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Supplementary Material for Post-Selection and Post-Regularization Inference in Linear Models with

Very Many Controls and Instruments

Valid Post-Selection and Post-Regularization
Inference: An Elementary, General Approach

VICTOR CHERNOZHUKOV, CHRISTIAN HANSEN, AND MARTIN SPINDLER

Abstract. Here we present an expository, general analysis of valid post-selection or post-regularization
inference about a low-dimensional target parameter, α, in the presence of a very high-dimensional nui-
sance parameter, η, which is estimated using modern selection or regularization methods. Our analysis
relies on high-level, easy-to-interpret conditions that allow one to clearly see the structures needed for
achieving valid post-regularization inference. Simple, readily verifiable sufficient conditions are provided
for a class of affine-quadratic models. We rely on asymptotic statements which dramatically simplifies
theoretical statements and helps highlight the structure of the problem. We focus our discussion on
estimation and inference procedures based on using the empirical analog of theoretical equations

M(α, η) = 0

which identify α. Within this structure, we show that setting up such equations in a manner such that
the orthogonality/immunization condition

∂ηM(α, η) = 0

at the true parameter values is satisfied, coupled with plausible conditions on the smoothness of M and
the quality of the estimator η̂, guarantees that inference for the main parameter α based on testing
or point estimation methods discussed below will be regular despite selection or regularization biases
occurring in estimation of η. In particular, the estimator of α will often be uniformly consistent at
the root-n rate and uniformly asymptotically normal even though estimators η̂ will generally not be
asymptotically linear and regular. The uniformity holds over large classes of models that do not impose
highly implausible “beta-min” conditions. We also show that inference can be carried out by inverting
tests formed from Neyman’s C(α) (orthogonal score) statistics. As an application and an illustration of
these ideas, we provide an analysis of post-selection inference in the linear models with many regressors
and many instruments. We conclude with a review of other developments in post-selection inference
and argue that many of the developments can be viewed as special cases of the general framework of
orthogonalized estimating equations.

Key words: Neyman, orthogonalization, C(α) statistics, optimal instrument=optimal score=optimal
moment, post-selection and post-regularization inference, general framework
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Notation. We use “wp → 1” to abbreviate the phrase “with probability that con-
verges to 1”, and we use arrows→Pn and Pn to denote convergence in probability and
in distribution under sequence of probability measures {Pn}. The symbol ∼ means “dis-
tributed as”. The notation a . b means that a = O(b) and a .Pn b means a = OPn(b).
The `2 and `1 norms are denoted by ‖ · ‖ and ‖ · ‖1, respectively; and the `0-“norm”,
‖ · ‖0, denotes the number of non-zero components of a vector. When applied to a
matrix, ‖ · ‖ denotes the operator norm. We use the notation a ∨ b = max(a, b) and
a ∧ b = min(a, b). Here and below, En[·] abbreviates the average n−1

∑n
i=1[·] over index

i. That is En[f(wi)] denotes n−1
∑n

i=1[f(wi)]. In what follows, we use the m-sparse
norm of a matrix Q defined as

‖Q‖sp(m) = sup{|b′Qb|/‖b‖2 : ‖b‖0 ≤ m, ‖b‖ 6= 0}.
We also consider the pointwise norm of a square matrix matrix Q at a point x 6= 0:

‖Q‖pw(x) = |x′Qx|/‖x‖2.

For a differentiable map x 7→ f(x), mapping Rd to Rk, we use ∂x′f to abbreviate the
partial derivatives (∂/∂x′)f , and we correspondingly use the expression ∂x′f(x0) to mean
∂x′f(x) |x=x0 , etc. We use x′ to denote the transpose of a column vector x.

1. A Testing and Estimation Approach to Valid Post-Selection and
Post-Regularization Inference

1.1. The Setting. We assume that estimation is based on the first n elements (wi,n)ni=1
of the stationary data-stream (wi,n)∞i=1, which lives on the probability space (Ω,A,Pn).
The data points wi,n take values in a measurable space W for each i and n. Here the
probability law, sometimes called the data-generating process, Pn, can change with n.
We allow the law to change with n to claim robustness or uniform validity of results with
respect to perturbations of such laws. Thus the data, all parameters, estimators, and
other quantities are indexed by n, but we typically suppress this dependence to simplify
notation.

The target parameter value α = α0 is assumed to solve the system of theoretical
equations:

M(α, η0) = 0,

where M = (Ml)
k
l=1 is a measurable map from A×H to Rk and A×H are some convex

subsets of Rd × Rp. Here the dimension d of the target parameter α ∈ A and the
number of equations k are assumed to be fixed and the dimension p = pn of the nuisance
parameter η ∈ H is very high, potentially much larger than n. To handle the high-
dimensional nuisance parameter η, we employ structured assumptions and selection or
regularization methods appropriate for the structure to estimate η0.

Given an appropriate estimator η̂, we can construct an estimator α̂ as an approximate
solution to the estimating equation:

‖M̂(α̂, η̂)‖ ≤ inf
α∈A
‖M̂(α, η̂)‖+ o(n−1/2)
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where M̂ = (M̂l)
k
l=1 is the empirical analog of theoretical equations M, which is a mea-

surable map from Wn×A×H to Rk. We can also use M̂(α, η̂) to test hypotheses about
α0 and then invert the tests to construct confidence sets.

It is not required in the formulation above, but a typical case is when M̂ and M are
formed as theoretical and empirical moment functions:

M(α, η) := E[ψ(wi, α, η)], M̂(α, η) := En[ψ(wi, α, η)],

where ψ = (ψl)
k
l=1 is a measurable map from W × A × H to Rk. Of course, there are

many problems that do not fall in the moment condition framework.

1.2. Valid Inference via Testing. A simple introduction to the inferential problem
is via the testing problem where we would like to test some hypothesis about the true
parameter value α0. By inverting the test, we create a confidence set for α0. The key
condition for the validity of this confidence region is adaptivity, which can be ensured
by using orthogonal estimating equations and using structured assumption on the high-
dimensional nuisance parameter.

The key condition enabling us to perform valid inference on α0 is the adaptivity
condition: √

n(M̂(α0, η̂)− M̂(α0, η0))→Pn 0. (1)

This condition states that using
√
nM̂(α0, η̂) is as as good as using

√
nM̂(α0, η0), at least

to the first order. This condition may hold despite using estimators η̂ that are not asymp-
totically linear and are non-regular. Verification of adaptivity may involve substantial
work as illustrated below. A key requirement which often arises is the orthogonality or
immunization condition:

∂η′M(α0, η0) = 0. (2)

This condition states that the equations are locally insensitive to small perturbations of
the nuisance parameter around the true parameter values. In several important models,
this condition is equivalent to the double-robustness condition (Robins and Rotnitzky
(1995)). Additional assumptions regarding the quality of estimation of η0 are also needed
and are highlighted below.

The adaptivity condition immediately allows us to use the statistic
√
nM̂(α0, η̂) to

perform inference. Indeed, suppose we have that

Ω−1/2(α0)
√
nM̂(α0, η̂) Pn N (0, Id) (3)

for some positive definite Ω(α) = Var(
√
nM̂(α, η0)). This condition can be verified using

central limit theorems for triangular arrays. Such theorems are available for both i.i.d.
as well as dependent and clustered data. Suppose further that there exists Ω̂(α) such
that

Ω̂1/2(α0)Ω−1/2(α0)→Pn Id. (4)

It is then immediate that the following score statistic, evaluated at α = α0, is asymp-
totically normal,

S(α) := Ω̂−1/2
n (α)

√
nM̂(α, η̂) Pn N (0, Id), (5)
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and that the quadratic form of this score statistic is asymptotically χ2-square with d
degrees of freedom:

C(α0) = ‖S(α0)‖2  Pn χ
2(d). (6)

We refer to this statistic as a generalized C(α)-statistic, since in likelihood settings
the construction above immediately reduces to the classical Neyman’s C(α)-statistic and
the generalized score S(α0) reduces to Neyman’s orthogonalized score; see, e.g. Ney-
man (1959) and Neyman (1979). We demonstrate these relationships below. Neyman
designed his statistic precisely to deal with inference on α0 when estimation of the nui-
sance parameters η0 is crude, which, for example, arises in panel data and other problems
with incidental parameters. Here and elsewhere, we are advancing Neyman’s ideas to
modern (very) high-dimensional problems.

The following elementary result is an immediate consequence of the preceding discus-
sion.

Proposition 1 (Valid Inference After Selection or Regularizaton). Consider a sequence
{Pn} of sets of probability laws such that for each sequence {Pn} ∈ {Pn} the adaptivity
condition (1) and the normality conditions (3) and (4) hold. Then CR1−a = {α ∈ A :
C(α) ≤ c(1 − a)}, where c(1 − a) is the 1 − a-quantile of a χ2(d), is a uniformly valid
confidence interval for α0 in the sense that

lim
n→∞

sup
P∈Pn

|P(α0 ∈ CR1−a)− (1− a)| = 0.

We remark here that in order to make the uniformity claim interesting we should insist
that the sets of probability laws Pn are non-decreasing in n, i.e. Pn̄ ⊆ Pn whenever
n̄ ≤ n.

Proof. For any sequence of positive constants εn approaching 0, let Pn ∈ Pn be any
sequence such that

|Pn(α0 ∈ CR1−a)− (1− a)|+ εn ≥ sup
P∈Pn

|P(α0 ∈ CR1−a)− (1− a)|.

By conditions (3) and (4) we have that

Pn(α0 ∈ CR1−a) = Pn(C(α0) ≤ c(1− a))→ P(χ2(d) ≤ c(1− a)) = 1− a,

which implies the conclusion from the preceding display. �

1.3. Valid Inference via Adaptive Estimation. Suppose that M(α0, η0) = 0 holds
for α0 ∈ A. We consider an estimator α̂ ∈ A that is an approximate minimizer of the
map α 7→ ‖M̂(α, η̂)‖ in the sense that

‖M(α̂, η̂)‖ ≤ inf
α∈A
‖M̂(α, η̂)‖+ o(n−1/2). (7)
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In order to analyze this estimator, we assume that the derivatives Γ1 := ∂α′M(α0, η0)
and ∂η′M(α, η0) exist. We assume that α0 is interior relative to the parameter space A;
namely, for some `n →∞ such that `n/

√
n→ 0,

{α ∈ Rd : ‖α− α0‖ ≤ `n/
√
n} ⊂ A. (8)

We also assume the following local-global identifiability condition holds: For some con-
stant c > 0,

2‖M(α, η0)‖ ≥ ‖Γ1(α− α0)‖ ∧ c ∀α ∈ A, mineig(Γ′1Γ1) ≥ c. (9)

Further, for Ω = Var(
√
nM̂(α0, η0)), we suppose that the central limit theorem,

Ω−1/2M̂(α0, η0) Pn N (0, I), (10)

and the stability condition,

‖Γ′1Γ1‖+ ‖Ω‖+ ‖Ω−1‖ . 1, (11)

hold.

