
point further, think of the nonsingleton nature of G (ui | θ) in terms of "omitted
variables:" a complete theory may exist in principle in that it may be possible
to explain and predict selection given a suitable set of explanatory variables.
However, the analyst’s theory does not identify these omitted variables. They are
not only unobservable to her, as are the latent variables captured by U—more
fundamentally, their identity is unknown. Consequently, there is no basis for
understanding how selection, and thus realized outcomes, may differ or be related
across experiments.
In this paper, we develop a new inference method that is robust to heterogene-

ity and dependence of an unknown form. We outline our approach here leaving
technical details and formal results for the sequel. The first step is to specify the
set of outcome sequences that are consistent with what is known according to the
analyst’s theory. For each given θ, robustness to an unknown form of dependence
implies that if for each i, si is a conceivable outcome in the ith experiment (in iso-
lation) given ui, then (s1, s2, ...) is a conceivable sequence given (u1, u2, ...). Thus,
without further assumptions, the model predicts that the (selected) outcomes
(s1, s2, · · · ) take their values in the Cartesian product of G(ui|θ), i = 1, 2, ..., and
we define:

G∞ (u1, ..., ui, ... | θ) ≡ Π∞i=1G (ui | θ) . (1.1)

Note that experiments are indistinguishable in the sense that the same correspon-
dence G (· | θ) applies to each experiment. However, even if G (ui | θ) = G (uj | θ),
as when ui = uj, any outcome in G (ui | θ) is possible in experiment i and any
possibly different outcome is possible in experiment j. Therefore, the model, ex-
panded in this way to sequences, does not restrict how selection might differ or
be related across experiments.
The second step is to add a suitable stochastic structure that again leaves the

heterogeneity and dependence structure of selections unrestricted. Fix θ. Assume

1For example, each experiment could correspond to a different market where an entry game
is played.
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that u∞ jointly follows a parametric distribution m∞θ , the i.i.d. product of the
measure mθ on U . For each given u∞, any probability distribution Pu∞ supported
on G∞ (u∞ | θ) is a valid conditional distribution of the sequence of outcomes; and
the implied distribution of outcomes is P =

∫
Pu∞dm

∞
θ . Accordingly, we consider

the entire set Pθ of distributions over outcomes given by

Pθ =

{
P ∈ ∆ (S∞) : P =

∫
U∞

Pu∞dm
∞
θ (u∞) , Pu∞ ∈ ∆ (G∞ (u∞ | θ)) m∞θ (·) -a.s.

}
.

Note that because ∆ (G∞ (u∞ | θ)) equals the entire simplex of distributions on
Π∞i=1G (ui | θ), including both nonidentical product measures and nonproduct
measures, the set Pθ accommodates many forms of heterogeneity and dependence
across experiments even given u∞.
Though sets of probability measures may not seem to be convenient vehicles

for conducting inference, the set Pθ has a special structure that makes it tractable:
its lower envelope, ν∞θ (·) defined (for every measurable B ⊂ S∞) by

ν∞θ (B) = inf
P∈Pθ

P (B), (1.2)

is a belief function on S∞.2 We exploit this and prove a (new) central limit theorem
(CLT) for each belief function ν∞θ and thus indirectly also for each set Pθ. Then
we show how this CLT can be used to construct suitably robust confidence regions
for the unknown parameter θ.
A confidence region Cn is a set of parameter values constructed from a finite

number of observations s1, ..., sn such that, for each θ, the coverage probability is
asymptotically at least at a prespecified level 1− α under any probability distrib-
ution in Pθ. We construct Cn using a statistic based on the empirical frequencies
n−1

∑n
i=1 I(si ∈ Aj) for a class {Aj}Jj=1 of subsets of S. Then we use the CLT to

prove that ν∞θ ({θ ∈ Cn})→ 1− α, which implies that Cn controls the asymptotic
coverage probability uniformly over Pθ. Furthermore, we show that the coverage
is uniform over the generalized parameter space F = {(θ, P ) : P ∈ Pθ, θ ∈ Θ};
that is, our confidence region satisfies

lim inf
n→∞

inf
(θ,P )∈F

P (θ ∈ Cn) ≥ 1− α.

2Belief functions are special cases of capacities (or "non-additive probabilities"), sometimes
referred to as totally, completely, or infinitely monotone capacities. They originated in Dempster
(1967) and Shafer (1976). Definitions for more general settings can be found, for example, in
Philippe, Debs and Jaffray (1999), and Molchanov (2005).
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A notable feature of our confidence region is that, in contrast to existing
methods, its construction does not require tuning parameters. This is due to
the different procedure used to approximate the (worst-case) probability that the
confidence region covers θ. As we show below, the model implies that asymptot-
ically the probability of any set of outcomes A ⊂ S lies in a probability interval
[νθ(A), ν∗θ(A)] that depends on θ. Under the assumption adopted in existing meth-
ods that the outcomes si are i.i.d., the empirical frequency n−1

∑n
i=1 I(si ∈ A)

converges to a unique probability p(A) asymptotically; and the pointwise limit-
ing distributions of the test statistics used to construct confidence regions change
depending on whether p(A) equals νθ(A) or ν∗θ(A), or is in the interior of the in-
terval.3 This creates a discontinuity of the limiting distribution in the underlying
data generating process. A sequence of tuning parameters is commonly used to
handle this discontinuity. However, though the choice of tuning parameters of-
ten affects the performance of existing methods in non-trivial ways, their optimal
choice remains a diffi cult problem.
In contrast, we do not presume the existence of such unique limits. Even so,

inference on the structural parameter is possible because if θ is the true parameter,
then the empirical frequency cannot deviate from the above probability interval
asymptotically. Our CLT provides a normal approximation to the distribution of
deviations from this restriction in finite samples. This normal approximation is
expressed in terms of the lower envelope over all possible data generating processes,
and thus the true data generating process does not affect the approximation given
θ. This eliminates the discontinuity of the limiting distribution.
After describing some links to the literature in the remainder of this intro-

duction, the paper proceeds as follows. Section 2 lays out the formal framework.
The latter is used in Section 3 which presents our results regarding inference. Ex-
amples and some Monte Carlo simulation results follow in the next two sections.
To this point, the analysis is carried out under the assumption that there is no

3For example, a commonly used test statistic Tn(θ) =
√
nmax{νθ(A) − n−1

∑n
i=1 I(si ∈

A), n−1
∑n
i=1 I(si ∈ A)− ν∗θ(A)} converges in distribution to

T (θ) =


−Z if νθ(A) = p(A) < ν∗θ(A)

−∞ if νθ(A) < p(A) < ν∗θ(A)

Z if νθ(A) < p(A) = ν∗θ(A)

max{−Z,Z} if νθ(A) = p(A) = ν∗θ(A),

where Z is the limiting distribution of
√
n(n−1

∑n
i=1 I(si ∈ A)− p(A)) under the i.i.d. assump-

tion.
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observable heterogeneity across experiments. Section 6 describes an extension to
include covariates. Appendices contain proofs as well as an outline of an exten-
sion that robustifies the treatment of latent variables, and also details regarding
implementation.

1.2. Relation to the literature

Using the theory of random sets, the existing literature has shown that the sto-
chastic behavior of si in each experiment can be characterized by capacities. Ca-
pacities have been employed to characterize the set of parameter values that are
identifiable from the observed variable (Galichon and Henry 2011, Beresteanu,
Molchanov, and Molinari 2011). For example, Galichon and Henry (2011) use the
capacity defined by µθ(A) ≡ mθ(G(u|θ) ∩ A 6= ∅), A ⊂ S, as a primitive object
to conduct their identification analysis. This functional gives, for each single ex-
periment, the upper envelope of the probability of A over the set of distributions
compatible with the model. Here we focus on the entire sequence of experiments
jointly, and we use another capacity, the belief function. This choice is made be-
cause the belief function gives the lower envelope, which is relevant for studying
the robust control of the asymptotic coverage probability.
Our approach to inference is related to Beresteanu and Molinari (2008) in the

sense that we both use generalized limit theorems. But theirs is for set-valued ran-
dom variables having probabilistic distributions (Molchanov 2005), while we use
limit laws for capacities that are generated by set-valued random variables; this
difference accords with their focus on inference about the identified set as opposed
to the true parameter. Another difference is that they assume that, translated
into our setting, the entire set of outcomes is observed for each experiment rather
than merely the selected outcome (for example, outcomes are interval-valued). In
addition, they adopt the counterpart of the i.i.d. assumption discussed above.
Galichon and Henry (2009, 2011) study inference using a statistic based on ca-
pacities, but they also maintain the i.i.d. assumption.
In various incomplete models, structural parameters often satisfy model re-

strictions that take the form of moment inequalities. Therefore, econometric tools
for moment inequalities have been used to make inference for incomplete models
(Chernozhukov, Hong, and Tamer 2007, Andrews and Soares 2010, Bugni 2009,
Andrews and Shi 2013). Although these methods do not preclude data heterogene-
ity and dependence per se,4 it is commonly assumed that data are generated iden-

4Andrews and Soares (2010) extend their framework and give conditions under which their
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tically and independently across experiments which precludes robustness against
potential heterogeneity and dependence due to model incompleteness. Though
the method we develop here is applicable to the narrower class of incomplete
structural models, it has the advantage of being robust.
Bresnahan and Reiss (1990, 1991) consider an identification and estimation

method that is robust to the multiplicity of equilibria. Their strategy is to trans-
form the outcome variable so that the model becomes complete after the trans-
formation. Since this transformation aggregates some of the outcomes that can
be selected from multiple equilibria, it incurs a loss of information.
Belief functions play a central role in Epstein and Seo (2015), who describe a

Bayesian-style approach to doing inference in incomplete models. Besides their
subjectivist as opposed to frequentist approach, their paper differs also in its focus
on axiomatic decision-theoretic foundations.
In the literature, much attention is paid to the "identified set." Because read-

ers may wonder why it does not play a role here, we discuss it briefly. Following
Manski (2003), the identified set is taken to be the set of parameters compat-
ible with what is revealed asymptotically by the sampling process. Given the
structure (S, U,G,Θ;m) augmented by the assumption that outcome sequences
are distributed i.i.d. with some measure p ∈ ∆ (S), then empirical frequencies
converge almost surely to p, rendering p observable. The identified set, denoted
ΘI (p), consists of all θ such that there exists a (suitably measurable) selection
rule u 7−→ pu ∈ ∆ (G (u | θ)) satisfying5

p (·) =

∫
U

pu (·) dmθ (u) ,

which equates true and predicted empirical frequencies. A number of papers de-
scribe (finite sample) estimators for ΘI ; see, for example, Ciliberto and Tamer
(2009). From our perspective, such a focus on ΘI (p) is unjustified since both
its definition and interpretation presume that outcomes are i.i.d. which we have
argued is problematic when the analyst’s model is incomplete. When robustness
with respect to unknown forms of heterogeneity and dependence is sought, it is ap-
parent that the appropriate definition of an identified set should be formulated in

inference method is applicable to dependent data. However, in our understanding the main goal
of this extension is to handle more general data (e.g. time series data) rather than to make
inference robust to the heterogeneity and dependence due to incompleteness.

5See Beresteanu, Molchanov and Molinari (2011) and Galichon and Henry (2011), for exam-
ple. The latter show that ΘI (p) is equal to the set of all parameters θ such that p is contained
in the core of the belief function νθ on S—see(2.4) below.
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the space of outcome sequences. However, we do not pursue such a definition here
because it does not seem vital for studying inference about the true parameter.

