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Abstract

We study identification and estimation in first-price auctions with risk averse bid-
ders and selective entry, building on a flexible entry and bidding framework we call
the Affiliated Signal with Risk Aversion (AS-RA) model. This framework extends the
AS model of Gentry and Li (2014) to accommodate arbitrary bidder risk aversion,
thereby nesting a variety of standard models as special cases. It poses, however, a
unique methodological challenge – existing results on identification with risk aversion
fail in the presence of selection, while the selection-robust bounds of Gentry and Li
(2014) fail in the presence of risk aversion. Motivated by this problem, we translate
excludable variation in potential competition into identified sets for AS-RA primitives
under various classes of restrictions on the model. We show that a single parametric
restriction – on the copula governing selection into entry – is typically sufficient to
restore point identification of all primitives. In contrast, a parametric form for utility
yields point identification of the utility function but only partial identification of re-
maining primitives. Finally, we outline a simple semiparametric estimator combining
Constant Relative Risk Aversion utility with a parametric signal-value copula. Simu-
lation evidence suggests that this estimator performs very well even in small samples,
underscoring the practical value of our identification results.

Keywords: Auctions, endogenous participation, risk aversion, identification.

1 Introduction

Risk aversion and endogenous entry both play major roles in shaping real-world auction

performance. As is well known, risk aversion influences answers to a wide range of
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fundamental questions in auction design, such as choice of auction format (Maskin and

Riley (1984)), structure of the optimal mechanism (Matthews (1987)), and whether to

disclose reserve prices (Li and Tan (2000)). This in turn has motivated a substantial

body of empirical work on risk aversion in real-world auctions, with available evidence

strongly confirming its relevance in practice.1 Similarly, although perhaps less widely

known, endogenous entry can also overturn core predictions of standard auction theory;

for instance, endogenous entry can lead a seller to prefer less potential competition (Li

and Zheng (2009)) or a zero reserve price (Levin and Smith (1994)). Building on these

observations, a substantial recent literature has developed on structural analysis of

auctions with entry, with findings confirming that entry is an empirically important

feature of most widely studied auction markets.2 Taken together, these literatures

strongly suggest that risk aversion and entry both matter for practical and policy

analysis of real-world auction markets.

The importance of integrating risk aversion and entry in a unified analytical frame-

work was first highlighted in a pioneer theoretical analysis by Smith and Levin (1996)

who illustrate that ignoring either factor could lead to misleading predictions on rev-

enue comparison across standard auction formats.3 Nevertheless, research analyzing

both factors together remains very sparse. Furthermore, the small body of work which

1For example, Baldwin (1995) and Athey and Levin (2001) find that bidders diversify risk across species
in U.S. Forest Service timber auctions, Ackerberg, Hirano, and Shahriar (2006) use bidder risk aversion to
rationalize the use of buy-it-now options in eBay auctions, and Bajari and Hortacsu (2005) find risk aversion
to be the best explanation of bidder behavior in experiments. Using more structural approaches, Lu and
Perrigne (2008) and Campo, Guerre, Perrigne, and Vuong (2011) find substantial risk aversion in U.S. Forest
Service timber auctions. Finally, Li, Lu, and Zhao (2014) use differences in entry between auction formats
to test for risk aversion in timber auctions, again finding significant support for risk aversion.

2For instance, Hendricks, Pinkse, and Porter (2003) report that less than 25 percent of eligible bidders
participate in U.S. Minerals Management Service “wildcat auctions” held from 1954 to 1970. Li and Zheng
(2009) find that only about 28 percent of planholders in Texas Department of Transportation mowing
contracts actually submit bids. Similar patterns have been reported for timber auctions (Athey, Levin, and
Seira (2011), Li and Zhang (2014, 2010), Roberts and Sweeting (2013)), online auctions (Bajari and Hortacsu
(2003)), highway procurement (Krasnokutskaya and Seim (2011)) and corporate takeover markets (Gentry
and Stroup (2014)) among others.

3In particular, Smith and Levin (1996) show that entry in conjunction with decreasing average risk
aversion can lead ascending auctions to outperform first-price auctions, thereby reversing Maskin and Riley
(1984)’s prediction of first-price dominance. This result also contrasts with the revenue equivalence between
standard auctions with risk neutral bidders and endogenous entry (Levin and Smith (1994), Gentry and Li
(2012a)).
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does exist (e.g. Smith and Levin (1996), Fang and Tang (2014), Li, Lu, and Zhao

(2014)) focuses primarily on theory and testing rather than estimation.4 This is due

at least in part to the fact that little is presently known about identification in auc-

tions with both risk averse bidders and selective entry, particularly in settings where

the number of entrants is disclosed only after the auction concludes.5 More precisely,

existing results on nonparametric identification with risk averse bidders turn on two

classes of exclusion restrictions: either invariance of the latent distribution of values

among bidders to the seller’s choice of auction format (Lu and Perrigne (2008)), or

invariance of the latent distribution of values among bidders to the set of competi-

tors faced (Guerre, Perrigne, and Vuong (2009)). When entry is potentially selective,

however, both variation in auction format (Li, Lu, and Zhao (2014)) and variation in

the set of potential competitors (Gentry and Li (2014)) will endogenously shift the

distribution of valuations among bidders choosing to enter, thereby violating the key

exclusion restrictions needed for nonparametric identification. Thus little is presently

known about identification in environments with both risk averse bidders and selective

entry. Given the qualitative and quantitative importance of both risk aversion and en-

try in real-world auction design, we view this as a substantial constraint on empirical

analysis of auction markets.6

Motivated by this gap in the literature, we explore identification and estimation

in first-price auctions with risk averse bidders and selective entry, building on a flexi-

4For instance, Fang and Tang (2014) develop a nonparametric test for risk aversion in ascending auctions
based on entry and bidding data plus information on entry costs, and Li, Lu, and Zhao (2014) test predictions
the framework we consider here using data on entry in U.S. Forest Service timber auctions. We discuss both
papers in detail below.

5We view the assumption of known potential competition but unknown actual competition as best re-
flecting typical institutional practices in sealed-bid procurement markets, where the auctioneer may reveal a
set of planholders prior to bidding but generally discloses the set of entrants only after the auction concludes.
In settings where a known number of rivals is considered a preferable assumption, identification would be
considerably simpler since – conditional on the set of potential competitors faced – variation in actual entry
may be effectively exogenous.

6Correction for selection has been a central focus in econometrics since at least the work of Heckman
(1976). The primary motivation for this literature is the concern that economic actors may base choices
on unobserved information regarding their private types – precisely the concern our entry model seeks to
address. Thus while we frame analysis in the context of an auction game, our results also contribute to the
literature on selection more broadly.
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ble framework we label the Affiliated Signal with Risk Aversion (AS-RA) model. First

proposed by Li, Lu, and Zhao (2014), the AS-RA model considers a set of symmetric po-

tential bidders with wealth preferences described by a smooth concave von Neumman-

Morganstern (vNM) utility function U competing for a single indivisible object via a

first-price auction with entry. Potential bidders have independent private values, ob-

serve signals of their values prior to entry, and choose whether to incur a fixed entry

cost, with entrants learning their values and submitting bids. This framework flexibly

nests a wide range of existing models as special cases, including the affiliated-signal

(AS) models of Marmer, Shneyerov, and Xu (2013) and Gentry and Li (2014) (which

build on the indicative bidding model of Ye (2007)), the mixed-strategy entry model of

Levin and Smith (1994), the perfectly selective entry model of Samuelson (1985), and

models with risk averse bidders but exogenous entry including Guerre, Perrigne, and

Vuong (2009) and Campo, Guerre, Perrigne, and Vuong (2011). It thereby represents a

natural focal point for researchers seeking to understand the structural interaction be-

tween risk aversion and entry. The results we develop here provide a formal foundation

for this program of research.

Working within the flexible AS-RA model, we make several key contributions to the

econometric analysis of auction data. We begin by studying identification in auctions

with both risk aversion and selection, mapping excludable variation in potential com-

petition through restrictions generated by the bidding model to characterize the set of

primitives consistent with observed bidding behavior. As in Gentry and Li (2014), this

set will not be a singleton, although numeric analysis suggests that bounds on prim-

itives are both reasonably tight and economically meaningful in that – for instance –

the null hypothesis of risk neutrality is typically outside the identified set when the

true process involves risk aversion. We then proceed to consider semiparametric iden-

tification under two natural classes of restrictions on model primitives: first assuming

a parametric family for the utility function U , then assuming a parametric family for

the copula C linking pre-entry signals to post-entry values. We show that either class

of restrictions is typically sufficient to restore semiparametric identification of U , with
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parametric U yielding partial identification and parametric C yielding point identifi-

cation of remaining primitives.7 Finally, building on this analysis, we outline a simple

semiparametric estimator combining Constant Relative Risk Aversion (CRRA) utility

with a parametric signal-value copula. Monte Carlo analysis suggests that this esti-

mator performs well even in small samples, underscoring the practical nature of our

identification results.

Within the literature on structural analysis of auction data, our work relates most

closely to three prior studies. The first of these is Guerre, Perrigne, and Vuong (2009)

(henceforth GPV (2009)), who study identification in auctions with nonparametric U

but exogenous participation. In this setting, GPV (2009) show that excludable varia-

tion in the number of bidders n yields nonparametric identification of model primitives,

where “excludable” in the sense of GPV (2009) means that neither U nor the equilib-

rium distribution of values among bidders depend on the realization of n. We parallel

GPV (2009) in considering excludable variation in auction-level competition as a source

of identifying information. In our context, however, “excludable” means invariance of

ex ante primitives with respect to the number of potential competitors N , with both

entry and the distribution of valuations among entrants responding endogenously to

the set of competitors faced. Hence exclusion no longer implies invariance of the latent

distribution of values with respect to N , thereby undermining the key hypothesis of

the GPV (2009) identification argument.8 We show, however, that given any candidate

for the copula C, there exists an identified map h such that reindexing bid quantiles by

h restores GPV (2009) style quantile invariance. Applying this key insight, arguments

similar to GPV (2009) then yield nonparametric identification of primitives up to C,

with a parametric family for C leading to overidentification of copula parameters (and

7Intuitively, a parametric signal-value copula explicitly links bidding behavior across competition levels,
thereby resolving the main challenge induced by selection. Meanwhile, while parametric utility helps to
identify the preference dimension of the model, it leaves the entry dimension effectively unrestricted.

8As noted above, we find the assumption of known N but unknown n as a natural formalization of
information in many sealed-bid procurement contexts, where the number of potential competitors may be
common knowledge but the number of actual bidders is typically revealed only after the auction concludes.
In settings where n is observed prior to bidding, however, variation in n conditional on N may provide
additional GPV (2009) style identifying restrictions. Our analysis here focuses on the more challenging –
but in our view more realistic – case where n is observed only after bidding.
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hence point identification of the model) even with fully nonparametric U . We thereby

extend the fundamental insight of GPV (2009) to a substantially more general class of

models accommodating endogenous and arbitrarily selective entry.

Second, our work extends Gentry and Li (2014) (henceforth GL (2014)), who

study identification in auctions with arbitrarily selective entry but risk-neutral bid-

ders. Working within essentially the same AS entry framework we consider here, GL

(2014) show how excludable variation in potential competition translates into sharp

nonparametric bounds on model primitives.9 While this analysis conveys insights use-

ful in our context, the addition of an unknown utility function U to the AS entry model

radically transforms (and complicates) the identification problem. In particular, the

point of departure for GL (2014)’s analysis is the hypothesis that distributions of val-

ues among entrants at each competition level are identified – assuming risk neutral

bidders, this follows immediately from standard results in the literature (e.g. Guerre,

Perrigne, and Vuong (2000), Athey and Haile (2005)). In contrast, our main problem

is to establish joint identification of U and distributions of values among entrants from

distributions of bids observed at each competition level – in other words, to reach the

point of departure for GL (2014). Hence although this study explores essentially the

same entry framework as GL (2014), our identification analysis is almost entirely novel.

Finally, our work builds on Campo, Guerre, Perrigne, and Vuong (2011) (henceforth

CGPV (2011)), who study semiparametric identification and estimation in auctions

with risk averse bidders but with exogenous participation. In particular, given a set of

covariates Z varying across auctions, CGPV (2011) show that a parametric form for U

plus parameterization of one quantile of the distribution of private values (as a function

of Z) yields semiparametric identification of all primitives. Although motivated by a

substantially different problem, our analysis of identification in the AS-RA model under

restrictions on U ultimately links back to CGPV (2011) in the following sense: we derive

a sharp characterization of restrictions generated by the bidding model under any class

9We impose two minor technical restrictions (differentiability and invariant support) not maintained by
GL (2014), but apart from these our entry frameworks are identical.
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of assumptions on U , one element of which involves invariance of the top quantile of

latent valuations across N . When U is assumed parametric, this restriction reduces to

a system of equations in the unknown parameters of U , which essentially parallels the

identifying system of CGPV (2011).10 Under regularity conditions analogous to those

in CGPV (2011), this system will be sufficient to recover the parameters in U , yielding

point identification of U and distributions of values among entrants. In contrast to

CGPV (2011), this information is insufficient to point identify remaining primitives,

instead yielding partial identification of the model as in GL (2014).11 Combining these

observations, we ultimately obtain a new result on semiparametric identification in the

AS-RA model with parametric utility, stated formally as Proposition 1.

Our results also contribute to the literature on structural analysis of auctions with

risk averse bidders and / or selective entry more broadly. Broadly speaking, studies

in this literature fall into one of three major categories. First, a substantial body of

work exists on auctions with risk averse bidders but without entry. In addition to the

studies cited above, notable contributions to this branch of the literature include Lu

and Perrigne (2008), who explore identification and estimation of risk aversion based on

comparisons between first- and second-price auctions, Zincenko (2014), who develops

a procedure for nonparametric sieve estimation within the identification framework

of GPV (2009), and Zhu and Grundl (2014), who propose a test for risk aversion in

auctions with multiplicative unobserved auction-level heterogeneity.12 Apart from Zhu

and Grundl (2014), studies in this literature typically find substantial evidence of risk

aversion, motivating our investigation here.

Second, a smaller but growing body of empirical work explores the role of selective

entry within risk-neutral models of bidding. For instance, Marmer, Shneyerov, and Xu

(2013) develop nonparametric specification tests for the perfectly selective (Samuelson

10The presence of entry implies that optimal bidding is characterized by a slightly different first order
condition, but the systems are otherwise identical.

11Indeed, the risk neutrality assumption of GL (2014) can be interpreted as a (strong) parametric form
for utility, with even this assumption insufficient for point identification.

12Note that as demonstrated by Li, Lu, and Zhao (2014), differences in auction format will generally
induce differential selection into entry. Hence in our setting variation in auction format typically will not
yield identification.
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(1985)), non-selective (Levin and Smith (1994)), and affiliated signal (AS) entry mod-

els and apply these in the context of Texas Department of Transportation roadside

mowing auctions, finding that the AS model fits substantially better than either polar

alternative. Roberts and Sweeting (2013) and Bhattacharya, Roberts, and Sweeting

(2014) apply parametric variants of the risk-neutral AS model to ascending U.S. For-

est Service timber auctions and first-price Michigan Department of Transportation

highway procurement auctions respectively, finding evidence of substantial selection in

both settings. Finally, Bhattacharya and Sweeting (2014) numerically explore the im-

plications of selection for auction design, finding (again in a risk-neutral context) that

failure to account for selection can substantially distort counterfactual policy analysis.

Third, we are aware of at least two studies exploring both risk aversion and selection,

although these focus primarily on testing. The first of these is Fang and Tang (2014),

who propose a nonparametric test for risk aversion in ascending auctions based on entry

and bidding data, which can be extended to accommodate selective entry given data

on entry costs. The second is Li, Lu, and Zhao (2014), who develop predictions of the

AS-RA model and test these using data on U.S. Forest Service timber auctions, finding

substantial evidence of risk aversion. Our framing of the AS-RA model follows Li, Lu,

and Zhao (2014), and our analysis draws heavily upon their theoretical results. To

our knowledge, however, our study is the first to explore identification and estimation

within the AS-RA model, thereby supporting structural analysis unifying risk aversion,

endogenous entry, and selection.

The rest of this paper is organized as follows. Section 2 outlines the AS-RA model

and characterizes its key predictions. Section 3 formalizes the identification problem

arising when variation in potential competition is excludable and establishes several

preliminary results. Section 4 analyzes identification under restrictions on utility, first

characterizing restrictions generated by the bidding model under any given family for

U , showing in particular that a parametric form for utility is typically sufficient to point

identify U but supports only partial identification of remaining primitives. Meanwhile,

Section 5 analyzes identification under restrictions on the copula, showing (in contrast
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to Section 4) that a parametric form for C is typically sufficient to point identify all

primitives in the model. Section 6 translates our identification analysis into a simple

semiparametric estimator assuming both a parametric copula and CRRA utility, and

Section 7 analyzes performance of this estimator in finite samples. Finally, Section

8 concludes. We collect additional results in three appendices: Appendix A presents

technical proofs, Appendix B explores the bounds implied by our characterization of

nonparametric restrictions imposed by the bidding model, and Appendix C explores

semiparametric estimation with a parametric copula but nonparametric utility.