Assume that for some sequence of positive numbers {rn} such that rn → 0 and

rnn
1/2 →∞, the following stochastic equicontinuity and continuity conditions hold:

sup
α∈A

‖M̂(α, η̂)−M(α, η̂)‖+ ‖M(α, η̂)−M(α, η0)‖
rn + ‖M̂(α, η̂)‖+ ‖M(α, η0)‖

→Pn 0, (12)

sup
‖α−α0‖≤rn

‖M̂(α, η̂)−M(α, η̂)− M̂(α0, η0)‖
n−1/2 + ‖M̂(α, η̂)‖+ ‖M(α, η0)‖

→Pn 0. (13)

Suppose that uniformly for all α 6= α0 such that ‖α − α0‖ ≤ rn → 0, the following
conditions on the smoothness of M and the quality of the estimator η̂ hold, as n→∞:

‖M(α, η0)−M(α0, η0)− Γ1[α− α0]‖‖α− α0‖−1 → 0,√
n‖M(α, η)−M(α, η0)− ∂η′M(α, η0)[η̂ − η0]‖ →Pn 0,
‖{∂η′M(α, η0)− ∂η′M(α0, η0)}[η̂ − η0]‖‖α− α0‖−1 →Pn 0.

(14)

Finally, as before, we assume that the orthogonality condition

∂η′M(α0, η0) = 0 (15)

holds.

The above conditions extend the analysis of Pakes and Pollard (1989) and Chen et al.
(2003), which in turn extended Huber’s (1964) classical results on Z-estimators. These
conditions allow for both smooth and non-smooth systems of estimating equations. The
identifiability condition imposed above is mild and holds for broad classes of identifiable
models. The equicontinuity and smoothness conditions imposed above require mild
smoothness on the function M as well as require that η̂ is a good-quality estimator of
η0. In particular, these conditions will often require that η̂ converges to η0 at a faster
rate than n−1/4 as demonstrated, for example, in the next section. However, the rate
condition alone is not sufficient for adaptivity. We also need the orthogonality condition.
In addition, we need that η̂ ∈ Hn, where Hn is a set whose complexity does not grow too
quickly with the sample size, to verify the stochastic equicontinuity condition; see, e.g.,
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Belloni, Chernozhukov, Fernández-Val and Hansen (2013) and Belloni, Chernozhukov
and Kato (2013b). In the next section, we use sparsity of η̂ to control this complexity.

Note that conditions (12)-(13) can be simplified by only leaving rn and n−1/2 in the
denominator, though this simplification would then require imposing compactness on A
even in linear problems.

Proposition 2 (Valid Inference via Adaptive Estimation after Selection or Regulariza-
tion). Consider a sequence {Pn} of sets of probability laws such that for each sequence
{Pn} ∈ {Pn} conditions (7)-(15) hold. Then

√
n(α̂− α0) + [Γ′1Γ1]−1Γ′1

√
nM̂(α0, η0)→Pn 0.

In addition, for any convex set R and

Vn = (Γ′1Γ1)−1Γ′1ΩΓ1(Γ′1Γ1)−1,

we have that

lim
n→∞

sup
P∈Pn

|P(V −1/2
n (α̂− α0) ∈ R)− P(N (0, I) ∈ R)| = 0.

Moreover, the result continues to apply if Vn is replaced by a consistent estimator V̂n
such that V̂n − Vn →Pn 0 under each sequence {Pn}. Thus, CRl1−a = [l′α̂ ± c(1 −
a/2)(l′V̂nl/n)1/2] where c(1 − a/2) is the (1 − a/2)-quantile of a N (0, 1) is a uniformly
valid confidence set for l′α0:

lim
n→∞

sup
P∈Pn

|P(l′α0 ∈ CRl1−a)− (1− a)| = 0.

Note that the above formulation implicitly accommodates weighting options. Suppose
Mo and M̂o are the original theoretical and empirical systems of equations, and let
Γo1 = ∂αMo(α0, η0) be the original Jacobian. We could consider k × k positive-definite

weight matrices A and Â such that

‖A2‖+ ‖(A2)−1‖ . 1, ‖Â2 −A2‖ →Pn 0. (16)

For example, we may wish to use the optimal weighting matrix A2 = Var(
√
nM̂o(α0, η0))

which can be estimated by Â2 obtained using a preliminary estimator α̂o resulting from
solving the problem with some non-optimal weighting matrix such as A = I. We can
then simply redefine the system of equations and the Jacobian according to

M(α, θ) = AMo(α, θ), M̂(α, θ) = ÂM̂o(α, θ), Γ1 = AΓo1. (17)

Proposition 3 (Adaptive Estimation via Weighted Equations). Consider a sequence
{Pn} of sets of probability laws such that for each sequence {Pn} ∈ {Pn} the conditions

of Proposition 2 hold for the original pair of systems of equations (Mo, M̂o) and that (16)

holds. Then these conditions also hold for the new pair (M, M̂) in (17), so that all the
conclusions of Proposition 2 apply to the resulting approximate argmin estimator α̂. In
particular, if we use A2 = Var(

√
nM̂o(α0, η0)) and Â2−A2 →Pn 0, then the large sample

variance Vn simplifies to
Vn = (Γ′1Γ1)−1.
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1.4. Inference via Adaptive “One-Step” Estimation. We next consider a “one-
step” estimator. To define the estimator, we start with an initial estimator α̃ that
satisfies, for rn = o(n−1/4),

Pn(‖α̃− α0‖ ≤ rn)→ 1. (18)

The one-step estimator α̌ then solves a linearized version of (7):

α̌ = α̃− [Γ̂′1Γ̂1]−1Γ̂′1M̂(α̃, η̂) (19)

where Γ̂1 is an estimator of Γ1 such that

Pn(‖Γ̂1 − Γ1‖ ≤ rn)→ 1. (20)

Since the one-step estimator is considerably more crude than the argmin estimator, we
need to impose additional smoothness conditions. Specifically, we suppose that uniformly
for all α 6= α0 such that ‖α − α0‖ ≤ rn → 0, the following strengthened conditions on
stochastic equicontinuity, smoothness of M and the quality of the estimator η̂ hold, as
n→∞:

n1/2‖M̂(α, η̂)−M(α, η̂)− M̂(α0, η0)‖ →Pn 0,
‖M(α, η0)−M(α0, η0)− Γ1[α− α0]‖‖α− α0‖−2 . 1,√
n‖M(α, η)−M(α, η0)− ∂η′M(α, η0)[η̂ − η0]‖ →Pn 0,√
n‖{∂η′M(α, η0)− ∂η′M(α0, η0)}[η̂ − η0]‖ →Pn 0.

(21)

Proposition 4 (Valid Inference via Adaptive One-Step Estimators). Consider a se-
quence {Pn} of sets of probability laws such that for each sequence {Pn} ∈ {Pn} the
conditions of Proposition 2 as well as (18), (20), and (21) hold. Then the one-step
estimator α̌ defined by (19) is first order equivalent to the argmin estimator α̂:

√
n(α̌− α̂)→Pn 0.

Consequently, all conclusions of Proposition 2 apply to α̌ in place of α̂.

The one-step estimator requires stronger regularity conditions than the argmin esti-
mator. Moreover, there is finite-sample evidence (e.g. Belloni, Chernozhukov and Wei
(2013)) that in practical problems the argmin estimator often works much better, since
the one-step estimator typically suffers from higher-order biases. This problem could
be alleviated somewhat by iterating on the one-step estimator, treating the previous
iteration as the “crude” start α̃ for the next iteration.

2. Achieving Adaptivity In Affine-Quadratic Models via Approximate
Sparsity

Here we take orthogonality as given and explain how we can use approximate sparsity
to achieve the adaptivity property (1).
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2.1. The Affine-Quadratic Model. We analyze the case where M̂ and M are affine
in α and affine-quadratic in η. Specifically, we suppose that for all α

M̂(α, η) = Γ̂1(η)α+ Γ̂2(η), M(α, η) = Γ1(η)α+ Γ2(η),

where η 7→ Γ̂j(η) and η 7→ Γj(η) are affine-quadratic in η for j = 1 and j = 2. That is,

we will have that all second-order derivatives of Γ̂j(η) and Γj(η) for j = 1 and j = 2 are
constant over the convex parameter space H for η.

This setting is both useful, including most widely used linear models as a special case,
and pedagogical, permitting simple illustration of the key issues that arise in treating
the general problem. The derivations given below easily generalize to more complicated
models, but we shall defer the details to the interested reader.

The estimator in this case is

α̂ = arg min
α∈Rd

‖M̂(α, η̂)‖ = −[Γ̂1(η̂)′Γ̂1(η̂)]−1Γ̂′1(η̂)Γ̂2(η̂), (22)

provided the inverse is well-defined. It follows that
√
n(α̂− α0) = −[Γ̂1(η̂)′Γ̂1(η̂)]−1Γ̂1(η̂)

√
nM̂(α0, η̂). (23)

This estimator is adaptive if, for Γ1 := Γ1(η0),
√
n(α̂− α0) + [Γ′1Γ1]−1Γ1

√
nM̂(α0, η0)→Pn 0,

which occurs under (10) and (11) if
√
n(M̂(α0, η̂0)− M̂(α0, η0))→Pn 0, Γ̂1(η̂)− Γ1(η0)→Pn 0. (24)

Therefore, the problem of adaptivity of the estimator is directly connected to the problem
of adaptivity of testing hypotheses about α0.

Lemma 1 (Adaptive Testing and Estimation in Affine-Quadratic Models). Consider
a sequence {Pn} of sets of probability laws such that for each sequence {Pn} ∈ {Pn}
condition (24), the asymptotic normality condition (10), and the stability condition (11)
hold. Then all the conditions of Propositions 1 and 2 hold. Moreover, the conclusions
of Propositions 1 and 2 hold for the estimator α̂ in (22).

2.2. Adaptivity for Testing via Approximate Sparsity. Assuming the orthogo-
nality condition holds, we follow Belloni et al. (2012) in using approximate sparsity
to achieve the adaptivity property (1) for the testing problem in the affine-quadratic
models.

We can expand each element M̂j of M̂ = (M̂)kj=1 as follows:
√
n(M̂j(α0, η̂)− M̂j(α0, η0)) = T1,j + T2,j + T3,j , (25)

where
T1,j :=

√
n∂ηMk(α0, η0)′(η̂ − η0),

T2,j :=
√
n(∂ηM̂k(α0, η0)− ∂ηMk(α0, η0))′(η̂ − η0),

T3,j :=
√
n2−1(η̂ − η0)′∂η∂η′M̂k(α0)(η̂ − η0).

(26)
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The term T1,j vanishes precisely because of orthogonality, i.e.

T1,j = 0.

However, terms T2,j and T3,j need not vanish. In order to show that they are asymptot-
ically negligible, we need to impose further structure on the problem.

