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POST-SELECTION AND POST-REGULARIZATION INFERENCE IN

LINEAR MODELS WITH MANY CONTROLS AND INSTRUMENTS

VICTOR CHERNOZHUKOV, CHRISTIAN HANSEN, AND MARTIN SPINDLER

Abstract. In this note, we offer an approach to estimating structural
parameters in the presence of many instruments and controls based on
methods for estimating sparse high-dimensional models. We use these
high-dimensional methods to select both which instruments and which
control variables to use. The approach we take extends Belloni et al.
(2012), which covers selection of instruments for IV models with a small
number of controls, and extends Belloni, Chernozhukov and Hansen (2014),
which covers selection of controls in models where the variable of interest
is exogenous conditional on observables, to accommodate both a large
number of controls and a large number of instruments. We illustrate the
approach with a simulation and an empirical example. Technical sup-
porting material is available in a supplementary appendix.

Publication: American Economic Review 2015, Papers and Proceedings.

Online Appendix: Post-Selection and Post-Regularization Inference: An
Elementary, General Approach.

1. Model and Estimation Approach

Consider the linear IV model

yi = α0di + x′iβ0 + εi, (1)

di = x′iγ0 + z′iδ0 + ui, (2)

with E[(z′i, x
′
i)
′εi] = E[(z′i, x

′
i)
′ui] = 0. di is the scalar endogenous variable and α the

coefficient of interest, xi is a pxn-vector of exogenous control variables, zi is a pzn-vector
of instruments, n is the sample size, and pxn � n and pzn � n are allowed. Extension
to the case where di is a vector is straightforward and omitted for simplicity. We may
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have that zi and xi are correlated so that zi are only valid instruments after controlling
for xi; specifically, we let zi = Πxi + ζi, for Π a pzn × pxn matrix and ζi a pzn-vector of
unobservables with E[xiζ

′
i] = 0. Substituting this expression for zi as a function of xi

into (2) and then further substituting into (1) gives a system for yi and di that depends
only on xi:

yi = x′iθ0 + ρyi , (3)

di = x′iϑ0 + ρdi , (4)

with E[xiρ
y
i ] = 0 and E[xiρ

d
i ] = 0. This model includes the many instruments and small

number of controls case by setting pxn � n and can accommodate the exogenous case by
setting pzn = 0 and imposing the additional condition E[diεi] = 0.

Because the dimension of η0 = (θ′0, ϑ
′
0, γ
′
0, δ
′
0)
′ may be larger than n, informative

estimation and inference about α0 is impossible without imposing restrictions on η0.
For simplicity, we provide discussion under the assumption of exact sparsity and present
a generalization to approximate sparsity in the supplemental material. Specifically, we
assume that

‖η0‖0 ≤ sn, s2n log(pzn + pxn)3/n→ 0,

where ‖η0‖0 denotes the number of non-zero elements of η0. That is, sparsity requires
that, among the pxn + pzn observed variables, the number of variables with non-zero
coefficients is small relative to the sample size. This assumption then reduces the problem
of estimating α to a problem of finding which instruments and controls to use in equations
(1) and (2).

The problem that arises is that variable selection techniques are not perfect and are
prone to making selection mistakes. There are two kinds of selection mistakes: A variable
may be deemed relevant when in fact it has a zero coefficient and thus has no true
explanatory power, or a variable may be dropped from the model despite having a non-
zero coefficient. Both types of mistakes may detrimentally affect post-model-selection
estimators and inference for α. When irrelevant variables are spuriously included after
being deemed predictive from looking at the data, overfitting occurs and importantly
the spuriously included variables are those most correlated to the noise in the sample
due to data-snooping which introduces a type of “endogeneity” bias. When relevant x
variables are excluded, one is left with standard omitted variables bias. When relevant
z variables are excluded, one loses identification power. This last concern can be dealt
with through appropriate use of weak identification robust inference as in Belloni et al.
(2012).