2. The framework

Consider a setting with an infinite sequence of experiments (or random events),
where Si = S (finite) denotes the set of possible outcomes for the ith experiment.
The economic model of each single experiment is described by (S, U,G,Θ;m) with
the following interpretation and restrictions. Θ is a set of structural parameters.
The true parameter is common to all experiments but is unknown to the analyst.
Each u in U describes the unobservable characteristics of the single experiment
under consideration. In alternative terminology, S and U capture endogenous
and latent variables respectively; an extension to include covariates describing
observable heterogeneity is provided in Section 6. We assume that U is a Polish
(complete separable metric) space. Latent variables are distributed according to
the Borel probability measure mθ, which may depend on θ; let m = (mθ)θ∈Θ.
Finally, for each θ ∈ Θ, G (· | θ) : U  S is a correspondence that describes the
set of outcomes for each given u and parameter θ. The multi-valued nature of G
gives one sense in which the analyst’s model (or theory) is incomplete: for each
single experiment, and given the structural parameter, theory prescribes only a
set of possible outcomes, with no indication of which outcomes in the set are
more or less likely to be selected. We assume that, for each θ, G (· | θ) is weakly
measurable.6

The analyst observes outcomes in some experiments and wishes to draw infer-
ences, via the construction of confidence regions for the structural parameters. To
address inference, we extend the above formal structure to accommodate the entire
sequence of experiments. Accordingly, consider the tuple (S∞, U∞, G∞,Θ;m∞).
The meaning of and rationale for S∞ and U∞ are clear;7 they have generic ele-
ments s∞ = (s1, s2, ...) and u∞ = (u1, u2, ...) respectively. Bym∞, an abbreviation
for (m∞θ )θ∈Θ, we mean that, conditional on θ, unobserved variables are distrib-

6A correspondence Γ : U  X, where X is metric, is weakly measurable if {u : Γ (u) ⊂ A}
is a (Borel) measurable subset of U for every closed A ⊂ X. If Γ is compact-valued, then weak
measurability is equivalent to the property that {u : Γ (u) ⊂ A} is measurable for every open
A ⊂ X (Aliprantis and Border 2006, Lemma 18.2).

7For any metric space X, we endow X∞ with the product metric and corresponding Borel
σ-algebra. (Then S∞ is separable compact metric, and hence Polish). We denote by ∆ (X) the
set of Borel (countably additive) probability measures on X.
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uted i.i.d. across experiments according to mθ. The parameter set Θ remains
unchanged and parameters are assumed to be constant across experiments. The
remaining component G∞, a key to our approach, is, for each θ, a correspondence
G∞ (· | θ) : U∞  S∞ defined as in (1.1). As described there, the Cartesian prod-
uct structure in (1.1) imposes no restrictions on how selection might differ or be
related across experiments. This is another important sense of model incomplete-
ness. Note that G∞ (· | θ) is weakly measurable by Aliprantis and Border (2006,
Lemma 18.4); it is also compact-valued.
In seeking robust inferences, the analyst takes into account ALL probability

distributions P ∈ ∆ (S∞) that are consistent with the given (S∞, U∞, G∞,Θ;m∞),
that is, for each given θ, she considers the set Pθ defined in the introduction and
repeated here for convenience:

Pθ =

{
P ∈ ∆ (S∞) : P =

∫
U∞

Pu∞dm
∞
θ (u∞) , Pu∞ ∈ ∆ (G∞ (u∞ | θ)) m∞θ (·) -a.s.

}
.

(2.1)
Each indicated conditional distribution Pu∞ is assumed to be such that u∞ 7−→
Pu∞ (B) is measurable for every measurable B ⊂ S∞, and is referred to as a
selection rule. When the analyst’s model is complete, (G∞ (· | θ) is single-valued),
then Pθ = {Pθ} is a singleton and Pθ is the i.i.d. product of the measure on
S induced by mθ and G (· | θ) : U → S. However, in general, she considers all
(including non i.i.d.) selection rules consistent with her incomplete theory.
Related structures appear, for example, in Koopmans and Reiersol (1950) and

Jovanovic (1989), and are employed by Galichon and Henry (2009, 2013) in con-
structing confidence regions given partial identification. These papers differ from
ours in how they use the single experiment structure (S, U,G,Θ;m) when consid-
ering sequences. In particular, the inference procedures described by Galichon and
Henry (and in most of the ambient literature) rely on the assumption that there
is a true probability law p∗ on S that, though unknown, can be approximated ar-
bitrarily well by the empirical distribution for large samples because experimental
outcomes are taken to be i.i.d. according to p∗. Such approaches do not deliver
robustness against incompleteness of the analyst’s model: she cannot rely on a
single probability law over S∞ because, for example, if there are omitted variables
that influence selection, then the distribution of experimental outcomes will de-
pend on how those omitted variables play out across experiments, for which the
analyst’s theory provides no guidance.
More formally, an i.i.d. law on S∞ can be justified if one limits attention to
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selection rules Pu∞ in (2.1) of the form:8

Pu∞ = ⊗∞i=1pui ,

where each pu ∈ ∆ (G (u | θ)) is a measure on S that describes probabilistic selec-
tion within each market. Then the induced measure P on S∞ is i.i.d. because

P =

∫
U∞

(⊗∞i=1pui) dm
∞
θ (u∞) = ⊗∞i=1

(∫
U

puidmθ (ui)

)
,

which is the i.i.d. product measure generated by
∫
U
pudmθ (u) (it plays the role

of p∗ above). Importantly, this i.i.d. property is derived, in particular, from
the assumption that selection in each market i depends on ui but not otherwise
on the identity of the market, that is, pui = puj if ui = uj, thereby precluding
that selection might be affected by omitted variables. Such an assumption is
convenient—as the literature has demonstrated, it permits one to do inference.
However, we show that robust inference procedures also exist.9

The structure of the set Pθ defined in (2.1) implies a form of symmetry
across experiments that warrants explicit mention. Roughly, it indicates that
the ordering of experiments has no significance in the following sense. For any
finite permutation π of the indices 1, 2, ..., and any probability measure P on
S∞, denote by πP the unique probability measure satisfying (for all rectangles)
(πP ) (A1 × A2 × ...) = P

(
Aπ−1(1) × Aπ−1(2) × ...

)
. Then it is easy to see that

P ∈ Pθ ⇐⇒ πP ∈ Pθ. (2.2)

Such symmetry seems more natural in a cross-sectional setting where experiments
are resolved simultaneously than in a time-series context where experiments are
differentiated because they are ordered temporally. Accordingly, though the for-
mal results that follow do not require the cross-sectional interpretation, we think
of our approach to inference as particularly relevant to cross-sectional data. When
considering symmetry, keep in mind that currently we are ruling out observable
differences between experiments. When these are included and modeled via covari-
ates as in Section 6, then the implied symmetry is suitably conditional—roughly,

8⊗∞i=1pui is the product measure defined by the puis.
9Menzel (2011) assumes that outcome samples are drawn from an exchangeable rather than

i.i.d. distribution, which delivers some robustness. However, he restricts selection to depend
only on variables that affect payoffs, and thus his method is not robust against the effects of
unknown omitted variables.
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(2.2) is weakened so as to apply only to permutations that permute experiments
having common covariate values.
Finally, a feature of Pθ that we exploit heavily is its connection to a belief

function, which we now explain. Define ν∞θ (·) to be the lower envelope of Pθ as in
(1.2). Then ν∞θ can also be expressed in the form: For every measurable B ⊂ S∞,

ν∞θ (B) ≡ m∞θ ({u∞ ∈ U∞ : G∞ (u∞ | θ) ⊂ B}) . (2.3)

Thus ν∞θ is the capacity on measurable subsets of S∞ induced by the correspon-
dence G∞ (· | θ) and the probability measure m∞θ on U∞, which is in the form of
one of the common definitions of a belief function.

Remark 1. Here are some details supporting the preceding claims. Because these
are well-known in the literature (see, for example, Aliprantis and Border (2006,
Ch. 18) and Philippe, Debs and Jaffray (1999)), we provide only an outline here
rather than a formal lemma. The set {u∞ ∈ U∞ : G∞ (u∞ | θ) ⊂ B} in (2.3) is in
general not measurable for every Borel measurable B. However, it is universally
measurable, and moreover, each Borel measure m∞θ has a unique extension to a
probability measure (also denoted m∞θ ) on the collection of all universally mea-
surable subsets of S∞. This renders the RHS of (2.3) well-defined. In addition, it
follows from Philippe, Debs and Jaffray (1999, Theorem 3) that (2.3) and (1.2)
provide equivalent definitions of ν∞θ .

One can proceed similarly when considering a single experiment in isolation.
Then the set of all probability laws on any single experiment that are consistent
with θ and the given structure (S, U,G,Θ;m) is given by{

p ∈ ∆ (S) : p =

∫
U

pudmθ (u) , pu (G (u | θ)) = 1 mθ-a.s.
}
.

If we define νθ on S as the lower envelope of this set, then

νθ (A) ≡ mθ ({u ∈ U : G (u | θ) ⊂ A}) , A ⊂ S, (2.4)

from which we can conclude that νθ is a belief function on S. The upper envelope
of the set of consistent measures is also of interest. Thus define also the conjugate
of νθ, denoted ν∗θ, by

ν∗θ (A) = 1− νθ (S\A) . (2.5)
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Then ν∗θ (A) is the maximum probability of A consistent with the model. Of
course,

νθ (·) ≤ ν∗θ (·) .
A final comment is that, in common with all the surrounding literature, our

framework treats asymmetrically the uncertainty generated by latent variables
as opposed to the uncertainty regarding selection—the former is described by a
single probability measure (for each θ) while there is complete ignorance about the
latter. One may question the assumption of extensive knowledge of latent variables
particularly since they are not observed by the analyst. However, contrary to
appearances, our framework also permits the analyst to have an incomplete model
of latent variables. Formally, one can take each mθ to be a belief function on U ,
and the approach to inference that follows carries through. See Appendix E for
details.

3. Inference

Here we construct confidence regions for the unknown parameters that are robust
to the limitations of the analyst’s model. The approach largely mimics the classical
approach used when Pθ is a singleton i.i.d. measure, where the classical CLT can
be used to construct desired confidence regions. We show that a corresponding
procedure can be adopted also when the analyst’s model is incomplete. The first
step is to establish (in Theorem 3.1) a CLT for belief functions ν∞θ . The coverage
property of our confidence regions is then established in Theorem 3.2.

3.1. A central limit theorem

Belief functions aid tractability because they permit extensions of some basic
tools of probability theory, namely the LLN and CLT. The former is taken from
Maccheroni and Marinacci (2005), while the CLT is original to this paper and is
described shortly. Both rely on the fact that, in a suitable sense, ν∞θ is an "i.i.d.
product" of νθ, which explains also our notation ν∞θ for the belief function on S

∞.
Let Ψn (s∞) (·) be the empirical frequency measure in the first n experiments

along the sample s∞ = (s1, s2, ...), that is,

Ψn (s∞) (A) =
1

n
Σn
i=1I (si ∈ A) , for every A ⊂ S.

12



Though empirical frequencies need not converge, the LLN asserts certainty that
asymptotically Ψn (s∞) (A) lies in the interval [νθ (A) , ν∗θ (A)]:

ν∞θ {s∞ : [lim inf Ψn (s∞) (A) , lim sup Ψn (s∞) (A)] ⊂ [νθ (A) , ν∗θ (A)]} = 1; (3.1)

and this condition is tight in the sense that

ν∞θ ({s∞ : νθ (A) < lim inf Ψn (s∞) (A)}) = 0, and (3.2)

ν∞θ ({s∞ : lim sup Ψn (s∞) (A) < ν∗θ (A)}) = 0.

In light of the lower envelope condition (1.2), the LLN asserts that the event in
(3.1) has unit probability according to every measure in Pθ, while each event
appearing in (3.2) has arbitrarily small probability according to some measure in
Pθ.
Turn to the CLT. For any positive semidefinite matrix Λ ∈ RJ ·J , NJ (.; Λ)

denotes the J-dimensional normal cdf with zero mean and covariance matrix Λ—
for any c = (c1, ..., cJ) ∈ RJ , NJ (c; Λ) is the probability mass associated with
values less than or equal to c (in the vector sense), that is, with the closed lower
orthant at c. Of primary interest will be covariance matrices constructed as follows.
Fix J events, A1, ..., AJ , subsets of S, and for any θ, let

covθ (Ai, Aj) = νθ (Ai ∩ Aj)− νθ (Ai) νθ (Aj) , (3.3)

varθ (Ai) = νθ (Ai) (1− νθ (Ai)) = covθ (Ai, Ai) .