Structure 1: Exact Sparsity. We first consider the case of using an exact sparsity
structure where ‖η0‖0 ≤ s and s = sn ≥ 1 can depend on n. We then use estimators η̂
that exploit the sparsity structure.

Suppose that the following bounds hold with probability 1− o(1) under Pn:

‖η̂‖0 . s, ‖η0‖0 ≤ s,
‖η̂ − η0‖2 .

√
(s/n) log(pn), ‖η̂ − η0‖1 .

√
(s2/n) log(pn).

(27)

These conditions are typical performance bounds which hold for many sparsity-based
estimators such as Lasso, post-Lasso, and their extensions.

We suppose further that the moderate deviation bound

T̄2,j = ‖
√
n(∂η′M̂k(α0, η0)− ∂η′Mk(α0, η0))‖∞ .Pn

√
log(pn), (28)

holds and that the sparse norm of the second-derivative matrix is bounded:

T̄3,j = ‖∂η∂η′M̂k(α0)‖sp(`ns) .Pn 1 (29)

where `n = log n.

Following Belloni et al. (2012), we can verify condition (28) using the moderate devi-
ation theory for self-normalized sums (e.g., Jing et al. (2003)), which allows us to avoid
making highly restrictive subgaussian or gaussian tail assumptions. Likewise, following
Belloni et al. (2012), we can verify the second condition using laws of large numbers for
large matrices acting on sparse vectors (e.g., Rudelson and Zhou (2011)). Indeed, the
condition (29) holds if

‖∂η∂η′M̂k(α0)− ∂η∂η′Mk(α0)‖sp(`ns) →Pn 0, ‖∂η∂η′Mk(α0)‖sp(`ns) . 1.

The above analysis immediately implies the following elementary result.

Lemma 2 (Elementary Adaptivity for Testing via Sparsity). Let {Pn} be a sequence

of probability laws. Assume (i) η 7→ M̂(α0, η) and η 7→ M(α0, η) are affine-quadratic in
η, (ii) that the conditions on sparsity and the quality of estimation (27) hold, and the
sparsity index obeys

s2 log(pn)3/n→ 0, (30)

(iii) that the moderate deviation bound (28) holds, and (iv) the sparse norm of the second
derivatives matrix is bounded as in (29). Then the adaptivity condition (1) holds for the
sequence {Pn}.
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We note that (30) requires that the true value of the nuisance parameter is sufficiently
sparse, which we can relax in some special cases to the requirement s log(pn)c/n → 0,
for some constant c, by using the sample-splitting techniques, see Belloni et al. (2012).
However, this requirement seems unavoidable in general.

Proof. We noted that T1,j = 0 by orthogonality. Under (27)-(28) if s2 log(pn)3/n→ 0,
then T2,j vanishes in probability, since by Hölder’s inequality,

T2,j ≤ T̄2,j‖η̂ − η0‖1 .Pn

√
s2 log(pn)3/n→Pn 0.

Also, if s2 log(pn)2/n→ 0, then T3,j vanishes in probability, since by Hölder’s inequality
and for sufficiently large n,

T3,j ≤ T̄3,j‖η̂ − η0‖2 .Pn

√
ns log(pn)/n→Pn 0.

The conclusion follows from (25). �

Structure 2. Approximate Sparsity. Following Belloni et al. (2012), we next
consider an approximate sparsity structure. Approximate sparsity imposes that, given a
constant c > 0, we can decompose η0 into a sparse component ηmr and a small non-sparse
component ηr:

η0 = ηm0 + ηr0, support(ηm0 ) ∩ support(ηr0) = ∅,
‖ηm0 ‖0 ≤ s, ‖ηr0‖2 ≤ c

√
s/n, ‖ηr0‖1 ≤ c

√
s2/n.

(31)

This condition allows for much more realistic and richer models than can be accom-
modated under exact sparsity. For example, under approximate sparsity η0 need not
have any zero components at all. In Section 4, we provide an example where (31) arises
from a more primitive condition that the absolute values {|η0j |, j = 1, ..., p}, sorted in a
decreasing order, decay at a polynomial speed with respect to j.

Suppose that we have an estimator η̂ such with probability 1 − o(1) under Pn the
following bounds hold:

‖η̂‖0 . s, ‖η̂ − ηm0 ‖2 .
√

(s/n) log(pn), ‖η̂ − ηm0 ‖1 .
√

(s2/n) log(pn). (32)

This condition is again a standard performance bound expected to hold for sparsity-
based estimators under approximate sparsity conditions; see Belloni et al. (2012). Note
that by the approximate sparsity condition, we also have that, with probability 1− o(1)
under Pn,

‖η̂ − η0‖2 .
√

(s/n) log(pn), ‖η̂ − η0‖1 .
√

(s2/n) log(pn). (33)

Here we can employ the same moderate deviation and bounded sparse norm conditions
as in the previous subsection. In addition, we require the pointwise norm of the second-
derivatives matrix to be bounded. Specifically, for any deterministic vector a 6= 0, we
require

‖∂η∂η′M̂k(α0)‖pw(a) .Pn 1. (34)

This condition can be easily verified using ordinary laws of large numbers.
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Lemma 3 (Elementary Adaptivity for Testing via Approximate Sparsity). Let {Pn} be

a sequence of probability laws. Assume (i) η 7→ M̂(α0, η) and η 7→ M(α0, η) are affine-
quadratic in η, (ii) that the conditions on approximate sparsity (31) and the quality of
estimation (32) hold, and the sparsity index obeys

s2 log(pn)3/n→ 0,

(iii) that the moderate deviation bound (28) holds, (iv) the sparse norm of the second
derivatives matrix is bounded as in (29), and (v) the pointwise norm of the second
derivative matrix is bounded as in (34). Then the adaptivity condition (1) holds:

√
n(M̂(α0, η̂)− M̂(α0, η0))→Pn 0.

2.3. Adaptivity for Estimation via Approximate Sparsity. We work with the
approximate sparsity setup and the affine-quadratic model introduced in the previous
subsections.

In addition to the previous assumptions, we impose the following conditions on the
components ∂ηΓ1,ml of ∂ηΓ1, where m = 1, ..., k and l = 1, ..., d,. First, we need the
following deviation and boundedness condition: For each m and l,

‖∂ηΓ̂1,ml(η0)− ∂ηΓ1,ml(η0)‖∞ .Pn 1, ‖∂ηΓ1,ml(η0)‖∞ . 1. (35)

Second, we require the sparse and pointwise norms of the following second-derivative
matrices be stochastically bounded: For each m and l,

‖∂η∂η′Γ̂1,ml‖sp(`ns) + ‖∂η∂η′Γ̂1,ml‖pw(a) .Pn 1, (36)

where a 6= 0 is any deterministic vector. Both of these conditions are mild. They can be
verified using self-normalized moderate deviation theorems and by using laws of large
numbers for matrices as discussed in the previous subsection.

Lemma 4 (Elementary Adaptivity for Estimation via Approximate Sparsity). Consider
a sequence of {Pn} for which the conditions of the previous lemma hold. In addition
assume that the deviation bound (35) holds and the sparse norm and pointwise norms of
the second derivatives matrices are stochastically bounded as in (36). Then the adaptivity
condition (24) holds for the testing and estimation problem in the affine-quadratic model.

3. Achieving Orthogonality Using Neyman’s Orthogonalization

Here we describe orthogonalization ideas that go back at least to Neyman (1959); see
also Neyman (1979). Neyman’s idea was to project the score that identifies the parame-
ter of interest on the ortho-complement of the tangent space for the nuisance parameter.
This projection underlies semi-parametric efficiency theory, which is concerned particu-
larly with the case where η is infinite-dimensional, cf. van der Vaart (1998). Here we
consider finite-dimensional η of high dimension; for discussion of infinite-dimensional η in
an approximately sparse setting, see Belloni, Chernozhukov, Fernández-Val and Hansen
(2013) and Belloni, Chernozhukov and Kato (2013b).
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3.1. The Classical Likelihood Case. In likelihood settings, the construction of or-
thogonal equations was proposed by Neyman (1959) who used them in construction of
his celebrated C(α)-statistic. The C(α)-statistic, or the orthogonal score statistic, was
first explicitly used for testing (and also for setting up estimation) in high-dimensional
sparse models in Belloni, Chernozhukov and Kato (2013b) and Belloni, Chernozhukov
and Kato (2013a), in the context of quantile regression, and Belloni, Chernozhukov and
Wei (2013) in the context of the logistic regression and other generalized linear models.
More recent uses of C(α)-statistics (or close variants) include those in Voorman et al.
(2014), Ning and Liu (2014), and Yang et al. (2014) among others.

Suppose that the (possibly conditional, possibly quasi) log-likelihood function asso-
ciated to observation wi is `(wi, α, β), where α ∈ A ⊂ Rd is the target parameter and
β ∈ B ⊂ Rp0 is the nuisance parameter. Under regularity conditions, the true parameter
values (α0, β0) obey

E[∂α`(wi, α0, β0)] = 0, E[∂β`(wi, α0, β0)] = 0. (37)

Now consider the moment function

M(α, η) = E[ψ(wi, α, η)], ψ(wi, α, η) = ∂α`(wi, α, β)− µ∂β`(wi, α, β). (38)

Here the nuisance parameter is

η = (β′, vec(µ)′)′ ∈ B ×D ⊂ Rp, p = p0 + d× p0,

where µ is the orthogonalization parameter whose true value µ0 solves the equation:

Jαβ − µJββ = 0 ( i.e., µ0 = JαβJ
−1
ββ ), (39)

where, for γ := (α′, β′) and γ0 := (α′0, β
′
0),

J := ∂γ∂γ′E[`(wi, γ) ]|γ=γ0 =

(
∂α∂α′E[`(wi, γ) ] ∂α∂β′E[`(wi, γ) ]
∂β∂α′E[`(wi, γ) ] ∂β∂β′E[`(wi, γ) ]

)∣∣∣∣
γ=γ0

=:

(
Jαα Jαβ
J ′αβ Jββ

)
.

Note that µ0 not only creates the necessary orthogonality but also creates

• the optimal score (in statistical language)
• or, equivalently, the optimal instrument/moment (in econometric language)1

for inference about α0.

Provided µ0 is well-defined, we have by (37) that

M(α0, η0) = 0.

Moreover, the function M has the desired orthogonality property:

∂η′M(α0, η0) =
[
Jαβ − µ0Jββ ; ∂βE[`(wi, α0, β0)]

]
= 0. (40)

1The connection between optimal instruments/moments and likelihood/score has been elucidated by
the fundamental work of Chamberlain (1987).
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Note that the orthogonality property holds for Neyman’s construction even if the like-
lihood is misspecified. That is, `(wi, γ0) may be a quasi-likelihood, and the data need
not be i.i.d. and may, for example, exhibit complex dependence over i.

