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Abstract

We study a generalization of the treatment effect model in which an observed discrete clas-

sifier indicates in which one of a set of counterfactual processes a decision maker is observed.

The other observed outcomes are delivered by the particular counterfactual process in which the

decision maker is found. Models of the counterfactual processes can be incomplete in the sense

that even with knowledge of the values of observed exogenous and unobserved variables they

may not deliver a unique value of the endogenous outcomes. We study the identifying power of

models of this sort that incorporate (i) conditional independence restrictions under which un-

observed variables and the classifier variable are stochastically independent conditional on some

of the observed exogenous variables and (ii) marginal independence restrictions under which

unobservable variables and a subset of the exogenous variables are independently distributed.

Building on results in Chesher and Rosen (2014a), we characterize the identifying power of these

models for fundamental structural relationships and probability distributions and for interesting

functionals of these objects, some of which may be point identified. In one example of an ap-

plication, we observe the entry decisions of firms that can choose which of a number of markets

to enter and we observe various endogenous outcomes delivered in the markets they choose to

enter.

1 Introduction

In a treatment effect model a discrete classifier indicates which one of a list of counterfactual

outcomes is observed. The counterfactual outcomes and the discrete classifier may not be inde-

pendently distributed because decision makers with beliefs about the counterfactual outcomes may

∗We gratefully acknowledge financial support from the UK Economic and Social Research Council through a grant
(RES-589-28-0001) to the ESRC Centre for Microdata Methods and Practice (CeMMAP) and through the funding
of the “Programme Evaluation for Policy Analysis” node of the UK National Centre for Research Methods, and from
the European Research Council (ERC) grant ERC-2009-StG-240910-ROMETA. Earlier versions of this paper were
presented at the Winter Meeting of the Econometric Society, Philadelphia, January 4th 2014, the CeMMAP/HKUST
Conference on Advances in Microeconometrics, Hong Kong University of Science and Technology, May 23rd 2014,
the 4th Shanghai Econometrics Workshop, Shanghai University of Finance and Economics, June 29th 2014 and the
European Meeting of the Econometric Society, Toulouse, August 27th 2014.
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strive to end up in desirable situations. Often little is known about either how the classifier variable

is chosen - equivalently how treatment is assigned - or about the relationship between observed and

counterfactual outcomes. Functionals of the distribution of treatment effects may then not be point

identified, but are typically partially identified. See Manski (1990) as well as Manski (2007) and

references therein for several examples.

Many treatment effect models impose a conditional independence restriction, namely that coun-

terfactual outcomes and the classifier are independently distributed conditional on some known list

of observed variables.1 Under some additional restrictions these models point identify the marginal

distributions of the counterfactual outcomes and thus Average Treatment Effects and Quantile

Treatment Effects, as in for instance Imbens and Newey (2009).2

In this paper we extend the scope of the treatment effect model. The counterfactual outcomes

of the classical model are replaced by counterfactual unobservable variables. These unobservables

produce stochastic variation in counterfactual processes which deliver the values of outcomes that

the econometrician observes.

The econometrician observes each decision maker engaging in one and only one of the counter-

factual processes and observes only the realizations of the endogenous outcomes delivered by that

process. Some exogenous variables are also observed. Wary of basing inference on highly restric-

tive models, the econometrician may come to data with incomplete models of the counterfactual

processes. It is this case that is center stage in this paper.

We consider the following types of covariation restriction placed on unobservable variables.

1. Conditional independence restrictions. The unobservable variables appearing in the counter-

factual processes and the classifier are independently distributed conditional on the observed

exogenous variables. This is the sort of condition that appears in the treatment effect model.

2. Marginal independence restrictions. The unobservable variables appearing in the counterfac-

tual processes and a possibly vector-valued function of the exogenous variables are stochasti-

cally independent. In the absence of selection this would be a common restriction in nonlinear

incomplete models.

The models we study contain a blend of conditional and marginal independence restrictions.

Our analysis brings together strands from structural econometrics and analysis of causal inference.

A contribution of the paper is to provide a characterization of the (sharp) identified sets delivered by

models which may be incomplete and embody conditional and marginal independence restrictions.

Here are examples of cases in which the results of this paper can be applied

1For example the models studied in Rubin (1974) and Rosenbaum and Rubin (1983).
2Imbens and Newey (2009) also give sharp bounds on the ATE and QTE in the classical model when support

conditions required for point identification do not hold.
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1. Some unemployed workers participate in a training programme, others do not. Assignment

to the programme may not be random. Subsequently the workers engage in one of two

counterfactual labor market processes, corresponding to whether or not training was received,

and endogenous outcomes such as unemployment duration and wage on re-employment, job

tenure and so forth are observed.

2. In a generalization of the Roy model, individuals decide in which of a number of occupa-

tions to work whereupon we observe multiple endogenous outcomes that arise in the chosen

occupation.3

3. Firms decide whether or not to operate in markets distinguished by regulatory regimes and

various endogenous outcomes that ensue are observed.

The research reported here is a first step on the way to the study of a broad class of incomplete

models that involve a blend of conditional and marginal independence restrictions. The models

studied in this paper impose few restrictions on the determination of the state in which individuals

are found. There is just a conditional independence restriction requiring unobservable variables

and the classifier variable to be independently distributed conditional on some observed exogenous

variables. The way in which the classifier variable is determined is not specified in the models

studied in this paper.

In work in progress we extend our analysis to cover models with the following features.

1. Economic restrictions on the determination of the process in which an individual is engaged,

for example a model of choice.

2. A continuum of processes rather than the discrete classification considered here.

3. Conditional independence restrictions involving endogenous and exogenous variables as in

control function models.

2 Structures, Models and Data

This section introduces notation and constructs employed in the rest of the paper.

Notation. We write RA to denote the support of random vector A, and RAB to denote the

joint support of random vectors A and B. For any random vectors A,B, RA|b denotes the support

of A conditional on B = b. For random variables A and B, A ‖ B indicates that A and B are

independently distributed. ∅ denotes the empty set. Script font (S) is reserved for sets, and sans

3The Roy Model presumes that each individual chooses the alternative (here the occupation) that delivers the
highest value of one of the observed outcomes variables. Our model allows alternative criteria for selection among
the alternatives.
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serif font (S) is reserved for collections of sets. The sign ⊆ is used to indicate nonstrict inclusion so

“A ⊆ B” includes A = B, while “A ⊂ B” means A ⊆ B but A 6= B. R denotes the real line. 1 [E ]

denotes the indicator function, taking the value 1 if the event E occurs and 0 otherwise.

Throughout Y denotes a list of endogenous variables, Z denotes a list of observed exogenous

variables and U denotes a list of unobserved exogenous variables. Each of these variables may

be vector-valued and the observable variables may be discrete or continuous. The variables have

support RY ZU on a subset of Euclidean space. Lower case y, z and u denote values of these

variables.

With M counterfactual processes there are M components in U , thus: U = (U1, . . . , UM ) with

only Um delivering stochastic variation in the mth counterfactual process.

Some econometric selection models impose the restriction U1 = · · · = UM . Examples are given

in Heckman and Robb (1985). A number of papers study econometric selection models without

this restriction. Such models are described in Heckman, Urzua, and Vytlacil (2008) as models

with “essential heterogeneity”. Examples can be found in Heckman and Vytlacil (2007) and the

references therein. In these econometric selection models it is common to find a discrete choice

specification of the determination of the classifier variable and instrumental variable restrictions,

see for example Heckman and Vytlacil (2005).