2 The AS-RA model

Following Li, Lu, and Zhao (2014), we consider allocation of an indivisible good among

N (≥ 2) symmetric potential bidders via a two-stage auction game, where bidders have

private values for the object being sold. Timing of the game is as follows. First, in

Stage 1, each potential bidder i receives a private signal Si of her (unknown) private

value Vi, and all potential bidders simultaneously choose whether to enter the auction

at cost c. Next, in Stage 2, the n bidders who chose to enter in Stage 1 learn their

true private values vi and submit bids for the object being sold. Finally, the object

is allocated among these bidders through a first-price sealed-bid auction with a non-

binding reserve price r = 0. Higher Stage 1 signal realizations are “good news” in the

sense that the distribution of Vi given Si = si is stochastically increasing in si, with

value-signal pairs (Vi, Si) drawn independently across bidders from a symmetric joint

distribution Fvs(v, s). Without loss of generality, we normalize Stage 1 signals to have

a standard uniform distribution: Si ∼ U [0, 1].

Risk aversion Potential bidders are risk averse with risk preferences described by

some symmetric concave Bernoulli utility function u(w), where w is net post-auction

wealth. To avoid negative post-auction wealth, we assume bidders are endowed with

common initial wealth w0 ≥ c. To simplify the analysis, we follow Li, Lu and Zhao
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(2014) in defining a centered utility function U(·) as follows:

U(w) ≡ u(w + w0 − c)− u(w0 − c),

where we normalize U(1) = u(1+w0− c)−u(w0− c) ≡ 1 without loss of generality. As

noted by Li, Lu and Zhao (2014), centered utility U(·) belongs to the same category of

Arrow-Pratt absolute risk aversion (increasing, constant, or decreasing) as initial utility

u(·). Furthermore, as we show below, knowledge of U is equivalent to knowledge of

(u,w0) in terms of characterizing equilibrium entry and bidding behavior. We thus

frame our subsequent analysis in terms of centered utility U .

Information structure As usual, the entry cost c, centered utility function U , and

joint value-signal distribution Fvs are known to all potential bidders, with value-signal

realizations (vi, si) being private information revealed with timing described above. We

take the number of potential competitors N to be common knowledge prior to entry,

but assume that the number of entrants n is revealed only after the auction concludes.13

In our view, this informational structure best reflects institutional practices typical in

sealed-bid markets, where auctioneer announcements or industry experience convey

knowledge of potential competition but actual bids are announced only after bids are

received.14 Known n would substantially change details of the derivation, but in general

would strengthen identification results.15

13While not universal in the literature, the assumption of unknown n is common in applied studies: see,
for instance, Li and Zheng (2009), Marmer, Shneyerov, and Xu (2013), GL (2014) and Li, Lu, and Zhao
(2014) among others. For closely related studies assuming both N and n are common knowledge, see for
example Levin and Smith (1994) or Smith and Levin (1996) among others.

14For example, in US highway procurement markets, the auctioneer will typically publish a list of planhold-
ers (potential entrants) on each contract prior to the letting date. But only a small fraction of planholders
actually submit bids (Li and Zheng (2009)), and the set of bids received is only disclosed after the letting
concludes. We view such auctions as naturally modeled by the assumption of known N but unknown n.

15In circumstances where known n is considered a preferable assumption, one would condition bidding
strategies on both N and n. Maintaining the assumption that (Vi, Si) pairs are independent across bidders,
this would substantially simplify identification: conditional on N , realizations of n would be effectively
random, allowing for direct application of GPV (2009) identification arguments.
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2.1 Definitions

We follow GPV (2009) in defining the following (weak) regularity classes for the cen-

tered utility function U and the marginal distribution of private valuations Vi:

Definition 1. Let U be the set of normalized utility functions U(·) such that:

1. U : [0,∞]→ [0,∞], U(0) = 0, and U(1) = 1.

2. U(·) is continuous on [0,∞] and admits three continuous derivatives on (0,∞),

with U ′(·) > 0 and U ′′(·) ≤ 0 on (0,∞).

3. limx↓0 λ
(r) is finite for 1 ≤ r ≤ 2 , where λ(x) ≡ u(x)/u′(x) and λ(r) is the rth

derivative of λ(·).

Definition 2. Let F be the set of distributions F (·) such that:

1. F (·) is a cumulative distribution function (c.d.f.) with support of the form [0, v̄],

where 0 < v̄ <∞.

2. F (·) is twice continuously differentiable on [0, v̄].

3. f(·) > 0 on [0, v̄].

Finally, to close the model, we describe the bivariate copula C linking pre-entry

signals Si to post-entry values Vi. Given a continuous marginal c.d.f. F for Vi

and normalizing Si to be marginal uniform as above, we know by Sklar’s theorem

that for every bivariate c.d.f. Fvs there exists a unique bivariate copula C such that

Fvs(v, s) = C(F (v), s) for all v, s. Our focus on C (rather than Fvs) is thus without

loss of generality. Specifically, we introduce the following regularity class for C:

Definition 3. Let C be the set of bivariate copula functions C(·) such that:

1. C(·) is a joint c.d.f. on [0, 1]× [0, 1].

2. C is continuous on [0, 1]× [0, 1] and twice differentiable on (0, 1)× (0, 1).

3. For all s ∈ (0, 1), ∂2C(a, s)/∂a ∂s satisfies ∂2C(a, s)/∂a ∂s > 0 for all a ∈ [0, 1].

4. For all s ∈ (0, 1), ∂2C(a, s)/∂s2 satisfies ∂2C(a, s)/∂s2 ≤ 0 for all a ∈ [0, 1].
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While Definitions 1 and 2 involves only weak regularity conditions, Definition 3

imposes two nontrivial restrictions on the joint distribution of signals and values. First,

Condition 3 of Definition 3 ensures that the support of Vi is invariant to the signal

realization Si = s drawn by bidder i. In particular, this rules out the Samuelson

(1985) assumption of perfect pre-entry information, although the model can approach

this arbitrarily closely as a limit. Second, noting that F (v|s) = ∂C(F (v),s)
∂s , Condition 4

of Definition 3 implies F (v|s′) ≤ F (v|s) for all s′ > s. In other words, the distribution of

Vi conditional on Si is stochastically ordered in Si in the sense that higher realizations of

pre-entry signals lead prospective entrants to expect (weakly) stochastically increasing

distributions of post-entry values.

Two further comments on this structure should be noted here. First, the assump-

tions on Fvs embedded in Definitions 2 and 3 closely parallel the assumptions on Fvs

maintained in GL (2014), with one notable difference: we assume that Fvs admits a

positive joint density on [0, v̄] × [0, 1], whereas GL (2014) impose somewhat weaker

smoothness restrictions on Fvs. The main practical implication is that GL (2014) for-

mally nest the perfectly selective Samuelson (1985) model whereas we only approach

it as a limit. Second, although to maintain consistency with prior work (Ye (2007),

Marmer, Shneyerov, and Xu (2013), GL (2014)) we use the “Affiliated Signal” label,

in fact we neither need nor assume affiliation between signals and values. The weaker

assumption of stochastic ordering is sufficient for all results.

2.2 Equilibrium

We seek a symmetric monotone Bayesian Nash equilibrium in our two-stage auction

game. Suppose that Stage 1 entry involves an entry threshold s̄ such that bidder j

enters if and only if Sj ≥ s̄; note that any monotone equilibrium must involve such an

entry rule. For each s̄ ∈ [0, 1), we seek a strictly increasing bidding strategy β(·|N, s̄)

such that bidder i with valuation vi optimally bids β(vi|N, s̄) when facing N − 1 rivals

who enter according to s̄ and bid according to β(·|N, s̄).

Let Ψ(·|N, s̄) be the c.d.f. of the maximum valuation among rival entrants when
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i’s N − 1 rivals enter according to threshold s̄:

Ψ(y|N, s̄) = [s̄+ (1− s̄)F (y|sj ≥ s̄)]N−1,

where F (·|sj ≥ s̄) denotes the c.d.f. of rival j’s valuation conditional on choosing to

enter at threshold s̄:

F (y|sj ≥ s̄) =
1

1− s̄

∫ 1

s̄
F (y|t) dt.

Let πi(yi, vi; s̄) be the expected interim profit of an entrant with valuation vi who bids

as if his type were yi against rivals entering according to s̄ and bidding according to

β(·|N, s̄). Following Li, Lu and Zhao (2014), we can express πi(yi, vi; s̄) as follows:

πN (yi, vi; s̄) = U(vi − β(yi|N, s̄))Ψ(yi|N, s̄) + u(w0 − c).

Taking a first-order condition with respect to yi, enforcing the equilibrium condition

yi = vi, and solving for βv(·|N, s̄), we conclude that β(·|N, s̄) must satisfy

βv(v|N, s̄) = λ(vi − β(vi|N, s̄))
Ψv(v|N, s̄)
Ψ(v|N, s̄)

, (1)

where as above λ(x) ≡ U(x)/U ′(x). Note that we can rewrite

Ψv(v|N, s̄)
Ψ(v|N, s̄)

=
(N − 1)(1− s̄)f(v|sj ≥ s̄)
s̄+ (1− s̄)F (v|sj ≥ s̄)

.

Substituting into the differential equation (1) and imposing the boundary condition

β(r|N, s̄) = r, we obtain an initial value problem characterizing β(·|N, s̄):

β(r|N, s̄) = r,

βv(v|N, s̄) = λ(v − β(v|N, s̄))(N − 1)(1− s̄)f(v|sj ≥ s̄)
s̄+ (1− s̄)F (v|sj ≥ s̄)

, v ∈ [r, v̄]. (2)

Li, Lu, and Zhao (2014) show that (2) yields a unique solution β(·|N, s̄) which is

increasing in v, increasing in N , and decreasing in s̄. From this, it follows that expected
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equilibrium Stage 2 profit π∗N (vi; s̄) ≡ πN (vi, vi; s̄) will be increasing in vi, decreasing

in N , and increasing in s̄.

Now consider the Stage 1 entry decision of potential bidder i with signal si facing

N−1 potential rivals who enter according to s̄ and bid according to β(·|N, s̄). Recalling

that i earns expected payoff u(w0) from staying out, the change in payoff i expects

from entry is

Π(si, s̄, N) =

∫ v̄

0
U(v − β(v|N, s̄))Ψ(v|N, s̄) dF (v|si) + u(w0 − c)− u(w0),

which we may equivalently rewrite as

Π(si, s̄, N) =

∫ v̄

0
U(v − β(v|N, s̄))Ψ(v|N, s̄) dF (v|si)− U(c). (3)

Finally, let s∗N be the signal threshold characterizing equilibrium Stage 1 entry at

competition N . Clearly, a bidder with Π(si, s
∗
N , N) > 0 will enter with certainty, and

conversely for Π(si, s
∗
N , N) < 0. At any equilibrium with nontrivial entry, s∗N must

therefore be such that a bidder with signal si = s∗N is just indifferent to entry:

Π(s∗N , s
∗
N , N) = 0. (4)

Li, Lu, and Zhao (2014) show that Π(si, s̄, N) is increasing in si, strictly increasing in s̄,

and decreasing in N . Hence Equation (4) will uniquely determine s∗N .16 Furthermore,

given rival entry according to s∗N ∈ [0, 1), equilibrium bidding behavior is uniquely

described by the strategy β(·|N, s∗N ) derived above. We thereby conclude:

Theorem 1 (Li, Lu and Zhao (2014)). Suppose that U ∈ U , F ∈ F , and C ∈ C. Then

there exists a unique symmetric monotone pure strategy Bayesian Nash equilibrium in

the two-stage auction game. The equilibrium bidding strategy β(·|N, s∗N ) is the unique

solution to the initial value problem (2) with s̄ = s∗N . The equilibrium entry threshold

16More precisely, either Π(0, 0, N) > 0 and all bidders enter, Π(1, 1, N) < 0 and no bidder enters, or there
is a unique solution s∗N to (4).
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s∗N is uniquely determined as follows:

• If Π(0, 0, N) > 0, then s∗N = 0 and all bidders enter.

• If Π(1, 1, N) > 0, then s∗N = 1 and no bidder enters.

• Otherwise, s∗N is the unique solution to the breakeven condition Π(s∗N , s
∗
N , N) = 0.

Furthermore, if N ′ > N then s∗N ′ ≥ s∗N , and in particular s∗N ′ ∈ (s∗N , 1) if s∗N ∈ (0, 1).

Proof. See Li, Lu, and Zhao (2014).

We next outline the specific identification problem analyzed in this paper.

3 The identification problem with excludable N

As in GPV (2009), CGPV (2011), and GL (2014), any meaningful analysis of identi-

fication must begin by imposing some form of exclusion restriction; without this we

could identify neither risk aversion nor selection, let alone both. As a point of depar-

ture for our identification analysis, we follow GL (2014) in assuming that variation in

potential competition N is excludable in the sense that model primitives are invariant

to realizations of N .17 Excludable N directly extends the core identifying restriction

of GPV (2009) to environments with entry. It also follows several prior studies using

variation in N for auction-related hypothesis testing: for instance, Haile, Hong, and

Shum (2003), use it to test for affiliated values and Marmer, Shneyerov, and Xu (2013)

use it to test competing entry specifications. This section describes the identification

problem arising under excludable variation in N , focusing on predictions generated by

the bidding model. The next two sections translate these predictions into identified

sets for model primitives under restrictions on U and C respectively.

17Gentry and Li (2014) also introduce a factor Z assumed to shift entry costs but not the joint signal-value
distribution. In a risk-neutral context, they show that variation in this factor can support point identification
of model primitives. When bidders are risk averse, however, variation in entry costs will also affect the utility
function characterizing second-stage bidding. While it may be possible to extend the arguments developed
here to establish identification in this case, we have not attempted to do so as we believe the underlying
exclusion restriction is of primarily theoretical interest. As we discuss in more detail in the conclusion,
however, in environments with asymmetric bidders one could also take Z to be the set of rival types, and in
this case continuous variation in Z could yield point identification.
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3.1 Identifying assumptions

Suppose that the econometrician has access to a large cross section of auctions from

data generating process L, where for each auction l the following variables are observed:

number of potential competitors Nl, number of entrants nl, the vector of submitted

bids bl. As usual, all results extend immediately conditional on any further set of

auction-level covariates Xl.

As described above, we here assume that potential competition is excludable in the

sense that model primitives are invariant to realizations of N :

Assumption 1. For all N ∈ N , U(x|N) = U0(x), F (v|N) = F0(v), C(a, s|N) =

C0(a, s), and c(N) = c0(z).

We interpret observed entry and bidding outcomes as arising from symmetric Bayesian

Nash Equilibrium play in a cross-section of auctions identical up to observables. We

impose the following (weak) regularity conditions on equilibrium bidding behavior:

Assumption 2. U0 ∈ U , F0 ∈ F , and C0 ∈ C.

Assumption 3. For all distinct N,M ∈ L, equilibrium bid strategies β(·;N, s∗N ) and

β(·;M, s∗M ) have no more than finitely many points of intersection.

Following GL (2014), the structure we consider here can readily be relaxed to

accommodate unobserved auction heterogeneity, interpreted as an auction-level value

shifter known to bidders but not the econometrician. So long as some variation in N

remains after conditioning on the auction-level unobservable, all results below extend

to this much more general case. As the details of this extension closely parallel GL

(2014), we simply sketch main ideas in Section 8.

3.2 Directly identified objects

Let K denote the cardinality of N and N1, ..., NK denote the elements of N , ordered

such that N1 < N2 < ...NK . For each k ∈ K ≡ {1, ...,K}, let sk be the entry threshold,

Fk = F (·|si ≥ sk) be the distribution of valuations among entrants, and Gk be the
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distribution of bids generated by play of the the symmetric Bayesian Nash Equilibrium

of the AS-RA model at competition Nk and primitives (U0, C0, F0, c0). Similarly, for

each k ∈ K, let bk(·) be the quantile function of Gk(·) and vk(·) be the quantile function

of Fk. Finally, let v0 be the quantile function of the ex ante value distribution F0(·).

We assume K ≥ 3 throughout; while slightly more restrictive than GPV (2009) (who

require only K ≥ 2), this constraint is unlikely to be binding in applications.

As usual, observation of bids at each competition level Nk will directly identify

Gk(·) for each k ∈ K. Similarly, by our normalization Si ∼ U [0, 1], we have

sk = 1− E(n|Nk)

Nk
.

Process L thus directly identifies the equilibrium bid distribution Gk(·) and the equi-

librium entry threshold sk prevailing at each competition level k ∈ K. For purposes of

our identification analysis, we take these objects as known.