Denote by Λθ the J×J symmetric and positive semidefinite matrix (covθ (Ai, Aj)).10

Theorem 3.1. Let Λθn → Λ ∈ RJ ·J and cn → c ∈ RJ . Then

ν∞θn
(
∩Jj=1

{
s∞ :

√
n [νθn (Aj)−Ψn (s∞) (Aj)] ≤ cnj

})
→NJ (c; Λ) . (3.4)

See Appendix A for a proof.11

Though the inequalities in (3.4) place only a lower bound on empirical frequen-
cies, upper bounds are also accommodated. To demonstrate this and to facilitate
interpretation of the CLT, suppose that J = 2I and that AI+i = S\Ai for each
10Positive semidefiniteness is proven in the theorem.
11Marinacci (1999, Theorem 16) proves a central limit theorem for a class of capacities that

he calls "controlled," which property neither implies nor is implied by being a belief function.
Thus the CLTs are not comparable. Marinacci does not study confidence regions.

13



i = 1, ..., I, that is, each event Ai is accompanied by its complement AI+i; in this
case we refer to {Aj} as being "complement-closed." Then the event appearing in
(3.4) is

∩Ii=1

{
−cni/

√
n+ νθn (Ai) ≤ Ψn (s∞) (Ai) ≤ ν∗θn (Ai) + cn(I+i)/

√
n
}
, (3.5)

where ν∗θn is the conjugate belief function defined as in (2.5). For greater clarity,
suppose further that (θn, cn) = (θ, c) for all n. Then, rather than certainty that the
empirical frequency of Ai in an infinite sample lies in the interval [νθ (Ai) , ν

∗
θ (Ai)],

as in the LLN, the CLT describes, as an approximation, the distribution of de-
viations from that restriction in finite samples. In particular, when ci and cI+i
are positive, the empirical frequency can be smaller than νθ (Ai) or larger than
ν∗θ (Ai), and the distribution of such deviations according to ν∞θ is approximately
normal.
When each νθn is additive and hence a probability measure, then the variances

and covariances defined in (3.3) are the usual notions applied to indicator functions
I(s ∈ Ai) and I(s ∈ Aj) and the CLT reduces to (a special case of) the classical
triangular CLT (see, for example, White (2001, Theorem 5.11)). Other special
cases of the theorem are also immediate implications of classical results. For
example, if J = 1, then the CLT provides an approximation to

ν∞θn
({
−cn1/

√
n+ νθn (A1) ≤ Ψn (s∞) (A1)

})
. (3.6)

But it can be shown that for this event the minimum in (1.2) is achieved at an
i.i.d. measure P ∗n .

12 Thus one can invoke a classical triangular CLT. However, in
general, reduction to the classical additive case is not elementary because even if
minimizing measures exist, they are not easily determined nor is there any reason
to expect that they are i.i.d. measures.
The proof of our general result exploits the close connection between belief

functions and probability measures expressed in (2.3), and also the Cartesian
product structure of G∞ given in (1.1). Together they permit, for each θn, trans-
forming our assertion about belief functions into one about i.i.d. probability
measures m∞θn as follows:

ν∞θn
(√

n (νθn (Aj)−Ψn (s∞) (Aj)) ≤ cnj for each j
)

= m∞θn

(
1√
n

n∑
i=1

(
νθn (Aj)−Xj

ni

)
≤ cnj for each j

)
, (3.7)

12P ∗n is the i.i.d. product of p
∗
n ∈ ∆ (S) such that p∗n (A1) = νθn (A1). When a minimizer

exists in (1.2) for an event, refer to it as a minimizing or worst-case measure for that event.
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where for each j, Xj
ni = I(G(ui|θ) ⊂ A), i = 1, · · · , n, is an i.i.d. sequence of

random variables. Then the classical CLT can be applied. Note that despite the
fact that the distribution of the sequence of outcomes involves incidental parame-
ters Pu∞ describing selection, the fact that selection can vary arbitrarily across
markets does not affect our limit theorem. This is because each belief function
ν∞θn is a lower envelope (1.2) as one varies over all possible selections, which set
is described by the i.i.d. set-valued random variable G (· | θn). Consequently,
the (selection) incidental parameters do not enter into the representation of belief
functions as in (2.3).
We also note that the assumption that m∞θn is i.i.d. (for each θn) may be

relaxed, that is, one can establish a CLT similar to Theorem 3.1 while allowing
for heterogeneity and dependence of a known form for m∞θn . This is because, in
light of (3.7), as long as the sequence of random vectors Xni = (X1

ni, · · · , XJ
ni)
′,

i = 1, · · · , n, obey a suitable central limit theorem under m∞θn , such an extended
result becomes available.13

3.2. Confidence regions

Fix 0 < α < 1 and A1, · · · , AJ , subsets of S. For each θ, let Λθ be the J × J
covariance matrix defined as above, and let

σθ ≡
(√

varθ (A1), ...,
√
varθ (AJ)

)
. (3.8)

Our confidence region Cn is given by

Cn =

{
θ ∈ Θ : νθ (Aj)−Ψn (s∞) (Aj) ≤ cθ

√
varθ (Aj) /n, j = 1, ..., J

}
, (3.9)

where14

cθ = min {c ∈ R+ : NJ (cσθ; Λθ) ≥ 1− α} . (3.10)

Note that Cn is based on a normalized Kolmogorov-Smirnov-type statistic, be-
cause it equals {θ ∈ Θ : Tn(θ) ≤ cθ}, where Tn(θ) is the maximum of the normal-
ized empirical frequencies Tj,n(θ) ≡ (νθ (Aj) − Ψn (s∞) (Aj)) /

√
varθ(Aj)/n, j =

13For example, Jenizh and Prucha’s (2009) central limit theorem for arrays of random fields
allows variables to have spatial correlations.
14The proof of the next theorem shows that cθ is well-defined. If σθ = 0, then NJ (0; Λθ)

refers to a degenerate distribution at the mean, which is 0, and thus NJ (cσθ; Λθ) = 1 for all
c ≥ 0, and cθ = 0.
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1, · · · , J , where we take 1/0 = ∞, 0/0 = 0 and −1/0 = −∞. Here, varθ(Aj) is
equal to 0 if and only if νθ(Aj) = 0 or 1. If νθ(Aj) = 0, then Tj,n(θ) = −∞ and
event Aj does not provide any restriction on θ. If νθ(Aj) = 1, then θ is excluded
from the confidence region whenever Ψn(s∞)(Aj) < 1, (Tj,n(θ) =∞ in this case),
while it is included in the confidence region if Ψn(s∞)(Aj) = 1 (Tj,n(θ) = 0 in this
case) and Tk,n(θ) ≤ cθ for all k 6= j.
The asymptotic coverage property of Cn is established by the following theo-

rem.

Theorem 3.2. Let 0 < α < 1. Then

lim inf
n→∞

inf
θ∈Θ

ν∞θ ({s∞ : θ ∈ Cn}) ≥ 1− α. (3.11)

Further, there is equality in (3.11) if α < 1/2 and Λθ 6= 0 for some θ ∈ Θ.

Since Pθ is the set of all probability laws consistent with the model and θ
and since ν∞θ gives the lower envelope of Pθ, the theorem establishes that if
θ is the “true value” of the parameter, then, in the limit for large samples,
Cn contains θ with probability at least 1 − α according to every probability law
that is consistent with the model and θ. Moreover, (3.11) can also be stated as
lim infn→∞ inf(θ,P )∈F P (θ ∈ Cn) ≥ 1 − α, where F = {(θ, P ) : P ∈ Pθ, θ ∈ Θ}.
Thus our coverage statement is uniform on the general parameter space F . Fi-
nally, the noted coverage is tight in the sense of equality in (3.11) if (as one would
expect) α < 1/2, and if we exclude the very special case where σθ = 0 for all
θ ∈ Θ, that is, where νθ (Aj) ∈ {0, 1} for all j and θ.15
The confidence regions and their coverage properties are discussed further in

the next section in the context of examples.

4. Examples

4.1. Discrete normal form games

A widely studied class of games in the applied literature is the class of entry
games with multiple Nash equilibria. Here we focus on the canonical example
from Jovanovic (1989), because it illustrates simply the main issues and because
it is used widely for that purpose in the ambient literature. However, the reader

15Note that because Λθ is positive semidefinite, σθ = 0 if and only if Λθ = 0.
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will likely realize that our analysis accommodates a much broader class of games—
more on this after outlining how the Jovanovic game is accommodated.
In the Jovanovic entry game, in each market two firms play the entry game

described by the following payoff matrix:

out in
out 0, 0 0,−u2

in −u1, 0 θ1/2 − u1, θ
1/2 − u2

The parameter θ lies in [0, 1] and u = (u1, u2) is observed by players but not by
the analyst. She views θ as fixed and common across markets and u as uniformly
distributed on [0, 1]2 and i.i.d. across markets. Her theory is that the outcome in
each market is a pure strategy Nash equilibrium. However, her theory is incom-
plete because she does not understand equilibrium selection. Thus the translation
into our set up has: S = {0, 1}, where 0 (1) indicates that no (both) firms enter
the market; Θ = [0, 1]; U = [0, 1]2; m independent of θ and uniform on [0, 1]2; and
G equal to the (pure strategy) Nash equilibrium correspondence given by

G (u1, u2 | θ) =

{
{0, 1} if 0 ≤ u1, u2 ≤ θ1/2

{0} otherwise.
(4.1)

The implied set of distributions over S consists of all probability measures for
which the probability of s = 1 lies in [0, θ]. This interval of probabilities is
equivalently represented by the belief function νθ, where

νθ (1) = 0, νθ (0) = 1− θ, νθ ({0, 1}) = 1.

Turn to inference about θ. Suppose first that J = 1 and A1 = {1}. Then, for
all θ, νθ (1) = 0 and σθ = 0. It follows that Cn = Θ = [0, 1]. Thus without making
use of the (implied) sample frequency of s = 0, observations of s = 1 alone do not
provide any information about the unknown parameter θ.
Suppose, however, that (J = 2 and) we use also the sample frequency of

A2 = {0}. Then, for each θ, νθ (0) = 1 − θ and σθ =
(

0, [θ (1− θ)]1/2
)
, and

therefore,

Cn = {θ ∈ [0, 1] : Ψn (s∞) (1) ≤ θ + cθ [θ (1− θ)]1/2 /
√
n},

where, cθ = 0 if θ = 0 or 1, and otherwise cθ is the critical value for the standard
normal variable and satisfies N 1 (cθ; 1) ≥ 1 − α.16 Thus the interval constraint
16The reduction to a univariate distribution is a consequence of the fact that varθ ({1}) = 0

for all θ.
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imposed by the LLN (see the appropriate form of (3.1)), whereby asymptotically
the empirical frequency of s = 1 is bounded above by θ, is relaxed here to the
degree expressed by cθ [θ (1− θ)]1/2 /

√
n. In particular, cθ = 1.645 if α = .05.