In this paper we study models which have no detailed specification of the determination of the

classifier variable. In this respect, like treatment effect models, they are incomplete, and as in

those models there is a conditional independence condition. Our models also allow incompleteness

in the specification of the processes that deliver counterfactual outcomes, and this specification

may include instrumental variable restrictions.

2.1 Structural functions

A model specifies a structural function h(y, z, u) : RY ZU → R such that

h(Y, Z, U) = 0, almost surely. (2.1)

This representation of structural functions, used in Chesher and Rosen (2014a), will be convenient

when models of counterfactual processes are incomplete.

Here the structural function h specifies a composite process composed of a collection of M

counterfactual processes. There is a particular discrete component of Y denoted Y∗ taking values

in {1, . . . ,M}. This classifier variable is the “treatment”, “selection”, or “process” indicator. It in-

dicates which of the M counterfactual processes obtains.4 In many applications it will be correlated

with U .

4In examples 1-3 below, the classifier variable is the last component of Y .
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There are additionally M structural functions, hm(y, z, u) : RY ZU → R, one for each counter-

factual process. The relation between the structural function of the composite process and those

of the counterfactual processes is given by

h(y, z, u) =
M∑

m=1

1[y∗ = m]× hm (y, z, u) . (2.2)

Each function hm is invariant with respect to changes in u−m, which denotes u with the element

um omitted, and invariant with respect to changes in y∗. If Y∗ were exogenously assigned the value

m then (2.1) would become

hm (Y, Z, U) = 0, almost surely

In view of (2.2) this is equivalent to

h(Ỹ , Z, U) = 0, almost surely,

where Ỹ is the random variable Y with its classifier component replaced by m. Due to the role of

the classifier in (2.2), a realization of (Y,Z) delivered by the mth counterfactual process is observed

if and only if Y∗ has the realized value m. In the language of Heckman and Pinto (2015), setting

Y∗ = m exogenously is equivalent to “fixing” a variable in a structural model for the purpose of

counterfactual analysis as considered by Haavelmo (1943, 1944). In the nomenclature of Pearl

(2009), each of the counterfactual processes given by hm(y, z, u) = 0, m ∈ {1, . . . ,M}, corresponds

to a particular submodel of (2.1).

Associated with the structural function are the zero-level sets

Y(u, z;h) ≡ {y : h(y, z, u) = 0},

U(y, z;h) ≡ {u : h(y, z, u) = 0},

which are those values of y and u that satisfy the structural relation h(y, z, u) = 0 for given values

of (z, u) and (y, z), respectively.

Likewise, associated with each of the M structural functions are the zero-level sets

Ym(u, z;h) ≡ {y : hm(y, z, u) = 0}

Um(y, z;h) ≡ {u : hm(y, z, u) = 0}

 , m ∈ {1, . . . ,M}.

The level set Ym(u, z;h) contains the values of y that may arise in the mth counterfactual process

when Z = z and U = u. In other words, the set Ym(u, z;h) is the set of feasible counterfactual

outcomes obtained by exogenously shifting the classifier variable y∗ to m while holding (z, u) fixed.
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We allow counterfactual processes to be incomplete, and these sets need not be singleton. Every

element y ∈ Ym(u, z;h) has y∗ = m and the set Ym(u, z;h) is invariant with respect to changes in

u−m.

The level set Um(y, z;h) gives the values of u that can give rise to the value y of Y in the mth

counterfactual process when Z = z. This set comprises all vectors u ∈ RU with mth component

um such that hm(y, z, u) = 0, each such value coupled with every possible value of u−m.

With no restrictions placed on the determination of the classifier Y∗, the zero-level set Y(u, z;h)

for the composite structural function may be written

Y(u, z;h) ≡ {y : h(y, z, u) = 0} =

M⋃
m=1

Ym(u, z;h),

since any one of the level sets Ym(u, z;h) may be realized. Given a value (y, z) just one of the

sets Um(y, z;h) is realized, which one being determined by the value y∗ of the treatment indicator

variable (an element of y), so there is the representation

U(y, z;h) ≡ {u : h(y, z, u) = 0} = Uy∗(y, z;h).

In this paper we do not consider restrictions placed on the selection of the M counterfactual

processes, but suitable restrictions could be added. Models that place restrictions on selection

among the counterfactual processes incorporate further information from the particular value of y∗

observed. For example, in the Roy Model, the observed value of y∗ corresponds to that value of m

that achieves the maximum payoff or utility among the M available alternatives.

Example 1. Treatment effects. The binary treatment effect model studied in Rosenbaum and

Rubin (1983) has counterfactual outcomes U1 and U2 and a binary indicator Y2 equal to 1 if U1 is

observed and equal to 2 if U2 is observed so that

Y1 = 1[Y2 = 1]× U1 + 1[Y2 = 2]× U2

is the observed outcome. This treatment effect model has classifier variable Y∗ = Y2 and

hm(y, z, u) = y1 − um, m ∈ {1, 2}

with singleton y-level sets:

Y1(u, z;h) = {(u1, 1)},

Y2(u, z;h) = {(u2, 2)},
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and non-singleton u-level sets:

U1(y, z;h) = {(y1, u2) : u2 ∈ RU2} ,

U2(y, z;h) = {(u1, y1) : u1 ∈ RU1} .

Exogenous variables are excluded from the counterfactual structural functions which involve neither

unknown parameters nor unknown functions. There is the following composite structural function:

h(y, z, u) = 1[y2 = 1]× (y1 − u1) + 1[y2 = 2]× (y1 − u2).

�

Example 2. Supermarket choice and demand. A household is observed to shop in one of

M supermarkets. In a household’s supermarket of choice the endogenous variables: share of total

expenditure on food, Y1, and log total expenditure, Y2, are observed. For each supermarket, indexed

by Y3 ∈ {1, . . . ,M}, there is an incomplete linear model with structural functions as follows.

hm(y, z, u) = y1 − αm − βmy2 − γmz1 − um, m ∈ {1, . . . ,M}

Define U ≡ (U1, . . . , UM ) and Y ≡ (Y1, Y2, Y3). There may be exogenous variables Z2 and a

restriction U ‖ (Z1, Z2) and a conditional independence restriction U ‖ Y3|Z where Z ≡ (Z1, Z2, Z3).

There are level sets as follows for each m ∈ {1, . . . ,M}:

Ym(u, z;h) = {(αm + βmy2 + γmz1 + um, y2,m) : y2 ∈ RY2} ,

Um(y, z;h) = {u ∈ RU : um = y1 − αm − βmy2 − γmz1} .

The classifier variable Y∗ = Y3 and there is the following composite structural function:

h(y, z, u) =
∑

m∈{1,...,M}

1[y3 = m]× (y1 − αm − βmy2 − γmz1 − um) .

�

Example 3. Training and labor market processes. An unemployed worker either does

(Y3 = 1), or does not (Y3 = 2), take part in a training program. A binary outcome Y1 is observed,

equal to one if employment is found within one year and zero otherwise. For each state there are

incomplete threshold crossing-type models for this binary outcome with structural functions.

hm(y, z, u) = y1 ×max(gm(y2, z1)− um, 0) + (1− y1)×max(um − gm(y2, z1), 0), m ∈ {1, 2}
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Here Y2 is a possibly endogenous, binary variable, for example an indicator of receipt of unemploy-

ment benefit, and z1 is a component of a vector z whose elements are values of observed exogenous

variables.5 There are y-level sets:

Ym(u, z;h) = {y ∈ RY : (2y1 − 1)(um − gm(y2, z1)) ≥ 0 ∧ y3 = m} .