3.3 The bid-stage identification problem

Formally, the sharp identification problem to characterize the set of primitives (U,C, F, c)

consistent with observed entry and bidding behavior given excludable variation in N .

In practice, however, knowledge of c0 follows directly from knowledge of (U0, C0, F0)

through the equilibrium entry condition (4). Furthermore, while in principle the entry

condition (4) does convey some information on bid-stage primitives (U0, C0, F0), GL

(2014)’s analysis of the risk-neutral case suggests that this information is typically of

little practical value. We thus focus here on what we call the bid-stage identification

problem: recovering bid-relevant primitives from identified bid distributions taking ob-

served entry behavior as given. This turns out to lead to a much cleaner and (in our

view) more useful characterization of primitives consistent with bid-stage data.

In particular, given our focus on bid-stage identification, we can reframe the prob-

lem as follows. Taking entry behavior as given, U0 matters for bid-stage behavior only

through λ−1
0 ≡ U0/U

′
0. We therefore follow GPV (2009) in framing bid-stage identifi-
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cation in terms of λ−1
0 rather than U0; since U0 is identified from λ−1

0 up to location

and scale normalizations, this involves no loss of generality. Formally, let Λ−1 be the

set of functions λ−1 such that λ−1 = [U/U ′]−1 for some U ∈ U . We call each tuple

(λ−1, C, F ) ∈ Λ−1 × C × F a candidate bidding structure for process L. We say that a

candidate bidding structure rationalizes bidding behavior if for each k ∈ K the structure

(λ−1, C, F ) rationalizes bid distribution Gk taking sk and Nk as given. The bid-stage

identification problem is then to characterize the set of candidate bidding structures

(λ−1, C, F ) rationalizing bidding behavior within the primitive space Λ−1×C×F , with

(bid-stage) point identification following if this set is a singleton.

3.4 Quantile inverse bidding function

We next derive the key equilibrium restriction linking the observed bid distributions

G1, ..., GK to the latent value distributions F1, ..., FK prevailing at competition levels

N1, ..., NK . Toward this end, we first rearrange Equation (2) to obtain

λ0(v − β(v;Nk, sk)) =
sk + (1− sk)Fk(v)

(Nk − 1)(1− sk)fk(v)
βv(v|Nk, sk).

Now following GPV (2009), apply the change of variables bi = β(vi;Nk, sk) to obtain

λ0(vi − bi) =
sk + (1− sk)Gk(bi)

(Nk − 1)(1− sk)gk(bi)
.

Concavity of U0 implies λ′0(x) = 1−U0(x)/U0(x)′′ > 1, so we can invert λ0(·) to obtain

an equilibrium inverse bid function of the form:

vi = bi + λ−1
0

(
sk + (1− sk)Gk(bi)

(Nk − 1)(1− sk)gk(bi)

)
. (5)

Finally, re-expressing Equation (5) in terms of quantiles, we obtain an equilibrium

quantile inverse bidding function paralleling GPV (2009):

vk(α) = bk(α) + λ−1
0 (Rk(α)), (6)
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where Rk(α) indexes the equilibrium bid markup set by an entrant drawing value

vi = vk(α) against competition Nk:

Rk(α) ≡ sk + (1− sk)α
(Nk − 1)(1− sk)gk(bk(α))

. (7)

Note that identification of sk, Gk implies identification of bk, Rk and hence identification

of the right-hand side of (6) up to λ−1
0 for all k = 1...,K.

4 Identification under restrictions on utility

In exploring bid-stage identification of the AS-RA model, we begin with the case in

which the researcher is willing to impose some structure on the latent utility function

U0. In particular, suppose that U0 is such that the true markup function λ−1
0 can

be represented as a member of some known family Λ−1
Γ ⊂ Λ−1, with elements of Λ−1

Γ

indexed by some (finite- or infinite-dimensional) parameter vector γ ∈ Γ:

Assumption 4. λ−1
0 = λ−1(·; γ0) for some γ0 ∈ Γ, with Γ a known finite- or infinite-

dimensional parameter space.

Note that this notation imposes no structure on Γ and hence in fact is fully general;

to nest the special case of no restrictions on λ−1
0 , we can simply take Γ = Λ−1. In this

case the analysis below will characterize the sharp nonparametric bid-stage identified

set. We introduce the generic parameter space Γ to permit a unified treatment of

identification under any class of restrictions on λ−1
0 .

4.1 Bid-stage identified set with excludable N

Assuming λ−1
0 ∈ Λ−1

Γ , we now turn to consider restrictions on (γ0, C0, F0) induced by

bid-stage behavior when variation in N is excludable. Toward this end, take γ ∈ Γ as

given, and let ṽ1, ..., ṽK be the unique candidates for v1, ..., vK induced by the quantile
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inverse bidding function (6) under the hypothesis γ = γ0:

ṽk(a; γ) ≡ bk(a) + λ−1(Rk(a); γ) for all k ∈ {1, ...,K}. (8)

Observe that ṽ1, ..., ṽK are identified up to γ and well-defined for any γ ∈ Γ, and by

construction γ = γ0 implies ṽk = vk for all k. Furthermore, from above, equilibrium

bidding implies Rk(0) = 0, bk(0) = 0, and bk(·) and Rk(·) differentiable for all k. Hence

for all γ ∈ Γ, ṽk(·; γ) will be differentiable with ṽk(0; γ) = 0 for each k = 1, ...,K.

Now observe that if we take λ−1
0 and entry behavior as given, primitives (C0, F0)

influence bidding behavior only through the latent quantile functions v1, ..., vK , with the

quantile inverse bidding function (6) equivalent to the differential equation (1) defining

equilibrium bid strategies. Hence to determine whether any conjectured parameter

γ ∈ Γ is consistent with bid-stage observables, it is sufficient to determine whether

there exists a structure (C,F ) ∈ C×F consistent with the candidate quantile functions

ṽ1, ..., ṽK generated by γ through (8). This turns out to reduce to a set of three directly

verifiable restrictions on ṽ1, ..., ṽK , leading to a relatively simple characterization of the

sharp bid-stage identified set. We state this result formally as follows:

Definition 4. For any γ ∈ Γ, we say the pair (C,F ) ∈ C × F rationalizes bid-stage

observables at γ if the triple (γ,C, F ) rationalizes bid-stage observables.

Theorem 2. Fix γ ∈ Γ, let ṽ1, ..., ṽK be the candidate quantile functions derived from

γ through (8), and let ṽ−1
1 , ..., ṽ−1

K be pseudo-inverses of ṽ1, ..., ṽK respectively. Then for

each γ ∈ Γ, there exists a structure (C,F ) ∈ C × F rationalizing bid-stage observables

at γ if and only if all of the following hold:

1. ṽk is strictly increasing for all k = 1, ...,K, with ṽ1(1) = ṽ2(1) = ... = ṽK(1).

2. For all k = 1, ..,K − 1, the functions ṽ−1
k , ṽ−1

k+1 are such that

(1− sk) ·
d

dy
ṽ−1
k (y) > (1− sk+1) · d

dy
ṽ−1
k+1(y) for all y ∈ (ṽk(0), ṽk(1)).
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3. For all k = 2, ...,K − 1, the functions ṽ−1
k−1, ṽ−1

k , and ṽ−1
k+1 are such that

1 ≥
(1− sk−1)ṽ−1

k−1 − (1− sk)ṽ−1
k

sk − sk−1
≥

(1− sk)ṽ−1
k − (1− sk+1)ṽ−1

k+1

sk+1 − sk
≥ ṽ−1

K ≥ 0.

Furthermore, in this case, the set of (C̃, F̃ ) ∈ C ×F rationalizing bid-stage observables

at γ is the set of (C̃, F̃ ) ∈ C × F such that for all k = 1, ...,K:

ṽ−1
k (y; γ) =

F̃ (y)− C̃(F (y), s)

1− sk
for all y ∈ [ṽk(0; γ), ṽk(1; γ)]; (9)

i.e. the set of structures (C̃, F̃ ) generating ex post quantile functions ṽ1, ..., ṽK .

Proof. In Appendix.

Recall that ṽ1, ..., ṽK are differentiable for any γ ∈ Γ. Hence Condition 1 of Theorem 2

implies that the functions ṽ−1
1 , ..., ṽ−1

K are continuous on [ṽ1(0), ṽ1(1)] and differentiable

on (ṽ1(0), ṽ1(1)). This in turn ensures that Conditions 2 and 3 are well defined.

Now consider how the characterization of Theorem 2 helps to simplify analysis of

the sharp bid-stage identified set. Recall that if we set Γ = Λ−1 then Theorem 2 in

fact summarizes nonparametric restrictions generated by the bidding model. While

construction of the identified set corresponding to these restrictions is nontrivial, The-

orem 2 implies that we can reduce the problem of search over the full primitive space

Λ−1 × C × F to that of search over a set of one-dimensional functions Λ−1. Although

still challenging, the latter problem is orders of magnitude easier, especially since for

any λ−1 ∈ Λ−1 existence of (C̃, F̃ ) rationalizing bid-stage behavior is equivalent to a

set of readily verifiable restrictions on the directly identified objects ṽ1, ..., ṽK . This in

turn provides a basis for numerical approximation of the sharp bid-stage identified set

for λ−1
0 , for instance by search over a sequence of sieve space approximating Λ−1 for

the set of elements satisfying the conditions of Theorem 2. Each element of this set

will then correspond to a set of tuples (C,F ) ∈ C×F satisfying Equation (9), with the

set of all such tuples approximating the sharp bid-stage identified set.

To illustrate the practical contribution of Theorem 2, we have constructed a series of
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numerical simulations implementing the sieve approximation algorithm sketched above.

In these simulations, we first construct a sieve space Λ̃−1 approximating Λ−1: here the

space of shape-constrained Bernstein polynomials considered by Zincenko (2014). We

then analyze the set of polynomials λ̃−1 within Λ̃−1 at which Conditions 1-3 of Theorem

2 approximately hold. Results of this exercise strongly confirm the relevance of the

bounds in Theorem 2: while λ−1
0 is clearly set identified, bounds in most cases are

surprisingly tight, and (in particular) are clearly bounded away from risk neutrality for

even moderately concave U(·). While we do not explore inference based on Theorem 2

in detail here, we believe this represents a promising direction for future research, with

our simulation results in particular suggesting the feasibility of constructing tests for

risk aversion robust even in the presence of endogenous and arbitrarily selective entry.

We refer interested readers to Appendix B for further discussion.

4.2 Bid-stage identification with finite-dimensional γ0

Now to the structure outlined above add the assumption that the parameter vector

γ is finite-dimensional; i.e. that Γ ⊂ RQ for some Q < ∞. Let Γ̂ denote the set of

parameters γ ∈ Γ consistent with bid-stage observables. From Theorem 2, we can have

γ ∈ Γ̂ only if ṽ1(1, γ) = ṽk(1, γ) for all k = 1, ...,K. Defining b̄k ≡ bk(1) and taking

v̄ ≡ ṽ1(1) as an auxiliary parameter to be identified, we can express this restriction as

v̄ = b̄k + λ−1(Rk(1); γ0), k = 1, ...,K.

But recalling that Rk(1) ≡ 1/[(N − 1)(1 − sk)gk(b̄k)] and rearranging, this system is

precisely the system of identifying restrictions considered in CGPV (2011), extended

to accommodate endogenous and selective entry:

(Nk − 1)(1− sk)gk(b̄k) =
1

λ(v̄ − b̄k; γ0)
, k = 1, ...,K. (10)
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The left-hand side of (10) is identified for each k = 1, ...,K, with the right-hand side

identified up to v̄ and the unknown parameters γ0. Pooling restrictions of the form

(10) across k, we thus obtain a system of K equations in the Q+ 1 unknowns (γ0, v̄),

which for K ≥ Q+1 will generally overidentify (γ0, v̄). For purposes of this subsection,

we follow CGPV (2011) in maintaining this as a regularity condition:

Condition 1. The system of equations

(Nk − 1)(1− sk)gk(b̄k) =
1

λ(v̄ − b̄k; γ0)
, k = 1, ...,K

has a unique solution (γ0, v̄) ∈ Γ× (0,∞).

In other words, under assumptions paralleling those in CGPV (2011), equilibrium

behavior at the top quantile of ex post valuations will be sufficient to identify γ0

for any form of selection into entry, with identification of γ0 yielding identification

of F1, ..., FK through the quantile inverse bid function (8). As in GL (2014), this

knowledge is insufficient to identify F0, C0, and c0, and hence the model as a whole

will be only set identified. Given knowledge of γ0 and F1, ..., FK , however, the problem

of partially identifying remaining primitives reduces in essence to that analyzed in GL

(2014). Extending Propositions 3 and 4 developed there, we therefore conclude:

Proposition 1. Under Assumptions 1-2 and Condition 1, γ0 and F1, ..., FK are point

identified while remaining primitives are set identified. In particular, identified bounds

on the conditional c.d.f. F (v|Si = s) and the entry cost c0 may be obtained as follows:

• Let F+(·|·) and F−(·|·) be defined as in Proposition 3 of Gentry and Li (2014).

Then F+(·|s) and F−(·|s) are identified, describe distributions over [0, v̄], and

bound F (·|si = s) for all s ∈ [0, 1):

F+(·|s) ≥ F (·|Si = s) ≥ F−(·|s) for all s ∈ [0, 1).
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• For each k ∈ K, let constants Û+
k and Û−k be defined as follows:

Û+
k =

∫ v̄

0
U(λ−1(Rk(Fk(v)); γ0); γ0) ·Ψ(v|Nk, sk) dF

+(v|sk)

Û−k =

∫ v̄

0
U(λ−1(Rk(Fk(v)); γ0); γ0) ·Ψ(v|Nk, sk) dF

+(v|sk).

Then Û+
k and Û−k are identified and yield identified bounds on c0:

min
k
U−1(Û+

k ; γ0) ≥ c0 ≥ max
k

U−1(Û−k ; γ0).

Recall that the system (10) underlying Proposition 1 yields identification of γ0

without respect to (C0, F0). Given a parametric form for U0 (e.g. Constant Absolute

Risk Aversion or Constant Relative Risk Aversion), the system (10) thus provides a

basis for testing the null hypothesis of risk aversion under any assumptions on the

nature of selection into entry. Furthermore, following Gentry and Li (2012b), the

bounds on primitives in Proposition 1 can be shown to imply identified bounds on

expected revenue under a variety of counterfactual policy choices, such as reserve prices

and entry fees. We point interested readers to Gentry and Li (2013) for further details.18

5 Identification under restrictions on C0

While parametric assumption on utility are widely employed, other classes of restric-

tions may also prove fruitful in applications. In particular, as noted by GL (2014) in

a risk-neutral context, a parametric family for the signal-value copula C0 may have

considerable identifying power in auctions with selective entry: intuitively, such struc-

ture helps to link latent quantile functions v1, ..., vK across competition levels k, thereby

directly addressing the main challenge induced by selection. Motivated by this observa-

18In principle, one could also exploit bounds on F (·|si = s) to derive bounds on deep structural primitives
F0 and C0. Observe, however, that γ0, F (·|si = s) and c0 are precisely the quantities needed to analyze
counterfactual entry and bidding behavior; once identified sets for these objects are known, implied bounds
on F0 and C0 will add nothing to policy analysis. We thus conclude the analysis in this section at the
statement of Proposition 1, without developing bounds on F0 and C0 in detail.
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tion, this section explores semiparametric identification in the AS-RA model assuming

the true copula C0 belongs to a known family indexed by parameter vector θ:

Assumption 5. C0(a, s) = Cθ0(a, s), with the parameter vector θ0 a member of some

known parameter space Θ.

GL (2014) proposed a parametric signal-value copula as a way to obtain point iden-

tification in the AS model with risk neutral bidders; see footnote 18 in GL (2014) for

details. We here show that this assumption is in fact substantially more powerful than

initially envisioned by GL (2014), with a standard finite-dimensional family for Cθ typ-

ically sufficient to restore point identification of model primitives not only under risk

neutrality but also in the presence of an arbitrary (nonparametric) markup function

λ−1
0 .

Note that while our primary interest (Sections 5.3 and 5.4) will be cases where Θ

is finite-dimensional, Assumption 5 imposes no structure on the parameter space Θ

and hence in fact is fully general. For instance, if C0 is assumed to be Archimedean,

then one could take Θ to be the space of Archimedean generator functions, and if C0

is simply assumed to be unrestricted, one could trivially set Θ = C. In this sense the

results in Sections 5.1 and 5.2 apply without loss of generality.

5.1 Bid-stage identification up to θ0

Pooling quantile inverse bidding functions of the form (6) across k ∈ K, we obtain a

system of K restrictions induced by equilibrium bidding with selective entry:

v1(α) = b1(α) + λ−1
0 (R1(α)),

... (11)

vK(α) = bK(α) + λ−1
0 (RK(α)).