It must be noted that the identical confidence region can arise also if the analyst
completes her model and assumes that selections are i.i.d. across markets, and
that when there are multiple equilibria then the equilibrium where both firms enter
(s = 1) is selected with probability 1.17 Then si is a Bernoulli random variable
with parameter θ which is the largest (unconditional) probability consistent with
the incomplete model. The MLE for θ is then θ̂ ≡ Ψn(s∞)(1). Assuming that the
CLT for i.i.d. samples applies, θ̂ has the limiting normal distribution with mean
0 and variance θ(1− θ), and the identical set Cn arises.
The preceding begs the questions "why does the noted procedural equivalence

arise?" and "when does incompleteness make a difference?" The key observation
is that in this example, for any given θ,

ν∞θ ({s∞ : θ ∈ Cn}) = ν∞θ

({
s∞ : Ψn (s∞) (1) ≤ θ + cθ [θ (1− θ)]1/2 /

√
n
})

= min
P∈Pθ

P
({
s∞ : Ψn (s∞) (1) ≤ θ + cθ [θ (1− θ)]1/2 /

√
n
})
,

and that a minimizing (or worst-case) measure exists as pointed out in the dis-
cussion surrounding (3.6)—a worst-case scenario for an event defined by an upper
bound on the frequency of s = 1 is that the probability that s = 1 in each mar-
ket is maximal (hence equal to θ) and is independent across markets. Thus the
confidence region generated by the ‘completed’model as above is also robust to
all the scenarios arising from model incompleteness.
However, the scope of such procedural equivalence is limited. Indeed, it fails

once both upper and lower bounds on the empirical frequency are relevant as in
the next more general example.
Though we have focussed on the Jovanovic game, it is evident that our analysis

can be applied also to any normal form game having finitely many pure strategies
and where pure strategy Nash equilibria exist, that is, the equilibrium correspon-
dence G (· | θ) is nonempy-valued for every parameter θ. It may also be evident
that the framework accommodates also games where players do not necessarily
play equilibrium strategies. For example, if the analyst is willing to assume only
that outcomes correspond to rationalizable strategy profiles, then the correspon-
dence G (· | θ) can be defined accordingly and inference can proceed as described
17We are not claiming that this is the most natural way to complete the model—just that the

identical confidence region can arise also with some complete model featuring i.i.d. selection.
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above.18 However, the restriction to pure strategies is important. If we allowed
mixed strategies, then the equilibrium correspondence G (· | θ) would map into
subsets of the probability simplex ∆ (S) and νθ would be a belief function on
∆ (S) rather than on S. Our formal results can be extended to this case in prin-
ciple (though we have not studied the generalization of the CLT to infinite state
spaces such as ∆ (S)). However, the corresponding CLT would refer to the em-
pirical frequencies of mixed strategies, which are unobservable, rather than to
the observable frequencies of realized pure strategies. Thus it seems that mixed
strategies are beyond the scope of our approach to inference.

4.2. Binary experiments

This is a slight generalization of the Jovanovic example where the minimum prob-
ability is not fixed to equal 0; it corresponds also to a natural generalization of
coin-tossing that incorporates an incomplete theory about the coin. Thus take
S = {0, 1}. The set of structural parameters is Θ = {θ = (θ1, θ2) ∈ [0, 1]2 : θ1 ≤
θ2}, where θ1 and θ2 are interpreted as the minimal and maximal probabilities for
the outcome s = 1. For (U,m) , take any nonatomic probability space (with U
Polish and mθ = m for all θ). Finally, define G (· | θ) : U  S by

G (u | θ) =


{1} if u ∈ Uθ1
{0} if u ∈ Uθ2
{1, 0} otherwise,

where Uθ1 and Uθ2 are disjoint (Borel measurable) subsets of U such thatm (Uθ1) =
θ1 and m (Uθ2) = 1− θ2. Then each θ induces the belief function νθ on S, where
νθ (1) = θ1 and νθ (0) = 1− θ2.
For inference about θ, take J = 2, A1 = {1} and A2 = {0}. Then

Cn =
{
θ : θ1 − cθ [θ1 (1− θ1) /n]1/2 ≤ Ψn (s∞) (1) ≤ θ2 + cθ [θ2 (1− θ2) /n]1/2

}
,

(4.2)
which is the set of all θ1 ≤ θ2 in the unit square that are either consistent with
the interval restriction (3.1) due to the LLN, (here asserting that all limit points
of Ψn (s∞) (1) lie in [θ1, θ2]), or that permit the indicated small deviations from
it. The region excludes θs for which θ1 is "too large," but all suffi ciently small θ1

18Every Nash equilibrium profile is rationalizable and the converse is false in general. All
profiles are rationalizable in the Jovanovic example, but in some games rationalizability rules
out many profiles. See Chapters 4 and 5 of Osborne and Rubinstein (1994).
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satisfy the first indicated inequality. This is because θ1 is a minimum probability,
and a small minimum cannot be contradicted by a larger empirical frequency for
s = 1 which is attributed by the model to the vagaries of selection. Similarly, the
confidence region excludes values of θ2 that are too small relative to the empirical
frequency, but all suffi ciently large values are included.
A noteworthy feature of Cn, that reflects the robustness of our approach, is

that the critical value cθ is scaled differently on the two extreme sides of the in-
equalities. The intuition is as follows. While (4.2) can be understood as describing
a relaxation of the LLN to accommodate finite samples, the issue is how much to
relax each inequality; for example, how much smaller than θ1 can the empirical
frequency be and still be seen as consistent with θ1? This amounts to deciding on
how much sampling variability to allow for Ψn (s∞) (1). Since any probability law
in Pθ may apply, a conservative approach is to use the worst-case scenario, which,
as in the Jovanovic example, is the i.i.d. law with the minimum probability for
s = 1, namely θ1. The associated variance is thus θ1 (1− θ1), as above. Similarly,
for the upper bound on Ψn (s∞) (1), for which the worst-case scenario has the
maximum probability, namely θ2, for s = 1, and thus a conservative approach
leads to the variance θ2 (1− θ2) for the second inequality in (4.2). The resulting
difference in scaling factors is implicit in the Jovanovic example because θ1 = 0
there.
There is another way to see why, in contrast with the preceding example,

model incompleteness makes a difference here for confidence regions. Roughly
speaking, our confidence regions provide coverage at least 1 − α according to
every measure in Pθ, and thus are driven by the least favorable scenarios for the
events {s∞ : θ ∈ Cn} ={

s∞ : θ1 − cθ [θ1 (1− θ1) /n]1/2 ≤ Ψn (s∞) (1) ≤ θ2 + cθ [θ2 (1− θ2) /n]1/2
}
.

(4.3)
Because of the two-sided constraint on the frequency Ψn (s∞) (1), these scenarios
are not i.i.d., but rather feature "positive correlation" across markets which makes
extreme values for the empirical frequency likely. We cannot be more precise
about the nature of these unfavorable scenarios, in particular, we cannot identify
particular parametric forms of dependence.19 However, our confidence regions
provide the desired coverage no matter what form that dependence might take.
Fix α = .05. The critical value cθ depends on θ according to (3.10). Though

closed-forms are not available for all θ, the following can be shown by elementary

19Dependence in a cross-sectional context is often modeled by various parametric copulas.
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arguments applied to the bivariate normal distribution (Appendix C):

c(0,0) = c(0,1) = c(1,1) = 0

c(θ1,1) = 1.645 if 0 < θ1 < 1

c(0,θ2) = 1.645 if 0 < θ2 < 1 (4.4)

c(θ1,θ2) = 1.96 if 0 < θ1 = θ2 < 1

{cθ : 0 < θ1 < θ2 < 1} = {c : 1.955 < c < 1.96}.

In addition, c(θ1,θ2) is (strictly) increasing in θ1 and decreasing in θ2 on the domain
{0 < θ1 < θ2 < 1}.
One may compare our confidence region to those in the moment inequalities

(MI) literature. Below, we discuss a confidence region that assumes i.i.d. sam-
pling. Under this assumption, the standard LLN and CLT imply that Ψn(s∞)(1)
converges in probability to p(1) = p(s = 1) and that the studentized empiri-
cal frequency

√
n(Ψn(s∞)(1)− p(1))/[Ψn(s∞)(1)(1−Ψn(s∞)(1))]1/2 converges in

distribution to the standard normal distribution. Thus let

CMI
n =

{
θ ∈ Θ : θ1 − c̃n,θ[Ψn(s∞)(1)(1−Ψn(s∞)(1))/n]1/2 ≤ Ψn(s∞)(1)

≤ θ2 + c̃n,θ[Ψn(s∞)(1)(1−Ψn(s∞)(1))/n]1/2
}
.

The critical value c̃n,θ is given by:20

c̃n,θ =


1.645 if l̂1n(θ) ≤ κn and l̂2n(θ) > κn
1.645 if l̂1n(θ) > κn and l̂2n(θ) ≤ κn
1.96 if l̂1n(θ) ≤ κn and l̂2n(θ) ≤ κn

0 if l̂1n(θ) > κn and l̂2n(θ) > κn

, (4.5)

where {κn} is a sequence of positive constants such that κn →∞ and κn/
√
n→ 0

and

l̂1,n(θ) ≡
√
n(Ψn(s∞)(1)− θ1)

[Ψn(s∞)(1)(1−Ψn(s∞)(1))]1/2
, l̂2,n(θ) ≡

√
n(θ2 −Ψn(s∞)(1))

[Ψn(s∞)(1)(1−Ψn(s∞)(1))]1/2
.

(4.6)
CMI
n is a confidence region based on moment inequalities.21 The studentized mo-
ments l̂j,n are used to select those constraints to enter into calculation of the

20For comparison purposes, we use the critical value based on an asymptotic normal approx-
imation instead of bootstrap approximations commonly used in the literature.
21One may view CMI

n as Galichon and Henry’s (2009) inference method with studentized
moments. It also belongs to the general class of confidence regions studied by Andrews and
Soares (2010).
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critical value. For example, when l̂1,n(θ) ≤ κn, the MI approach interprets this as
indicating that the corresponding population constraint p(1) − θ1 ≥ 0 is close to
being binding, and hence retains this constraint in calculating the critical value;
when l̂1,n(θ) > κn, this constraint is not used.
The two confidence regions Cn and CMI

n differ in terms of their critical values
and scaling factors. As opposed to our method, the MI approach scales its criti-
cal value by the square root of Ψn(s∞)(1)(1 − Ψn(s∞)(1)). This is because their
inference is based on the LLN and CLT with the i.i.d. assumption, under which
the studentized empirical frequency converges in distribution to the standard nor-
mal distribution. Second, while c̃n,θ and c(θ1,θ2) both take values between 0 and
1.96, the ways these critical values switch between distinct values are different:
c̃n,θ switches between 0, 1.645, and 1.96 depending on the number of constraints
selected by the procedure, while c(θ1,θ2) changes its values depending on the co-
variance of the bivariate normal distribution.
The MI approach uses c̃n,θ = 1.96 when the two inequalities are locally binding,

that is, l̂1n(θ) ≤ κn and l̂2n(θ) ≤ κn. This is likely to occur when the interval
[θ1, θ2] is short, meaning that its length is comparable to the order O(n−1/2) of
the sampling variation of Ψn(s∞)(1). Heuristically, Ψn(s∞)(1) can then fall on
either side of the interval, which motivates the two-sided critical value.22 The
value c̃n,θ = 1.645 is used when only one of the constraints is selected, which
occurs when Ψn(s∞)(1) is close to one of the end points, say θ1 but not to θ2. The
MI approach interprets this as the length of the interval being large relative to the
sampling variation and p(1) being close to θ1 but not to θ2. Hence, if the empirical
frequency is convergent to p(1), then asymptotically it may fall to the left of θ1

but not to the right of θ2. Therefore, the problem reduces to a one-sided problem,
which motivates c̃n,θ = 1.645. Finally, c̃n,θ = 0 is used when both constraints
are considered slack, which occurs when the interval is long and p(1) is not close
to either endpoint. Since the MI approach assumes that Ψn(s∞)(1) converges to
p(1) in the interior of the interval, the probability of it falling outside the interval
tends to 0, which motivates c̃n,θ = 0.
In our framework, Ψn(s∞)(1) does not necessarily converge. Hence, except in

the special cases discussed below, Ψn(s∞)(1) may fall on either side of the interval
even asymptotically. Using our CLT, we approximate the minimum probability
of the event where the empirical frequency is in an enlarged interval (in (4.3))
by a bivariate normal distribution. Therefore, the critical value c(θ1,θ2) depends
on θ through the parameters in the bivariate normal distribution according to

22This was pointed out previously by Imbens and Manski (2004) and Stoye (2009).
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(3.10). Accordingly, as stated in (4.4), c(θ1,θ2) = 1.96 when 0 < θ1 = θ2 < 1. This
is because the two moments have a perfect (negative) correlation in this case,
and the coverage probability reduces to Ψn(s∞)(1)’s two-sided variation around a
common point θ1 = θ2. The value c(θ1,θ2) = 1.645 is used when either θ1 or θ2 is on
the boundary of the parameter space. For example, when θ1 = 0, there is no room
for Ψn(s∞)(1) to the left of θ1; hence, it suffi ces to consider Ψn(s∞)(1)’s variation
around θ2, which motivates the one-sided critical value. Finally, c(θ1,θ2) = 0 when
both θ1 and θ2 are on the boundary. For example when (θ1, θ2) = (0, 1), there is
no room for Ψn(s∞)(1) on the left of θ1 or on the right of θ2, which motivates 0
as the critical value. When (θ1, θ2) = (0, 0) or (1, 1), Ψn(s∞)(1) does not involve
any randomness and there is no need to relax any of the inequalities.