There are u-level sets:

Um(y, z;h) =

{ {
(u ∈ R2 : um ∈ (−∞, gm(y2, z1)]

}
, y1 = 0{

(u ∈ R2 : um ∈ [gm(y2, z1),∞)
}

, y1 = 1

}
, m ∈ {1, 2}.

The classifier variable is Y∗ = Y3 and the structural function for the composite process is

h(y, z, u) = 1[y3 = 1]× (y1 ×max(g1(y2, z1)− u1, 0) + (1− y1)×max(u1 − g1(y2, z1), 0))

+ 1[y3 = 2]× (y1 ×max(g2(y2, z1)− u2, 0) + (1− y1)×max(u2 − g2(y2, z1), 0)) .

�

2.2 Distributions of unobservables

Conditional on Z = z the unobserved random variables U ≡ (U1, . . . , UM ) have joint probability

distribution GU |Z (·|z) and marginal distributions GUm|Z (·|z), m ∈ {1, . . . ,M}. There are collec-

tions of conditional probability distributions as follows:

GU |Z ≡ {GU |Z (·|z) : z ∈ RZ},

and

GUm|Z ≡ {GUm|Z (·|z) : z ∈ RZ}, m ∈ {1, . . . ,M}.

Here RZ denotes the support of the observed exogenous variables and for any set S ⊆ RU |z,

GU |Z(S|z) denotes the probability mass placed on the set S by the conditional probability distri-

bution GU |Z(·|z).
Each counterfactual process is associated with a counterfactual structure

(
hm,GUm|Z

)
and a

complete process is associated with a composite structure (h,GU |Z).

Models comprise restrictions which limit the set of admissible structures. In the models studied

here there are restrictions on structural functions and two types of restrictions on the probability

distribution of unobservable variables. Recall Y∗ is the element of Y which has the role of selection

or classifier variable. This is Y2 in Example 1 and Y3 in Examples 2 and 3.

5State-specific threshold crossing models such as this can arise using mixed proportionate hazard models of un-
employment duration (see Example 1 in Chesher (2009)) with state-specific heterogeneity and baseline hazards.
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1. Conditional independence restrictions. U ‖ Y∗|Z.

2. Marginal independence restrictions. There is a function e(·) such that U ‖ e(Z).

The function e(Z) is brought into play because one it will be common to require conditional

independence to hold conditional on one set of exogenous variables and marginal independence

to involve a different set of exogenous variables. One reason why this may be desirable is that

restricting U ‖ Y∗|Z and U ‖ Z (that is setting e(Z) = Z) implies Y∗ ‖ U which, in many cases,

will not capture essential features of a problem. Specifying e(Z) = Z1, a selection of the elements

of Z, may be a common choice.6

In Example 1 it is common to impose U ‖ Y2|Z. In Example 2 one might have reason to

impose the conditional independence restriction U ‖ Y3|Z and the marginal independence restriction

U ‖ (Z1, Z2) where Z = (Z1, Z2, Z3).

2.3 Data

We consider cases in which realizations of (Y,Z) are obtained via an observation process such that

the joint distribution of these variables, FY Z , is identified. Of particular importance will be the con-

ditional distributions of Y given Z and Y given (Y∗, Z). For any set T ⊂ RY |z, FY |Z (T |z) denotes

the probability mass placed on the set T by the conditional probability distribution FY |Z (·|z) and

FY |Y∗Z (T |y∗, z) denotes the probability mass placed on the set T by the conditional probability

distribution FY |Y∗Z (·|y∗, z). The cumulative distribution function of Y given Z = z evaluated at a

point t is

P[Y ≤ t|Z = z] = FY |Z({y : y ≤ t} |z).

Likewise

P[Y ≤ t|Y∗ = y∗ ∧ Z = z] = FY |Y∗Z({y : y ≤ t} |y∗, z).

3 Identification

We ask: what characterizes the set of structures (h,GU |Z) admitted by a model,M, that can deliver

the joint distribution of FY Z? This set, denoted M∗(FY Z), is the identified set delivered by the

model when presented with FY Z . We obtain characterizations of identified sets under conditional

and marginal independence restrictions building on the results in Chesher and Rosen (2014a),

henceforth CR2014.7 Our analysis employs random set theory, also used for partial identification

6There is the possibility that conditional independence could be conditional on some function of Z, d(Z), but that
is not considered here.

7We use the term identified set to refer to the collection of all structures
(
h,GU|Z

)
∈ M that can generate the

joint distribution FY Z . This set is sharp in that there is no structure
(
h,GU|Z

)
belonging to the identified set that

can be distinguished from one generating FY Z on the basis of modeling restrictions and observed data.
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analysis in Beresteanu, Molchanov, and Molinari (2011, 2012), Chesher, Rosen, and Smolinski

(2013), and Chesher and Rosen (2012a, 2012b, 2013b). This is the first paper explicitly applying

these tools in models with conditional independence restrictions. Moreover, we are unaware of

previous papers featuring the combination of conditional and marginal independence restrictions

with regard to the joint distribution of unobserved heterogeneity and observed variables in the class

of models considered.

3.1 Restrictions

We impose Restrictions A1 - A3 throughout. These are as in CR2014 where they are presented

and discussed in Section 3 of that paper.8 Restriction A4 below extends Restriction A4 of CR2014

to the particular cases considered in this paper.

Restriction A1: (Y, Z, U) are random vectors defined on a probability space (Ω,F ,P), endowed

with the Borel sets on Ω. The support of (Y, Z, U) is a subset of Euclidean space. �

Restriction A2: The joint distribution of (Y, Z), FY Z , is identified by the sampling process. �

Restriction A3: There is an F-measurable function h (·, ·, ·) : RY ZU → R such that

P [h (Y, Z, U) = 0] = 1

and there is a collection of conditional distributions

GU |Z ≡
{
GU |Z (·|z) : z ∈ RZ

}
where for all S ⊆ RU |z, GU |Z (S|z) ≡ P [U ∈ S|z]. �

Restriction A4: The pair
(
h,GU |Z

)
belongs to a known set of admissible structures M. The

model M contains restrictions as follows. One element of Y , denoted Y∗, only takes values in

{1, . . . ,M} and U has M components, U = (U1, . . . , UM ), each of which may be vectors. The

structural function has the form

h(y, z, u) =
M∑

m=1

1[y∗ = m]× hm(y, z, u),

8Restriction A2 in CR2014 requires that a collection of conditional distributions

FY |Z ≡
{
FY |Z (·|z) : z ∈ RZ

}
is identified by the sampling process. The identification of conditional distributions FY |Z (·|z) for all z ∈ RZ and
identifcation of FZ(·) is equivalent to identification of the joint distribution of Y and Z.