An alternative way to define µ0 arises by considering that, under correct specification
and sufficient regularity, the information matrix equality holds and yields

J = J0 := E[∂γ`(wi, γ)∂γ`(wi, γ)′]|γ=γ0

=

(
E[∂α`(wi, γ)∂α`(wi, γ)′] E[∂α`(wi, γ)∂β`(wi, γ)′]
E[∂α`(wi, γ)∂β`(wi, γ)′] E[∂β`(wi, γ)∂β`(wi, γ)′]

)∣∣∣∣
γ=γ0

,

=:

(
J0
αα J0

αβ

J0
αβ J0

ββ

)
,

where µ∗0 = J0
αβJ

0−1
ββ is the population projection coefficient of the score for the main

parameter ∂α`(wi, γ0) on the score for the nuisance parameter ∂β`(wi, γ0):

∂α`(wi, γ0) = µ∗0∂β`(wi, γ0) + %, E[%∂β`(wi, γ0)′] = 0. (41)

We can see this construction as the non-linear version of Frisch-Waugh’s “partialling out”
from the linear regression model. It is important to note that under misspecification the
information matrix equality generally does not hold, and this projection approach does
not provide valid orthogonalization.

Lemma 5 (Neyman’s orthogonalization for (quasi-) likelihood scores). Suppose that for
each given γ = (α, β) ∈ A × B, the derivative ∂γ`(wi, γ) exists with probability one.
Suppose that condition (37) holds for some (quasi-) true value (α0, β0). Then, (i) if J
exists and is finite and Jββ is invertible, then the orthogonality condition (40) holds;
(ii) if also E supγ∈N ‖∂γ`(wi, γ)‖2 < ∞, where N is an open set containing γ0, then

J0 exists and is finite. If the information matrix equality holds, namely J = J0, then
the orthogonality condition (40) holds for the projection parameter µ∗0 in place of the
orthogonalization parameter µ0.

Proof. The first claim follows from the computations above and definition of µ0. The
second claim follows from the dominated convergence theorem and the computations
given above. �

With the formulations above Neyman’s C(α)-statistic takes the form

C(α) = ‖S(α)‖22, S(α) = Ω̂−1/2(α, η̂)
√
nM̂(α, η̂),

where M̂(α, η̂) = En[ψ(wi, α, η̂)] as before, Ω(α, η0) = Var(
√
nM̂(α, η0)), and Ω̂(α, η̂)

and η̂ are suitable estimators based on sparsity or other structured assumptions. The
estimator is then

α̂ = arg inf
α∈A

C(α) = arg inf
α∈A
‖
√
nM̂(α, η̂)‖,

(provided that Ω̂(α, η̂) is positive definite for each α ∈ A). If the conditions of Section
1 hold, we have that

C(α) χ2(d), V −1/2
n

√
n(α̂− α0) N (0, I), (42)
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where Vn = Γ−1
1 Ω(α0, η0)Γ−1

1 and Γ1 = Jαα − µ0J
′
αβ. Under correct specification and

i.i.d. sampling, the variance matrix Vn further reduces to the optimal variance

Γ−1
1 = (Jαα − JαβJββJ ′αβ)−1,

of the first d components of the maximum likelihood estimator in a Gaussian shift
experiment with observation Z ∼ N (h, J−1

0 ). Likewise, the result (42) also holds for
the one-step estimator α̌ of Section 1 in place of α̂, provided the conditions in Section 1
hold.

Provided that sparsity or its generalizations are plausible assumptions to make re-
garding η0, the formulations above naturally lend themselves to sparse estimation. For
example, Belloni, Chernozhukov and Wei (2013) used penalized and post-penalized max-
imum likelihood to estimate β0, and used the information matrix equality to estimate
the orthogonalization parameter µ∗0 by using Lasso or Post-Lasso estimation of the pro-
jection equation (41). It is also possible to estimate µ0 directly by finding approximate
sparse solutions to the empirical analog of the system of equations Jαβ − µJββ = 0 us-
ing `1-penalized estimation, as, e.g., in van de Geer et al. (2014), or post-`1-penalized
estimation.

3.2. Achieving Orthogonality in GMM Problems. Here we consider γ0 = (α0, β0)
that solve the system of equations:

E[m(wi, α0, β0)] = 0,

where m : W ×A× B 7→ Rk, A × B is a convex subset of Rd × Rp0 , and k ≥ d + p0 is
the number of moments. The orthogonal moment equation is

M(α, η) = E[ψ(wi, α, η)], ψ(wi, α, η) = µm(wi, α, β). (43)

The nuisance parameter is

η = (β′, vec(µ)′)′ ∈ B ×D ⊂ Rp, p = p0 + d× p0,

where µ is the orthogonalization parameter. The “true value” of µ is

µ0 = (G′αΩ−1
m −G′αΩ−1

m Gβ(G′βΩ−1
m Gβ)−1G′βΩ−1

m ),

where, for γ = (α′, β′)′ and γ0 = (α′0, β
′
0)′,

Gγ = ∂γ′E[m(wi, α, β)]|γ=γ0 =
[
∂α′E[m(wi, α, β)], ∂β′E[m(wi, α, β)]

]
|γ=γ0=:

[
Gα, Gβ

]
,

and

Ωm = Var(
√
nEn[m(wi, α0, β0)]).

As before, we can interpret µ0 as an operator creating orthogonality while building

• the optimal instrument/moment (in econometric language),
• or, equivalently, the optimal score function (in statistical language).2

2The connection between optimal instruments/moments and likelihood/score has been elucidated by
the fundamental work of Chamberlain (1987).
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The resulting moment function has the required orthogonality property; namely, the first
derivative with respect to the nuisance parameter when evaluated at the true parameter
values is zero:

∂η′M(α0, η)|η=η0 = [µ0Gβ,E[m(wi, α0, β0)]] = 0. (44)

Estimation and inference on α0 can be based on the empirical analog of (43):

M̂(α, η̂) = En[ψ(wi, α, η̂)],

where η̂ is a post-selection or other regularized estimator of η0. Note that the previous
framework of (quasi)-likelihood is incorporated as a special case with

m(wi, α, β) = [∂α`(wi, α)′, ∂β`(wi, β)′].

With the formulations above, Neyman’s C(α)-statistic takes the form:

C(α) = ‖S(α)‖22, S(α) = Ω̂−1/2(α, η̂)
√
nM̂(α, η̂),

where M̂(α, η̂) = En[ψ(wi, α, η̂)] as before, Ω(α, η0) = Var(
√
nM̂(α, η0)), and Ω̂(α, η̂) and

η̂ are suitable estimators based on structured assumptions. The estimator is then

α̂ = arg inf
α∈A

C(α) = arg inf
α∈A
‖
√
nM̂(α, η̂)‖,

(provided that Ω̂(α, η̂) is positive definite for each α ∈ A). If the high-level conditions
of Section 1 hold, we have that

C(α) Pn χ
2(d), V −1/2

n

√
n(α̂− α) Pn N (0, I), (45)

where Vn = (Γ′1)−1Ω(α0, η0)(Γ1)−1 coincides with the optimal variance for GMM; here
Γ1 = µ0Gα. Likewise, the same result (45) holds for the one-step estimator α̌ of Section
1 in place of α̂, provided the conditions in Section 1 hold. In particular, variance Vn cor-
responds to the variance of the first d components of the maximum likelihood estimator
in the normal shift experiment with the observation Z ∼ N (h, (G′γΩ−1

m Gγ)−1).

The above is a generic outline of the properties that are expected for inference using
orthogonalized GMM equations under structured assumptions. The problem of infer-
ence in GMM under sparsity is a very delicate matter due to the complex form of
the orthogonalization parameters; one potential approach to the problem is outlined in
Chernozhukov et al. (2014).

4. Analysis of the IV Model with Very Many Control and Instrumental
Variables

Note that in the following we write w ⊥ v to denote Cov(w, v) = 0.

Consider the linear instrumental variable model with response variable:

yi = α′0di + x′iβ0 + εi, E[εi] = 0, ε ⊥ (zi, xi), (46)
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where yi is the response variable, di = (dik)
pd

k=1 is a pd-vector of endogenous variables,
such that

di1 = x′iγ01 + z′iδ01 + ui1, E[ui1] = 0, ui1 ⊥ (zi, xi),
...

...
...

dipd = x′iγ0pd + z′iδ0pd + uipd , E[uipd ] = 0, uipd ⊥ (zi, xi).

(47)

Here xi = (xij)
px

j=1 is a px-vector of exogenous control variables and zi = (zi)
pz
i=1 is a

pz-vector of instrumental variables.

The parameter value α0 is our target. We allow px = pxn � n and pz = pzn � n, but
we maintain that pd is fixed in our analysis. This model includes the many instruments
and small number of controls case considered by Belloni et al. (2012) as a special case,
and the analysis readily accommodates the many controls and no instruments case – i.e.
the linear regression model – considered by Belloni, Chernozhukov and Hansen (2014)
and Zhang and Zhang (2014). For the latter, we set pzn = 0 and impose the additional
condition εi ⊥ di.

We will have n i.i.d. draws of

wi = (yi, d
′
i, x
′
i, z
′
i)
′, i = 1, ..., n,

obeying this system of equations. We also assume that Var(wi) is finite throughout so
that the model is well defined.

We may have that zi and xi are correlated so that zi are valid instruments only after
controlling for xi; specifically, we let zi = Πxi + ζi, for Π a pzn × pxn matrix and ζi a
pzn-vector of unobservables with xi ⊥ ζi. Substituting this expression for zi as a function
of xi into (46) gives a system for yi and di that depends only on xi:

yi = x′iθ0 + ρyi , E[ρyi ] = 0, ρyi ⊥ xi,

di1 = x′iϑ01 + ρdi1, E[ρdi1] = 0, ρdi1 ⊥ xi,
...

...
...

dipd = x′iϑ0pd + ρdipd , E[ρdipd ] = 0, ρdipd ⊥ xi.

(48)

Because the dimension p = pn of

η0 = (θ′0, (ϑ
′
0k, γ

′
0k, δ

′
0k)

pd
k=1)′

may be larger than n, informative estimation and inference about α0 is impossible with-
out imposing restrictions on η0.

In order to state our assumptions, we fix a collection of positive constants (a,A, c,C),
where a > 1, and a sequence of constants δn ↘ 0 and `n ↗∞. These constants will not
vary with P, but rather we will work with collections of P defined by these constants.
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Condition AS.1 We assume that η0 is approximately sparse, namely that the de-
creasing rearrangement (|η0|∗j )

p
j=1 of absolute values of coefficients (|η0j |)pj=1 obeys

|η0|∗j ≤ Aj−a, a > 1, j = 1, ..., p. (49)

Given this assumption and a constant c > 0, we can decompose η0 into a sparse
component ηm0 and small non-sparse component ηr0:

η0 = ηm0 + ηr0, support(ηm0 ) ∩ support(ηr0) = ∅,
‖ηm0 ‖0 ≤ s, ‖ηr0‖2 ≤ c

√
s/n, ‖ηr0‖1 ≤ c

√
s2/n,

s = cn
1
2a ,

(50)

where the constant c depends only on (a,A).