If entry were non-selective, then we would then have v0(α) = vk(α) for all k ∈ K

and the identification problem would be trivial: we would need only rearrange (11) to
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obtain the compatibility condition

bl(α) + λ−1
0 (Rl(α)) = bk(α) + λ−1

0 (Rk(α)) for all k, l ∈ K. (12)

The arguments in GPV (2009) would then yield identification of λ−1
0 on the support

of the data, with identification of F0 following through the left-hand side of (11).

Unfortunately, in the presence of selection this simple argument is no longer feasible:

the αth quantile of bids at competition Nk now corresponds to latent value vk(α) rather

than latent value v0(α), where we know only that vk(α) ≤ vl(α) for k < l. Hence in

contrast to GPV (2009), we can no longer compare bids across different competition

levels directly. But observe that for each k ∈ K we can rewrite the latent distribution

Fk corresponding to latent quantile function vk as follows:

Fk(y) ≡ F (y|si ≥ sk) =
1

1− sk

∫ 1

sk

F (y|t)dt

=
F0(y)− Fvs(v, sk)

1− sk

=
F0(y)− C0(F0(y), sk)

1− sk
. (13)

Applying the change of variables y = v0(a) on both sides of this equation gives:

Fk(v0(a)) =
a− C0(a, sk)

1− sk
≡ hk0(a), k = 1, ...,K. (14)

Inverting Fk on both sides of (14) yields v0(a) ≡ vk(h
k
0(a)) for all k = 1, ...,K. Hence

applying the change of variables α = hk0(a) in each line of (11) we ultimately obtain:

v0(a) = bk(h
k
0(a)) + λ−1

0 (Rk(h
k
0(a))), k = 1, ...,K. (15)

But the left-hand side of (15) is now invariant to k! In other words, reindexing each

inverse bid function of the form (6) by its corresponding quantile mapping hk0, we

transform the initially incompatible system (11) into a system for which GPV (2009)
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style compatibility holds:

bk(h
k
0(a)) + λ−1

0 (Rk(h
k
0(a))) = bl(h

l
0(a)) + λ−1

0 (Rk(h
l
0(a))) for all k, l ∈ K. (16)

In practice, of course, C0 is unknown, hence the quantile mappings h1
0, ..., h

K
0 are also

unknown and direct application of (15) is infeasible. But taking θ ∈ Θ as given,

there exists a unique set of quantile transformations (h1
θ, ..., h

K
θ ) consistent with the

hypothesis θ = θ0:

hkθ(a) ≡ a− Cθ(a, sk)
1− sk

, k = 1, ...,K.

Clearly hkθ0 ≡ h
k
0 by construction, so under the hypothesis θ = θ0, we must have:

bk(h
k
θ(a)) + λ−1

0 (Rk(h
k
θ(a))) = bl(h

l
θ(a)) + λ−1

0 (Rl(h
l
θ(a))) for all k, l ∈ K. (17)

Since these identities turn on a particular hypothesis regarding θ0, we refer to restric-

tions of the form (17) as conjectured compatibility conditions implied by the bidding

model. Recall that the form of Cθ is known (up to θ0) by Assumption 5, with s1, ..., sK

directly identified by equilibrium entry. Hence taking θ ∈ Θ as given both sides of (17)

are identified up to λ−1
0 .

Note that for θ 6= θ0 the conjectured compatibility condition (17) will misspecify

the true equilibrium bidding relationship (16). Hence in contrast to GPV (2009), for

arbitrary θ ∈ Θ and k, l ∈ K there need not exist a function λ−1
kl,θ ∈ Λ−1 satisfying

(17). But for any θ ∈ Θ for which such a function exists, the problem of recovering this

function from the conjectured compatibility condition (17) closely parallels the problem

of recovering the true markup function λ−1
0 from the true compatibility condition (16) –

a problem which we already know how to solve following GPV (2009). Building on this

intuition, we obtain this section’s main result: at any θ for which there exists a function

λ−1
kl,θ ∈ Λ−1 satisfying (17), this λ−1

kl,θ will be unique and constructively identified on its

domain in the data. Noting that λ−1
0 satisfies (17) at θ = θ0 and that identification of

(θ0, λ
−1
0 ) yields identification of F0 through (15), this in turn implies that identification
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of (θ0, λ
−1
0 , F0) is equivalent to identification of θ0.

More formally, define r̄k ≡ supa∈[0,1]Rk(a), r̄kl ≡ max{r̄k, r̄l}, and r̄ ≡ maxk r̄k,

and let Λ−1[0, r] be the set of functions obtained by restricting elements of Λ−1 to the

domain [0, r]. We are now in position to state this section’s main result:

Theorem 3. Consider any distinct k, l ∈ K and any θ ∈ Θ such that:

1. There exists a function λ−1
kl,θ ∈ Λ−1[0, r̄kl] at which (17) holds for all a ∈ [0, 1];

2. Reindexed bid quantiles bk(h
k
θ(·)), bl(hlθ(·)) satisfy the same finite intersection

condition as equilibrium bids (Assumption 3).

Then the function λ−1
kl,θ satisfying (17) is unique within Λ−1[0, r̄kl] and constructively

identified on [0, r̄kl] by bid-stage behavior at k, l given θ.

Note that if equilibrium bid strategies satisfy finite intersection (Assumption 3) then

Conditions 1 and 2 of Theorem 3 are in fact necessary for θ = θ0: if θ = θ0, then

λ−1
0 ∈ Λ−1 clearly satisfies (17), and since vk(h

k
θ0

(a)) ≡ v0(a) and v0(·) is strictly

increasing finite intersection of β(·|Nk, sk), β(·|Nl, sl) implies finite intersection of

bk(h
k
θ0

(·)), bl(hlθ0(·)). Hence in practice these conditions involve no loss of generality.

For our purposes, Theorem 3 has two major implications. First, recall that identifi-

cation of λ−1
0 implies identification of F0 through (15). Hence Theorem 3 implies that

given any viable candidate θ for θ0 there exists exactly one structure (λ−1
kl,θ, Fkl,θ) ∈

Λ−1[0, r̄kl] × F consistent with bid-stage behavior at any k, l ∈ K, with this struc-

ture constructively identified in terms of bid-stage observables. In other words, the

problem of identifying primitives θ0 × λ−1
0 × F0 within the infinite-dimensional space

Θ×Λ−1[0, r̄]×F reduces to the vastly simpler problem of identifying viable candidates

for θ0 within the (often finite-dimensional) set Θ. Second, at θ = θ0 the same structure

(λ−1
0 , F0) must rationalize bid-stage behavior at all competition pairs k, l ∈ K. Since

for arbitrary θ 6= θ0 the candidate λ−1
kl,θ obtained at competition pair kl will typically

strictly diverge from the candidate λ−1
jl,θ obtained at competition pair jl, this in turn

represents a very powerful identifying restriction on the underlying copula parameter

θ0. The next two subsections develop the implications of this restriction in detail.
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5.2 Bid-stage identified set for θ0

In this section we seek to characterize the bid-stage identified set for θ0; that is, the set

of θ ∈ Θ potentially consistent with bid-stage observables. Building on the discussion

in Section 5.1, we formally define this set as follows:

Definition 5. Let the bid-stage identified set ΘI for θ0 be the set of θ ∈ Θ such that:

1. For all distinct k, l ∈ K, the functions bk(h
k
θ(·)), bl(hlθ(·)) satisfy finite intersection;

2. There exist (λ−1, F ) ∈ Λ−1 ×F such that for all k ∈ K:

F−1(a) = bk(h
k
θ(a)) + λ−1(Rk(h

k
θ(a))) for all a ∈ [0, 1]. (18)

Now consider restrictions on ΘI generated by bid-stage behavior. Choose l ∈ K such

that r̄l = r̄, and for each k ∈ K let Θ̃kl be the set of θ ∈ Θ satisfying the hypotheses

of Theorem 3: i.e. such that (i) there exists a function φ ∈ Λ−1[0, r̄kl] satisfying

the candidate compatibility condition (17) and (ii) reindexed bid functions satisfy the

same finite intersection condition as equilibrium bids. Clearly ΘI ∈ Θ̃kl for all k, l ∈ K,

and by Theorem 3 we know that for each k ∈ K and each θ ∈ Θ̃kl there exists a

unique, constructively identified candidate λ−1
kl,θ for λ−1

0 determined up to θ by bid-

stage behavior. Furthermore, by hypothesis, the same function λ−1
0 must rationalize

bid-stage behavior for all k ∈ K. In other words, at θ = θ0 we must have

sup
r∈[0,r̄]

|λ−1
jl,θ(r)− λ

−1
kl,θ(r)| = 0 for all j, k ∈ K\{l}. (19)

Define Θ̃ ≡ ∩Kk∈1Θ̃kl; note that Θ̃ is determined by observables (hence identified) with

ΘI ⊂ Θ̃. Let Θ̂ be the set of θ ∈ Θ̃ satisfying (19). We know that for all θ ∈ Θ̃

the functions λ−1
kl,θ, λ

−1
jl,θ are unique and constructively identified, hence Θ̂ is identified.

Furthermore, since (18) implies (19), we know ΘI ∈ Θ̂. The set Θ̂ thus provides a fully

general, directly identified outer bound on the bid-stage identified set ΘI :

Proposition 2. Define Θ̃ = ∩Kk∈1Θ̃kl and let Θ̂ be the set of θ ∈ Θ̃ satisfying (19).

Then Θ̃ and Θ̂ are identified with θ0 ∈ ΘI ⊂ Θ̂ (⊂ Θ̃).
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The outer bound Θ̂ is fully general, applying under any class of restrictions on C0 and

informative so long as K ≥ 3. One important special case of Proposition 2, however,

arises when the system (19) has a unique solution: i.e. Θ̂ = {θ0}. In this case identi-

fication of Θ̂ implies point identification of θ0 and therefore bid-stage identification of

(θ0, λ
−1
0 , F0) through Theorem 3.

As evident in the proof of Theorem 3, the system (19) is highly nonlinear, and

as usual with nonlinear equations it is difficult to provide formal sufficient conditions

under which (19) will have a unique solution. But note that so long as K ≥ 3 the

restrictions embodied in (19) in fact define an infinite system of identifying restrictions

on the unknown vector θ0: formally, a set of K − 2 equations in functions identified

up to θ0, each of which must hold pointwise on a continuum in R+. If C0 is left fully

unrestricted, even this infinite system (a set of K − 2 restrictions on the continuum

[0, r̄]) will still be of much lower cardinality than the parameter space Θ (a set of two-

dimensional functions from [0, 1] × [0, 1] to [0, 1]), hence θ0 will be only set identified.

But given any standard finite-dimensional family for C0, we expect the infinite system

(19) to be greatly overdetermined, leading to point identification of θ0 and therefore

bid-stage identification of (θ0, λ
−1
0 , F0). We next develop the intuition underlying this

claim.

5.3 Bid-stage identification with finite-dimensional θ0

Now to Assumption 5 add two further restrictions: the parameter space Θ is finite-

dimensional, and the family CΘ containing C0 is regular in the following sense:

Definition 6. For each θ ∈ Θ, let h1,−1
θ , ..., hK,−1

θ denote inverses of h1
θ, ..., h

K
θ respec-

tively.19 We say CΘ is regular if for all θ, θ′ ∈ Θ such that θ 6= θ′, the set

H(θ, θ′) ≡ {a ∈ [0, 1] : hk,−1
θ′ (hkθ(a)) 6= hl,−1

θ′ (hlθ(a)) for all k, l ∈ K}

has positive Lebesgue measure.

19Recall that hkθ(·) is strictly increasing, so hk,−1θ (·) exists.
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“Regularity” essentially requires the family CΘ to be such that different choices of θ

lead to differential changes in selection across different observed competition levels.

This property should hold trivially for any standard single-parameter copula family:

e.g. Gaussian or families in the Archimedean class (Gumbel, Frank, Clayton, etc). It

might fail in cases where, for instance, CΘ is specified such that some elements of θ

matter for C(·; sk) at only a subset of competition levels k ∈ K. For our purposes,

regularity of CΘ is useful mainly as a sufficient primitive condition guaranteeing that

the difference vk(h
k
θ(·))− vl(hlθ(·)) will vanish only at θ = θ0:

Lemma 1. Suppose that CΘ is regular. Then θ 6= θ0 implies vk(h
k
θ(·)) 6= vl(h

l
θ(·)) on a

set of positive measure in [0, 1].

Now consider the implications of this lemma for the system (19) underlying Proposition

2. Recall that in constructing λ−1
kl,θ(·) for given k, l ∈ K we start from the hypothesis

that the conjectured compatibility condition (17) reflects the true bidding relationship

(15). At θ = θ0, this hypothesis holds by construction and therefore λ−1
kl,θ(·) recovers

λ−1
0 (·). At θ 6= θ0, however, the conjectured relationship (17) will be systematically

misspecified ; whereas we construct λ−1
kl,θ(·) to satisfy

bk(h
k
θ(a)) + λ−1

kl,θ(Rk(h
k
θ(a))) = bl(h

l
θ(a)) + λ−1

kl,θ(Rl(h
l
θ(a))),

the true equilibrium bidding relationship will be given by

bk(h
k
θ(a)) + λ−1

0 (Rk(h
k
θ(a))) = bl(h

l
θ(a)) + λ−1

0 (Rl(h
l
θ(a))) +

(
vk(h

k
θ(a))− vl(hlθ(a))

)
.

If CΘ is regular, then for θ 6= θ0 we will have vk(h
k
θ(a)) 6= vl(h

l
θ(a)) on a set of positive

measure in [0, 1]. Hence at θ 6= θ0 the candidate markup function λ−1
kl,θ solving (17)

at each k, l must differ systematically from λ−1
0 . Furthermore, and more importantly,

the misspecification vk(h
k
θ(·)) − vl(h

l
θ(·)) latent in (17) will also vary systematically

with the particular k, l pair considered. Hence for θ 6= θ0 and j 6= k we will generally

have λ−1
θ,jl(·) 6= λ−1

θ,kl(·) on a set of positive measure. In other words, each functional
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equation of the form (19) will in fact induce a continuum of restrictions binding on each

element of θ0, and the resulting system will in general be greatly overdetermined in

the unknown parameters θ0. Identification of θ0 then reduces to the (weak) regularity

condition that the overdetermined system (19) has at most one solution, which in

practice could naturally be maintained as an assumption:

Condition 2. The system (19) has at most one solution in the parameter space Θ.

If one is willing to maintain Condition 2, then Theorem 3 and the inverse bidding

function (15) immediately yield bid-stage identification of (θ0, λ
−1
0 , F0), with identifi-

cation of c0 following through the breakeven condition (4). We thus view the system

(19) as a natural starting point for semiparametric inference within the AS-RA model,

which given any regular family for C0 will typically support point identification of all

primitives even when U and F are left completely nonparametric.

Several further comments on Condition 2 are worth noting here. First, note that

assumptions paralleling Condition 2 are widely maintained in applications; see, for

instance, Assumption A1(iv) in CGPV (2011) and virtually all work on nonlinear

moment condition models. Condition 2 simply formalizes the intuition that (barring

an extraordinarily pathological coincidence) an overdetermined system will have at

most one solution.20 Second, recall that the set of solutions Θ̂ to (19) is identified.

Hence in large samples Condition 2 is directly verifiable (e.g. by a simple grid search

over Θ). Third, in every simulation we have conducted to date, point identification of

θ0 in fact follows from a much weaker condition than Condition 2: at any k, l such that

sk, sl > 0, the set of θ ∈ Θ at which there exists any function λ−1
kl,θ satisfying (17) – i.e.

Θ̃kl defined above – has been a singleton.21 We thus see Condition 2 as both a (very)

20Note that for K ≥ 3 a parametric copula in fact induces a substantially greater degree of overdetermi-
nation than arises under parametric utility in CGPV (2011): K − 2 continuum restrictions in P parameters
versus K restrictions in P + 1 parameters.

21Intuitively, this holds because if entry is endogenous then equilibrium bid strategies for different Nk, Nl
will typically satisfy single crossing; in particular, for Nl > Nk, we will typically have βl(v|Nl, sl) <
βk(v|Nk, sk) for v close to 0 but βk(v|Nk, sk) < βl(v|Nl, sl) for v close to v̄. (See Li and Zheng (2009)
for a detailed discussion in a risk-neutral context.) In turn, this single crossing property aids identifica-
tion because for there to exist a function λ−1kl,θ satisfying the compatibility condition (17), we must have

Rk(hkθ(a)) = Rl(h
l
θ(a)) for any a such that bk(hkθ(a)) = bl(h

l
θ(a)) and vice versa. Furthermore, by construc-
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weak regularity condition on the underlying process and a natural starting point for

empirical research. In the event that search over Θ suggests multiple solutions in a

particular application, one could in principle fall back on inference about the identified

set Θ̂. In light of our simulation results, however, we believe it would be difficult (if not

impossible) to construct an example where such set inference is required in practice.22

5.4 Discussion

To conclude this section, it may be helpful to relate the analysis here to that of GPV

(2009). With exogenous entry, GPV (2009) show that bidding behavior at two compe-

tition levels nk, nl is sufficient to nonparametrically identify the markup function λ−1
0 .