In this paper conditional independence restrictions will require conditioning on components of Y together with
Z in places, rather than conditioning on Z alone. This makes the statement of Restriction A2 involving the joint
distribution FY |Z more natural in the present context.
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such that the zero-level sets Y(U,Z, h) and U(Y,Z, h) are closed almost surely. �

With regard to Restriction A3, the collection of admissible distributions specified may include

restrictions on conditional distributions GU |Y∗Z (·|y∗, z), each (y∗, z) ∈ RY∗Z , where for all S ⊆
RU |y∗z, GU |Y∗Z (S|y∗, z) ≡ P [U ∈ S|y∗, z]. In this case the components of GU |Z are restricted to be

such that there exists for each z ∈ RZ conditional distributions GU |Y∗Z (·|y∗, z) satisfying

GU |Z (·|z) =

∫
y∗∈RY∗

GU |Y∗Z (·|y∗, z) dFY∗|Z (y∗|z) .

Notation

GU |Y∗Z ≡
{
GU |Y∗Z (·|y∗, z) : (y∗, z) ∈ RY∗Z

}
is used to denote a collection of such conditional distributions where required.

Restriction A4 places restrictions on structural functions hm (·, ·, ·) through the specification

of admissible pairs
(
h,GU |Z

)
, which may include parametric or shape restrictions. There will in

general also be restrictions on the covariation of observable and unobservable exogenous variables

embodied in admissible GU |Z . The requirement that the sets Y(u, z;h) and U(y, z;h) are closed is

a mild restriction that is easily satisfied and generally not restrictive.

It should be noted that Restriction A4 places no restriction on the determination of y∗ from the

M counterfactual processes. For now we leave this selection process completely unspecified, noting

that restrictions on the selection process may be added.

3.2 Identification: foundation results from CR2014

This Section extends results given in CR2014 in order to provide the basis for the identification

analysis to follow. The distinguishing features of these results stems from the need to work with

conditional independence restrictions of the sort U ‖ Y∗|Z. This requires results to be stated

conditional on realizations of exogenous variables Z as well as the classifier variable Y∗, rather than

conditional on Z alone as in CR2014. All of these results apply to the class of models considered

in this paper when Restrictions A1 - A3 hold.

Our first result, Theorem 1, proven in the Appendix, builds on Theorem 2 of CR2014. This

Theorem gives a characterization of identified sets in terms of a selectionability property of the

distributions of unobservable variables admitted by a model.9 The random set U(Y,Z;h) which

appears in the theorem is defined as

U(Y, Z;h) ≡ {u ∈ RU : h(Y,Z, u) = 0}.
9The probability distribution, FA, of a point valued random variable is selectionable with respect the probability

distribution of a random set, A, if there exists a random variable, A, distributed FA and there exists a random set
A∗ with the same probability distribution as A, such that P[A ∈ A∗] = 1. See Molchanov (2005).
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Theorem 1. Let Restrictions A1-A3 hold. Then the identified set of structuresM∗(FY Z) are those(
h,GU |Z

)
admitted by the model M such that for almost every z ∈ RZ and each y∗ ∈ {1, ...,M}

there exist conditional probabilities GU |Y∗Z (·|y∗, z) defined on measurable subsets of RU such that

1. GU |Z (·|z) =

∫
y∗∈RY∗

GU |Y∗Z (·|y∗, z) dFY∗|Z (y∗|z).

2. GU |Y∗Z (·|y∗, z) is selectionable with respect to the conditional distribution of random set U (Y, Z;h)

given (Y∗ = y∗ ∧ Z = z) induced by the distribution of Y conditional on (Y∗ = y∗ ∧ Z = z) as given

by FY Z .

The following Corollary gives an alternative characterization of the identified set in terms of

moment inequalities. This result follows from using Artstein’s (1983) Inequality which gives nec-

essary and sufficient conditions for selectionability in terms of containment functionals of random

sets. This result is the analog of Corollary 1 in CR2014, which uses Artstein’s Inequality to pro-

duce moment inequalities conditional on realizations of Z rather than on realizations of both Y∗

and Z. The proof is a straightforward consequence of the selectionability statement in Theorem 1

and Corollary 1 of CR2014 and is omitted.

Corollary 1. Under Restrictions A1-A3 the identified set can be written

M∗ (FY Z) ≡



(
h,GU |Z

)
∈M : ∃GU |Y∗Z s.t. ∀S ∈ F (RU ) ,

C (S, h|y∗, z) ≤ GU |Y∗,Z (S|y∗, z) a.e. (y∗, z) ∈ RY∗Z ,

and GU |Z (S|z) =

∫
y∗∈RY∗

GU |Y∗Z (S|y∗, z) dFY∗|Z (y∗|z) a.e. z ∈ RZ


, (3.1)

where F (RU ) denotes the collection of all closed subsets of RU and

C (S, h|y∗, z) ≡ P [U (Y,Z;h) ⊆ S|y∗, z]

is the conditional containment functional of the random set U (Y,Z;h).

The collection of sets F (RU ) is too large to inspect in practice. Theorem 2 below provides a

smaller collection of core-determining sets, a concept introduced in Galichon and Henry (2011).

Again where CR2014 provided results conditional on exogenous variables Z, we provide results

conditional on Z and the discrete classifier Y∗, as required for consideration of core-determining

sets under conditional independence restrictions involving Y∗ and Z. This turns out to be a simple

generalization of Theorem 3 of CR2014, with a formal statement given in Theorem 2. The proof

of this Theorem and its Corollary are identical to those of CR2014 Theorem 3 and its Corollary

upon substituting “y∗, z” for “z” in that paper and are therefore omitted.
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First to state the results it is necessary to define two collections of sets, U (h, y∗, z): the condi-

tional support of the random set U (Y, Z;h) given (Y∗ = y∗ ∧ Z = z) and U∗ (h, y∗, z): the collection

of the unions of these sets.

Definition 1. Under Restrictions A1-A3, the conditional support of random set U (Y, Z;h)

given (Y∗ = y∗ ∧ Z = z) is

U (h, y∗, z) ≡
{
U ⊆ RU : ∃y ∈ RY |y∗z such that U = U (y, z;h)

}
.

The collections of all sets that are unions of elements of U (h, y∗, z) is denoted

U∗ (h, y∗, z) ≡
{
U ⊆ RU : ∃Y ⊆ RY |y∗z such that U = U (Y, z;h)

}
.

In the definition of U∗ (h, y∗, z) we employ the following notation.

∀Y ⊆ RY , U (Y, z;h) ≡
⋃
y∈Y
U (y, z;h)

In the statement of Theorem 2 we use the notation

H(M) ≡
{
h :
(
h,GU |Z

)
∈M for some GU |Z

}
.

We also define for any set S ⊆ RU and any (h, y∗, z) ∈ H(M)×RY∗ ×RZ ,

US (h, y∗, z) ≡ {U ∈ U (h, y∗, z) : U ⊆ S} ,

which are those sets on the support of U (Y, Z;h) given (Y∗ = y∗ ∧ Z = z) that are contained in S.

Theorem 2. Let Restrictions A1-A3 hold. Fix (h, y∗, z) ∈ H(M)×RY∗ ×RZ and a distribution

function GU |Y∗Z (·|y∗, z). Let Q (h, y∗, z) ⊆ U∗ (h, y∗, z), such that for any S ∈ U∗ (h, y∗, z) with

S /∈ Q (h, y∗, z), there exist nonempty collections S1, S2 ∈ US (h, y∗, z) with S1 ∪ S2 = US (h, y∗, z)

such that

S1 ≡
⋃
T ∈S1

T , S2 ≡
⋃
T ∈S2

T , and GU |Y∗Z (S1 ∩ S2|y∗, z) = 0, (3.2)

with S1,S2 ∈ Q (h, y∗, z). Then C (S, h|y∗, z) ≤ GU |Y∗Z (S|y∗, z) for all S ∈ Q (h, y∗, z) implies that

C (S, h|y∗, z) ≤ GU |Y∗Z (S|y∗, z) holds for all S ⊆ RU , and in particular for S ∈ F (RU ), so that

the collection of sets Q (h, y∗, z) is core-determining.