Condition AS.2 We assume that

s2 log(pn)3/n ≤ o(1). (51)

We shall perform inference on α0 using the empirical analog of theoretical equations:

M(α0, η0) = 0, M(α, η) := E [ψ(wi, α, η)] , (52)

where ψ = (ψk)
pd
k=1 is defined by

ψk(wi, α, η) :=

yi − x′iθ − pd∑
k̄=1

(di − x′iϑk̄)αk̄

 (x′iγk + z′iδk − x′iϑk).

We can verify that the following orthogonality condition holds:

∂η′M(α0, η)
∣∣∣
η=η0

= 0. (53)

This means that missing the true value η0 by a small amount does not invalidate the
moment condition. Therefore, the moment condition will be relatively insensitive to
non-regular estimation of η0.

We denote the empirical analog of (52) as

M̂(α, η̂) = 0, M̂(α, η) := En [ψi(α, η)] . (54)

Inference based on this condition can be shown to be immunized against small selection
mistakes by virtue of orthogonality.

The above formulation is a special case of the linear-affine model. Indeed, here we
have

M(α, η) = Γ1(η)α+ Γ2(η), M̂(α, η) = Γ̂1(η) + Γ̂2(η),

Γ1(η) = E[ψa(wi, η)], Γ̂1(η) = En[ψa(wi, η)],

Γ2(η) = E[ψb(wi, η)], Γ̂2(η) = En[ψb(wi, η)],
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where

ψa(wi, η) =
{ pd∑
k̄=1

(di − x′iϑk̄)(x′iγk + z′iδk − x′iϑk)
}pd
k=1

,

ψb(wi, η) =
{

(yi − x′iθ)(x′iγk + z′iδk − x′iϑk)
}pd
k=1

.

Consequently we can use the results of the previous section. In order to do so we need
to provide a suitable estimator for η0. Here we use the Lasso and Post-Lasso algorithms,
as defined in Belloni et al. (2012), to deal with non-normal errors and heteroscedasticity.

Algorithm 1 (Estimation of η0). (1) For each k, do Lasso or Post-Lasso Regression of

di on xi, zi to obtain γ̂k and δ̂k. (2) Do Lasso or Post-Lasso Regression of yi on xi to

get θ̂. (3) Do Lasso or Post-Lasso Regression of d̂ik = x′iγ̂k + z′iδ̂k on xi to get ϑ̂k. The

estimator of η0 is given by η̂ = (θ̂′, (ϑ̂′k, γ̂
′
0k, δ̂

′
k)
pd
k=1)′.

We then use

Ω̂(α, η̂) = En[ψ(wi, α, η̂)ψ(wi, α, η̂)′].

to estimate the variance matrix Ω(α, η0) = En[ψ(wi, α, η0)ψ(wi, α, η0)′]. We formulate
the orthogonal score statistic and the C(α)-statistic,

S(α) := Ω̂−1/2
n (α, η̂)

√
nM̂(α, η̂), C(α) = ‖S(α)‖2, (55)

as well as our estimator α̂:

α̂ = arg min
α∈A
‖
√
nM̂(α, η̂)‖.

Note also that α̂ = arg minα∈AC(α) under mild conditions, since we work with “exactly

identified” systems of equations. We also need to specify a variance estimator V̂n for the
large sample variance Vn of α̂. We set V̂n = (Γ̂1(η̂)′)−1Ω̂(α̂, η̂)(Γ̂1(η̂)).

To estimate the nuisance parameter we impose the following condition. Let fi :=
(fij)

pf
j=1 := (x′i, z

′
i)
′; hi := (hil)

ph
l=1 := (yi, d

′
i, d̄
′
i)
′ where d̄i = (d̄ik)

pd
k=1 and d̄ik := x′iγ0k +

z′iδ0k; vi = (vil)
ph
l=1 := (ρyi , ρ

d
i
′
, %i
′)′ where %i = (%ik)

pd
k=1 and %ik := dik − d̄ik. Let

h̃i := hi − E[hi].

Condition RF. (i) The eigenvalues of E[fif
′
i ] are bounded from above by C and from

below by c. For all j and l, (ii) E[h2
il] + E[|f2

ij h̃
2
il|] + 1/E[f2

ijv
2
il] ≤ C and E[|f2

ijv
2
il|] ≤

E[|f2
ij h̃

2
il|], (iii) E[|f3

ijv
3
il|]2 log3(pn)/n ≤ δn, and (iv) s log(pn)/n ≤ δn. With probability

no less than 1 − δn, we have that (v) maxi≤n,j f
2
ij [s

2 log(pn)]/n ≤ δn and maxl,j |(En −
E)[f2

ijv
2
il]|+ |(En − E)[f2

ij h̃
2
il]| ≤ δn and (vi) ‖En[fif

′
i ]− E[fif

′
i ]‖sp(`ns) ≤ δn.

The conditions are motivated by those given in Belloni et al. (2012). The current
conditions are made slightly stronger to account for the fact that we use zero covariance
conditions in formulating the moments. Some conditions could be easily relaxed at a
cost of more complicated exposition.
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To estimate the variance matrix and establish asymptotic normality, we also need the
following condition. Let q > 4 be a fixed constant.

Condition SM. For each l and k, (i) E[|hil|q] + E[|vil|q] ≤ C, (ii) c ≤ E[ε2i | xi, zi] ≤
C, c < E[%2

ik | xi, zi] ≤ C a.s., (iii) supα∈A ‖α‖2 ≤ C.

Under the conditions set forth above, we have the following result on validity of post-
selection and post-regularization inference using C(α)-statistic and estimators derived
from it.

Proposition 5 (Valid Inference in Large Linear Models using C(α)-statistics). Let Pn

be the collection of all P such that Conditions AS.1-2, SM, and RF hold for the given n.
Then uniformly in P ∈ Pn, S(α0)  N (0, I), and C(α0)  χ2(d). As a consequence,
the confidence set CR1−a = {α ∈ A : C(α) ≤ c(1−a)}, where c(1−a) is the 1−a-quantile
of a χ2(d) is uniformly valid for α0, in the sense that

lim
n→∞

sup
P∈Pn

|P(α0 ∈ CR1−a)− (1− a)| = 0.

Furthermore, for any convex set R and

Vn = (Γ′1)−1Ω(Γ1)−1,

we have that

lim
n→∞

sup
P∈Pn

|P(V −1/2
n (α̂− α0) ∈ R)− P(N (0, I) ∈ R)| = 0.

Moreover, the result continues to apply if Vn is replaced by V̂n. Thus, CRl1−a = [l′α̂±c(1−
a/2)(l′V̂nl/n)1/2], where c(1 − a/2) is the (1 − a/2)-quantile of a N (0, 1), is uniformly
valid confidence set for l′α0:

lim
n→∞

sup
P∈Pn

|P(l′α0 ∈ CRl1−a)− (1− a)| = 0.

5. Implementation Details for Simulation and Empirical Results

In this section, we provide details for the simulation and empirical results reported in
the main paper, Chernozhukov et al. (2015).

5.1. Simulation. For our simulation, we generate data as n iid draws from the model

yi = αdi + x′iβ + εi
di = x′iγ + z′iδ + ui
zi = Πxi + ζi

∣∣∣∣∣∣


εi
ui
ζi
xi

 ∼ N
0,


1 .6 0 0
.6 1 0 0
0 0 .25Ipzn 0
0 0 0 Σ


 ,

where Σ is a pxn × pxn matrix with Σkj = (0.5)|j−k| and Ipzn is a pzn × pzn identity matrix.
We set the number of potential controls variables (pxn) to 200, the number of instruments
(pzn) to 150, and the number of observations (n) to 200. For model coefficients, we set
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α = 1, β = γ as pxn−vectors with entries βj = γj = 1
j2

, δ as a pzn−vector with entries

δj = 1
j2

, and

Π = [Ipzn , 0pzn×(pxn−pzn)].

We report results from four estimators. The results for our proposed procedure are
obtained following Algorithm 1 using Post-Lasso at every step. To obtain the Oracle
results, we run standard IV regression of yi on di using the single instrument z′iδ and the
single control x′iβ. For the results based on stepwise regression, we follow Algorithm 1
from the main text but use stepwise regression with p-value for entry of .05 and p-value
for removal of .10 which corresponds to the default decision rule for stepwise regression
in many software packages. For the second naive alternative based on non-orthogonal
moment conditions, we first do Post-Lasso regression of d on x and z which provides
Post-Lasso fitted values for d, d̂. We then do Post-Lasso regression of y on x and take
the residuals as ρ̂y. We also do Post-Lasso regression of d on x and take these residuals
as ρ̂d. The estimator of α is then obtained from the usual IV estimator of ρ̂y on ρ̂d using
d̂ as the instrument. All of the Post-Lasso estimates in the simulation are obtained using
the data-dependent penalty level from Belloni and Chernozhukov (2013). This penalty
level depends on a standard deviation that is estimated adapting the iterative algorithm
described in Belloni et al. (2012) Appendix A. For inference in all cases, we use standard
t-tests based on conventional homoscedastic IV standard errors obtained from the final
IV step performed in each strategy.

5.2. Empirical Example. To obtain the results in the empirical example, we employ
the strategy outlined in Algorithm 1 in Chernozhukov et al. (2015) using Post-Lasso at
every step. We employ the heteroscedasticity robust version of Post-Lasso of Belloni
et al. (2012) following the implementation algorithm provided in Appendix A of Belloni
et al. (2012). All standard errors reported in the empirical example are conventional
heteroscedasticity robust standard errors for IV estimators.

6. Overview of Related Literature

Inference following model selection or regularization more generally has been an active
area of research in econometrics and statistics for the last several years. In this section,
we provide a brief overview of this literature highlighting some key developments. This
review is necessarily selective due to the large number of papers available and the rapid
pace at which new papers are appearing. We choose to focus on papers that deal
specifically with high-dimensional nuisance parameter settings, and note that the ideas
in these papers apply in low dimensional settings as well.