Our Theorem 3 generalizes this finding to environments with selective entry, showing

that for any two competition levels Nk, Nl and any conjectured copula Cθ there exists

at most one markup function λ−1
kl,θ capable of rationalizing observed behavior at Nk, Nl,

with this function λ−1
kl,θ identified (up to θ) by bidding behavior at Nk, Nl. Proposition

2 extends this observation to accommodate a third competition level Nm, noting that

if θ = θ0 the candidate markup functions λ−1
kl,θ and λ−1

km,θ must coincide. This in turn

leads to a continuum of overidentifying restrictions which under regularity conditions

will point identify θ0. In other words, GPV (2009) establish point identification of the

model without entry based on only two competition levels; we use the overidentifying

third level to pin down the parameters θ governing entry. The key to this extension is

the quantile mapping (14), which allows us to recast the problem with selection in a

form analogous to GPV (2009). To our knowledge, this insight is novel in the literature.

It is also instructive to compare the analysis here with that of GL (2014). Working

tion, if bk, bl and Rk, Rl cross at any point, they must do so in opposite directions. Finally, changing θ always
shifts a given pair bk, Rk in parallel. Hence if (as in our examples) bid functions cross exactly once, at least
one of bk, bl or Rk, Rl will cross for any θ ∈ Θ, and so long as at least one of bk, bl or Rk, Rl cross then both
equations above must bind. This in turn induces a system of equations whose unknowns are the parameters
θ0 plus the unknown crossing point ākl, which in practice is almost always sufficient to pin down θ0.

22Indeed, one goal of this study was initially to develop a semiparametric inference procedure robust to
set identification of θ0. After working through the analysis above, however, we ultimately concluded that
such a procedure would be fundamentally uninteresting – at least in the setting considered here, we believe
it would be all but impossible to construct an example in which set inference would be required.
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within the AS entry framework but assuming risk-neutral bidders, GL (2014) show that

exogenous variation inN yields only partial identification of the copula dimension of the

model. They propose a parametric copula as one way this challenge could be addressed.

We have shown that this restriction is in fact far more powerful than initially envisioned

by GL (2014): it can restore point identification not only under risk neutrality but

under arbitrary nonparametric utility as well. This in turn opens the door to empirical

analysis unifying risk aversion and entry in ways to date unprecedented.

Finally, recall that a parametric form for C0 in fact leads to a set of continuum

restrictions on the unknown vector θ0. This suggests at least two intriguing possibilities

not explored in detail here. First, in cases where θ0 is finite-dimensional, access to a

large set of overidentifying restrictions suggests that the form of C0 is testable. Second,

given access to a continuum of overidentifying restrictions, one may in fact be able to

relax the assumption of finite θ0: by, for instance, taking C0 to be an Archimedean

copula with θ0 the unknown nonparametric generator function for C0. We leave both

extensions for future research.

6 A simple OLS-CRRA estimator

To illustrate how the formal identification results above map into practical strategies for

structural estimation, we next outline a simple semiparametric estimator for auctions

with both risk-averse bidders and selective entry. As above, we consider estimation

based on a sample of independent auctions identical up to potential competition N ,

with N excludable in the sense of Assumption 1. Following Section 5.3, we further

assume that C0 belongs to a known parametric family: i.e. estimation maintaining

Assumption 5 above. As we show in Section 5.3 this structure alone is sufficient for

semiparametric identification of remaining primitives. In practice, however, we expect

additional structure on U to substantially improve estimation performance in finite

samples. For the moment, therefore, we further assume that bidder preferences exhibit

constant relative risk aversion (CRRA) with risk-aversion parameter ρ0:
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Assumption 6 (CRRA utility). U(x) = x1−ρ0 , with c0 = w0 for all bidders.

The normalization c0 = w0 ensures that post-entry bidding behavior is well-described

by a standard CRRA bidding model. This parallels the structure typically maintained

in applications without entry, e.g. CGPV (2011). We consider estimation with a

parametric copula but fully nonparametric utility in Appendix C.

6.1 Nonparametric estimation of sk, bk, Rk

Given a sample of auctions ` = 1, ..., L, we estimate sk via a simple sample average:

ŝk = 1− 1

Nk

L∑
`=1

n`.

To obtain first-step estimates of bk, Rk, we first apply the local polynomial quantile

estimator of Fan, Li, and Pesendorfer (2015) (henceforth FLP) to obtain estimates

b̂k(·), b̂′k(·) for bk(·), b′k(·) respectively. Using the identity b′k(a) = 1/gk(bk(a)), we then

plug in estimators ŝk, b̂k(·), and b̂′k(·) to obtain a consistent first-step estimator for Rk:

R̂k(a) =
ŝk + (1− ŝk)a

(N − 1)(1− ŝk)
b̂′k(a).

In implementing the FLP procedure, we employ a triweight kernel specification:

κ(x) =
35

32
(1− x2)31[|x| ≤ 1].

We default to bandwidths of the form h(a) = bwc ·S
1
3 , where bwc is a scaling constant

and S is the number of observations in the relevant bid sample. For moderate to large

sample sizes, the resulting estimator performs well even at the boundaries so long as

the model is not greatly over-smoothed. One could in principle perform more robust

boundary correction as in Hickman and Hubbard (2014); we leave this as an extension.
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6.2 Minimum distance estimation of (ρ0, θ0)

Under Assumption 6, it is straightforward to show that λ−1
0 (x) is linear in x:

λ0(x) =
u(x)

u′(x)
=

x

1− ρ0
,

and therefore λ−1
0 (x) = (1 − ρ0)x. For any k, l ∈ K, the candidate compatibility

condition (17) therefore simplifies to:

b̃k,θ0(a) + (1− ρ0)R̃k,θ0(a) = b̃l,θ0(a) + (1− ρ0)R̃l,θ0(a), (20)

where b̃k,θ(a) ≡ b̂k(hkθ(a)), R̃k,θ(a) ≡ R̂k(hkθ(a)), and as defined above

hkθ(a) ≡ a− Cθ(a, ŝk)
1− ŝk

.

Minimum distance criterion Since Equation (20) must hold for all k, l ∈ {1, ...,K},

we can in principle form a wide range of estimation criteria based on (20). As a baseline,

we here simply average the left-hand side of (20) across l:

b̃k,θ0(a) + (1− ρ0)R̃k,θ0(a) = b̃1,θ0(a) + (1− ρ0)R̃1,θ0(a),

...

b̃k,θ0(a) + (1− ρ0)R̃k,θ0(a) = b̃K,θ0(a) + (1− ρ0)R̃K,θ0(a),

and therefore

∆b̃k,θ0(a) + (1− ρ0)∆R̃k,θ0(a) = 0, (21)
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where ∆b̃k,θ0(a) and ∆R̃k,θ0(a) denote differences between b̃k,θ0(a), R̃k,θ0(a) and their

respective means across k:

∆b̃k,θ0(a) = b̃k,θ0(a)− 1

K

K∑
l=1

b̃l,θ0(a),

∆R̃k,θ0(a) = R̃k,θ0(a)− 1

K

K∑
l=1

R̃l,θ0(a).

Squaring both sides of Equation (21), integrating across a, and summing across k, we

obtain a minimum-squared-error criterion for the unknown parameter (θ0, ρ0):

Q(ρ0, θ0) =
K∑
k=1

∫ 1

0
(∆b̃k,θ0(a) + (1− ρ0)∆R̃k,θ0(a))2 da. (22)

It would of course be straightforward to extend (22) to accommodate weights differing

by k or a. For now, however, we take the unweighted criterion (22) as a baseline.

OLS implementation To implement minimum distance estimation based on this

intuition, we first specify a discrete grid A ⊂ [0, 1] on which to approximate each

integral in the minimum-distance criterion (22). This yields the discrete approximation

Q̃A(ρ0, θ0) =
∑
k∈K

∑
a∈A

(
∆b̃k,θ(a) + (1− ρ)∆R̃k,θ(a)

)2
. (23)

Note that since the identity ∆b̃k,θ0(a) + (1 − ρ0)∆R̃k,θ0(a) = 0 must hold pointwise,

this discretized criterion is in fact a valid basis for estimation in its own right (i.e. we

need not require the grid to become arbitrarily fine). Further, for any θ, the parameter

ρ(θ) minimizing (23) given θ takes a simple OLS form:

ρ(θ) = 1−

(∑
k∈K

∑
a∈A

∆R̃k,θ(a)2

)−1(∑
k∈K

∑
a∈A
−∆R̃k,θ(a)∆b̃k,θ(a)

)
.

This in turn suggests a potential nested minimization algorithm. First, given θ, obtain

ρ(θ) via OLS of b̃k,θ(a) on −R̃k,θ(a) and return the value of the criterion (23). Then,

in the outer loop, search over θ to find the overall minimum of (23). This algorithm is
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fast, stable, and supports both derivative- and grid-based search over θ. Unfortunately,

in practice it may also be sensitive to noise in first-step estimates for ∆R̃k,θ(a) and

∆b̃k,θ(a). While this measurement error is clearly not classical, Monte Carlo analysis

suggests it has similar effects in terms of attenuating inner-loop OLS estimates.

As one way to ameliorate bias due to first-step noise, note that first-step estimates

of b′k(·) will typically contain substantially more noise than first-step estimates of bk(·).

Furthermore, while the analogy is imperfect, intuition from classical measurement error

suggests that noise in the OLS dependent variable will be much less problematic than

noise in the OLS regressor. We therefore ultimately implement estimation based on

the following (identification-equivalent) transformation of (23):

Q̃(ρ, θ) =
∑
k∈K

∑
a∈A

(∆R̃k,θ(a) + (1− ρ)−1∆b̃k,θ(a))2. (24)

The inner loop of our final algorithm thus involves OLS regression of ∆R̃k,θ(a) on

−∆b̃k,θ(a), with the coefficient on ∆b̃k,θ(a) interpreted as (1 − ρ(θ))−1. In the outer

loop, we substitute (1− ρ(θ))−1 into (24) and minimize the resulting objective over θ.

This reframed algorithm retains the speed and stability benefits outlined above, but

Monte Carlo analysis suggests that the reframed inner loop dramatically reduces bias

in finite samples. Note further that attenuation in the reframed problem tends to bias

(1 − ρ(θ))−1 downward and therefore ρ(θ) toward zero (risk-neutrality). Given that

some first-step bias is inevitable, this seems the appropriate direction in which to err.

7 Monte Carlo experiments

Finally, we explore a series of Monte Carlo experiments designed to evaluate the per-

formance of the simple OLS-CRRA estimator outlined in Section 6. Toward this end,

we adopt the following model specification. Bidders have CRRA utility with initial

wealth equal to entry cost: u0(x) = x1−ρ0 and c0 = w0. Dependence between signals
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and values is characterized by a Gumbel copula with dependence parameter θ0:

C0(F, s) = ψ−1(ψ(F ; θ0) + ψ(s; θ0); θ0),

where

ψ(u; θ) = (− log(u))θ for θ ∈ [1,∞).

Valuations are drawn from a truncated normal distribution with mean µ0 = 5, support

[0, 10], and variance parameter σ0:

F0(v) = TN(v; 5, σ0, 0, 10).

For simplicity, we assume the econometrician has access to a sample of auctions differing

only in potential competition, with N varying exogenously on N = [2, 4, 6, 8]. We

choose the number of auctions Lk observed at each competition level Nk such that the

number of bids observed is approximately constant across k: Lk ≈ S
(1−sk)Nk

, where S

is a pre-specified constant indexing average number of bids observed at each Nk. We

vary primitives θ0, ρ0, c0, and σ0 across experiments as indicated below.

Tables 1-3 report results derived from applying our OLS-CRRA estimator to a

baseline data generating process with ρ0 = 0.5, θ0 = 0.5, c0 = 0.5, σ0 = 2, and

sample scale S varying on {500, 1000, 2000}. As above, potential competition N varies

exogenously on N = {2, 4, 6, 8}, inducing entry thresholds {0.2487, 0.6288, 0.7542,

0.8158} respectively. To reduce contamination from boundary estimates, we take A to

be an evenly spaced 200-point grid on the interval [0.1, 0.9].23

[Table 1 about here.]

[Table 2 about here.]

[Table 3 about here.]

23Note that given our CRRA assumption A need not span the interval [0, 1].

39



On balance, Tables 1-3 suggest that our simple OLS-CRRA estimator performs

very well. Estimates θ̂ for θ0 are typically quite precise, with no clear bias pattern. As

expected, estimates ρ̂ for ρ0 are somewhat biased toward zero, but this bias diminishes

substantially as sample size increases. Note that downward bias in ρ̂ will tend to lead to

under-rejection of risk neutrality; this is in our view the appropriate direction in which

to err. Encouragingly, results are relatively stable across different bandwidth sizes,

with larger scale factors reducing downward bias in ρ̂ and increasing downward bias in

θ̂. Moderate scale factors (bwc = 1.5 and bwc = 2.0) seem on net to produce the best

estimates across specifications, though our estimators’ relatively stable performance

(even in small samples) suggests that choice of bandwidth is a second-order concern.

Tables 4-6 report results from Monte Carlo experiments for three further auction

processes: selection but no risk aversion (ρ0 = 0, θ0 = 1.5), risk aversion but no

selection (ρ0 = 0.5, θ0 = 1), and minimal risk aversion with minimal selection (ρ0 = 0.2,

θ0 = 1.2). All are reported for S = 2000. As indicated by Tables 4-5, our simple

estimator perform very well in DGPs with either no risk aversion (ρ0 = 0) or no

selection (θ0 = 1), suggesting that relatively little is lost by explicitly modeling both

factors. As a percentage of ρ0, bias in ρ̂ is somewhat worse in models with little risk

aversion. From the model’s perspective, however, recall that the relevant parameter is

not ρ0 but 1 − ρ0. Applying intuition from measurement error, we expect downward

bias in 1− ρ̂ to be roughly proportional to 1− ρ0, and this prediction is in fact borne

out quite closely in practice. We conclude that our proposed two-step CRRA estimator

performs well across a variety of DGPs and model specifications, with this performance

relatively insensitive to choice of bandwidth.

[Table 4 about here.]

[Table 5 about here.]

[Table 6 about here.]
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8 Conclusion

We study identification and estimation in auctions with both risk averse bidders and

selective entry. In the process, we make several core contributions to the related lit-

erature. We first develop a flexible structural framework accommodating both risk

aversion and selection, building on the recent theoretical contributions of Li, Lu, and

Zhao (2014). We then proceed to study identification in this framework when variation

in potential competition is excludable, focusing on restrictions generated by the bid-

ding model. We begin with identification under restrictions on utility, deriving a sharp

characterization of the set of primitives consistent with bidding behavior corresponding

to any given class of candidate utility functions. This system nests the identification

restrictions of CGPV (2011), and (as there) is generally sufficient for point identifica-

tion of utility parameters under parametric restrictions on utility. In contrast to CGPV

(2011), however, point identification of utility parameters leads to only partial identi-

fication of remaining primitives as in Gentry and Li (2014). We then turn to consider

identification under restrictions on the copula linking signals to values, showing that

parametric structure on this copula is typically sufficient for point identification even

when other primitives are left fully unrestricted. Finally, building on these results, we

propose a simple semiparametric estimator combining CRRA utility with a parametric

copula, showing that this simple estimator performs very well even in small samples.

We thereby provide a formal framework within which to analyze interaction between

risk aversion and entry, helping to unify the extensive empirical literatures analyzing

these factors in isolation.

While we have here assumed access to a sample of auctions identical up to observ-

ables, our identification results can be readily extended to environments with auction-

level unobservable heterogeneity following Gentry and Li (2014). Such an extension

would allow us to relax the framework described above in two important dimensions.

First, rather than assuming independence of signal-value pairs across bidders, we re-

quire only independence conditional on the auction-level unobservable. Second, in place
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of Assumption 1, we require only exclusion conditional on realizations of auction-level

unobserved heterogeneity. The first step in the identification argument would be to

recover distributions of bidding and entry decisions following Section 4 of Gentry and

Li (2014), with the remainder of the analysis proceeding as developed here.