5. Monte Carlo simulations

We conduct Monte Carlo simulations to illustrate the performance of our infer-
ence method. For comparison purposes, we also include the results of existing
procedures.23

Simulations are based on the binary experiment, slightly specialized so that
U = [0, 1], m is uniform on [0, 1], Θ = {(θ1, θ2) ∈ [0, 1]2 : θ1 ≤ θ2}, and

G (u|θ) =


{1} if u < θ1

{0} if u > θ2

{0, 1} if u ∈ [θ1, θ2] .

Thus each θ induces the belief function νθ on {0, 1} given by

νθ(1) = θ1, and νθ(0) = 1− θ2. (5.1)

We consider two specifications for the equilibrium selection mechanism. In
both specifications, si = 1 is selected from {0, 1} when ui ∈ [θ1, θ2] and a binary
latent variable vi takes 1. The first specification is an i.i.d. selection mechanism,
in which vi is generated as an i.i.d. Bernoulli random variable independent of ui
with prob(vi = 1) = τ for some τ ∈ [0, 1].
The second specification is a non-i.i.d. selection mechanism. For this, let Nk,

k = 1, 2, · · · , be an increasing sequence of integers. The set {i : Nk−1 < i ≤ Nk}
23The MATLAB code for our simulations is available at: http://sites.google.com/site/seo8240.
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defines a cluster of markets. We impose a common selection mechanism within
each cluster. Let h(i) = Nk if Nk−1 < i ≤ Nk and define

vi =

{
1 ΨG

h(i)(u
∞) > θ1

θ1+(1−θ2)

0 ΨG
h(i)(u

∞) ≤ θ1
θ1+(1−θ2)

, where ΨG
n (u∞) =

∑n
i=1 I[G(ui|θ) = {1}]∑n

i=1 I[G(ui|θ) 6= {0, 1}]
.

(5.2)
The non-i.i.d. specification selects si = 1 from {0, 1} when ΨG

n (u∞), the relative
frequency of the event where the model predicts {1} as a unique outcome, crosses a
threshold. Otherwise, si = 0 is selected. This mechanism applies to all i belonging
to the k-th cluster for which multiple equilibria are present.
Our inference procedure is implemented as follows. Since the belief function

has a closed form (see (5.1)), computing the statistic and components of the covari-
ance matrix Λθ is straightforward. To compute the critical value cθ, one needs to
evaluate a CDF of a multivariate normal distribution with covariance matrix Λθ.
We do so by using simulated draws from the Geweke-Hajivassiliou-Keane (GHK)
simulator and approximating the CDF NJ (·; Λθ) by Monte Carlo integration.24

The critical value is then computed according to (3.10) replacing NJ (·; Λθ) by
its approximation. Throughout this section, we denote our confidence region by
CEKSn .
We compare the performance of the robust confidence region with that of

existing methods. For each θ, let M̄n,θ ≡ (ν∗θ(1)−Ψn(s∞)(1), ν∗θ(0)−Ψn(s∞)(0))′.
Confidence regions in the moment inequalities (MI) literature take the form:

CSn =
{
θ ∈ Θ : Γ(

√
nM̄n,θ, Σ̂n,θ) ≤ c̃n,θ(κn)

}
,

where Γ : RJ × RJ ·J → R is a function that aggregates (normalized) moment
functions, and Σ̂n,θ is an estimator of the asymptotic variance of

√
nM̄n,θ. c̃n,θ is

a critical value that depends on a possibly data-dependent tuning parameter κn.
We consider two confidence regions that belong to this class. The first, denoted

CMIn , based on Galichon and Henry (2009) and Andrews and Soares (2010), uses

24See simulation procedure 2 in Appendix F for details on the implementation of our procedure.
In the present simulations, J = 2 and we need to compute bivariate normal CDF values. There
are faster and more accurate algorithms for the bivariate case, (see Genz (2004), for example),
but we adopt the GHK method because it may be used for applications with larger J .
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the following criterion function and estimator of the asymptotic variance:

Γ(M,Σ) = max
j=1,··· ,J

(−Σ
−1/2
jj Mj)

Σ̂n,θ =
1

n

n∑
i=1

(Mθ(si)− M̄n,θ)(Mθ(si)− M̄n,θ)
′,

where Mθ(s) ≡ (ν∗θ(1) − I(si = 1), ν∗θ(0) − I(si = 0))′. We then compute c̃n,θ
via bootstrap combined with a generalized moment selection (GMS) procedure.
This method selects the moments that are relevant for inference by comparing
sample moments to a tuning parameter κn provided by the researcher. Specifically,
for each j, let l̂j,n(θ) = M̄j,n,θ/[Ψn(s∞)(1)(1 − Ψn(s∞)(1))]1/2 be the studentized
moment and let ϕn,θ be a J × 1 vector whose j-th component satisfies

ϕj,n,θ =

{
0 if l̂j,n(θ) ≤ κn

∞ if l̂j,n(θ) > κn .

The critical value is then calculated as the 1 − α quantile of the bootstrapped
statistic Γ(M̄∗

n,θ + ϕn,θ, Σ̂
∗
n,θ), where (M̄∗

n,θ, Σ̂
∗
n,θ) is a bootstrap counterpart of

(M̄n,θ, Σ̂n,θ).25

The second confidence region, denoted CABn , based on Andrews and Barwick
(2012), uses the test statistic Tn(θ) = Γ(

√
nM̄n,θ, Σ̃n,θ) with the following criterion

function and regularized estimator of the asymptotic variance:

Γ(M,Σ) = inf
t∈R̄J+

(M − t)′−1(M − t)

Σ̃n,θ ≡ Σ̂n,θ + max(0.012− det(Ω̂n,θ), 0)D̂n,θ,

where D̂n,θ = diag(Σ̂n,θ) and Ω̂n,θ = D̂
−1/2
n,θ Σ̂n,θD̂

−1/2
n,θ . Their critical value requires

three tuning parameters including κn, which we set following their recommenda-
tions.
Table 5.1 reports the coverage probabilities of the three confidence regions

CEKSn , CMIn , and CABn under alternative values of (θ1, θ2) for a nominal level of
0.95. We set τ = 0.5 and 1 for the i.i.d. selection mechanism, and Nk =

25See Andrews and Soares (2010) for details on general GMS procedures that include ϕn,θ as
a special case. The moment selection tuning parameter κn here corresponds to

√
n times the

tuning parameter hn in Galichon and Henry (2009).

25



Table 5.1: Coverage Probabilities of Confidence Regions
Eq. Sel. Sample Size Robust MI Robust MI

n CEKSn CMIn CABn CEKSn CMIn CABn
A: (θ1, θ2) = (0.4, 0.6) B: (θ1, θ2) = (0.49, 0.51)

i.i.d. (τ = 0.5) 100 1.000 0.999 0.999 0.963 0.934 0.966
256 1.000 1.000 1.000 0.983 0.946 0.979
400 1.000 1.000 1.000 0.979 0.949 0.974

10000 1.000 1.000 1.000 1.000 1.000 1.000
65536 1.000 1.000 1.000 1.000 1.000 1.000

i.i.d. (τ = 1) 100 0.981 0.961 0.959 0.959 0.932 0.964
256 0.977 0.960 0.959 0.973 0.936 0.970
400 0.981 0.950 0.954 0.973 0.941 0.978

10000 0.973 0.940 0.941 0.969 0.945 0.943
65536 0.974 0.941 0.947 0.976 0.950 0.952

non-i.i.d. 100 0.952 0.919 0.926 0.952 0.905 0.954
256 0.955 0.919 0.914 0.949 0.893 0.938
400 0.984 0.967 0.964 0.962 0.923 0.959

10000 0.973 0.953 0.946 0.962 0.922 0.923
65536 0.969 0.918 0.925 0.958 0.909 0.913

Note: We simulate 1000 datasets for each setting. For the non-i.i.d case,
Nk = 22k ∈ {4, 16, 256, 65536}. CMIn uses the generalized moment selection procedure
with the tuning parameter value κn = ln lnn. CABn uses the tuning parameter values
recommended by Andrews and Barwick (2012).

22k ∈ {4, 16, 256, 65536} for the non-i.i.d. selection mechanism. We report sim-
ulation results based on samples of size n ∈ {100, 256, 400, 10000, 65536}. CMIn

uses the generalized moment selection procedure with the tuning parameter value
κn = ln lnn. CABn uses the tuning parameter values recommended by Andrews
and Barwick (2012).26

We note that the non-i.i.d. selection mechanism becomes less favorable to
controlling the coverage probability when n is close to Nk for some k. This can be
understood as follows. When the empirical frequency of the event G(ui|θ) = {1},
i.e. 1 being predicted as a unique outcome, crosses the threshold in (5.2), then
the selection mechanism additionally selects si = 1 across all markets in cluster
k where multiple equilibria are predicted. This increases the empirical frequency

26The moment selection tuning parameter κn and size correction factors (η1n, η2n) are selected
from Table I in Andrews and Barwick (2012) based on the smallest off-diagonal element of Ω̂n,θ.
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Table 5.2: Volume of Confidence Regions
Eq. Sel. Sample Size Robust MI Robust MI

n CEKSn CMIn CABn CEKSn CMIn CABn
A: (θ1, θ2) = (0.4, 0.6) B: (θ1, θ2) = (0.49, 0.51)

i.i.d. (τ = 0.5) 100 0.360 0.340 0.326 0.360 0.341 0.327
256 0.314 0.303 0.299 0.314 0.304 0.298
400 0.300 0.293 0.290 0.300 0.293 0.290

10000 0.262 0.261 0.261 0.262 0.261 0.261
65536 0.262 0.261 0.261 0.262 0.261 0.261

i.i.d. (τ = 1) 100 0.350 0.329 0.317 0.360 0.341 0.327
256 0.305 0.294 0.289 0.314 0.304 0.299
400 0.290 0.282 0.280 0.300 0.292 0.290

10000 0.252 0.251 0.251 0.257 0.255 0.256
65536 0.252 0.251 0.252 0.250 0.250 0.250

non-i.i.d. 100 0.346 0.326 0.314 0.359 0.340 0.326
256 0.300 0.290 0.285 0.314 0.303 0.298
400 0.293 0.285 0.283 0.300 0.292 0.290

10000 0.252 0.251 0.251 0.257 0.255 0.255
65536 0.252 0.252 0.252 0.250 0.250 0.250

Note: We simulate 1000 datasets for each setting. For the non-i.i.d case,
Nk = 22k ∈ {4, 16, 256, 65536}. CMIn uses the generalized moment selection procedure
with the tuning parameter value κn = ln lnn. CABn uses the tuning parameter values
recommended by Andrews and Barwick (2012).

of {1}, and thus lowers the probability of the statistic being dominated by the
critical value.
Overall, our confidence region controls the coverage probability properly across

all specifications even in small samples. This confirms the robustness of our pro-
cedure. The coverage probabilities of the two other confidence regions depend on
the equilibrium selection specifications.
Panel A in Table 5.1 shows the results for the case (θ1, θ2) = (0.4, 0.6). Under

the i.i.d. selection mechanism with τ = 0.5, the coverage probabilities of all
confidence regions are close to 1. This is because, under this specification the
empirical frequency converges to a point (p = 0.5) in the interior of the probability
interval [θ1, θ2] whose length is long relative to the sampling variation of the
empirical frequency. When τ = 1, the empirical frequency Ψn(1) converges to
ν∗θ(1). All confidence regions control the coverage probabilities reasonably well
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under this specification. Under the non-i.i.d. specification, the empirical frequency
does not have a unique limit point. As discussed above, size control becomes more
diffi cult when n is close to Nk for some k. The coverage probabilities of CMIn and
CABn in such settings are below the nominal level, for example, they equal 0.919
and 0.914 respectively when n = 256. Even when n = 65536, their respective
coverage probabilities equal 0.918 and 0.925, thus exhibiting size distortions even
in large samples due to the non-i.i.d. (highly dependent) nature of the selection
mechanism.
Panel B in Table 5.1 reports coverage probabilities for (θ1, θ2) = (0.49, 0.51). In

this setting, the probability interval has a shorter length. Overall, under the i.i.d.
specifications, existing methods control size reasonably well although the coverage
probability for CMIn is slightly below the nominal level in small samples.27 For the
non-i.i.d. specification, however, we again see that they have size distortions when
the sample size equals Nk for some k. For example, the coverage probabilities of
CMIn and CABn are 0.909 and 0.913 respectively when n = 65536. In addition, there
are size distortions even when sample sizes are not close to Nk (e.g. their coverage
probabilities are 0.922 and 0.923 respectively when n = 10000).
Finally, we examine the cost of robustness by comparing the volume of the

robust confidence region to the volumes in existing methods. Table 5.2 shows the
average volume of the different confidence regions. Overall, the robust confidence
region has a slightly higher volume than the other methods especially in small
samples. However, this difference becomes very small as the sample size gets
large. These features hold under both i.i.d. and non-i.i.d. specifications.