The first type of mistake, the spurious inclusion of irrelevant variables, can be avoided
through the use of modern, principled data-mining methods. For example, we use the
Lasso with tuning parameters chosen as in Belloni et al. (2012), and many other options
are available. These methods differ from the unprincipled data-snooping that many
economists associate with the term data-mining. Specifically, modern data-mining de-
notes a principled search for true predictive power that guards against false discovery and
overfitting, does not erroneously equate in-sample fit to out-of-sample predictive ability,
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and accurately accounts for using the same data to examine many different hypotheses
or models.

Of course, guarding against the first type of error comes at the cost of needing to
acknowledge that the exclusion of relevant variables is likely to occur. While sensible
approaches such as Lasso will accurately find strong predictors, one can show that such
procedures have non-negligible probability of missing predictors with small but non-zero
coefficients. Exclusion of such predictors can have substantive impacts on inference for
parameters of interest such as α in our model; see, for example, Leeb and Pötscher (2008).
To overcome this difficulty, one needs to base estimation and inference on procedures
that are robust to this type of model selection mistake. One such approach relies on
using estimating equations that are locally insensitive to this type of mistake, termed
orthogonal moment functions in Belloni et al. (2013).

In the IV model with many instruments and controls, such a moment condition is
given by

M(α0; η0) = 0, M(α, η) := E [ψi(α, η)] (5)

where ψi(α, η) = (ρ̃yi − ρ̃di α̃)ṽi for η := (θ′, ϑ′, γ′, δ′)′, ρ̃yi := yi − x′iθ, ρ̃di := di − x′iϑ, and

ṽi := x′iγ + z′iδ − x′iϑ. When we set η̃ = η0, we have ρ̃yi = ρyi = yi − x′iθ0, ρ̃di = ρdi =
di − x′iϑ0, and ṽi = vi := x′iγ0 + z′iδ0 − x′iϑ0 = ζ ′iδ0.

We can see that small selection errors will have relatively little impact on estimation
of α0 by noting that the following orthogonality condition holds:

∂

∂η
M(α0, η)

∣∣∣
η=η0

= 0. (6)

In other words, missing the true value η0 by a small amount does not invalidate the
moment condition. Thus, estimators α̂ of α0 based on the empirical analog of (5),

M̂(α̂, η̂) = 0 (7)

with M̂(α, η) := n−1
∑n

i=1 [ψi(α, η)] , can be shown to be “immunized” against small
selection mistakes. See Belloni et al. (2013) for a general formulation of orthogonal
moment funtions for use in sparse high-dimenionsal models and a number of estimation
and inference results.

Note that operationally using the empirical version of (5) to estimate α0 is equiva-
lent to using the usual IV regression of ρy on ρd using v as instruments. Based on this
argument, we suggest the following algorithm for estimating α0 based on the “double-
selection” strategy of Belloni, Chernozhukov and Hansen (2014).

Algorithm 1. (1) Do Lasso or Post-Lasso Regression of di on xi, zi to obtain γ̂ and δ̂.

(2) Do Lasso or Post-Lasso Regression of yi on xi to get θ̂. (3) Do Lasso or Post-Lasso

Regression of d̂i = x′iγ̂ + z′iδ̂ on xi to get ϑ̂. (4) Let ρ̂yi := yi − x′iθ̂, ρ̂di := di − x′iϑ̂, and

v̂i := x′iγ̂+ z′iδ̂−x′iϑ̂. Get estimator α̂ from (7) by using standard IV regression of ρ̂yi on
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ρ̂di with v̂i as the instrument. Perform inference on α0 using α̂ or the associated score
statistic and conventional heteroscedasticity robust standard errors.

The following result summarizes the properties of α̂ obtained from Algorithm 1.

Proposition 1. Under the stated sparsity and other regularity conditions, the estimator
α̂ defined in Algorithm 1 satisfies

√
n(α̂−α0) N (0, V ) where V = E[v2i ]

−2E[ψi(α0, η0)
2].

The score statistic C(α0) = n|M̂(α0, η̂)|2/(n−1
∑n

i=1 ψ
2
i (α0, η̂)) satisfies C(α0) χ2(1).