Finally, Corollary 2 gives conditions under which a core determining set delivers a moment

equality rather than a moment inequality.

13



Corollary 2. Define

QE (h, y∗, z) ≡
{
S ∈ Q (h, y∗, z) : ∀y ∈ RY |y∗z either U (y, z;h) ⊆ S or U (y, z;h) ∩ S = ∅

}
.

Then, under the conditions of Theorem 2, the collection of equalities and inequalities

C (S, h|y∗, z) = GU |Y∗Z (S|y∗, z) , all S ∈ QE (h, y∗, z) ,

C (S, h|y∗, z) ≤ GU |Y∗Z (S|y∗, z) , all S ∈ QI (h, y∗, z) ≡ Q (h, y∗, z) \QE (h, y∗, z) .

holds if and only if C (S, h|y∗, z) ≤ GU |Y∗Z (S|y∗, z) for all S ∈ Q (h, y∗, z).

A consequence of Corollary 2 is that all members of a collection Q(h, y∗, z) deliver equalities

when the structural function h is such that either (i) every set on the conditional support of

Y(U,Z;h) is singleton and/or (ii) every set on the conditional support of U(Y,Z;h) is singleton.

3.3 Moment inequalities absent restrictions on selection of Y∗

A further simplification of the core determining sets obtains when, in addition to Restrictions A1-

A3, Restriction A4 is also imposed, absent further restrictions on the determination of Y∗. Without

such restrictions, all sets U of the form U (y, z;h) for some (y, z) ∈ RY Z are such that for all

components m ∈ {1, ...,M} with m 6= y∗, Um = RUm . To state this formally, we define

Um (y, z;h) ≡
{
u∗m ∈ RUm|z : ∃u s.t. um = u∗m ∧ h (y, z, u) = 0

}
as the projection of U (y, z;h) onto its mth component. Then we have the simplification that

∀m 6= y∗, Um (y, z;h) = RUm . (3.3)

The conditional support of the random set Um (Y,Z;h) conditional on (Y∗ = m ∧ Z = z) is

Um (h, z) ≡
{
Um (y, z;h) : y∗ = m ∧ y ∈ RY |y∗z

}
.

The projection of any set S ⊆ RU onto its mth component is

Sm ≡ {u∗m ∈ RUm : ∃u ∈ S s.t. um = u∗m} .

From Theorem 2 we have that all core determining sets, S ∈ Q (h, y∗, z) are unions of sets on the

support of U (y, z;h). Thus from (3.3) all core-determining sets S ∈ Q (h, y∗, z) satisfy

∀m 6= y∗, Sm = RUm . (3.4)
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Consideration of the conditional containment functional applied to such sets then gives

C (S, h|m, z) ≡ P [U (Y, Z;h) ⊆ S|Y∗ = m, z] = P [Um (Y,Z;h) ⊆ Sm|Y∗ = m, z] , (3.5)

which is the probability, conditional on (Y∗ = m ∧ Z = z), that the projection of U (Y,Z;h) onto

its mth component is contained in the projection of S onto its mth component. Consequently,

the identified set M∗ (FY Z) can be succinctly characterized through inequalities involving only

containment functionals for projection level sets Um (Y,Z;h) applied to projections of test sets S.

We thus define containment functionals for projections of level sets for any test set Sm ⊆ RUm as

Cm (Sm, h|y∗, z) ≡ P [Um (Y,Z;h) ⊆ Sm|y∗, z] . (3.6)

Likewise we have from (3.4) that

∀S ∈ Q (h, y∗, z) , GU |Y∗Z (S|m, z) = GUm|Y∗Z (Sm|m, z) . (3.7)

Implications (3.5) and (3.7) together enable us to work in a lower dimensional space, namely

that of RUm in the construction of core-determining sets, rather than RU . Specifically, we have

that for any (y∗, z) ∈ RY∗Z and any test set S ∈ Q (h, y∗, z), the containment functional inequality

C (S, h|m, z) ≤ GU |Y∗Z (S|m, z) , (3.8)

appearing in Corollary 1 holds if and only if10

Cm (Sm, h|m, z) ≤ GUm|Y∗Z (Sm|m, z) . (3.9)

Lemma 1 characterizes a collection of core-determining sets on the lower dimensional space RUm

sufficient to guarantee (3.9) holds for all closed Sm ⊆ RUm . Before stating the lemma we require

the following definitions for any (h,m, z) ∈ H(M)×RY∗ ×RZ .

U∗m (h, z) ≡ {Um ⊆ RUm : Um is a union of elements of Um (h, z)} ,

and for any set Sm ⊆ RUm ,

USm (h, z) ≡ {U ∈ Um (h, z) : U ⊆ Sm} ,

which are those sets on the conditional support of Um (Y,Z;h) conditional on (Y∗ = m ∧ Z = z)

that are contained in Sm. With this notation in hand, the proof of the following lemma is a

10From Sm = RUm for all m 6= y∗, (3.8) ⇒(3.9) is immediate. The reverse implication is formally proven in the
proof of Theorem 3.
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straightforward extension of Theorem 2 and is omitted.

Lemma 1. Let Restrictions A1-A4 hold. Fix (h,m, z) ∈ H(M) × RY∗ × RZ and a distribution

function GU |Y∗Z (·|y∗, z). Let Qm (h, z) ⊆ U∗m (h, z), such that for any Sm ∈ U∗m (h, z) with Sm /∈
Qm (h, z), there exist nonempty collections Sm1,Sm2 ∈ USm (h, z) with Sm1 ∪ Sm2 = USm (h, z) such

that

Sm1 ≡
⋃
T ∈Sm1

T , Sm2 ≡
⋃
T ∈Sm2

T , and GU |Y∗Z (Sm1 ∩ Sm2|y∗, z) = 0, (3.10)

with Sm1,Sm2 ∈ Qm (h, z). Then Cm (Sm, h|m, z) ≤ GUm|Y∗Z (Sm|m, z) for all Sm ∈ Qm (h, z)

implies that Cm (Sm, h|m, z) ≤ GUm|Y∗Z (Sm|m, z) holds for all Sm ⊆ RUm, and in particular for

Sm ∈ F (RUm), so that the collection of sets Qm (h, z) is core-determining.

The following Theorem, proven in the Appendix, uses this lemma en route to characterizing

the identified set M∗ (FY Z) under Restrictions A1-A4 through conditional containment functional

inequalities defined on RUm , m ∈ {1, ...,M}.

Theorem 3. Let Restrictions A1-A4 hold, with no further restrictions imposed on the determina-

tion of the classifier Y∗. Given collection of conditional distributions GU |Y∗Z we have that

∀S ∈ F (RU ) , C (S, h|m, z) ≤ GU |Y∗Z (S|m, z) a.e. (y∗, z) ∈ RY∗Z

if and only if

∀m ∈ {1, ...,M} , ∀S ∈ Qm (h, z) , Cm (S, h|m, z) ≤ GUm|Y∗Z (S|m, z) a.e. (y∗, z) ∈ RY∗Z .