6. Covariates

This section describes an extension of our approach to accommodate covariates
that model observable heterogeneity. Because interpretations follow closely those
for the stripped-down model, we keep discussions brief and focussed on the new
features.
The model of each individual experiment is now described by (S,X,U,G,Θ; q,m),

where: S, U,Θ,m are as before, and X is the finite set of covariate values. Co-
variates are stochastic and distributed according to the full support measure
q ∈ ∆ (X), independently from u. Model predictions take the form of a (weakly
measurable) correspondence G (· | θ, x) : U  S, for each θ ∈ Θ and x ∈ X. The
27Under the i.i.d. specification with τ = 0.5, the coverage probabilities of all confidence regions

are now below 1 in relatively small samples due to the shorter length of the probability interval.
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latter and m induce, the belief function νθ (· | x) on S, that is conditional on each
θ and x, and is given by

νθ (A | x) = mθ ({u ∈ U : G (u | θ, x) ⊂ A}) , A ⊂ S.

To model the infinite sequence of experiments, consider (S∞, X∞, U∞, G∞,Θ; q∞,m∞),
where (xi, ui) are assumed to be i.i.d. and distributed according to the product of
q∞ and m∞. The outcomes for the entire sequence of experiments are described
by the correspondence, G∞ (· | θ, x∞) : U∞  S∞, where, for each θ and sequence
of covariates x∞ ≡ (x1, ..., xi, ...) ∈ X∞,

G∞ (u1, ..., ui, ... | θ, x∞) ≡ Π∞i=1G (ui | θ, xi) .

This correspondence induces, for each θ ∈ Θ and x∞ ∈ X∞, the belief function
ν∞θ (· | x∞) on S∞ given by

ν∞θ (B | x∞) = m∞θ ({u∞ ∈ U∞ : G∞ (u∞ | θ, x∞) ⊂ B}) , B ⊂ S∞.

Then, ν∞θ (· | x∞) gives the lower envelope of the set Pθ,x∞ , paralleling (2.1), of
all probability laws over S∞ that are consistent with the given theory and θ and
with agnosticism about selection. Consistent with such agnosticism, the set Pθ,x∞
does not restrict how selection varies with the covariate.
For inference we fix A1, ..., AJ , subsets of S.28 Define, for each θ and x ∈ X,

covθ (Ai, Aj | x) = vθ (Ai ∩ Aj | x)− vθ (Ai | x) vθ (Aj | x) (6.1)

varθ (Aj | x) = covθ (Aj, Aj | x) . (6.2)

Let Λθ,x be the covariance matrix, conditional on x: (Λθ,x)jj′ = covθ (Aj, Aj′ | x).
Let Λθ be the |X| J-by-|X| J block-diagonal matrix where Λθ,x1 , ...,Λθ,x|X| are the
blocks; the (k(J − 1) + j, k′(J − 1) + j′) element of Λθ is 0 if k 6= k′, and equals
covθ (Aj, Aj′ | xk) if k = k′.
Define cθ = min

{
c ∈ R+ : N |X|J (cσθ; Λθ) ≥ 1− α

}
. Another way to express

cθ is as follows. Let Zθ =
(
Zθ,1, ..., Zθ,|X|J

)
be multivariate normal with mean

0 and covariance Λθ, and let W = maxk=1,...,|X|J Zθ,k/σθ,k with the conventions
1/0 = ∞, 0/0 = 0 and −1/0 = −∞. Then cθ is the critical value of W : cθ =
min {c ∈ R+ : Pr (W ≤ c) ≥ 1− α}. It can be shown that, if 0 < α < 1/2 and
Λθ 6= 0, then Pr (W ≤ cθ) = 1− α.
28Below the same collection {Aj} of events is used for each covariate value. This is only for

simplicity; we could alternatively use {Akj }
Jk
j=1 for covariate x = xk.
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For each s∞ ∈ S∞, x∞ ∈ X∞ and A ⊂ S, denote by Ψn (s∞, x∞) (A | x) the
empirical frequency ofA in the first n experiments counting only those experiments
where xi = x:

Ψn (s∞, x∞) (A | x) =

(
n∑
i=1

I (xi = x)

)−1 n∑
i=1

I (xi = x, si ∈ A) .

Since q has the full support, Ψn is well-defined asymptotically. Define the statistic

Tn (θ) = max
(x,j)∈X×{1,...,J}

{
νθ (Aj | x)−Ψn (s∞, x∞) (Aj | x)√

varθ (Aj | x) /n

}
, (6.3)

where we adopt the conventions 1/0 =∞, 0/0 = 0 and −1/0 = −∞.
Finally, define the confidence region:

Cn = {θ ∈ Θ : Tn (θ) ≤ cθ} .

It is not diffi cult to verify that

Cn =
⋂

(x,j)∈X×{1,...,J}

{
θ ∈ Θ : νθ (Aj | x)−Ψn (s∞, x∞) (Aj | x) ≤ cθ

√
varθ (Aj | x) /n

}
.

Theorem 6.1. Suppose that each x ∈ X appears in the given sequence x∞ =
(x1, x2, ...) infinitely many times. Then,

lim inf
n→∞

inf
θ∈Θ

ν∞θ (θ ∈ Cn | x∞) ≥ 1− α.

Moreover, equality prevails if 0 < α < 1
2
and Λθ 6= 0 for some θ ∈ Θ.

The main coverage property for the model with covariates follows as a corollary.
Define the unconditional belief function by

ν∞θ (·) =

∫
ν∞θ (· | x∞) dq∞ (x∞) .

Corollary 6.2. We have

lim inf
n→∞

inf
θ∈Θ

ν∞θ (θ ∈ Cn) ≥ 1− α.

Moreover, equality prevails if 0 < α < 1
2
and Λθ 6= 0 for some θ ∈ Θ.
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A. Appendix: Proof of CLT

Fix θ. A particular case of the conditional structure (U,G (· | θ) ,mθ) occurs when
U = K (S), the set of all nonempty (and necessarily closed) subsets of S, endowed
with the discrete metric because S is finite, and G (· | θ) = Ĝ maps anyK ∈ K (S)

into Ĝ (K) = K ⊂ S. In fact, Choquet’s Theorem (Philippe, Debs and Jaffray
1999, Molchanov 2005) shows that the latter structure is without loss of generality:
a belief function νθ on S generated by any (U,G (· | θ) ,mθ) can also be generated

by
(
K (S) , Ĝ, m̂θ

)
for some probability measure m̂θ on K (S); and similarly for

ν∞θ . Because
(
K (S) , Ĝ, m̂θ

)
is typically viewed as the canonical representation

of a belief function, we adopt it in the following proof of the CLT. We also denote
the measure on K (S) by mθ rather than m̂θ. Then, without loss of generality,
suppose that νθ and ν∞θ satisfy

νθ (A) = mθ ({K ∈ K (S) : K ⊂ A}) , A ⊂ S,

and

ν∞θ (B) = m∞θ ({K1 ×K2 × ... ∈ (K (S))∞ : Π∞i=1Ki ⊂ B}) , B ⊂ S∞.

Now we consider a sequence {θn}, which induces the sequence of structures
{(U,G (· | θn) ,mθn)}. On the probability space

(
(K (S))∞,m∞θn

)
, define random

variables Xj
ni by

Xj
ni = I (Ki ⊂ Aj) =

{
1 if Ki ⊂ Aj
0 otherwise

for each i, n = 1, 2, ... and j = 1, ..., J .

Then, (using m∞θn), EX
j
ni = νθn (Aj),

cov
(
Xj
ni, X

l
ni

)
= E

(
Xj
niX

l
ni

)
− E

(
Xj
ni

)
E
(
X l
ni

)
=

∫
I (Ki ⊂ Aj) I (Ki ⊂ Al) dmθn (Ki)− νθn (Aj) νθn (Al)

=

∫
I (Ki ⊂ Aj ∩ Al) dmθn (Ki)− νθn (Aj) νθn (Al)

= νθn (Aj ∩ Al)− νθn (Aj) νθn (Al) , and

var
(
Xj
i

)
= cov

(
Xj
i , X

j
i

)
= νθn (Aj) (1− νθn (Aj)) .
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Let Xni be the RJ -valued random variable with jth component Xj
i . Define

Y j
ni =

(
Xj
ni − EX

j
ni

)
,

and let Yni be the corresponding RJ -valued random variable. Then, EYni = 0 and
Yni has the variance-covariance matrix Λθn .
Compute that, for any β ∈ RJ ,

K1 ×K2 × ... ⊂
{
s∞ : βj ≤ nΨn (s∞) (Aj) for each j

}
⇐⇒

K1 ×K2 × ... ⊂
{
s∞ : βj ≤

n∑
i=1

I (si ∈ Aj) for each j
}
⇐⇒

βj ≤ min
s∞∈K1×K2×...

n∑
i=1

I (si ∈ Aj) for each j ⇐⇒

βj ≤
n∑
i=1

min
si∈Ki

I (si ∈ Aj) for each j ⇐⇒

βj ≤
n∑
i=1

I (Ki ⊂ Aj) for each j ⇐⇒

βj ≤
n∑
i=1

Xj
ni for each j = 1, ..., J.

Hence,

ν∞θn
({
s∞ : βj ≤ nΨn (s∞) (Aj) for each j

})
= m∞θn

({
K1 ×K2 × ... ∈ (K (S))∞ : βj ≤

n∑
i=1

Xj
ni for each j

})
,

and consequently, for any cn ∈ RJ ,

ν∞θn
(√

n (νθn (Aj)−Ψn (s∞) (Aj)) ≤ cnj for each j
)

= ν∞θn
(
nνθn (Aj)−

√
ncnj ≤ nΨn (s∞) (Aj) for each j

)
= m∞θn

(
nνθn (Aj)−

√
ncnj ≤

n∑
i=1

Xj
ni for each j

)
= m∞θn

(
−cnj ≤

1√
n

n∑
i=1

(
Xj
ni − νθn (Aj)

)
for each j

)
= m∞θn

(
−cnj ≤

1√
n

n∑
i=1

Y j
ni for each j

)
.
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Thus the assertion to be proven has been translated into one about independent
(triangular) random variables and classical results can be applied.
We prove that Ỹn ≡ cn + 1√

n

∑n
i=1 Yni →d Z where Z is J-dimensional mul-

tivariate normal with mean c and covariance matrix Λ. Apply the Cramér-Wold
device: let a ∈ RJ and show that a′Ỹn →d a

′Z. Note that limn→∞ var
(
a′Ỹn

)
=

limn→∞ a
′Λθna = a′Λa. If a′Λa = 0, then a′Ỹn →d c = a′Z. If a′Λa > 0, we can

apply a triangular CLT (White 2001, Theorem 5.11),29 to prove that∑n
i=1 a

′Yni√
n (a′Λθna)

→d N (0, 1) .