Confidence intervals based on these two results are uniformly valid for inference about
α0 over a large class of models.

The supplementary material provides a precise statement and proof. The theoretical
results do not depend on whether the Lasso estimator or the Post-Lasso estimator of
Belloni and Chernozhukov (2013) is used. In the results reported in this paper, we use
the Post-Lasso estimator. Note that there are other algorithms that would yield similar
asymptotic properties. For example, one could follow the double-selection strategy more
closely by running Lasso regression of di on xi and zi, Lasso regression of di on xi, Lasso
regression of yi on xi, and then forming a 2SLS estimator using instruments selected in
the first step and controlling for the union of controls selected in the three Lasso steps.

2. Simulation Example

To illustrate the preceding discussion, we report results from a small simulation exper-
iment. Data were generated from the model given in Section 2 with n = 200, pxn = 300,
and pzn = 150. Other parameter values were chosen so that the infeasible, optimal instru-
ments are “strong”, perfect model selection is impossible, and the sparse model provides
a good approximation. Further details are available in the supplementary material.

We provide results for four different estimators - an infeasible Oracle estimator that
knows the nuisance parameters η (Oracle), two naive estimators, and the “Double-
Selection” estimator. The first naive estimator follows Algorithm 1 but replaces Lasso/Post-
Lasso with stepwise regression with p-value for entry of .05 and p-value for removal of
.10 (Naive 1). It is well-known that this procedure fails to control model selection mis-
takes in which irrelevant variables are included. The second naive estimator estimates
the high-dimensional nuisance functions using Post-Lasso but uses the moment condi-
tion E

[
(ρyi − ρdiα)(x′iδ + z′iγ)

]
= 0 (Naive 2). This moment condition does not satisfy

the orthogonality condition described above, though estimation and inference about α0

using this condition will be valid when perfect model selection for the regression of y on
x and d on x is possible.

We report the median bias (Bias), median absolute deviation (MAD), and size of 5%
level tests (Size) obtained from 1000 simulation replications for each procedure. For the
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Oracle, we have Bias of .006, MAD of .095, and Size of .043. For Naive 1, Bias, MAD,
and Size are .160, .227, and .302 respectively; and Bias, MAD, and Size are respectively
.035, .103, and .095 for Naive 2. Finally, the Double-Selection approach gives Bias of
.021, MAD of .099, and Size of .054.

These results correspond to the discussion in Section I. The first naive, unprincipled
procedure fails to control spurious inclusion of irrelevant variables and performs quite
poorly relative to the other three approaches. The second naive procedure can be shown
to be formally valid when perfect model selection is possible and performs relatively well
in terms of MAD. However, the asymptotic approximation under perfect model selection
provides a misleading approximation to the true sampling distribution as evidenced by
the size distortion. Finally, we see that basing estimation and inference on a principled
variable selection procedure and moment conditions that are immunized against small
model selection mistakes produces an estimator that performs well relative to the in-
feasible Oracle in terms of both estimation and inference performance as measured by
MAD and Size.

3. Empirical Example

We conclude with a brief empirical example where we estimate the coefficients in a
simple model of demand for automobiles. We use the data and basic strategy of Berry
et al. (1995). For simplicity, we consider the most basic specification

log(sit)− log(s0t) = α0pit + x′itβ0 + εit

pit = z′itδ0 + x′itγ0 + uit

where sit is the market share of product i in market t with product 0 denoting the
outside option, pit is price and treated as endogenous, xit are observed included product
characteristics, and zit are instruments. One could also consider allowing random coef-
ficients and adapting the variable selection procedures to this setting; see Gillen et al.
(2014).