Finally, while we focus here on the case of symmetry, our core insights extend

immediately to environments with asymmetric bidders. In fact, so long as rival types do

not affect own primitives, we expect asymmetry to improve identification. In particular,

if rival types are continuous, then multidimensional variation in rival type vectors

could potentially be used to obtain nonparametric identification. The essence of this

argument is as follows: suppose there exist two distinct sets of rivals inducing the same

entry probability by bidder i; say, market structure Z with two similar rivals versus

market structure Z ′ with one strong and one weak. Then the latent distribution of i’s

private values would be the same at Z and Z ′, but the distribution of the maximum

bid among i’s rivals could be distinct. If so, we could obtain identification in two

steps: first apply the argument of GPV (2009) to bids at Z and Z ′ to recover i’s

utility function, then apply the argument of Gentry and Li (2014) to recover entry-

related primitives.24 At the same time, however, asymmetric types would also induce

a substantial complication: in general there may be many type-symmetric equilibria,

in which case observed play could involve mixing over these equilibria. This problem

is well beyond the scope of the current paper, and we leave it for future research.

Appendix A: Proofs

Proof of Theorem 2. We first establish the “only if” direction: for any (C,F ) ∈ C×F ,
the ex post quantile functions v1, v2, ..., vK satisfy Conditions 1-3 in Theorem 2. Noting
that Condition 1 follows directly from the invariant support assumption on C0, we
proceed to establish Conditions 2 and 3.

First consider Condition 2. As a copula, C must be d-increasing: i.e. for any
a, a′, s, s′ such that 1 ≥ a′ ≥ a ≥ 0 and 1 ≥ s′ ≥ s ≥ 0, we must have

C(a′, s′)− C(a, s′)− C(a′, s) + C(a, s) ≥ 0.

24Meanwhile, in environments with discrete types, nonparametric point identification would remain infea-
sible, but variation in rival types could still enrich the set of entry variables used to identify the model.
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Note that we can rearrange the definition of Fk to obtain the identity:

C(a, sk) = a− [FkF
−1](a)(1− sk) for all k = 1, ...,K.

Hence setting s′ = sk+1, s = sk and rearranging the inequality above:

C(a′, sk+1)− C(a, sk+1)− C(a′, sk) + C(a, sk) ≥ 0

⇔ C(a′, sk+1)− C(a, sk+1)− C(a′, sk) + C(a, sk) ≥ 0

⇔ ∂C

∂a
(a, sk+1) ≥ ∂C

∂a
(a, sk)

⇔ 1− [Fk+1F
−1]′(a)(1− sk+1) ≥ 1− [FkF

−1]′(a)(1− sk)
⇔ (1− sk)[FkF−1]′(a) ≥ (1− sk+1)[Fk+1F

−1]′(a) for all a,

where the third line follows since vk is differentiable in a for all k and the fourth follows
by differentiating the identity C(a, sk) = a− [FkF

−1](a)(1−sk) with respect to a. But
note that [FkF

−1]′(a) = F ′k(F
−1(a)) · F−1,′(a). The final inequality thus holds if and

only if (1− sk)F ′k ≥ (1− sk+1)F ′k+1. This in turn implies Condition 2.
Finally consider Condition 3. Rearranging the definition of Fk,

Fk(y)(1− sk) =

∫ 1

sk

F (v|t)dt.

Now consider the distribution of Vi conditional on the event Si ∈ [sk, sk+1]:

F (y|Si ∈ [sk, sk+1]) ≡ 1

sk+1 − sk

∫ sk+1

sk

F (v|t)dt =
Fk(y)(1− sk)− Fk+1(y)(1− sk+1)

sk+1 − sk
.

Clearly 1 ≥ F (y|Si ∈ [sk, sk+1]), and by stochastic ordering F (y|Si ∈ [sk, sk+1]) is
decreasing in k and satisfies F (y|Si ∈ [sk, sk+1]) ≥ Fk+1(y) for all k = 1, ...,K − 1.
Hence for all k = 2, ...,K1 we must have

1 ≥ Fk−1(1− sk−1)− Fk(1− sk)
sk − sk−1

≥ Fk(1− sk)− Fk+1(1− sk+1)

sk+1 − sk
≥ FK ≥ 0,

i.e. the condition to be shown. Note that this latter property is stronger than Fk ≥
Fk+1: rearranging the identities above,

(1− sk)Fk(y) = (sk+1 − sk)F (y|Si ∈ [sk, sk+1]) + (1− sk+1)Fk+1(y)

≥ (sk+1 − sk)Fk+1(y) + (1− sk+1)Fk+1(y)

= (1− sk)Fk+1(y).

Hence it would be insufficient simply to assume Fk ≥ Fk+1 for all k < K.

“If” direction We next establish the “if” direction: for any λ−1 such that ṽ1, ..., ṽK
satisfy Conditions 1-3 of Theorem 2, there exists a candidate bidding structure (λ−1, C, F )
rationalizing bid-stage observables. Since (C,F ) influence bidding behavior only through
v1, ..., vK , this is equivalent to showing existence of (C,F ) generating ṽ1, ..., ṽK .
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Toward this end, first define a candidate F for F0 as follows:

F (y) = s1
ṽ−1

1 (y)(1− s1)− ṽ−1
2 (y)(1− s2)

s2 − s1
+ (1− s1)ṽ−1

1 (y).

Recall that ṽ1 and ṽ2 are differentiable, strictly increasing, and satisfy ṽ1(0) = ṽ2(0) =
b1(0) = 0 by construction, with ṽ1(1) = ṽ2(1) by identical support. Hence F (0) =
0 and F (y) = 1 for y ≥ ṽ1(1). Furthermore, by distribution consistence, we have
v−1,′

1 (y)(1− s1) > v−1,′
2 (y)(1− s2). Thus F is a differentiable, strictly increasing c.d.f.

on [0, ṽ1(1)], hence F ∈ F [0, ṽ1(1)].
Now construct a candidate C for C0 piecewise in s as follows. For s < s1 set

C(a, s) = s
[F̃1F

−1](a)(1− s1)− [F̃2F
−1](a)(1− s2)

s2 − s1
,

for s ≥ sK set C(a, s) = a−[F̃KF
−1](a)(1−s), and for each s ∈ [sk, sk+1) define C(a, s)

by linear interpolation (in s) between a− [F̃kF
−1](a)(1− sk) and a− [F̃k+1F

−1](a)(1−
sk+1). Note that C(0, s) = C(a, 0) = 0, C(1, s) = s, C(a, 1) = a, and

lim
s↑s1

C(F (y), s) = s1
F̃1(y)(1− s1)− F̃2(y)(1− s2)

s2 − s1

= s1
F̃1(y)(1− s1)− F̃2(y)(1− s2)

s2 − s1
+ (1− s1)F̃1(y)− (1− s1)F̃1(y)

≡ F (y)− (1− s1)F̃1(y)

≡ lim
s↓s1

C(F (y), s).

Thus C is a continuous function satisfying the limit properties of a joint distribution
which reproduces the candidates F̃1, ..., F̃K : i.e. such that for each k = 1, ...,K we have

F (y)− C(F (y), sk)

1− sk
≡ F̃k(y).

We now verify that C is d-increasing (hence a joint c.d.f) and implies a conditional
distribution F (y|s) satisfying stochastic ordering.

First show that C is d-increasing. Since C is continuous, it is sufficient to restrict
attention to rectangles such that either s, s′ ≤ s1, s, s′ ≥ sK , or s, s′ ∈ [sk, sk+1]. If
s, s′ ≤ s1, then ∂C

∂a∂s = 1, and if s, s′ ≥ sK , then ∂C
∂a∂s = [F̃KF

−1]′(a) ≥ 0. Hence C is
d-increasing for rectangles in both regions. Finally, if s, s′ ∈ [sk, sk+1] then C(a, ·) is a
linear interpolation in s between C(a, sk) ≡ a − [F̃kF

−1](a)(1 − sk) and C(a, sk+1) ≡
a− [F̃k+1F

−1](a)(1− sk+1). Hence it is sufficient to verify that

C(a′, sk+1)− C(a, sk+1)− C(a′, sk) + C(a, sk) ≥ 0.

But reversing the arguments used in the “only if” direction above, this is equivalent
to Condition 2 of Theorem 2. Hence C is d-increasing.

Next show that C satisfies stochastic ordering. Recall that F (y|s) = ∂C(F (y),s)
∂s

where this derivative exists; we fill in endpoints in the construction above by taking
right derivatives where necessary. We wish to show that F (y|s) is decreasing in s.
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Toward this end, first consider s < s1. By definition of C, we then have

F (y|s) =
ṽ−1

1 (y)(1− s1)− ṽ−1
2 (y)(1− s2)

s2 − s1
.

Now consider s ∈ [sk, sk+1). For such s we have C(a, ·) a linear interpolation (in s)
between C(a, sk) ≡ a−[F̃kF

−1](a)(1−sk) and C(a, sk+1) ≡ a−[F̃k+1F
−1](a)(1−sk+1).

Hence

F (y|s) =
C(F (y), sk+1)− C(F (y), sk)

sk+1 − sk
=
F̃k(y)(1− sk)− F̃k+1(y)(1− sk+1)

sk+1 − sk
.

Finally consider s ≥ sK . Then by construction we have

F (y|s) =
∂

∂s
[F (y)− F̃K(y)(1− s)] = F̃K(y).

Hence F (y|s) is decreasing in s if and only if for all k = 1, ...,K − 1.

Fk−1(1− sk−1)− Fk(1− sk)
sk − sk−1

≥ Fk(1− sk)− Fk+1(1− sk+1)

sk+1 − sk
≥ FK .

But is precisely Condition 3 of Theorem 2. Hence C satisfies stochastic ordering.
We have thus constructed a candidate structure (C,F ) reproducing ṽ1, ..., ṽK and

satisfying all properties on (C0, F0) except twice differentiability of C0. By slightly
perturbing C(a, s) to smooth transitions at each s1, ..., sK , one can construct a cop-
ula satisfying the properties above plus the twice differentiability; i.e. all conditions
required by C. This establishes the claim.

Proof of Proposition 1. Assumption 1 implies a unique solution to (10) in the param-
eter space Γ, hence identification of γ0, λ−1

0 , and U0 under Assumption 4.
Identification of λ−1

0 implies identification of v1, ..., vK through the quantile inverse
bidding function (6), therefore identification of ex post value distributions F1, ..., FK .
While knowledge of F1, ..., FK is insufficient to identify C(·) and F0, Theorem 3 of
Gentry and Li (2014) can be applied to yield identified bounds F+ and F− on the
conditional distribution F (v|s). This establishes the second part of Proposition 1.

Finally, we know from Theorem 1 that at each k ∈ K the entry threshold sk must
satisfy the relationship

U0(c0) =

∫ v̄

r
U0(v − β(v|Nk, sk)) ·Ψ(v|Nk, sk) dF (v|sk).

But from the inverse bidding function (6) we have λ−1
0 (Rk(a)) = vk(a) − bk(a), or

equivalently λ−1
0 (Rk(Fk(v))) = v − β(v|Nk, sk). Therefore

U0(c0) =

∫ v̄

r
U0(λ−1

0 (Rk(Fk(v)))) ·Ψ(v|Nk, sk) dF (v|sk). (25)

From above, U0, λ−1
0 , Fk, Rk, and Ψ(·|Nk, sk) are identified, so the only unknown

on the right-hand side is F (·|sk). But from Theorem 3 in Gentry and Li (2014) we
obtain identified distributions F+(·|sk), F−(·|sk) bounding F (·|sk), and by the argu-
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ments underlying Theorem 1 we know U0(λ−1
0 (Rk(Fk(v)))) · Ψ(v|Nk, sk) is increasing

in v. Hence (25) represents the expectation of an identified, increasing function with
respect to the unknown distribution F (·|sk). Substituting the identified, stochastically
ordered distributions F+(·|sk) and F−(·|sk) for F (·|sk) in (25) thus yields identified
constants U+

k and U−k such that U+
k ≥ U0(c0) ≥ U−k . Monotonicity of U0 establishes

the claim.

Proof of Theorem 3. Consider any k, l and θ satisfying the hypotheses of Theorem 3.
For each k = 1, ...,K, let b̃k,θ(·), R̃k,θ(·) be the functions obtained when bk(·), Rk(·)
are reindexed according to hkθ(·):

b̃k,θ(a) ≡ bk(hkθ(a)),

R̃k,θ(a) ≡ Rk(hkθ(a)).

Define r̄k ≡ supa R̃k,θ(a), r̄kl ≡ max{r̄k, r̄l} as in the main text, and let functions
R̄kl,θ(·), Rkl,θ(·) be the pointwise maximum and minimum of R̃k,θ(·), R̃l,θ(·) respec-
tively:

R̄kl,θ(a) ≡ max{R̃k,θ(a), R̃l,θ(a)}, (26)

Rkl,θ(a) ≡ min{R̃k,θ(a), R̃l,θ(a)}. (27)

Finally, for each r ∈ [0, r̄kl], let Akl,θ(r) be the set all decreasing sequences {αt}∞t=1

satisfying the recursive relationship

R̄kl,θ(α
0) ≡ r, R̄kl,θ(α

t) = Rkl,θ(α
t−1) for t = 1, 2, .... (28)

and define the set Akl,θ as follows:

Akl,θ ≡ {a ∈ [0, 1] : R̃k,θ(a) = R̃l,θ(a)}.

Note the following properties of Akl,θ(r):

Lemma 2. For any k, l ∈ {1, ...,K} and any r ∈ [0, r̄kl], Akl,θ(r) is nonempty. Fur-
thermore, for all sequences {αt}∞t=1 ∈ Akl,θ(r), limt→∞ α

t ∈ Akl,θ.

Proof. First show that 0 ∈ Akl,θ. By Theorem 1, we have β(0|Nk, s̄) = 0 for all
s̄ ∈ [0, 1) and k ∈ K. Hence in any equilibrium Rk(0) = 0 for all k ∈ K. Furthermore,
for any k, l ∈ K and any θ, we have hk,θ(0) = hl,θ(0) = 0 and therefore 0 ∈ Akl,θ.

Next, following GPV (2009), observe that both R̄kl,θ and Rkl,θ are continuous,
with R̄kl,θ having range [0, r̄kl]. Choose any r0 ∈ [0, r̄kl]. Since r0 ∈ [0, r̄kl], by the
Intermediate Value Theorem there exists α ∈ [0, 1] such that R̄kl,θ = α. Choose any
such α, set α0 = α, and set r1 = Rkl,θ(α0). Note that R̄kl,θ is continuous on [0, α0], with
R̄kl,θ(α0) ≥ r1. Hence again by the intermediate value theorem there exists α1 ∈ [0, ᾱ0]
such that R̄kl,θ(α1) = r1 and α1 ≤ α0. Iterating the argument establishes existence of
a decreasing sequence {αt}∞t=0 ∈ Akl,θ.

Finally show that any sequence {αt}∞t=0 ∈ Akl,θ converges to a limit ā ∈ Akl,θ.
Clearly, if {αt}∞t=0 ∈ Akl,θ then {αt}∞t=0 is a decreasing sequence bounded below by 0.
Hence {αt}∞t=0 converges to some limit ā. Furthermore, by definition, we must have
limt→∞ R̄kl,θ(αt) = limt→∞Rkl,θ(αt). Hence ā ∈ Akl,θ, establishing the claim.
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Now let φ be any continuous, increasing, zero-at origin function on [0, r̄kl] satisfying
the compatibility condition

b̃k,θ(a) + φ(R̃k,θ(a)) = b̃l,θ(a) + φ(R̃l,θ(a))∀a ∈ [0, 1]. (29)

If no such φ exists, the theorem is true by construction. Otherwise, choose any such φ
and rearrange (29) to obtain for any a ∈ [0, 1]

φ(R̃k,θ(a))− φ(R̃l,θ(a)) = b̃l,θ(a)− b̃k,θ(a).

φ is continuous, increasing, and satisfies (29), this expression in turn implies

φ(R̄kl,θ(a)) = |b̃k,θ(a)− b̃l,θ(a)|+ φ(Rkl,θ(a)).

Now choose r ∈ [0, r̄kl], and let {αt}∞t=0 be any element of Akl,θ(r). Recall that by
definition {αt}∞t=0 satisfies R̄kl,θ(α

t+1) = Rkl,θ(α
t) for all t. Thus for any t

φ(R̄kl,θ(α
t)) = |b̃k,θ(αt)− b̃l,θ(αt)|+ φ(R̄kl,θ(α

t+1). (30)

Noting that r ≡ R̄kl,θ(α0) and recursively substituting into (30), we therefore conclude

φ(r) =
∞∑
t=0

|b̃k,θ(αt)− b̃l,θ(αt)|+ lim
t→∞

φ(R̄kl,θ(α
t)). (31)

Under our maintained assumptions Akl,θ is a finite set containing zero. If Akl,θ = {0},
then αt → 0 for any {αt}∞t=0 ∈ Akl,θ, the final term vanishes, and we have

φ(r) =

∞∑
t=0

|b̃k,θ(αt)− b̃l,θ(αt+1)|

for all r ∈ [0, r̄kl]. Otherwise, let {0, a1, a2, ..., aM} index the elements of Akl,θ, and
partition the interval [0, r̄kl] into subintervals as follows:

r ∈ [0, r1) if inf{α ∈ [0, 1]|r = R̄kl,θ(α)} ∈ [0, a1);

r ∈ [r1, r2) if inf{α ∈ [0, 1]|r = R̄kl,θ(α)} ∈ [a1, a2);

...

r ∈ [rM−1, rM ) if inf{α ∈ [0, 1]|r = R̄kl,θ(α)} ∈ [aM−1, aM );

r ∈ [rM , r̄kl] if inf{α ∈ [0, 1]|r = R̄kl,θ(α)} ∈ [aM , 1].