Early work on inference in high-dimensional settings focused on inference based on
the so-called oracle property; see, e.g., Fan and Li (2001) for an early paper, Fan and
Lv (2010) for a more recent review, and Bühlmann and van de Geer (2011) for a text-
book treatment. A consequence of the oracle property is that model selection does not
impact the asymptotic distribution of the parameters estimated in the selected model.
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This feature allows one to do inference using standard approximate distributions for the
parameters of the selected model ignoring that model selection was done. While conve-
nient and fruitful in many applications (e.g. signal processing), such results effectively
rely on strong conditions that imply that one will be able to perfectly select the correct
model. For example, such results in linear models require the so called “beta-min con-
dition” (Bühlmann and van de Geer (2011)) that all but a small number of coefficients
are exactly zero and the remaining non-zero coefficients are bounded away from zero,
effectively ruling out variables that have small, non-zero coefficients. Such conditions
seem implausible in many applications, especially in econometrics, and relying on such
conditions produces asymptotic approximations that may provide very poor approxi-
mations to finite-sample distributions of estimators as they are not uniformly valid over
sequences of models that include even minor deviations from conditions implying perfect
model selection. The concern about the lack of uniform validity of inference based on
oracle properties was raised in a series of papers, including Leeb and Pötscher (2008a)
and Leeb and Pötscher (2008b) among many others, and the more recent work on post-
model-selection inference has been focused on offering procedures that provide uniformly
valid inference over interesting (large) classes of models that include cases where perfect
model selection will not be possible.

To our knowledge, the first work to formally and expressly address the problem of
obtaining uniformly valid inference following model selection is Belloni et al. (ArXiv,
2010b) which considered inference about parameters on a low-dimensional set of endoge-
nous variables following selection of instruments from among a high-dimensional set of
potential instruments in a homoscedastic, Gaussian instrumental variables (IV) model.
The approach does not rely on implausible conditions implying perfect model selection
but instead relies on the fact that the moment condition underlying IV estimation satis-
fies the orthogonality condition (2) and the use of high-quality variable selection methods.
These ideas were further developed in the context of providing uniformly valid inference
about the parameters on endogenous variables in the IV context with many instruments
to allow non-Gaussian heteroscedastic disturbances in Belloni et al. (2012). These prin-
ciples have also been applied in Belloni et al. (2010a), which outlines approaches for re-
gression and IV models; Belloni, Chernozhukov and Hansen (2014) (ArXiv 2011), which
covers estimation of the parametric components of the partially linear model, estima-
tion of average treatment effects, and provides a formal statement of (2); Farrell (2013)
which covers average treatment effects with discrete, multi-valued treatments; Kozbur
(2014) which covers additive nonparametric models; and Belloni, Chernozhukov, Hansen
and Kozbur (2014) which extends the IV and partially linear model results to allow for
fixed effects panel data and clustered dependence structures. The most recent, general
approach is provided in Belloni, Chernozhukov, Fernández-Val and Hansen (2013) where
inference about parameters defined by a continuum of orthogonalized estimating equa-
tions with infinite-dimensional nusiance parameters is analyzed and positive results on
inference are developed. The framework in Belloni, Chernozhukov, Fernández-Val and
Hansen (2013) is general enough to cover the aforementioned papers and many other
parametric and semi-parametric models considered in economics.



22 VICTOR CHERNOZHUKOV, CHRISTIAN HANSEN, AND MARTIN SPINDLER

As noted above, providing uniformly valid inference following model selection is closely
related to use of Neyman’s C(α)-statistic. Valid confidence regions can be obtained by
inverting tests based on these statistics, and minimizers of C(α)-statistics may be used
as point estimators. The use of C(α) statistics for testing and estimation in high-
dimensional approximately sparse models was first explored in the context of high-
dimensional quantile regression in Belloni, Chernozhukov and Kato (2013b) (Oberwol-
fach, 2012) and Belloni, Chernozhukov and Kato (2013a) and in the context of high-
dimensional logistic regression and other high-dimensional generalized linear models by
Belloni, Chernozhukov and Wei (2013). More recent uses of C(α)-statistics (or close
variants, under different names) include those in Voorman et al. (2014), Ning and Liu
(2014), and Yang et al. (2014) among others.

There have also been parallel developments based upon ex-post “de-biasing” of esti-
mators. This approach is mathematically equivalent to doing classical “one-step” correc-
tions in the general framework of Section 1. Indeed, while at first glance this “de-biasing”
approach may appear distinct from that taken in the papers listed above in this section,
it is the same as approximately solving – by doing one Gauss-Newton step – orthogonal
estimating equations satisfying (2). The general results of Section 1 suggest that these
approaches – the exact solving and “one-step” solving – are generally first-order asymp-
totically equivalent, though higher-order differences may persist. To the best of our
knowledge, the “one-step” correction approach was first employed in high-dimensional
sparse models by Zhang and Zhang (2014) (ArXiv 2011) which covers the homoscedastic
linear model (as well as in several follow-up works by the authors). This approach has
been further used in van de Geer et al. (2014) (ArXiv 2013) which covers homoscedastic
linear and some generalized linear models, and Javanmard and Montanari (2014) (ArXiv
2013) which offers a related, though somewhat different approach. Note also that Bel-
loni, Chernozhukov and Kato (2013b) and Belloni, Chernozhukov and Wei (2013) also
offer results on “one-step” corrections as part of their analysis of estimation and infer-
ence based upon the orthogonal estimating equations. We would not expect that the
use of orthogonal estimating equations or the use of “one-step” corrections to dominate
each other in all cases, though computational evidence in Belloni, Chernozhukov and
Wei (2013) suggests that the use of exact solutions to orthogonal estimating equations
may be preferable to approximate solutions obtained from “one-step” corrections in the
contexts considered in that paper.

There is also a complementary, but logically distinct, branch of the recent literature
that aims at doing valid inference for the parameters of a “pseudo-true” model that
results from the use of a model selection procedure. Specifically, this approach conditions
on a model selected by a data-dependent rule and then attempts to do valid inference –
conditional on the selection event – for the parameters of the selected model, which may
deviate from the “true” model that generated the data. See, for example, Berk et al.
(2013), G’Sell et al. (2013), Lee and Taylor (2014), Lee et al. (2013), Lockhart et al.
(2014), Loftus and Taylor (2014), Taylor et al. (2014), and Fithian et al. (2014) for some
recent examples. It seems intellectually very interesting to combine the developments of
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the present paper (and other preceding papers cited above) with developments in this
literature.

There have also been developments on building confidence intervals for high (as op-
posed to low) dimensional parameters. Chernozhukov (2009) proposed inverting a Lasso
performance bound in order to construct a simultaneous, Scheffé-style confidence band
on all parameters. An interesting feature of this approach is that it uses weaker de-
sign conditions than many other approaches but requires the data analyst to supply
explicit bounds on restricted eigenvalues. Gautier and Tsybakov (2011) (ArXiv 2011)
and Chernozhukov et al. (2013) employ similar ideas while also working with various
generalizations of restricted eigenvalues. van de Geer and Nickl (2013) construct confi-
dence ellipsoids for the entire parameter vector using sample splitting ideas. Somewhat
related to this literature are the results of Belloni, Chernozhukov and Kato (2013b) who
use the orthogonal estimating equations framework with infinite-dimensional nuisance
parameters and construct a simultaneous confidence rectangle for many target parame-
ters where the number of target parameters could be much larger than the sample size.
Further expanding the set of results for uniform high-dimensional joint inference over a
high-dimensional set of target parameters is an interesting topic for future work.

Appendix A. Proofs

A.1. Proof of Proposition 1. This is given in the text. �

A.2. Proof of Proposition 2. Consider any sequence {Pn} in {Pn}.

Step 1 (rn-rate). Here we show that ‖α̂ − α0‖ ≤ rn wp → 1. We have by the
identifiability condition, in particular the assumption mineig(Γ′1Γ1) ≥ c, that

Pn(‖α̂− α0‖ > rn) ≤ Pn(‖M(α̂, η0)‖ ≥ ι(rn)), ι(rn) := 2−1({
√
crn} ∧ c).

Hence it suffices to show that wp → 1

‖M(α̂, η0)‖ < ι(rn).

By the triangle inequality, ‖M(α̂, η0)‖ ≤ I1 + I2 + I3, where

I1 = ‖M(α̂, η0)−M(α̂, η̂)‖, I2 = ‖M(α̂, η̂)− M̂(α̂, η̂)‖, I3 = ‖M̂(α̂, η̂)‖.

By assumption (12), wp → 1

I1 + I2 ≤ o(1){rn + I3 + ‖M(α̂, η0)‖}.

Hence,

‖M(α̂, η0)‖(1− o(1)) ≤ o(1)(rn + I3) + I3.

By construction of the estimator,

I3 ≤ o(n−1/2) + inf
α∈A
‖M̂(α, η̂)‖ .Pn n

−1/2,
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which follows because

inf
α∈A
‖M̂(α, η̂)‖ ≤ ‖M̂(ᾱ, η̂)‖ .Pn n

−1/2, (56)

where ᾱ is the one-step estimator defined in Step 3, as shown in (57). Hence wp → 1

‖M(α̂, η0)‖ ≤ o(rn) < ι(rn),

where to obtain the last inequality we have used the assumption mineig(Γ′1Γ1) ≥ c.

Step 2 (n−1/2-rate). Here we show that ‖α̂ − α0‖ .Pn n
−1/2. By condition (14) and

the triangle inequality, wp → 1

‖M(α̂, η0)‖ ≥ ‖Γ1(α̂− α0)‖ − o(1)‖α̂− α0‖ ≥ (
√
c− o(1))‖(α̂− α0)‖ ≥

√
c/2‖(α̂− α0)‖.

Therefore, it suffices to show that ‖M(α̂, η0)‖ .Pn n
−1/2. We have that

‖M(α̂, η0)‖ ≤ II1 + II2 + II3,

where II1 = ‖M(α̂, η0) − M(α̂, η̂)‖, II2 = ‖M(α̂, η̂) − M̂(α̂, η̂) − M̂(α0, η0)‖, II3 =

‖M̂(α̂, η̂)‖ + ‖M̂(α0, η0)‖. Then, by the orthogonality ∂η′M(α0, η0) = 0 and condition
(14), wp → 1,

II1 ≤ ‖M(α̂, η̂)−M(α̂, η0)− ∂η′M(α̂, η0)[η̂ − η0]‖+ ‖∂η′M(α̂, η0)[η̂ − η0]‖
≤ o(1)n−1/2 + o(1)‖α̂− α0‖
≤ o(1)n−1/2 + o(1)(2/

√
c)‖M(α̂, η0)‖.

Then, by condition (13),

II2 ≤ o(1){n−1/2 + ‖M̂(α̂, η̂)‖+ ‖M(α̂, η0)‖}
.Pn o(1){n−1/2 + n−1/2‖M(α̂, η0)‖}.

Since II3 .Pn n
−1/2 by (56), it follows that wp → 1, (1− o(1))‖M(α̂, η0)‖ .Pn n

−1/2.

Step 3 (Linearization). Define the linearization map α 7→ L̂(α) by

L̂(α) := M̂(α0, η0) + Γ1(α− α0).