Hence

M∗ (FY Z) =



(
h,GU |Z

)
∈M : ∃GU |Y∗Z s.t. ∀m ∈ {1, ...,M} , ∀S ∈ Qm (h, z) ,

Cm (S, h|m, z) ≤ GUm|Y∗Z (S|m, z) a.e. z ∈ RZ , and

GUm|Z (S|z) =

∫
y∗∈RY∗

GUm|Y∗Z (S|y∗, z) dFY∗|Z (y∗|z) a.e. z ∈ RZ


.

3.4 The identifying power of a conditional independence restriction

The models studied in this paper include a conditional independence Restriction CI.

Restriction CI. Let Y∗ be the classifier element of Y . Random variables U and Y∗ are indepen-

dently distributed conditional on Z = z for every z ∈ RZ .

Restriction CI places restrictions on the collection of distributions GU |Z , namely that for all sets

S ⊂ RU |Z , the conditional distribution of U given (Y∗, Z), GU |Y∗Z (·|y∗, z) satisfiesGU |Y∗Z (S|y∗, z) =

GU |Z (S|z) a.e. (y∗, z) ∈ RY∗Z . A consequence is equality of the conditional support of unobserved
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heterogeneity and its components, that is that RU |y∗z = RU |z and RUm|y∗z = RUm|z, for all

m ∈ {1, . . . ,M}.
In Theorem 4, proven in the Appendix, we build on Theorem 3 to develop a characterization

of the identified set when there is a conditional independence condition.

Theorem 4. Let Restrictions A1-A3 hold. A model M which embodies Restriction A4 and the

conditional independence restriction CI has an identified set M∗ (FY Z) which can be written as

M∗ (FY Z) ≡
{(
h,GU |Z

)
∈M : ∀m ∈ {1, . . . ,M}, ∀S ∈ Qm (h, z) ,

Cm (S, h|m, z) ≤ GUm|Z (S|z) , a.e. z ∈ RZ

}
.

Here S ⊆ RUm|z, and Qm (h, z) is a collection of closed subsets of RUm|z comprising unions of sets

on the conditional support of Um(Y,Z;h) given Z = z and Y∗ = m defined in Lemma 1.

Remarks

1. Regarding the collections of distributions GU |Z , the identified set in Theorem 4 only places

restrictions on the marginal distributions, GUm|Z (·|z), m ∈ {1, . . . ,M}. Data is never infor-

mative about the covariation of Um and Um′ , for any m 6= m′.

2. Applying the unprojected version of the inequality in the definition of the set M∗ (FY Z) in

Theorem 4 to the complement, Sc, of a set S gives an upper bound on GU |Z (S|z) and thus

a two-sided inequality that must hold for almost every z ∈ RZ :

∀m,n ∈ {1, . . . ,M} , S ⊆ RU : C (S, h|m, z) ≤ GU |Z (S|z) ≤ 1− C (Sc, h|n, z) .

This representation leads to a characterization of bounds on structural function h without

direct reference to a distribution of unobserved heterogeneity GU |Z (S|z).

Example 1 continued. In the simple treatment effect model the projected u-level sets Um (Y, Z;h)

are singleton sets and a small modification to the argument that leads to Corollary 2 leads to the

conclusion that the inequalities in the definition of M∗ (FY Z) in Theorem 4 reduce to equalities.

For any set S ⊆ Qm (h, z),

GUm|Z(S|z) = FY1|Y2,Z (S|m, z)

and it follows that for m ∈ {1, . . . ,M}:

1. each conditional distribution function of Um given Z = z is point identified by the conditional

distribution function of Y1 given Y2 = m and Z = z,
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2. each marginal distribution function of Um is point identified by the expected value with

respect to Z of the conditional distribution function of Y1 given Y2 = m and Z = z,

3. which leads directly to the familiar results on point identification of the Average and Quantile

Treatment Effects.

The analysis applies directly when there are vector counterfactual outcomes, U1, . . . , UM , in the

treatment effect model. �

3.5 The additional identifying power of marginal independence conditions

Theorem 4 provides a characterization of the identified set of structures
(
h,GU |Z

)
delivered by

a model of counterfactual processes embodying Restriction A4 and the conditional independence

restriction CI. In models of processes more complex than found in the treatment effects case there

may be additional marginal independence restrictions. We consider Restriction MI.

Restriction MI. Let e(Z) be a vector-valued function of Z. Random variables Um and e(Z) are

independently distributed for each m ∈ RY∗ .

Restriction MI restricts the set of admissible structures
(
h,GU |Z

)
∈M to be those with Um and

e(Z) independently distributed for all m ∈ {1, . . . ,M}. A common choice for a function e(·) will

be a function that selects certain elements from Z, for example, with Z = (Z1, Z2), e(Z) = Z1.
11

Theorem 5 provides a characterization of the identified set delivered by a model embodying the

conditional and marginal independence restrictions CI and MI.

Theorem 5. Let Restrictions A1-A3 hold. A model M which embodies Restriction A4 and the

independence restrictions CI and MI has an identified setM∗(FY |Z) which can be written as follows.

M∗ (FY Z) ≡

{ (
h,GU |Z

)
∈M : ∀m ∈ {1, . . . ,M}, ∀S ∈ Qm (h, z) ,

Cm (S, h|m, z) ≤ GUm|Z (S|z) , a.e. z ∈ RZ

}
,

where Qm (h, z) is the collection of core determining sets defined in Lemma 1.

This characterization appears the same as that of Theorem 4, but it differs because now admis-

sible structures
(
h,GU |Z

)
∈M are required to be such that GU |Z satisfies Restriction MI in addition

to Restriction CI. Thus the identified set of Theorem 5 is subset of that of Theorem 4 because the

conditional containment inequality must hold for some
(
h,GU |Z

)
in this more restrictive collection

of admissible structures.

Sharpness is immediate because for any S ∈ RUm , under Restriction CI

Cm (S, h|m, z) ≤ GUm|Z (S|z)⇒ Cm (S, h|m, z) ≤ GUm|Y∗Z (S|m, z) .

11It would be easy to relax the marginal independence restriction to Um
‖ em(Z), m ∈ {1, . . . ,M}.
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This is required to hold for all (m, z) and for all core-determining sets, so the selectionability

statement of Theorem 1 is satisfied. Again, the difference with Theorem 4 is that the distributions

GUm|Z are now required to belong to more restrictive collections of conditional distributions, namely

we have as a requirement of admissible structures that for each e ∈ Re(Z),

GUm|Z (S|Z ∈ Ze) = GUm (S) , where Ze ≡ {z : e (Z) = e} . (3.11)

The characterization of M∗ (FY Z) in Theorem 5 produces interesting observable implications

that may not appear immediate, but which provide bounds on
(
h,GU |Z

)
, potentially non-sharp

in isolation. These implications may prove beneficial in developing sufficient conditions for point

identification of
(
h,GU |Z

)
or features of

(
h,GU |Z

)
in particular models. Two such implications

follow.

1. For any m ∈ RY∗ , e ∈ Re(Z), and any S ⊆ RUm ,

E [Cm (S, h|m,Z) |e(Z) = e] ≤ GUm (S) . (3.12)

This follows from integrating both sides of the inequality Cm (S, h|m, z) ≤ GUm|Z (S|z) as

follows. First we have from the left hand side,

1

FZ (Ze)

∫
z∈Ze

Cm (S, h|y∗, z) dFZ (z) = E [Cm (S, h|y∗, Z) |Z ∈ Ze]

= E [Cm (S, h|y∗, Z) |e (Z) = e] .