Since limn→∞ a
′Λθna = a′Λa,

a′Ỹn = a′cn +

∑n
i=1 a

′Yni√
n

→d N (a′c, a′Λa) .

Thus a′Ỹn →d a
′Z for all a ∈ RJ , which implies that Ỹn →d Z.

The proof of (3.4) is completed by noting that

ν∞θn
(
∩Jj=1

{
s∞ :

√
n [νθn (Aj)−Ψn (s∞) (Aj)] ≤ cnj

})
= m∞θn

(
0 ≤ Ỹn

)
→ Pr (0 ≤ Z) = Pr (−Z + c ≤ c) = NJ (c; Λ) .

�

B. Appendix: Proof of Theorem 3.2

A preliminary remark is that {s∞ : θ ∈ Cn} is measurable for each θ because it
equals

⋂J
j=1

{
s∞ : νθ (Aj)−Ψn (s∞) (Aj) ≤ cθ

√
varθ (Aj) /n

}
and because s∞ 7→

Ψn (s∞) (Aj) is measurable for each j.
For any positive semidefinite matrix Λ ∈ RJ ·J , let σ (Λ) ≡

(√
Λ11, ...,

√
ΛJJ

)
and define

c (Λ) = min {c ∈ R+ : NJ (cσ (Λ) ; Λ) ≥ 1− α} .
We show shortly that c (Λ) is defined even if Λ /∈ {Λθ : θ ∈ Θ}. It will follow that
c (Λθ) = cθ for every θ.

29The condition in the theorem that E |a′Yni|2+δ is bounded is satisfied here because Yni is
bounded.
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Step 1: NJ

(√
J
α
σ (Λ) ; Λ

)
≥ 1 − α: Let X be multivariate normal with mean 0

and covariance matrix Λ. Then the Chebyshev inequality implies that, for c > 0,

1−NJ (cσ (Λ) ; Λ) = Pr

(
J⋃
j=1

{Xj > cσj (Λ)}
)
≤
∑
j

Pr (Xj > cσj (Λ)) ≤ J

c2
.

Set c2 = J
α
. (In particular, when σ (Λ) = 0, thenNJ

(√
J
α
σ (Λ) ; Λ

)
= NJ (0; Λ) =

1 > 1− α.)
Step 2: c (Λ) is well-defined for every 0 < α < 1: Note that c 7−→NJ (cσ (Λ) ; Λ) is
upper semicontinuous and (weakly) increasing for all Λ, and (by Step 1)NJ (cσ (Λ) ; Λ) ≥
1 − α for some c ≥ 0. It follows that c (Λ) is well-defined as a minimum. Note
also that, for c∗ ≥ 0,

NJ (c∗σ (Λ) ; Λ) ≥ 1− α ⇐⇒ c∗ ≥ c (Λ) . (B.1)

Step 3: (c,Λ) 7−→ NJ (cσ (Λ) ; Λ) is upper semicontinuous: Take (cn,Λn) →
(c,Λ) ∈ R × RJ ·J . Let Xn and X be multivariate normal random vectors with
means −cnσ (Λn) and −cσ (Λ), and variances Λn and Λ, respectively. Then the
characteristic functions of Xn converge pointwise to the characteristic function of
X, which implies that Xn →d X by Lévy’s Continuity Theorem. Thus

lim sup
n→∞

NJ (cnσ (Λn) ; Λn) = lim sup
n→∞

Pr (Xn ≤ 0) ≤ Pr (X ≤ 0) .

Step 4: [Λn → Λ and c (Λn)→ c∗] =⇒ c∗ ≥ c (Λ): By Step 3, NJ (c∗σ (Λ) ; Λ) ≥
1− α. Apply (B.1).
Step 5: Let Bel (S) be the set of belief functions on S equipped with the sup-norm
topology. Since S is finite, Bel (S) is compact. For ν ∈ Bel (S), let Λν be the
covariance matrix as defined in (3.3). Then ν 7−→ Λν is continuous and hence
{Λν : ν ∈ Bel (S)} is compact.
Step 6: Complete the proof of (3.11). Let {θn} be a sequence such that

lim inf
n→∞

inf
θ∈Θ

ν∞θ (θ ∈ Cn) = lim inf
n→∞

ν∞θn (θn ∈ Cn) .

Since ν∞θn (θn ∈ Cn) is bounded, by taking a subsequence if necessary, we can as-
sume that lim infn→∞ ν

∞
θn

(θn ∈ Cn) = limn→∞ ν
∞
θn

(θn ∈ Cn). Moreover, by Step 5,
and by taking a further subsequence if necessary, we can assume that Λθn → Λ ∈
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RJ ·J . By Step 1 and (B.1), 0 ≤ c (Λθn) ≤
[
J
α

]1/2
. Therefore, a further subsequence

allows us to assume that c (Λθn)→ c∗. Thus, the CLT (Theorem 3.1) implies that

lim
n→∞

ν∞θn (θn ∈ Cn) = NJ (c∗σ (Λ) ; Λ)

(by Step 4) ≥ NJ (c (Λ)σ (Λ) ; Λ) ≥ 1− α.

Step 7: If NJ (cθσθ; Λθ) = 1 − α, then limn→∞ ν
∞
θ ({s∞ : θ ∈ Cn}) = 1 − α: The

CLT implies that

lim
n→∞

ν∞θ ({s∞ : θ ∈ Cn}) = NJ (cθσθ; Λθ) = 1− α.

Step 8: If 0 < α < 1
2
and Λθ 6= 0, then NJ (cθσθ; Λθ) = 1 − α: Λθ 6= 0 =⇒

σ (Λθ) 6= 0. Wlog let σ1 (Λθ) > 0. Then c 7−→ NJ (cσθ; Λθ) is continuous and
strictly increasing on c ≥ 0.
Argue that NJ (0; Λθ) < 1 − α: Let Z be multivariate normal with mean 0

and covariance matrix Λθ 6= 0. Then,

NJ (0; Λθ) = Pr (X ≤ 0) = Pr (X1 ≤ 0) Pr (X2, ..., XJ ≤ 0 | X1 ≤ 0)

≤ Pr (X1 ≤ 0) = 1
2
< 1− α.

By Step 1, limc→∞NJ (cσθ; Λθ) > 1 − α. Therefore, NJ (cσθ; Λθ) = 1 − α has a
solution c > 0, and c = cθ necessarily.
Step 9: IfNJ (cθσθ; Λθ) = 1−α for some θ ∈ Θ, then limn→∞ infθ∈Θ ν

∞
θ ({s∞ : θ ∈ Cn}) =

1− α: Note that

lim sup
n→∞

inf
θ∈Θ

ν∞θ ({s∞ : θ ∈ Cn}) ≤ lim sup
n→∞

ν∞
θ

({
s∞ : θ ∈ Cn

})
= 1− α

≤ lim inf
n→∞

inf
θ∈Θ

ν∞θ ({s∞ : θ ∈ Cn})

where the equality follows from Step 7 and the last inequality follows from (3.11).
�
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C. Appendix: Details for the binary example

Proof of (4.4): For any λ in [−1, 0], define Λ (λ) =

[
1 λ
λ 1

]
, and c (λ) by

N 2 ((c (λ) , c (λ)); Λ (λ)) = 0.95.

Then λ 7−→ c (λ) is (strictly) decreasing on [−1, 0] because N 2 (·; Λ (λ))
λ

↗.30 It

follows that c (λ)
λ

↘. In addition, λ 7−→ c (λ) is continuous on [−1, 0].31

Fix α = .05. For θs such that one or more of the variances varθ (A1) and
varθ (A2) vanish, then, as in the Jovanovic example, the dimensionality is reduced
below 2 and closed-form expressions can be derived.
For θs satisfying 0 < θ1 < θ2 < 1—one has σθ >> 0 and

N 2 (cσθ; Λθ) = N 2 ((c, c); Λ (λθ)) ,

where

λ′θ = −
[

θ1

1− θ1

· 1− θ2

θ2

]1/2

. (C.1)

Thus cθ = c (λ′θ), and from the preliminary arguments above, c(θ1,θ2) is increasing
in θ1 and decreasing in θ2, and c(θ1,θ2) varies continuously with θ in this "interior"
region. In addition, because −1 < λ′θ < 0, infer that

c (0) < cθ < c(−1), (C.2)

and
c (0) = lim

θ1↘0
c(θ1,θ2), lim

θ1↗θ2
c(θ1,θ2) = c (−1) .

Finally, note that: (1) c(−1) is defined byN 2 ((c(−1), c(−1)); Λ (−1)) = 1−α.
Because Λ (−1) is singular, any underlying r.v. Z = (Z1, Z2) satisfies Z1 = −Z2

a.s. Accordingly, c(−1) is such that a standard 1-dimensional normal variable
Z1 satisfies −c(−1) ≤ Z1 ≤ c(−1) with probability 1 − α; in other words, given
α = .05, c (−1) = 1.96. (2) c(0) is defined by N 2 ((c(0), c(0)) ; Λ (0)) = .95 or
N 1 (c(0); 1) = [.95]1/2 ' .9747, which gives c(0) = 1.955. �
30The simple intuition is that the probability of both component r.v.s falling below (in a vector

sense) any given β ∈ R2 is large when the components move together, or are less negatively
correlated. See Muller and Scarsini (2000, Theorem 4.2) for a formal result.
31A question may arise for λ = −1 because Λ (−1) is singular. Thus here are some details. By

the noted monotonicity, limλ↘−1 c (λ) ≤ c (−1); and the opposite inequality follows from Step
4 in the proof of Theorem 3.2.
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D. Appendix: Proofs for covariates

We outline the proof of Theorem 6.1, which adapts the arguments for the no-
covariate case. We use two lemmas that highlight the added steps needed to
accommodate covariates. The assumption that each x appears infinitely often is
maintained.
Write S∞ = S1 × S2 × ..., where Si = S for all i. For any I ⊂ {1, 2, ...},

denote by ΣI the σ-algebra generated by (Borel measurable) cylinders of the form
Πi∈IAi × Πi 6∈ISi, where Ai ⊂ Si = S. Say that B1, B2 ⊂ S∞ are orthogonal if
they depend on different experiments in the sense that B1 ∈ ΣI1 and B2 ∈ ΣI2 for
some disjoint I1 and I2.

Lemma D.1. ν∞θ

(
K⋂
k=1

Bk | x∞
)

=
K∏
k=1

ν∞θ (Bk | x∞) if B1, ..., BK are pairwise

orthogonal.

Proof. Let Bk ∈ ΣIk , k = 1, ..., K, where I1, ..., IK are pairwise disjoint. Observe
that

ν∞θ

(
K⋂
k=1

Bk | x∞
)

= m∞θ

({
u∞ ∈ U∞ :

∞∏
i=1

G (ui | θ, xi) ⊂
K⋂
k=1

Bk

})

= m∞θ

(
K⋂
k=1

{
u∞ ∈ U∞ :

∏
i∈Ik

G (ui | θ, xi) ⊂ Bk

})

=
K∏
k=1

m∞θ

({
u∞ ∈ U∞ :

∏
i∈Ik

G (ui | θ, xi) ⊂ Bk

})

=
K∏
k=1

ν∞θ (Bk | x∞) . �

Lemma D.2. Let Λθn,xk → Λk ∈ RJ ·J for each k = 1, ..., |X|, and let Λ be
the |X| J-by-|X| J block diagonal matrix where Λ1, ...,Λ|X| are the blocks. Also
assume cn → c ∈ R|X|J . Then

ν∞θn

(
∩|X|k=1 ∩Jj=1

{
s∞ :

√
n [νθn (Aj | xk)−Ψn (s∞, x∞) (Aj | xk)] ≤ cnkj

})
→N |X|J (c; Λ) .