Then

‖M̂(α̂, η̂)− L̂(α̂)‖ ≤ III1 + III2 + III3,

where III1 = ‖M(α̂, η̂)−M(α̂, η0)‖, III2 = ‖M(α̂, η0)−Γ1(α̂−α0)‖, III3 = ‖M̂(α̂, η̂)−
M(α̂, η̂)− M̂(α0, η0)‖. Then, using the assumptions (14) and (13), conclude

III1 ≤ ‖M(α̂, η̂)−M(α̂, η0)− ∂η′M(α̂, η0)[η̂ − η0]‖+ ‖∂η′M(α̂, η0)[η̂ − η0]‖
≤ o(1)n−1/2 + o(1)‖α̂− α0‖,

III2 ≤ o(1)‖α̂− α0‖,
III3 ≤ o(1)(n−1/2 + ‖M̂(α̂, η̂)‖+ ‖M(α̂, η0)‖)

≤ o(1)(n−1/2 + n−1/2 + III2 + ‖Γ1(α̂− α0)‖).
Conclude that wp → 1, since ‖Γ′1Γ1‖ . 1 by assumption (11),

‖M̂(α̂, η̂)− L̂(α̂)‖ .Pn o(1)(n−1/2 + ‖α̂− α0‖) = o(n−1/2).
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Also consider the minimizer of the map α 7→ ‖L̂(α)‖, namely,

ᾱ = α0 − (Γ′1Γ1)−1Γ′1M̂(α0, η0)

which obeys ‖
√
n(ᾱ − α0)‖ .Pn n

−1/2 under the conditions of the proposition. We can
repeat the argument above to conclude that wp → 1

‖M̂(ᾱ, η̂)− L̂(ᾱ)‖ .Pn o(n
−1/2).

This implies, since ‖L̂(ᾱ)‖ .Pn n
−1/2,

‖M̂(ᾱ, η̂)‖ .Pn n
−1/2. (57)

This also implies that

‖L̂(α̂)‖ = ‖L̂(ᾱ)‖+ oPn(n−1/2),

since ‖L̂(ᾱ)‖ ≤ ‖L̂(α̂)‖ and

‖L̂(α̂)‖ − oPn(n−1/2) ≤ ‖M̂(α̂, η̂)‖ ≤ ‖M̂(ᾱ, η̂)‖+ o(n−1/2) = ‖L̂(ᾱ)‖+ oPn(n−1/2).

The former assertion implies that ‖L̂(α̂)‖2 = ‖L̂(ᾱ)‖2 + oPn(n−1), so that

‖L̂(α̂)‖2 − ‖L̂(ᾱ)‖2 = ‖Γ1(α̂− ᾱ)‖2 = oPn(n−1),

from which we can conclude that
√
n‖α̂− ᾱ‖ →Pn 0.

Step 4. (Conclusion). Given the conclusion of the previous step, the remaining claims
are standard and follow from the Continuous Mapping Theorem and the Portmanteau
Theorem. �

A.3. Proof of Proposition 3. We have wp→ 1 that, for some constants 0 < u < l < 0,
l‖x‖ ≤ ‖Ax‖ ≤ u‖x‖ and l‖x‖ ≤ ‖Âx‖ ≤ u‖x‖. Hence

sup
α∈A

‖ÂM̂o(α, η̂)−AMo(α, η̂)‖+ ‖AMo(α, η̂)−AMo(α, η0)‖
rn + ‖ÂM̂o(α, η̂)‖+ ‖AM(α, η0)‖

≤ sup
α∈A

u

l

‖M̂o(α, η̂)−Mo(α, η̂)‖+ ‖Mo(α, η̂)−Mo(α, η0)‖
(rn/l) + ‖M̂o(α, η̂)‖

+ sup
α∈A

‖Â−A‖‖M̂o(α, η̂)‖
rn + l‖M̂o(α, η̂)‖

.Pn o(1) + ‖Â−A‖/l→Pn 0.

The proof that the rest of the conditions hold is analogous and is therefore omitted. �

A.4. Proof of Proposition 4. Step 1. We define the feasible and infeasible “one-steps”

α̌ = α̃− F̂ M̂(α̃, η̂), F̂ = (Γ̂′1Γ̂1)−1Γ̂1,

ᾱ = α0 − F M̂(α0, η0), F = (Γ′1Γ1)−1Γ1.

We deduce by (20) and (11) that

‖F̂‖ .Pn 1, ‖F̂Γ1 − I‖ .Pn rn, ‖F̂ − F‖ .Pn rn.
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Step 2. By Step 1 and by condition (21), we have that

D = ‖F̂ M̂(α̃, η̂)− F̂ M̂(α0, η0)− F̂Γ1(α̃− α0)‖
≤ ‖F̂‖‖M̂(α̃, η̂)− M̂(α0, η0)− Γ1(α̃− α0)‖
.Pn ‖M̂(α̃, η̂)−M(α̃, η̂)− M̂(α0, η0)‖+ D1

.Pn o(n
−1/2) + D1,

where D1 := ‖M(α̃, η̂)− Γ1(α̂− α0)‖.

Moreover, D1 ≤ IV1 + IV2 + IV3, where wp → 1 by condition (21) and r2
n = o(n−1/2)

IV1 := ‖M(α̃, η0)− Γ1(α̃− α0)‖ . ‖α̃− α0‖2 . r2
n = o(n−1/2),

IV2 := ‖M(α̃, η̂)−M(α̃, η0)− ∂η′M(α̃, η0)[η̂ − η0]‖ . o(n−1/2),

IV3 := ‖∂η′M(α̃, η0)[η̂ − η0]‖ . o(n−1/2).

Conclude that n1/2D→Pn 0.

Step 3. We have by the triangle inequality and Steps 1 and 2 that
√
n‖α̌− ᾱ‖ ≤

√
n‖(I − F̂Γ1)(α̃− α0)‖+

√
n‖(F̂ − F )M̂(α0, η0)‖+

√
nD

≤
√
n‖(I − F̂Γ1)‖‖α̃− α0‖+ ‖F̂ − F‖‖

√
nM̂(α0, η0)‖+

√
nD

.Pn

√
nr2

n + o(1) = o(1).

Thus,
√
n‖α̌− ᾱ‖ →Pn 0, and

√
n‖α̌− α̂‖ →Pn 0 follows from the triangle inequality and

the fact that
√
n‖α̂− ᾱ‖ →Pn 0. �

A.5. Proof of Lemma 1. We have that, for Γ̂1 = Γ̂1(η̂),
√
n(α̂− α0) = −F̂

√
nM̂(α0, η̂), F̂ = (Γ̂′1Γ̂1)−1Γ̂1,

√
n(ᾱ− α0) := −F

√
nM̂(α0, η0), F = (Γ′1Γ1)−1Γ1.

We deduce by (24) and (11) that ‖F̂‖ .Pn 1 and ‖F̂ − F‖ →Pn 0. Hence we have by
triangle and Hölder inequalities and condition (24) that
√
n‖α̂− ᾱ‖ ≤ ‖F̂‖

√
n‖M̂(α0, η̂)− M̂(α0, η0))‖+ ‖F̂ − F‖

√
n‖M̂(α0, η0)‖ →Pn 0.

The conclusions regarding the uniform validity of inference using α̂, of the form stated
in conclusions of Proposition 1 and 2, follow from the conclusions regarding the uniform
validity of inference using ᾱ, which follow from the Continuous Mapping Theorem, the
Portmanteau Theorem, and the assumed stability conditions (11). This establishes the
second claim of the Lemma.

Regarding the first claim, verification of the conditions of Propositions 1 and 2 is left
for the interested reader. Having proven the first claim, we could have derived the second
claim as a corollary of Propositions 1 and 2, but instead we proved it above directly. �

A.6. Proof of Lemma 2. This is given in the main text. �
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A.7. Proof of Lemma 3. As in the proof of Lemma 2, we can expand:
√
n(M̂j(α0, η̂)− M̂j(α0, η0)) = T1,j + T2,j + T3,j , (58)

where the terms (Tl,j)
3
l=1 are as defined in the main text. We can further bound T3,j as

follows:
T3,j ≤ Tm3,j + T4,j ,

Tm3,j :=
√
n|(η̂ − ηm0 )′∂η∂η′M̂k(α0)(η̂ − ηm0 )|,

T4,j :=
√
n|ηr0 ′∂η∂η′M̂k(α0)ηr0|.

(59)

Then T1,j = 0 by orthogonality, T2,j →Pn 0 as in the proof of Lemma 2. Since
s2 log(pn)2/n → 0, Tm3,j vanishes in probability because, by Hölder’s inequality and for
sufficiently large n,

Tm3,j ≤ T̄3,j‖η̂ − ηm0 ‖2 .Pn

√
ns log(pn)/n→Pn 0.

Also, if s2 log(pn)2/n → 0, T4,j vanishes in probability because, by Hölder’s inequality
and (34),

T4,j ≤
√
n‖∂η∂η′M̂k(α0)‖pw(ηr0)

‖ηr0‖2 .Pn

√
ns log(pn)/n→Pn 0.

The conclusion follows from (58). �

A.8. Proof of Lemma 4. For m = 1, ..., k and l = 1, ..., d, we can bound each element
Γ̂1,ml(η) of matrix Γ̂1(η) as follows:

|Γ̂1,ml(η̂)− Γ̂1,ml(η0)| ≤ T1,ml + T2,ml + T3,ml,

where
T1,ml := |∂ηΓ1,ml(η0)′(η̂ − η0)|,
T2,ml := |(∂ηΓ̂1,ml(η0)− ∂ηΓ1,ml(η0))′(η̂ − η0)|,
T3,ml := |(η̂ − ηm0 )′∂η∂η′Γ̂1,ml(η̂ − ηm0 )|,
T4,ml := |ηr0 ′∂η∂η′Γ̂1,mlη

r
0|.

Under conditions (35) and (36) we have that wp → 1

T1,ml ≤ ‖∂ηΓ1,ml(η0)‖∞‖η̂ − η0‖1 .Pn

√
s2 log(pn)/n→ 0,

T2,ml ≤ ‖∂ηΓ̂1,ml(η0)− ∂ηΓ1,ml(η0)‖∞‖η̂ − η0‖1 .Pn

√
s2 log(pn)/n→ 0,

T3,ml ≤ ‖∂η∂η′Γ̂1,ml‖sp(`ns)‖η̂ − η
m
0 ‖2 .Pn s log(pn)/n→ 0,

T4,ml ≤ ‖∂η∂η′Γ̂1,ml‖pw(ηr0)‖ηr0‖2 .Pn s log(pn)/n→ 0.

The claim follows from the assumed growth conditions, since d and k are bounded. �

A.9. Proof of Propositions 5. We present the proofs for the case of pd = 1; the
general case follows similarly.