Then multiplying the right hand side by 1
FZ(Ze)

and integrating we obtain

1

FZ (Ze)

∫
z∈Ze

GUm|Z (S|z) dFZ (z) = GUm|Z (S|Z ∈ Ze) = GUm (S) ,

where the final equality follows from Restriction MI.

It is interesting to note that the expression E [Cm (S, h|m,Z) |e(Z) = e] is a conditional ex-

pectation of the containment functional Cm (S, h|m,Z) holding m fixed, which may in general

differ from Cm (S, h|Y∗ = m, e(Z) = e).

2. For any m ∈ RY∗ , e ∈ Re(Z), and any S ⊆ RUm ,

Cm (S, h|Z ∈ Ze) ≤ GUm|Z(S|Z ∈ Ze) = GUm (S) ,

by Restriction MI.
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Remarks

1. Since the bounded probabilities, GUm(S) = GUm|Z(S|Z ∈ Ze), do not depend on the value

e of e(Z) for each value m and S only the supremum of the lower bounding expression over

values e ∈ Re(Z) is instrumental in (3.12).

2. In the common case in which Z = (Z1, Z2) and e(Z) = Z1 is a selection of the elements in Z,

EZ [·|e(Z) = e] = EZ2 [·|Z1 = e] .

3. Arguing as in Remark 2 following Theorem 4, a two-sided inequality is obtained:

EZ [Cm (S, h|m, z) |e(Z) = eL] ≤ GUm (S) ≤ 1− EZ [Cm (Sc, h|m, z) |e(Z) = eU ] ,

which must hold for all (eL, eU ) ∈ Re(Z).

Example 3 continued. For simplicity in this illustration exogenous variables z1 are excluded

from the threshold function, so gm(y2, z1) is written gm(y2) and since Y2 is binary the structural

function h(y, z, u) is characterized by four parameters: θ ≡ (g1(0), g1(1), g2(0), g2(1)). Recall m = 1

for people who attend a training programme and m = 2 for people who do not. Thus, g1(0) is the

threshold parameter for a person who does attend a training programme and is not in receipt of

benefit payment. We can normalize the threshold functions so that each Um is marginally uniformly

distributed on the unit interval and then there is the following representation.

In state m: Y1 =


0 , 0 ≤ Um ≤ gm(Y2)

1 , gm(Y2) ≤ Um ≤ 1

.

The set up here is similar to that in Chesher and Rosen (2013), henceforth CR2013. In that paper

there was only one state, so there U1 = U2 (denoted U in that paper) and g1(y2) = g2(y2) (denoted

p(y2) in that paper). In CR2013 there was no conditional independence restriction but there was a

marginal independence restriction U ‖ Z. For ease of comparison with CR2013 the characterization

of the identified set is presented here in terms of 1 − gm(y2), m ∈ {1, 2}, y2 ∈ {0, 1} which are

counterfactual probabilities of return to work in state m with benefit receipt indicator equal to y2.

Define probabilities which could be estimated using data, as follows.

fij(z,m) ≡ P[Y1 = i ∧ Y2 = j|Y3 = m,Z = z], (i, j) ∈ {0, 1} × {0, 1}, m ∈ {1, 2}

Applying Theorem 4, under the conditional independence restriction, (U1, U2) ‖ Y3|Z, the identified

set of structures (θ,GU |Z) is characterized by the following inequalities which hold for m ∈ {1, 2}
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and almost every z ∈ RZ .

For gm(0) ≤ gm(1):

f10(z,m) + f11(z,m) ≤ 1−GUm|Z(gm(0)|z) ≤ 1− f00(z,m)

f11(z,m) ≤ 1−GUm|Z(gm(1)|z) ≤ f10(z,m) + f11(z,m)

For gm(0) ≥ gm(1)

f10(z,m) ≤ 1−GUm|Z(gm(0)|z) ≤ f10(z,m) + f11(z,m)

f10(z,m) + f11(z,m) ≤ 1−GUm|Z(gm(1)|z) ≤ 1− f01(z,m)

We now apply Theorem 5 and impose the marginal independence restriction (U1, U2) ‖ Z1 jointly

with the conditional independence condition (U1, U2) ‖ Y3|Z where Z = (Z1, Z2) . The inequalities

(3.12) deliver the following additional inequalities which hold for m ∈ {1, 2}.
For gm(0)) ≤ gm(1):

sup
z1∈RZ1

EZ2 [f10(Z,m) + f11(Z,m)|Z1 = z1] ≤ 1− gm(0) ≤ inf
z1∈RZ1

(1− EZ2 [f00(Z,m)|Z1 = z1])

sup
z1∈RZ1

EZ2 [f11(Z,m)|Z1 = z1] ≤ 1− gm(1) ≤ inf
z1∈RZ1

EZ2 [f10(Z,m) + f11(Z,m)|Z1 = z1]

For gm(0) ≥ gm(1):

sup
z1∈RZ1

EZ2 [f10(Z,m)|Z1 = z1] ≤ 1− gm(0) ≤ inf
z1∈RZ1

EZ2 [f10(Z,m) + f11(Z,m)|Z1 = z1]

sup
z1∈RZ1

EZ2 [f10(Z,m) + f11(Z,m)|Z1 = z1] ≤ 1− gm(1) ≤ inf
z1∈RZ1

(1− EZ2 [f01(Z,m)]|Z1 = z1)

4 Concluding remarks

We have presented an extension of a treatment effect model in which a discrete classifier variable

indicates in which one of a number of counterfactual processes an individual engages. The observed

process delivers realizations of endogenous variables and values of exogenous variables are available.

We have considered models of counterfactual processes which may be incomplete. Such mod-

els can arise when a process involves multiple equilibria and no equilibrium selection mechanism

is specified, when a process is defined by inequality restrictions as in some auction models and

21



when only some elements of a simultaneous equations system that determines values of endogenous

variables are specified.

We have considered models which place no structure on the determination of the classifier

variable but impose a conditional independence restriction requiring the unobservable variables

that deliver stochastic variation in the counterfactual processes and the classifier variable to be

independently distributed conditional on some observed exogenous variables. Our models may

additionally incorporate marginal independence restrictions requiring unobservable variables and

known functions of exogenous variables to be independently distributed.

Using tools from random set theory and building in particular on CR2014, we have developed

characterizations of the (sharp) identified sets delivered by these models.

In research in progress we are studying the identifying power of alternative covariation restric-

tions, for example conditional mean and quantile independence and we are developing characteri-

zations of identified sets in more general cases in which there are combinations of conditional and

marginal independence restrictions.
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A Proofs

Proof of Theorem 1. Theorem 2 of CR2014 states that under Restrictions A1-A3 of that paper,

identical to Restrictions A1-A3 here, the identified set of structures
(
h,GU |Z

)
are those such that

GU |Z (·|z) - U (Y, z;h) when Y ∼ FY |Z (·|z) , a.e. z ∈ RZ , (A.1)

where “-” means “is selectionable with respect to the distribution of”, as in CR2014. This state-

ment has the following interpretation.

1. There exists a random variable Ũ such that for almost every z ∈ RZ , Ũ ∼ GU |Z (·|z) condi-

tional on Z = z.