In their basic results, Berry et al. (1995) use five variables in xit: a constant, an air
conditioning dummy, horsepower divided by weight, miles per dollar, and vehicle size.
They argue that characteristics of other products provide valid instruments for price
and choose 10 instruments for pit based on intuition and an exchangeability argument.
The first five instruments are formed by deleting product i and then summing each
characteristic in x across all remaining products produced by product i’s firm. The other
five instruments are similarly constructed by deleting all products from product i’s firm
and then summing each characteristic in x across all remaining products. Using these
controls and instruments, the 2SLS estimate of α is -.142 with an estimated standard
error of .012. One might compare this to the OLS estimate obtained treating price as
exogenous given the five controls listed above which is -.089 with estimated standard of
.004.
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It is interesting to note that Berry et al. (1995) state, “The choice of which attributes
to include in the utility function is, of course, ad hoc” (p. 872). They similarly note that
one could have considered additional instruments such as higher order terms (Berry et al.,
1995, p. 861). The high-dimensional methods outlined in this paper offer one strategy
to help address these concerns which complements the well-founded economic intuition
motivating the authors’ choices. We apply our outlined methods in two scenarios. In
the first, we apply the method using just the original five controls and 10 instruments.
In the second, we augment the set of potential controls with a time trend, quadratics,
and cubics in all continuous variables, and all first order interactions and then use sums
of these characteristics as potential instruments following the original strategy. These
additions give a total of 24 x-variables and 48 potential instruments. We include the
intercept in all models and select over the remaining variables.

In both cases, the results suggest demand is more elastic than indicated in the baseline
results. After selection using only the original variables, we estimate the price coefficient
to be -.185 with an estimated standard error of .014. In this case, all five controls are
selected in the log-share on controls regression, all five controls but only four instruments
are selected in the price on controls and instruments regression, and four of the controls
are selected for the price on controls relationship. The difference between the baseline
results is thus largely driven by the difference in instrument sets. The change in the
estimated coefficient is consistent with the wisdom from the many-instrument literature
that inclusion of irrelevant instruments biases 2SLS toward OLS.

With the larger set of variables, our post-model-selection estimator of the price coeffi-
cient is -.221 with an estimated standard error .015. Here, we see some evidence that the
original set of controls may have been overly parsimonious. In the log-share on controls
regression, we have that eight control variables are selected; and we have seven controls
and only four instruments selected in the price on controls and instrument regression.
We also have that 13 variables are selected for the price on controls relationship. The se-
lection of these additional variables suggests that there is important nonlinearity missed
by the baseline set of variables.

Finally, we note that in terms of own-price elasticities, the results become more plau-
sible as we move from the baseline results to the results based on variable selection with
a large number of controls. Recall that facing inelastic demand is inconsistent with
profit maximizing price choice within the present context, so theory would predict that
demand should be elastic for all products. However, the baseline point estimates imply
inelastic demand for 670 products. Using the variable selection results provides results
closer to the theoretical prediction. The point estimates based on selection from only
the baseline variables imply inelastic demand for 139 products, and we estimate inelastic
demand for only 12 products using the results based on selection from the larger set of
variables. Thus, the new methods provide the most reasonable estimates of own-price
elasticities. Of course, the simple specification above suffers from the usual drawbacks of
the logit demand model, but the example illustrates how the application of the methods
outlined in this note may be used in estimation of structural parameters in economics
and add to the plausibility of the resulting estimates.
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4. Conclusion

A great deal of empirical economic research aiming to estimate causal or structural
effects depends on using the right set of controls and instruments. The need for formal
methods that perform this model selection and inference procedures that remain valid
following model selection is likely to increase in importance as data sets become richer.
We have outlined one simple approach that can be used in an instrumental variables
model with many instruments and controls that extends Belloni et al. (2012) and Bel-
loni, Chernozhukov and Hansen (2014). The approach relies on an approximate sparsity
assumption and the use of high-quality variable selection procedures coupled with the
use of appropriate moment functions. These ideas follow from the general framework
considered in Belloni et al. (2013). For more applications of similar ideas in econom-
ics, see also Bai and Ng (2009), Belloni et al. (ArXiv, 2010b); Gautier and Tsybakov
(2011); Belloni et al. (2010a); and Belloni, Chernozhukov, Hansen and Kozbur (2014)
and references therein.
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