Note that under finite intersection rM > · · · > r1 > 0. If r ∈ [0, r1), then by Lemma 2
αt → 0. Hence φ(r) is identified on [0, r1) as above, and by continuity of φ(·) we can
take limits to extend this definition to establish uniqueness on [0, r1]. Now consider
(r1, r2). Then by Lemma 2 we must have either αt → 0 or αt → r1. In the former case
we can express φ(r) as above. In the latter case, we can express φ(r) as

φ(r) =
∞∑
t=0

|b̃k,θ(αt)− b̃l,θ(αt)|+ φ(r1),
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with φ(r1) identified by limits of sums on [0, r1). In either case φ(·) is identified on
[0, r2), which again invoking continuity extends immediately to identification on [0, r2].
Iterating these arguments as necessary (with r ∈ [r2, r3) implying αt convergent to
either 0, r1 or r2 and so forth), we can express φ(·) in terms of identified objects on the
whole interval [0, r̄kl].

Finally, observe that if φ(·) satisfies (29) than any construction satisfying the rules
above must return the same function φ(·); i.e. the relationships above must hold for
any selection α(·) from Akl,θ(·) (or else we would obtain a contradiction). But given
any selection α(·) from Akl,θ(·) φ can be represented as an identified transformation of
observables. Thus φ is unique and identified. Hence φ is identified. Furthermore, since
the selection α(·) is arbitrary, one could select α(·) according to a known rule: e.g.
fastest “greedy descent”. This would yield constructive identification of φ in terms of
observables, establishing the claim.

Proof of Lemma 1. Consider any distinct k, l ∈ K. By definition, v0(a) = vk(h
k
θ0

(a)) =

vl(h
l
θ0

(a)), so vk(a) = v0(hk,−1
θ0

(a)) and vl(a) = v0(hl,−1
θ0

(a)). Thus if hk,−1
θ0

(hkθ(a)) 6=
hl,−1
θ0

(hlθ(a)) then vk(h
k
θ(·)) = v0(hk,−1

θ0
(hkθ(·))) 6= v0(hl,−1

θ0
(hlθ(a))) = vl(h

l
θ(a)) and vice

versa. But by regularity, if θ 6= θ0 then hk,−1
θ′ (hkθ(a)) 6= hl,−1

θ′ (hlθ(a)) on a set of positive
measure. This establishes the claim.

Appendix B: Nonparametric bid-stage identified

set

As one way to quantify nonparametric information induced by exogenous variation in
competition, this appendix explores the sharp bounds on λ−1

0 induced by the charac-
terization of bid-stage restrictions given in Theorem 2. Toward this end, we implement
a variant of the algorithm sketched in Section 4: first restrict attention to a class of
finite-dimensional sieve spaces approximating Λ−1, then numerically analyze the set of
functions φ consistent with Conditions (1)-(3) of Theorem 2 within a given element of
this space.

Specifics of our procedure are as follows. We approximate Λ−1 with a variant of
the shape-constrained Bernstein polynomial sieve space considered by Zincenko (2012,
working paper). Let r̄ = max{r̄1, ..., r̄K} be the upper limit on the empirically relevant
domain of λ−1 and pJ,j(x) denote the Bernstein polynomial basis on the interval [0, r̄]:

pJ,j(r) ≡
(
J

j

)(r
r̄

)j (
1− r

r̄

)J−j
.

Let {Jn}n∈N be an increasing divergent sequence of positive integers, and P(n) be the
space of degree-Pn Bernstein polynomials defined as follows.

Definition 7. Let Γ(n) ⊂ RHn+1 be the set of vectors γ = {γj : j = 0, 1, ...,Hn} ∈
RHn+1 such that γ0 = 0 and

r̄J−2
n ≤ γj+1 − γj ≤ r̄J−1

n for 0 ≤ j ≤ Jn − 1.
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Let P(n) be the set of Bernstein polynomials P : [0, r̄]→ R+ of degree Jn generated by
coefficient vectors γ ∈ Γ(n): i.e. the set of functions P (·) such that

P (r) =

Jn∑
j=0

γjpJn,j(r) for some γ ∈ Γ(n).

We refer to P(1),P(2), ... as shape-constrained Bernstein sieves for Λ−1.

As noted by Zincenko (2012, working paper), we have P(n) ⊂ Λ−1 for each n, with
P(n) becoming dense in Λ−1 (with respect to the L1 norm) as n → ∞. The shape-
constrained Bernstein sieves P(1),P(2), ... thus provide a natural space within which to
analyze restrictions generated by the bidding model. Now fix n ∈ N, and consider the
set of P ∈ P(n) satisfying Conditions 1-3 of Theorem 2. In practice, we approximate
this set as follows.

Approximation algorithm Starting from a known data generating process, fix
a grid A of points in [0, 1] and for each k ∈ K compute equilibrium bids bk(a) and
markup functions Rk(a) corresponding to each a ∈ A. For each a ∈ A, let pkJn(a) be
the 1× (Jn+ 1) vector of Bernstein polynomial basis functions evaluated at r = Rk(a):

p
(n)
k (a) ≡ (pJn,0(Rk(a)), ..., pJn,Jn(Rk(a))).

Note that for purposes of characterizing the identified set we may take p
(n)
k (a) as known

and fixed across iterations.
For each k ∈ K, let ṽk(·; γ) be the ex post quantile function implied by γ ∈ Γ(n):

ṽk(a; γ) = bk(a) + pkJn(a) · γ. (32)

Now consider Condition 1 of Theorem 2:

ṽ1(1; γ) = ṽ2(1; γ) = · · · = ṽK(1; γ). (33)

Let b̄(a) = 1
K

∑K
k=1 bk(a) and p̄(n)(a) = 1

K

∑K
k=1 p(n)(a) denote means of bk(a) and

p
(n)
k (a) across k ∈ K respectively, and define:

∆P(n)(1) =


p

(n)
2 (1)− p̄(n)(1)

p
(n)
3 (1)− p̄(n)(1)

...

p
(n)
K (1)− p̄(n)(1).

 , ∆b(1) =


b1(1)− b̄(1)
b2(1)− b̄(1)

...
bK(1)− b̄(1)

 .
Substituting from (32) and stacking across k, the restriction (33) is then equivalent to

∆b(1) = −∆P(n)(1) · γ, (34)

This in turn corresponds to a system of K − 1 distinct linear restrictions on the Jn× 1
vector γ. Since we are here interested in high-order approximations to Λ−1 (i.e. Jn >>
K − 1), this system will not uniquely determine γ. Rather, we exploit the linear
structure of (34) to simplify approximation of the identified set.
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In particular, let Γ̃(n) be the set of elements γ ∈ Γ(n) such that (34) holds for all k.
We then proceed via the following two-step algorithm:

Step 1 Obtain a large random sample of coefficients γs from the feasible set Γ̃(n).

Step 2 For each coefficient γs drawn in Step 1, evaluate Conditions 2 and 3 of Theorem
2 implied by γs. If Conditions 2 and 3 are (approximately) satisfied at γs, keep
γs as a feasible parameter; else reject γs.

We now describe details of each step.

Step 1 By definition, Γ̃(n) is the intersection of the linear subspace of RJn sat-
isfying (34) with the compact, convex set Γ(n) ⊂ RJn . To exploit this fact, we first
construct an orthonormal basis B(n) for the null space N(n) of ∆P(n)(1). Letting γ0

be any point in Γ̃(n), the set of γ ∈ RJn satisfying (34) can then be represented as

{γ ∈ RJn : γ = γ0 + B(n) · ν for some ν ∈ RJn−(K−1)}.

Building on this observation, we draw γs as follows. Starting from an initial point
γ0 ∈ Γ̃(n), sample ν̃ from a multivariate uniform distribution on −[κ, κ], with κ > 0
a tuning parameter chosen by the researcher. Construct γ̃ = γ0 + B(n) · ν̃ and to see
whether γ̃ satisfies the inequality restrictions defining Γ(n). If so, then γ̃ ∈ Γ̃(n) and we
set γ1 = γ̃. If not, then we reject γ̃, draw a new innovation ν̃, and repeat until γ̃ ∈ Γ̃(n)

is obtained. At this point we set γ1 = γ̃ and proceed to the next iteration. Repeating
these steps S times yields a Markov chain {γs}Ss=0 exploring Γ̃(n).

As usual with Markov Chain type algorithms, the procedure above induces sub-
stantial autocorrelation in successive elements of {γs}Ss=0. To avoid redundant Step 2
calculations, in practice we begin with a very large number of draws (S = 40, 000, 000)
then subsample every l = 200th element. Since each iteration is virtually costless, this
can be implemented reasonably quickly even for very large S.

Step 2 Given a subsample {γsl}Ll=1 of parameters in Γ̃(n), we then proceed to
Step 2: evaluating Conditions 2 and 3 of Theorem 2 for each γsl ∈ {γsl}Ll=1. Toward
this end, we first use spline interpolation to invert ṽk(·; γsl) for F̃k(·; γsl) at each k ∈ K.
For each k = 1, ...,K1, we then define φk(·; γsl) : [0, ṽ1(1, γsl)]→ R as follows:

φk(y; γsl) =
(1− sk)F̃k(y; γsl)− (1− sk+1)F̃k+1(y; γsl)

(sk+1 − sk)
.

Condition 2 requires φk to be increasing in y:

φk(y
′; γsl) ≥ φk(y; γsl) for all y, y′ such that y′ ≥ y. (35)

Meanwhile, Condition 3 requires φk to be decreasing in k:

1 ≥ φ1(y; γsl) ≥ φ2(y; γsl) ≥ · · · ≥ φK−1(y; γsl) ≥ F̃K(y; γsl). (36)
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To quantify violations of Condition 2, we first specify a grid Y of points in [0, ṽ1(1; γsl)].
We then sum up negative variation in φk(·; γsl) across y ∈ Y and k ∈ K to obtain

V2(γsl) =
K−1∑
k=1

|Y |−1∑
g=1

|φk(y; γsl)− φk(y′; γsl)| · I[φk(y′; γsl) < φk(y; γsl)].

Meanwhile, to quantify departures from Condition 3, we first compute pointwise vio-
lations of the inequalities (36) above at each y ∈ Y : i.e. we compute

V 3(y; γsl) ≡ |1− φ1(y; γsl)| · I[φ1(y; γsl) < 1]

+
K−1∑
k=1

|φk+1(y; γsl)− φk(y; γsl)| · I[φk(y; γsl) < φk+1(y; γsl)]

+ |F̃K(y; γsl)− φK−1(y; γsl)| · I[φK−1(y; γsl) < F̃K(y; γsl)].

We then sum up these violations across y ∈ Y to obtain the final criterion

V3(γsl) ≡
∑
y∈Y

V 3(y).

Given tolerances ε2, ε3 > 0 specified by the researcher, we keep γsl in the feasible set if
V2(γsl) < ε2 and V3(γsl) < ε3. Otherwise we interpret γsl as violating at least one of
Conditions 2 and 3 and therefore drop it from the feasible set.

Simulation results Building on this algorithm, we construct approximations to
the sharp nonparametric identified sets for several variants of the model specified in
Section 7. As in Section 7, bidders have CRRA utility with w0 = c0, valuations are
drawn from a a N(5, σ0) distribution truncated on [0, 10], and dependence between
si and vi is characterized by a Gumbel copula with parameter θ0. For purposes of
this exercise, we set c0 = 0.2, σ0 = 2, and vary ρ0 and θ0, assuming that N varies
exogenously on N = [3, 4, 5, 6, 7, 8]. In simulating feasible parameters, we draw a
Markov chain of length S = 40, 000, 000 from Γ̃(1) based on step size κ = 0.001,
subsampling every 200th element. We then compute V2(γsl) and V3(γsl) for each
element of the resulting length-100, 000 chain, reporting results for various values of
ε1, ε2. Results reported are based on approximation of λ−1

0 within a shape-constrained
Bernstein sieve space of order 24; preliminary test with a sieve space of order 32 yielded
very similar results at greater computation cost.

Results of this procedure are summarized in Figures 1-4 for four data generating
processes: limited selection with moderate risk aversion (θ0 = 1.5, ρ0 = 0.3), moderate
selection with moderate risk aversion (θ0 = 1.5, ρ0 = 0.1), limited selection with limited
risk aversion (θ0 = 1.1, ρ0 = 0.3), and moderate selection with limited risk aversion
(θ0 = 1.1, ρ0 = 0.1). In each case we plot three sets of pointwise bounds derived from
the analysis above. We first plot pointwise maxima and minima for λ−1

0 over the entire
subsample {γsl}Ll=1; i.e. bounds exploiting only shape restrictions on λ−1

0 plus the
invariant support restriction in Condition 1 of Theorem 2. We then plot two further
sets of pointwise bounds incorporating restrictions derived from Conditions 2 and 3:
first plotting pointwise maxima and minima for λ−1

0 over the subset of {γsl}Ll=1 for
which both V2(γsl) and V3(γsl) are less than 0.5, then plotting pointwise maxima and
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minima over the subset of {γsl}Ll=1 for which both V2(γsl) and V3(γsl) are less than
0.1. Note that both thresholds 0.5 and 0.1 are large relative to the numerical error in
V2(γsl), V3(γsl) we expect in simulations. Hence numerical bounds in all cases are
likely to be somewhat conservative.

Several important patterns are suggested by this analysis. First, pointwise bounds
are reasonably tight in all cases, with upper bounds on λ−1

0 particularly sharp. Since
we are here approximating λ−1

0 within a very flexible sieve space, this suggests that ob-
served bid data in fact contains substantial information on underlying (nonparametric)
primitives. Second, data generating processes involving less selection support substan-
tially tighter bounds on λ−1

0 . This pattern (more selection leads to wider bounds on
primitives) is quite consistent with GL (2014)’s findings in the risk neutral case; intu-
itively, it follows since more selection induces more variation in v1, ..., vK and thereby
gives the econometrician more “degrees of freedom” in attempting to find a rationaliz-
ing model. Finally, even looking only at invariant support (i.e. ignoring Conditions 2
and 3 of 2 altogether), identified sets are clearly inconsistent with risk neutrality even
when the true data generating process involves very little risk aversion (ρ0 = 0.1). This
suggests that building on the restrictions formalized in Theorem 2 it may be possible to
derive nonparametric or robust semiparametric tests for risk aversion applicable even
under endogenous and arbitrarily selective entry.

[Figure 1 about here.]

[Figure 2 about here.]

[Figure 3 about here.]

[Figure 4 about here.]

Appendix C: Estimation with parametric C0 but

nonparametric U0

As an extension of the simple CRRA-based estimator explored in the main text, we also
consider estimation of a semiparametric AS-RA model as in Section 5.3: C0 restricted
within a parametric family but λ−1

0 and F0 left fully nonparametric. We implement
estimation in this case via two-step sieve minimum distance. In particular, we first
approximate λ−1 within the sieve space of shape constrained Bernstein polynomials
P(n) defined in Appendix B. We then minimize a criterion function derived from the
compatibility condition (17) with respect to θ and the Bernstein sieve parameters,
given estimates of sk, bk, and Rk derived as in Section 7.1.

Two-step Bernstein polynomial sieve estimator

Extending the arguments in Section 6 to accommodate a nonparametric function λ−1
0 ,

it is straightforward to show that true primitives θ0, λ
−1
0 must satisfy the identification

criterion:

Q(λ0, θ0) =

K∑
k=1

∫ 1

0

(
∆b̃k,θ0(a) + ∆λ−1

0 (R̃k,θ0(a))
)2

da, (37)

52



where ∆λ−1
0 (R̃k,θ0(a)) is defined by

∆λ−1
0 (R̃k,θ0(a)) ≡ λ0(R̃k,θ(a))− 1

K

K∑
l=1

λ0(R̃l,θ(a))

and as in Section 6 we define for each k = 1, ...,K:

b̃k,θ(a) ≡ b̂k(ĥkθ(a)),

R̃k,θ(a) ≡ R̂k(ĥkθ(a)).