37



Proof. The events ∩Jj=1 {s∞ :
√
n [νθn (Aj | xk)−Ψn (s∞, x∞) (Aj | xk)] ≤ cnkj},

k = 1, ..., |X|, are pairwise orthogonal. Therefore, by the preceding lemma,

ν∞θn

(
∩|X|k=1 ∩Jj=1

{
s∞ :

√
n [νθn (Aj | xk)−Ψn (s∞, x∞) (Aj | xk)] ≤ cnkj

})
=

|X|∏
k=1

ν∞θn
(
∩Jj=1

{
s∞ :

√
n [νθn (Aj | xk)−Ψn (s∞, x∞) (Aj | xk)] ≤ cnkj

})
→

|X|∏
k=1

NJ (ck; Λk) = N |X|J (c; Λ) .

Here, cnkj ∈ R, cn = (cnkj)k,j ∈ R|X|J , ck ∈ RJ and c = (ck)k ∈ R|X|J . �

The rest of the proof of Theorem 6.1 is similar to that for the no-covariate
case.

Proof of Corollary 6.2: Let X∞inf be the set of all x
∞ ∈ X∞ for which each

value in X appears infinitely often. Then,

ν∞θ (·) =

∫
X∞inf

ν∞θ (· | x∞) dq∞ (x∞) , and

lim inf
n→∞

inf
θ∈Θ

ν∞θ (θ ∈ Cn) ≥
∫
X∞inf

lim inf
n→∞

inf
θ∈Θ

ν∞θ (θ ∈ Cn | x∞) dq∞ (x∞) ≥ 1− α.

To show the equality assertion, let θ ∈ Θ satisfy Λθ 6= 0. Then,

lim sup
n→∞

inf
θ∈Θ

ν∞θ (θ ∈ Cn) ≤ lim sup
n→∞

ν∞
θ

(
θ ∈ Cn

)
= lim sup

n→∞

∫
X∞inf

ν∞
θ

(
θ ∈ Cn | x∞

)
dq∞ (x∞)

≤
∫
X∞inf

lim sup
n→∞

ν∞
θ

(
θ ∈ Cn | x∞

)
dq∞ (x∞) = 1− α

≤ lim inf
n→∞

inf
θ∈Θ

ν∞θ (θ ∈ Cn) . �
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E. Appendix: Latent variables robustified

Currently, we define models via primitives (S, U,G,Θ,m), including, in particu-
lar, the probability measures mθ on U for every θ . Model incompleteness arises
only because of the multiplicity of equilibria and ignorance of selection. Here we
follow up on the remarks at the end of Section 2 and consider another source of
incompleteness—limited understanding of the latent variables, which seems intu-
itive for variables that are not observed by the analyst. Formally, we suggest that
this situation can be modeled as above except that every mθ is a belief function
rather than a measure. Also in this case we obtain belief functions νθ on S that
satisfy a CLT which in turn can be used to construct robust confidence regions.
Note that in the present context, robustness with regard to (limited) ignorance
about latent variables is desirable even if selection is well-understood, for example,
if equilibria are unique.
Let S, U , G and Θ be as before. Instead of adopting m as another primitive,

we derive it from more basic primitives. Thus let the tuple
(
Û ,Γ, m̂

)
describe

the (limited) understanding of latent variables, where Û is Polish, m̂ = (m̂θ)θ∈Θ,
each m̂θ is a Borel probability measure on Û , and Γ (· | θ) : Û  U is weakly
measurable. (The assumption that the same parameters θ enter here is without
loss of generality since one could expand the parameter space Θ as needed.) Thus
probabilistic knowledge is assumed on Û which, via the correspondence Γ, provides
only coarse information about the latent variables u ∈ U . Paralleling (2.4), the
elements Û , Γ and m̂ induce (for each θ) a belief function on U , denoted by mθ

and given by
mθ (Y ) =m̂θ ({û : Γ (û | θ) ⊂ Y }) , Y ⊂ U . (E.1)

Consider now the model (S, U,G,Θ,m) where m = (mθ)θ∈Θ and each mθ is a
belief function on U . Define νθ on (subsets of) S exactly as in (2.4), that is,

νθ (A) = mθ ({u : G (u | θ) ⊂ A}) , A ⊂ S.

Then νθ is a belief function: To see this, take Y = {u : G (u | θ) ⊂ A} in (E.1) to
derive

νθ (A) = m̂θ ({û : Γ (û | θ) ⊂ {u : G (u | θ) ⊂ A}})
= m̂θ

({
û : ∪u∈Γ(û|θ)G (u | θ) ⊂ A

})
= m̂θ

({
û : Ĝ (û | θ) ⊂ A

})
,
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where Ĝ (· | θ) : Û  S is the "composition" of G and Γ defined by

Ĝ (û | θ) = ∪u∈Γ(û|θ)G (u | θ) . (E.2)

Thus
(
Û , Ĝ, m̂

)
generates νθ exactly as in (2.4), which proves that νθ is a belief

function.
Because it depends only on having a belief function νθ on S for each parameter

θ, the inference method described in Section 3 applies without modification. Only
the interpretation must be modified slightly to reflect the fact that there are now
two sources of model incompleteness or areas of ignorance: in addition to ignorance
of how outcomes are selected from G (u | θ), there is also the coarse information
about u due to Γ (· | θ) being set-valued. The (extended) inference method is
robust to heterogeneity and dependence across experiments in both selection and
in the unknown fine details regarding latent variables in U .
In a sense there is nothing new above since one could take

(
S, Û , Ĝ,Θ, m̂

)
as

the model. However, in applications the identity of Û , Γ and m̂ underlying the
modeling of latent variables in U may not be clear. In those cases, the analyst
might begin with the reduced form model (S, U,G,Θ,m) where eachmθ is a belief
function. One can view the preceding as providing a rationale for doing so when
the underlying primitives are not clear. Specification of mθ may involve some
arbitrariness but this is the case also when probability distributions are adopted
for latent variables.

F. Appendix: Implementation

Construction of our confidence region requires computing the belief function νθ
and the critical value cθ. For simple examples, one may compute νθ analytically.
In general, it can be computed using a simulation procedure. Once νθ is obtained,
the critical value cθ can be computed using another simulation procedure, as
demonstrated by the Monte Carlo experiments in Section 5. Below, we illustrate
the simulation procedures using the entry game example studied by Bresnahan
and Reiss (1990), Berry (1992), and Ciliberto and Tamer (2009); the latter is CT
henceforth.
Suppose there areK firms that are potential entrants into markets i = 1, 2, · · · .

For each i, we let si = (si1, · · · , siK) ∈ {0, 1}K denote the vector of entry decisions
made by the firms. For firm k in market i, CT consider the following profit function
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specification:

πk(si, xi, ui; θ) =

(
v′iαk + z′ikβk + w′ikγk +

∑
j 6=k

δkj sij +
∑
j 6=k

z′kij jsij + uik

)
sik,

where vi is a vector of market characteristics, zi = (zi1, · · · , ziK) is a matrix
of firm characteristics that enter the profits of all firms in the market, while
wi = (wi1, · · · , wiK) is a matrix of firm characteristics such that wik enters firm
k’s profit but not other firms’profits. We let xi collect vi, zi, and wi and stack
them as a vector. The unobservable payoff shifters ui = (ui1, · · · , uiK) follow
a multivariate normal distribution N(0,Σ) and vary across markets in an i.i.d.
way.32 The structural parameter θ includes Σ and the parameters associated with
the profit functions: {βk, γk, {δkj , φkj}j 6=k}Kk=1.
In this example, firm k’s profit from not entering the market is 0. Hence, the

set of pure-strategy Nash equilibria is given by

G(ui|θ, xi) = {si ∈ S : πk(si, xi, ui; θ) ≥ 0,∀k = 1, · · · , K}. (F.1)

Suppose that a sample {(si, xi), i = 1, · · · , n} of size n is available. Let A be a
subset of S = {0, 1}K . CT only use singleton events A = {s}, s ∈ S and provide
a simulation procedure to calculate νθ(A|x) and its conjugate (called H1 and H2

in their paper). In general, one can use any event A ⊂ S for inference, and we
describe a simulation procedure for this general setting below.
Recall that the belief function of event A conditional on x was given by

νθ(A|x) = mθ({u ∈ U : G(u|θ, x) ⊂ A}). (F.2)

Hence, a natural way to approximate νθ(A|x) for any A ⊂ S is to simulate u
from the parametric distribution mθ and calculate the frequency of the event
G(u|θ, x) ⊂ A. We summarize the procedure below.

Simulation procedure 1

Step 1 Fix the number of drawsR. GivenΣ, draw random vectors ur = (ur1, · · · , urK),
r = 1, · · · , R, from N(0,Σ).

32In the context of entry games played by airlines, CT model uik as a sum of independent
normal random variables: firm-specific unobserved heterogeneity, market-specific unobserved
heterogeneity, and airport-specific unobserved heterogeneity. This can also be handled by relax-
ing the i.i.d. assumption on m∞θ .
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Step 2 For each (s, x, ur) ∈ S ×X × U , calculate

I(s, x, ur; θ) =

{
1 πk(s, x, u

r; θ) ≥ 0, ∀k,
0 otherwise.

That is, I(s, x, ur) = 1 if s is a pure strategy Nash equilibrium under (x, ur)
and θ.

Step 3 Compute the frequency of event G(ur|θ, x) ⊆ A across simulation draws by
computing that of Ac ⊆ Gc(ur|θ, x):

νRθ (A|x) =
1

R

R∑
r=1

∏
s∈Ac

(1− I(s, x, ur; θ)). (F.3)

After implementing the simulation procedure above, one can evaluate the test
statistic Tn (θ) in (6.3). The remaining task is to compute the critical value cθ,
which can be done by feeding Λθ into a commonly-used simulator for multivariate
normal random vectors.

Simulation procedure 2

Step 1 Compute the covariance matrix Λθ, which is a |X| J-by-|X| J block-diagonal
matrix where Λθ,x1 , ...,Λθ,x|X| are the blocks.:

The (j, j′)-th entry of each block Λθ,x is the covariance matrix, conditional
on x: (Λθ,x)jj′ = covθ (Aj, Aj′ | x), where covθ (Aj, Aj′ | x) is calculated as in
(6.1) while using the approximated belief function νRθ obtained in simulation
procedure 1.

Step 2 Decompose Λθ as LDL′ for a lower triangular matrix L and a diagonal
matrix D.

Step 3 Generate wr i.i.d.∼ N(0, I|X|J) for r = 1, · · · , R. Generate zr = LD1/2wr,
r = 1, · · · , R.

Step 4 Calculate cθ as the 1− α quantile of maxk=1,··· ,|X|J zk/σθ,k:

cθ = min

(
c ≥ 0 :

1

R

R∑
r=1

I( max
k=1,··· ,|X|J

zrk/σθ,k ≤ c) ≥ 1− α
)
.
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Steps 2-3 in simulation procedure 2 are based on the Geweke-Hajivassiliou-
Keane (GHK) simulator. The GHK simulator is widely used in econometrics (see,
for example, Hajivassiliou, McFadden, and Ruud (1996) for details). The only
difference from the standard GHK-simulator is Step 2, in which we recommend to
use the LDL decomposition instead of Cholesky decomposition. This is because
Λθ may only be positive semidefinite.
Simulation procedure 2 yields a critical value cθ. Hence, one can determine

whether or not a value of the structural parameter should be included in the
confidence region by checking if Tn(θ) ≤ cθ holds. For constructing a confidence
region, one needs to repeat the procedures above for different values of θ ∈ Θ. To
save computational costs, one can draw {(ur1, · · · , urK)}Rr=1 and {wr}Rr=1 only once
and use them repeatedly across all values of θ.
A final remark is that the procedures described above extend to other settings.

In other models, the researcher may use a different solution concept (e.g. pairwise
stability of networks) that defines the correspondence G(·|θ, x), or a different
parametric specification for the latent variables in the payofffunction (e.g. random
coeffi cients following a mixed logit specification). In such cases, one need modify
only Steps 1 and 2 in simulation procedure 1.
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