We proceed to verify the assumptions of Lemma 3 and 4, from which the desired
result follows from Propositions 1 and 2 and Lemma 1. In what follows, we consider an
arbitrary sequence {Pn} in {Pn}.
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Step 1. (Performance bounds for η̂). We noted that Condition AS.1 implies the
decomposition (50). A straightforward modification of the proofs of Belloni et al. (2012)
yields the following performance bounds for estimator η̂ of η0: wp → 1,

‖η̂‖0 . s, ‖η̂ − ηm0 ‖2 .
√

(s/n) log(pn), ‖η̂ − ηm0 ‖1 .
√

(s2/n) log(pn). (60)

Note that modification concerns the use of the assumption that errors are not corre-
lated with predictive regressors instead of mean independence. Also the third step of the
algorithm requires regressing an estimated response variable on the predictive regressors;
the estimation error in the response variable can be treated as approximation errors in
Belloni et al. (2012)’s proofs; we omit the details for brevity.

Step 2. (Preparation). It will also be convenient to lift the nuisance parameter η into
a higher dimension and redefine the signs of its components as follows:

η := (η′1, η
′
2, η
′
3, η
′
4, η
′
5)′ := [−θ′,−ϑ′, γ′, δ′,−ϑ′]′.

With this re-definition, we have

ψ(wi, α, η) = {(yi + x′iη1) + (di + x′iη2)α}{x′iη3 + z′iη4 + x′iη5}.

Note also that

M(α, η) = Γ1(η)α+ Γ2(η), M̂(α, η) = Γ̂1(η) + Γ̂2(η),

Γ1(η) = E[∂αψ(wi, α, η)], Γ̂1(η) = En[∂αψ(wi, α, η)].

We compute the following partial derivatives:

∂ηψ(wi) := ∂ηψ(wi, α0, η0) = [x′i%i, α0x
′
i%i, x

′
iρ
y
i , z
′
iρ
y
i , x
′
iρ
y
i ],

∂αψ(wi, α, η) = {di + x′iη2}{x′iη3 + z′iη4 + x′iη5},
∂αψ(wi) := ∂αψ(wi, α0, η0) = ρdi %i,

∂η′∂αψ(wi) := ∂η′∂αψ(wi, α0, η0) = [0, x′i%i, x
′
iρ
d
i , z
′
iρ
d
i , x
′
iρ
d
i ]
′,

∂η∂η′ψ(wi, α, η) =


0 0 xix

′
i xiz

′
i xix

′
i

0 0 αxix
′
i αxiz

′
i αxix

′
i

xix
′
i αxix

′
i 0 0 0

zix
′
i αzix

′
i 0 0 0

xix
′
i αxix

′
i 0 0 0

 ,

∂η∂η′∂αψ(wi, α, η) =


0 0 0 0 0
0 0 xix

′
i xiz

′
i xix

′
i

0 xix
′
i 0 0 0

0 zix
′
i 0 0 0

0 xix
′
i 0 0 0

 .

Step 3. (Verification of Conditions of Lemma 3).
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Application of Lemma 6, condition ‖α0‖ ≤ C holding by Condition SM, and Condition
RF, yields that wp → 1,

√
n‖∂ηM(α0, η0)− ∂ηM̂(α0, η0)‖∞ = ‖

√
n(En − E)∂ηψ(wi)‖∞ .

. max
j

√
[En[(∂ηψ(wi))2

j ]
√

log(pn) .Pn

√
log(pn).

Application of the triangle inequality, of condition ‖α0‖ ≤ C, and Condition RF yields:

‖∂η∂η′M̂(α0, η0)‖sp(`ns) ≤ C‖∂η∂η′En[fifi]‖sp(`ns) .Pn 1,

where C depends on C.

Moreover, application of the triangle inequality and the Markov inequality yields, for
any deterministic a 6= 0,

‖∂η∂η′M̂(α0, η0)‖pw(a) ≤ C‖∂η∂η′En[fifi]‖pw(a) .Pn 1,

where C depends on C.

We have by Condition SM and the law of iterated expectations:

Ω = E[ψ2(wi, α0, η0)] = E[ε2i %
2
i ] ∈ E[%2

i ] · [c,C] ∈ [c2,C2],

E[ψq/2(wi, α0, η0)] ≤ E[|εi%i|q/2] ≤
√

E[|εi|q]
√

E[|%i|q] ≤ C.

Application of Lyapunov’s Central Limit Theorem yields,

Ω−1/2M̂(α0, η0) N (0, 1).

Next, Ω̂(α0) = En[ψ2(wi, α0, η̂)] is consistent for Ω. The proof of this result follows

similarly to the (slightly more difficult) proof of consistency of Ω̂ = En[ψ2(wi, α̂, η̂)] for
Ω, which is given below.

All conditions of Lemma 3 are now verified.

Step 4. (Verification of Conditions of Lemma 4).

Application of Lemma 6 and Conditions RF yields that with probability 1− o(1),
√
n‖∂ηΓ̂1(α0, η0)− ∂ηΓ1(α0, η0)‖∞ = ‖

√
n(En − E)∂η∂αψ(wi)‖∞ .

. max
j

√
[En[(∂η∂αψ(wi))2

j ]
√

log(pn) .Pn

√
log(pn).

Application of the triangle inequalities and Condition RF yields:

‖∂η∂η′Γ̂1(α0, η0)‖sp(`ns) . ‖∂η∂η′En[fifi‖sp(`ns) .Pn 1.

Moreover, application of the triangle inequalities and the Markov inequality yields,
for any deterministic a 6= 0,

‖∂η∂η′Γ̂1(α0, η0)‖pw(a) . ‖∂η∂η′En[fifi‖pw(a) .Pn 1.
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Next, by Condition SM we have

Γ1 = E[ρdi %i] = E[%2
i ] ∈ [c,C].

By Conditon SM we have

‖∂ηΓ1(α0, η0)‖∞ = ‖E[∂η′∂αψ(wi)]‖∞ ≤ max
j

(
E[|fij%i|] ∨ E[|fijρdi |]

)
≤ max

j

(√
[E[|fij%i|2] ∨

√
|E[|fijρdi |2]

)
≤
√
C.

This, as well as previous steps verify conditions of the Lemma 4, which are sufficient to
establish that |α̂− α0| .Pn n

−1/2, which is needed in the last step below.

Next, we show consistency V̂n − Vn →Pn 0. Given the stability conditions estab-

lished above, this follows from Γ̂1(η̂) − Γ1 →Pn 0, which follows from Lemma 4, and

from the consistency: Ω̂ − Ω →Pn 0. Recall that Ω̂ = En[ψ2(wi, α̂, η̂)] and let Ω̂0 =

En[ψ2(wi, α0, η0)]. Since Ω̂0 − Ω →Pn 0 by Markov inequality, it suffices to show that

Ω̂ − Ω0 →Pn 0. Since Ω̂ − Ω0 = (
√

Ω̂ −
√

Ω̂0)(
√

Ω̂ +
√

Ω̂0), it suffices to show that

(
√

Ω̂−
√

Ω̂0)→Pn 0. By the triangle inequality and some simple calculations, we have

|
√

Ω̂−
√

Ω̂0| . D := I2I∞

√
En[%4

i ] + I2I∞II2II∞ + II2II∞

√
En[ε4i ],

where the terms are defined below. Let

ε̂i = ρ̂yi − ρ̂
d
i α̂, εi = ρyi − ρ

d
iα,

%̂i = x′iγ̂ + z′iδ̂ − x′iϑ̂, %i = x′iγ0 + z′iδ0 − x′iϑ0.

Then

|ε̂i − εi| ≤ |x′i(θ0 − θ̂)|+ |ρdi (α0 − α̂)|+ |x′i(ϑ̂− ϑ0)α0|+ |x′i(ϑ̂− ϑ0)(α̂− α0)|,
|%̂i − %i| ≤ |z′i(δ̂ − δ0)|+ |x′i(γ̂ − γ0)|+ |x′i(ϑ̂− ϑ0)|.

Then the terms I2, I∞, II2, II∞ are defined and bounded, using elementary inequalities
and Condition RF, as follows:

I2 :=
√
En[(ε̂i − εi)2] .Pn

√
s log(pn)/n+

√
En[ρd2

i ]|α̂− α0|

+
√
s log(pn)/n|α̂− α0| →Pn 0,

I∞ := max
i≤n
|ε̂i − εi| . max

ij
|fij |

√
s2 log(pn)/n+ max

i≤n
|ρdi ||α̂− α0|

+ max
ij
|fij |

√
s2 log(pn)/n|α̂− α0| →Pn 0,

II2 :=
√
En[(%̂i − %i)2] .Pn

√
s log(pn)/n→ 0,

II∞ := max
i≤n
|%̂i − %i| . max

ij
|fij |

√
s2 log(pn)/n→Pn 0,
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where we have used the relations, |α̂−α0| .Pn n
−1/2, and En[|ρdi |2] .Pn 1, maxi≤n ρ

d
i .Pn

n1/q, for q > 4, holding by Condition SM, and we have used the fact that

En[(x′i{θ̂ − θ0})2 + (x′i{ϑ̂− ϑ0})2 + (x′i{γ̂ − γ0})2 + (z′i{δ̂ − δ0})2] .Pn

s log(pn)

n
.

The latter follows from the following argument, for example, wp → 1,

En[(x′i{θ̂ − θ0})2] ≤ 2En[(x′i{θ̂ − θm0 })2] + 2En[(x′iθ
r
0)2]

. ‖En[fif
′
i ]‖sp(`ns)‖θ̂ − θ

m
0 ‖2 + ‖En[fif

′
i ]‖pw(θr0)‖θr0‖2

.Pn s log(pn)/n,

since wp → 1 ‖θ̂ − θm0 ‖0 ≤ `ns, ‖θ̂ − θm0 ‖2 . s log(pn)/n, ‖θr0‖2 . s/n, by Step 1
and Condition AS.1 (see decomposition (50)), and ‖En[fif

′
i ]‖sp(`ns) .Pn 1 holding by

Condition RF and ‖En[fif
′
i ]‖pw(θr0) .Pn 1 holding by Markov inequality and Condition

RF.

Since En[%4
i ] + En[ε4i ] .Pn 1 by Condition SM, we conclude that D→Pn 0. �

Appendix B. Some Tools

Let Φ and Φ−1 denote the distribution and quantile function of N (0, 1). Note that in

particular Φ−1(1− a) ≤
√

2 log(1/a) for all a ∈ (0, 1).

Lemma 6 (Moderate Deviation Inequality for Maximum of a Vector). Suppose that

Sj =

∑n
i=1 Uij√∑n
i=1 U

2
ij

,

where Uij are independent variables across i with mean zero. We have that

P

(
max

1≤j≤p
|Sj | > Φ−1(1− γ/2p)

)
≤ γ

(
1 +

A

`3n

)
,

where A is an absolute constant, provided for `n > 0

0 ≤ Φ−1(1− γ/(2p)) ≤ n1/6

`n
min

1≤j≤p
M2
j − 1, Mj :=

(
1
n

∑n
i=1 E[U2

ij ]
)1/2

(
1
n

∑n
i=1 E[|Uij |3]

)1/3 .
This result is essentially due to Jing et al. (2003). The proof of this result, given

in Belloni et al. (2012), follows from a simple combination of union bounds with their
result.
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