2. There exists a random variable Ỹ such that for almost every z ∈ RZ , Ỹ ∼ FY |Z (·|z) condi-

tional on Z = z.

3. Ũ and Ỹ belong to probability space (Ω,F ,P) and P
[
Ũ ∈ U

(
Ỹ , Z;h

)
|Z = z

]
= 1 a.e. z ∈

RZ .

To prove the theorem it is required to show that (A.1) is equivalent to the existence of a

collection of conditional distributions GU |Y∗Z ≡
{
GU |Y∗Z (·|y∗, z) : (y∗, z) ∈ RY∗Z

}
such that:

A For almost every z ∈ RZ :

GU |Z (·|z) =

∫
y∗∈RY∗

GU |Y∗Z (·|y∗, z) dFY∗|Z (y∗|z) , and (A.2)

B For almost every (y∗, z) ∈ RY∗Z :

GU |Y∗Z (·|y∗, z) - U (Y, z;h) when Y ∼ FY |Y∗Z (·|y∗, z) . (A.3)

To show this start with (A.1), from which we have, with Ũ and Ỹ as defined in bullet points

1-3,

1 = P
[
Ũ ∈ U

(
Ỹ , Z;h

)
|Z = z

]
=

∫
RY∗|z

P
[
Ũ ∈ U

(
Ỹ , Z;h

)
|Ỹ∗ = y∗, Z = z

]
dFY∗|Z (y∗|z) ,

where Ỹ ∼ FY |Z (·|z) conditional on Z = z. This can hold if and only if

P
[
Ũ ∈ U

(
Ỹ , Z;h

)
|Ỹ∗ = y∗, Z = z

]
= 1 a.e. (y∗, z) ∈ RY∗Z ,
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with Ỹ ∼ FY |Z (·|z).
Now define GU |Y∗Z (·|y∗, z) such that for any S ∈ RU ,

GU |Y∗Z (S|y∗, z) ≡ P
[
Ũ ∈ S|Ỹ∗ = y∗, Z = z

]
.

Consequently, from Restriction A3 and the first consequence of (A.1) above, GU |Z (S|z) = P
[
Ũ ∈ S|Z = z

]
,

and then from the law of total probability, (A.2) holds. Then we have that (A.3) holds since

1. There exists a random variable Ũ such that for almost every z ∈ RZ , Ũ ∼ GU |Z (·|z) con-

ditional on Z = z, and such that for almost every (y∗, z) ∈ RY∗Z , Ũ ∼ GU |Y∗Z (·|y∗, z)
conditional on Z = z, Y∗ = y∗.

2. There exists a random variable Ỹ such that for almost every z ∈ RZ , Ỹ ∼ FY |Z (·|z) condi-

tional on Z = z.

3. Ũ and Ỹ belong to probability space (Ω,F ,P) and P
[
Ũ ∈ U

(
Ỹ , Z;h

)
|Ỹ∗ = y∗, Z = z

]
= 1

a.e. (y∗, z) ∈ RY∗Z .

That (A.3) implies (A.1) is immediate, and so equivalence is proved. �

Proof of Theorem 3. Fix (m, z) ∈ RY∗Z . From Lemma 1 we have that

∀S ∈ Qm (h, z) , Cm (S, h|m, z) ≤ GUm|Y∗Z (S|m, z)

implies that

∀S ∈ F (RUm) , Cm (S, h|m, z) ≤ GUm|Y∗Z (S|m, z) .

We need to show that (3.9),

Cm (S, h|m, z) ≤ GUm|Y∗Z (S|m, z) , (A.4)

for all S ∈ F (RUm) implies that (3.8),

C (S, h|m, z) ≤ GU |Y∗Z (S|m, z) .

for all S ∈ F (RU ).

To show this, start with

C (S, h|m, z) ≤ GU |Y∗Z (S|m, z) . (A.5)

for an arbitrary S ∈ F (RU ).
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First suppose that it does not hold that the projection of S onto its nth projection Sn, n 6= m,

is equal to RUn . All elements of the support of U (Y, Z;h) conditional on (Y∗, Z) = (m, z) have

Un (Y,Z;h) = RUn , implying that C (S, h|m, z) = 0 and (A.5) is trivially satisfied.

We now turn to sets S with nth projection Sn, n 6= m, equal to RUn . In this case

C (S, h|m, z) = Cm (Sm, h|m, z) ,

and

GU |Y∗Z (S|m, z) = GUm|Y∗Z (Sm|m, z) ,

so that (A.5) is in fact equivalent to (A.4), completing the proof. �

Proof of Theorem 4. We start with the characterization of the identified set given in Theorem

3:

M∗ (FY Z) =



(
h,GU |Z

)
∈M : ∃GU |Y∗Z s.t. ∀m ∈ {1, ...,M} , ∀S ∈ Qm (h, z) ,

Cm (S, h|m, z) ≤ GUm|Y∗Z (S|m, z) a.e. z ∈ RZ , and

GUm|Z (S|z) =

∫
y∗∈RY∗

GUm|Y∗Z (S|y∗, z) dFY∗|Z (y∗|z) a.e. z ∈ RZ


.

Using Restriction CI GUm|Y∗Z (Sm|m, z) = GUm|Z (Sm|z) so we obtain

M∗ (FY Z) =

{ (
h,GU |Z

)
∈M : ∀m ∈ {1, ...,M} , ∀S ∈ Qm (h, z) ,

Cm (S, h|m, z) ≤ GUm|Z (S|z) a.e. z ∈ RZ

}
,

equivalently

M∗ (FY Z) =

{(
h,GU |Z

)
∈M : sup

(m,z)∈RY∗Z

sup
S∈Qm(h,z)

Cm (S, h|m, z)−GUm|Y∗Z (S|z) ≤ 0

}
.

�

Proof of Theorem 5. The Theorem is proved using the same argument as in the proof of

Theorem 4 but now with structures
(
h,GU |Z

)
required to belong to a more restrictive set such that

Restriction CI and Restriction MI both hold. Thus the set of structures
(
h,GU |Z

)
satisfying these

restrictions (i.e. those such that
(
h,GU |Z

)
∈ M) and also satisfying the condition stated in the

Theorem, namely

∀m ∈ {1, . . . ,M}, ∀S ∈ Qm (h, z) , Cm (S, h|m, z) ≤ GUm|Z (S|z) , a.e. z ∈ RZ
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are by Theorem 3 precisely those
(
h,GU |Z

)
∈M satisfying

∀S ∈ F (RU ) , C (S, h|m, z) ≤ GU |Y∗Z (S|m, z) a.e. (y∗, z) ∈ RY∗Z ,

where the conditional distribution of U given (Y∗, Z) satisfies the conditional independence restric-

tion

GU |Y∗Z (S|m, z) = GU |Z (S|z) .

Application of Artstein’s Inequality as in Corollary 1 then gives that this collection of
(
h,GU |Z

)
∈M

satisfies the selectionability criteria of Theorem 1, namely that GU |Y∗Z (·|m, z) is selectionable with

respect to the conditional distribution of random set U (Y,Z;h) given (Y∗ = m ∧ Z = z) induced

by the distribution of Y conditional on (Y∗ = m ∧ Z = z) as given by FY Z , a.e. (m, z) ∈ RY∗Z .

Thus M∗ (FY Z) is the identified set of structures
(
h,GU |Z

)
. �
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