Extending the notation in Appendix B, let p̃
(n)
k,θ (a) ≡ [pJn,j(R̃k,θ(a))]Jnj=0 denote the

vector of order-Jn Bernstein basis polynomials evaluated at R̃k,θ(a). Let γ ∈ Γ(n) be
any coefficient vector satisfying shape constraints in Definition 7. Plugging in the Bern-
stein sieve approximation to λ−1 in (37) at γ then yields the following sieve estimation
criterion:

Q(γ, θ) =
K∑
k=1

∫ 1

0

(
∆b̃k,θ(a) + ∆p̃

(n)
k,θ (a) · γ

)2
da, (38)

where we first substitute the Bernstein sieve approximation p̃k,θ(a)) ·γ for λ−1(R̃k,θ(a))
and then exploit the fact that p̃k,θ(a)) · γ is additively separable in γ. As above, in
practice we discretize (38) on a finite grid A(n) to obtain the final minimum distance
criterion:

Q̃(γ, θ) =
∑
k∈K

∑
a∈A(n)

(
∆b̃k,θ(a) + ∆p̃

(n)
k,θ (a) · γ

)2
. (39)

Note that in contrast to the CRRA case described above, consistency here requires
A(n) to become dense in [0, 1] as Jn →∞.

As above, the discretized criterion (39) leads to a significant computational advan-
tage: taking θ as given, minimization of (39) with respect to γ is a simple constrained
quadratic programming problem. To exploit this structure, we again implement es-
timation via a nested minimization algorithm. First, in the inner loop, we obtain

γ(θ) ≡ arg minγ Q̃(γ, θ) via constrained OLS regression of ∆b̃k,θ(a) on −∆p̃
(n)
k,θ (a) sub-

ject to the constraint γ ∈ Γ(n). Then, in the outer loop, we search over θ to locate

θ̂ = arg minθ{Q̃(γ(θ), θ)}.

We thus obtain a fast, stable algorithm in which for any θ the unique global solution
γ(θ) to the inner-loop minimization can be obtained almost immediately using standard
quadratic programming methods. Since θ is typically low-dimensional, it is therefore
simple to combine grid search and gradient-based search in the outer loop to verify
that estimates (γ̂, θ̂) correspond to a unique global minimum of the objective (39).

Monte Carlo performance

We apply essentially the same Monte Carlo design to study the performance of our two-
step sieve polynomial estimator, with only three minor changes in estimation procedure.
First, since nonparametric estimation of λ−1 requires A to become dense in [0, 1], we
take A to be a uniform grid on [0, 1]. Second, boundary performance is relatively
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more important in two-step sieve estimation than in two-step CRRA estimation. Since
over-smoothing near boundaries can significantly degrade such performance, we cap
bandwidth for quantiles close to the boundaries according to the following rule:

h(a) = min{bwc · S
1
3 , h0 + a, h0 + 1− a},

where h0 is a given constant (we take h0 = .05). Finally, as theory predicts bk(0) =
b′k(0) = 0, we enforce these constraints directly in local polynomial estimation.

Figure 1 summarizes estimates of λ−1(x) resulting from our two-step Bernstein sieve
polynomial estimation procedure with scale factor S = 4000 and bandwidth constant
bwc = 5. Two features of our proposed estimator are evident in Figure 1. First, levels
of λ−1(x) are very imprecisely estimated. This is due primarily to substantial error in
estimates of R̃k(a) near a = 0, which generates significant noise (and corresponding
bias) in sieve estimates of λ−1(x) for x near zero. Second, while levels of λ−1 are very
imprecise, the slope dλ−1/dx is in fact well estimated on the interior of the support
of x. This is significant because under the CRRA hypothesis the slope of λ−1 should
be approximately constant across any range of x considered. In large samples, the
Bernstein sieve estimator thus provides a means to assess the suitability of our baseline
CRRA structure.

Building on this observation, we now shift focus to estimates for the derivative
dλ−1(x)/dx implied by Figure 1. Figure 2 plots estimates dλ−1(x)/dx for the 10th-
90th quantiles of R across 100 Monte Carlo repetitions, and Figure 3 plots pointwise
quantiles of these estimates. While (as above) point estimates are slightly biased
down, both figures generally confirm that dλ−1/dx is well-estimated on the interior of
the support of R, with larger bandwidths leading to more precise estimates. While
more work would be required to devise a formal test of the CRRA specification on the
basis of this information, Figures 1-3 suggest that such an approach would be feasible
in principle.

[Figure 5 about here.]

[Figure 6 about here.]

[Figure 7 about here.]
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Figure 1: Bernstein sieve approximation to bid-stage identified set for λ−1
0 (r)

Approximation based on a shape-constrained Bernstein sieve of order 24, with feasible region
Γ̃(n) for γ0 simulated using length-200, 000 subsample of length-40, 000, 000 Markov chain
{γs}Ss=1. “Invariant support only” denotes pointwise bounds obtained enforcing Condition 1
of Theorem 2 only. “Sharp pointwise bounds” simulated from elements of Monte Carlo chain
for which V2 < 0.1, V3 < 0.1. “Conservative pointwise bounds” simulated from elements of
Monte Carlo chain for which V2 < 0.5, V3 < 0.5. Pointwise upper bounds overlap.
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Figure 2: Bernstein sieve approximation to bid-stage identified set for λ−1
0 (r)

Approximation based on a shape-constrained Bernstein sieve of order 24, with feasible region
Γ̃(n) for γ0 simulated using length-200, 000 subsample of length-40, 000, 000 Markov chain
{γs}Ss=1. “Invariant support only” denotes pointwise bounds obtained enforcing Condition
1 of Theorem 2 plus shape restrictions. “Sharp pointwise bounds” simulated from elements
of Monte Carlo chain for which V2 < 0.1, V3 < 0.1. “Conservative pointwise bounds”
simulated from elements of Monte Carlo chain for which V2 < 0.5, V3 < 0.5. Pointwise
upper bounds overlap.
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Figure 3: Bernstein sieve approximation to bid-stage identified set for λ−1
0 (r)

Approximation based on a shape-constrained Bernstein sieve of order 24, with feasible region
Γ̃(n) for γ0 simulated using length-200, 000 subsample of length-40, 000, 000 Markov chain
{γs}Ss=1. “Invariant support only” denotes pointwise bounds obtained enforcing Condition
1 of Theorem 2 plus shape restrictions. “Sharp pointwise bounds” simulated from elements
of Monte Carlo chain for which V2 < 0.1, V3 < 0.1. “Conservative pointwise bounds”
simulated from elements of Monte Carlo chain for which V2 < 0.5, V3 < 0.5. Sharp and
conservative pointwise upper bounds overlap.
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Figure 4: Approximate bid-stage identified set for λ−1
0 (r), θ0 = 1.5, ρ0 = 0.1

Approximation based on a shape-constrained Bernstein sieve of order 24, with feasible region
Γ̃(n) simulated using size-200, 000 subsample of length-40, 000, 000 Markov chain {γs}Ss=1.
“Invariant support only” denotes pointwise bounds obtained enforcing Condition 1 of Theo-
rem 2 plus shape restrictions. “Sharp pointwise bounds” simulated from elements of Monte
Carlo chain for which V2 < 0.1, V3 < 0.1. “Conservative pointwise bounds” simulated from
elements of Monte Carlo chain for which V2 < 0.5, V3 < 0.5. Pointwise upper bounds
overlap.
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Figure 5: Estimates of λ−1(x) (interior deciles of R)
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Estimates based on 100 Monte Carlo samples from AS-CRRA data generating process with
ρ0 = 0.5, θ0 = 1.5, µ0 = 5.0, σ0 = 2.0, c0 = w0 = 0.2, and N = [2, 4, 6, 8], assuming
approximately S = 4000 bids observed at each observation. First step local polynomial
bandwidths are given by h = bwc · S−1/3, with bwc = 5.0 for estimates reported.
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Figure 6: Estimates of dλ−1/dx (interior deciles of R)
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Estimates based on 100 Monte Carlo samples from AS-CRRA data generating process with
ρ0 = 0.5, θ0 = 1.5, µ0 = 5.0, σ0 = 2.0, c0 = w0 = 0.2, and N = [2, 4, 6, 8], assuming
approximately S = 4000 bids observed at each observation. First step local polynomial
bandwidths are given by h = bwc · S−1/3, with bwc = 5.0 for estimates reported.
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Figure 7: Quantiles of dλ−1/dx (interior deciles of R)
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Dashed lines represent 10th-90th quantiles of dλ−1/dx over 100 Monte Carlo simulations;
blue line is median; red line is dλ−1

0 /dx. Underlying data generating process is AS-CRRA
with ρ0 = 0.5, θ0 = 1.5, µ0 = 5.0, σ0 = 2.0, c0 = w0 = 0.2, and N = [2, 4, 6, 8], assuming
approximately S = 4000 bids observed at each observation. First step local polynomial
bandwidths are given by h = bwc ·S−1/3, with bwc varying on {2.0, 3.0, 4.0, 5.0} as indicated.
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Table 1: Two-step OLS-CRRA estimator, S = 500, ρ0 = 0.5, θ0 = 1.5

ρ̂ mean std 25% 50% 75%

bwc = 1.0 0.399221 0.257272 0.218931 0.411732 0.543550
bwc = 1.5 0.424039 0.249043 0.285707 0.440248 0.552921
bwc = 2.0 0.417082 0.251915 0.270722 0.435488 0.553536
bwc = 3.0 0.439930 0.255433 0.307828 0.429347 0.568354
bwc = 4.0 0.494217 0.261150 0.341435 0.476652 0.596515

θ̂ mean std 25% 50% 75%

bwc = 1.0 1.535023 0.346495 1.367761 1.441261 1.629569
bwc = 1.5 1.513945 0.379520 1.363254 1.438873 1.554221
bwc = 2.0 1.520083 0.398367 1.356968 1.425464 1.528418
bwc = 3.0 1.459115 0.315543 1.347753 1.419355 1.493907
bwc = 4.0 1.379589 0.211879 1.340931 1.397429 1.464333

Estimates based on 100 Monte Carlo samples from AS-CRRA process with ρ0 = 0.5, θ0 = 1.5,
µ0 = 5.0, σ0 = 2.0, and N = [2, 4, 6, 8], assuming approximately S = 500 bids observed at
each competition level. First step local polynomial bandwidths computed via bwc · S−1/3,
for values of bwc reported above.
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Table 2: Two-step OLS-CRRA estimator, S = 1000, ρ0 = 0.5, θ0 = 1.5

ρ̂ mean std 25% 50% 75%

bwc = 1.0 0.420992 0.175029 0.357833 0.439752 0.528544
bwc = 1.5 0.414720 0.181355 0.356295 0.458151 0.530549
bwc = 2.0 0.425663 0.167566 0.372587 0.448925 0.532161
bwc = 3.0 0.472407 0.147228 0.420716 0.472703 0.551467
bwc = 4.0 0.491436 0.138030 0.436531 0.492518 0.563187

θ̂ mean std 25% 50% 75%

bwc = 1.0 1.568788 0.296468 1.408262 1.483247 1.627447
bwc = 1.5 1.549957 0.271925 1.407975 1.465911 1.607106
bwc = 2.0 1.532709 0.273605 1.400348 1.457619 1.570694
bwc = 3.0 1.455302 0.196691 1.393846 1.428791 1.493555
bwc = 4.0 1.417398 0.108818 1.382068 1.408845 1.454900

Estimates based on 100 Monte Carlo samples from AS-CRRA process with ρ0 = 0.5, θ0 = 1.5,
µ0 = 5.0, σ0 = 2.0, and N = [2, 4, 6, 8], assuming approximately S = 1000 bids observed at
each competition level. First step local polynomial bandwidths computed via bwc · S−1/3,
for values of bwc reported above.
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Table 3: Two-step OLS-CRRA estimator, S = 2000, ρ0 = 0.5, θ0 = 1.5

ρ̂ mean std 25% 50% 75%

bwc = 1.0 0.471312 0.118759 0.435467 0.497566 0.553754
bwc = 1.5 0.478903 0.105939 0.444104 0.497610 0.550294
bwc = 2.0 0.471831 0.120922 0.437695 0.500650 0.546182
bwc = 3.0 0.483431 0.088783 0.440036 0.498591 0.544441
bwc = 4.0 0.499125 0.075337 0.452781 0.501195 0.556878

θ̂ mean std 25% 50% 75%

bwc = 1.0 1.512006 0.129052 1.432392 1.488613 1.547362
bwc = 1.5 1.493737 0.109186 1.427603 1.469686 1.529703
bwc = 2.0 1.496589 0.131696 1.427018 1.459374 1.513609
bwc = 2.5 1.472719 0.082343 1.415344 1.451792 1.510353
bwc = 3.0 1.450352 0.058761 1.408881 1.437910 1.489030

Estimates based on 100 Monte Carlo samples from AS-CRRA process with ρ0 = 0.5, θ0 = 1.5,
µ0 = 5.0, σ0 = 2.0, and N = [2, 4, 6, 8], assuming approximately S = 2000 bids observed at
each competition level. First step local polynomial bandwidths computed via bwc · S−1/3,
for values of bwc reported above.
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Table 4: Two-step OLS-CRRA estimator, S = 2000, ρ0 = 0.0, θ0 = 1.5

ρ̂ mean std 25% 50% 75%

bwc = 1.0 0.020129 0.036026 0 0 0.024512
bwc = 1.5 0.015771 0.031992 0 0 0.003280
bwc = 2.0 0.013178 0.028219 0 0 0.001045
bwc = 3.0 0.008931 0.022009 0 0 0.000000
bwc = 4.0 0.006521 0.018608 0 0 0.000000

θ̂ mean std 25% 50% 75%

bwc = 1.0 1.504600 0.070124 1.457686 1.491877 1.528829
bwc = 1.5 1.493492 0.057861 1.455038 1.485242 1.518443
bwc = 2.0 1.485448 0.049356 1.452146 1.479397 1.512814
bwc = 3.0 1.473774 0.043599 1.443437 1.470796 1.496075
bwc = 4.0 1.463839 0.039724 1.436120 1.459060 1.485859

Estimates based on 100 Monte Carlo samples from AS-CRRA process with risk-neutral
bidders, θ0 = 1.5, µ0 = 5.0, σ0 = 2.0, and N = [2, 4, 6, 8], assuming approximately S = 1000
bids observed at each competition level. First step local polynomial bandwidths computed
via bwc · S−1/3, for values of bwc reported above.
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Table 5: Two-step OLS-CRRA estimator, S = 2000, ρ0 = 0.5, θ0 = 1.0

ρ̂ mean std 25% 50% 75%

bwc = 1.0 0.448991 0.078023 0.421457 0.455907 0.497214
bwc = 1.5 0.444433 0.065119 0.413911 0.446102 0.488955
bwc = 2.0 0.432176 0.066427 0.400208 0.429393 0.476924
bwc = 3.0 0.400118 0.071315 0.357837 0.394831 0.450712
bwc = 4.0 0.367880 0.078002 0.317557 0.364526 0.423907

θ̂ mean std 25% 50% 75%

bwc = 1.0 1.016308 0.071549 1.000000 1.004317 1.016048
bwc = 1.5 1.009654 0.012810 1.000000 1.005333 1.016150
bwc = 2.0 1.009850 0.012851 1.000000 1.005471 1.016427
bwc = 3.0 1.011076 0.013207 1.000000 1.005319 1.017767
bwc = 4.0 1.012490 0.013765 1.000067 1.007402 1.020937

Estimates based on 100 Monte Carlo samples from AS-CRRA process with no selection,
ρ0 = 0.5 µ0 = 5.0, σ0 = 2.0, and N = [2, 4, 6, 8], assuming approximately S = 2000 bids
observed at each competition level. First step local polynomial bandwidths computed via
bwc · S−1/3, for values of bwc reported above.

69



Table 6: Two-step OLS-CRRA estimator, S = 2000, ρ0 = 0.2, θ0 = 1.2

ρ̂ mean std 25% 50% 75%

bwc = 1.0 0.143641 0.099563 0.048830 0.151904 0.218030
bwc = 1.5 0.127124 0.089961 0.044346 0.125522 0.191729
bwc = 2.0 0.108466 0.083150 0.031770 0.108805 0.169897
bwc = 3.0 0.080438 0.073766 0.000000 0.072119 0.132281
bwc = 4.0 0.068299 0.069315 0.000000 0.052697 0.113191

θ̂ mean std 25% 50% 75%

bwc = 1.0 1.213277 0.056411 1.181536 1.206031 1.223302
bwc = 1.5 1.209346 0.041990 1.181824 1.206144 1.221634
bwc = 2.0 1.207091 0.032267 1.184517 1.207244 1.223182
bwc = 3.0 1.206266 0.029824 1.183567 1.205641 1.222456
bwc = 4.0 1.205981 0.028782 1.184788 1.206167 1.221968

Estimates based on 100 Monte Carlo samples from AS-CRRA process with ρ0 = 0.2, θ0 = 1.2,
µ0 = 5.0, σ0 = 2.0, and N = [2, 4, 6, 8], assuming approximately S = 2000 bids observed at
each competition level. First step local polynomial bandwidths computed via bwc · S−1/3,
for values of bwc reported above.
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