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Abstract

Dynamic portfolio choice has been a central and essential objective for institutional investors
in active asset management. In this paper, we study the dynamic portfolio choice depending on
multiple conditioning variables, where the number of the conditioning variables can be either
fixed or diverging to infinity at certain polynomial rate in comparison with the sample size. We
propose a novel data-driven method to estimate the nonparametric optimal portfolio choice,
motivated by the model averaging marginal regression approach suggested by Li, Linton and
Lu (2014). Specifically, in order to avoid curse of dimensionality associated with the problem
and to make it practically implementable, we first estimate the optimal portfolio choice by
maximising the conditional utility function for each individual conditioning variable, and then
construct the dynamic optimal portfolio choice through the weighted average of the marginal
optimal portfolio across all the conditioning variables. Under some mild regularity conditions,
we have established the large sample properties for the developed portfolio choice procedure.
Both simulation studies and empirical application well demonstrate the performance of the

proposed methodology with finite sample and real data.
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1 Introduction

Dynamic portfolio choice has been widely recognized as a central and essential objective for institu-
tional investors in active asset management. In financial research, in fact, how to choose an optimal
portfolio is a fundamental issue, see, Markowitz (1952), Merton (1969) and Fama (1970) for some
early references, and Back (2010) and Brandt (2010) for some recent surveys. In practice, it is not un-
common that the dynamic portfolio choice depends on many conditioning (or forecasting) variables,
which reflects the varying investment opportunities over time. Generally speaking, there are two ways
to characterize the dependence of portfolio choice on the conditioning variables. One is to assume
a parametric statistical model that relates the returns of risky assets to the conditioning variables
and then solve for an investor’s portfolio choice by using some traditional econometric approaches to
estimate the conditional distribution of the returns. However, the assumed parametric models might
be misspecified, which would lead to inconsistent or biased estimation of the optimal portfolio and
invalid inference on it. The other way that can avoid the possible issue of model misspecification,
is to use some nonparametric methods such as the kernel estimation method to characterize the
dependence of the portfolio choice on conditioning variables. This latter way was first introduced by
Brandt (1999), who also establishes the asymptotic properties for the estimated portfolio choice and

provides an empirical application.

Although the nonparametric method allows for the financial data to “speak for themselves" and is
robust to model misspecification, its performance is however often poor, such as very slow convergence
rates in comparison with the sample size, owing to the “curse of dimensionality" widely identified
in the literature (c.f., Fan and Yao, 2003), when the dimension of the conditioning variables is large
(say, even only larger than three). This indicates that direct use of Brandt (1999)’s nonparametric
method may be inappropriate when there are multiple conditioning variables. In this paper, our
main objective is to address this issue associated with the nonparametric dynamic portfolio choice
depending on multiple conditioning variables, where the number of the conditioning variables can be
either fixed or diverging to infinity at certain polynomial rate in comparison with the sample size.
We will propose a novel data-driven method to estimate the nonparametric optimal portfolio choice.

Specifically, in order to avoid curse of dimensionality associated with the problem and to make it
practically implementable, we first consider the optimal portfolio choice which maximises the condi-
tional utility function for a given individual conditioning variable, and then construct the dynamic
optimal portfolio choice through the weighted average of the marginal optimal portfolio across all
the conditioning variables. This method is partly motivated by the Model Averaging MArginal
Regression (MAMAR) approach suggested in a recent paper by Li, Linton and Lu (2014), which



shows that such a method performs well in estimating the conditional multivariate mean regression
function and the out-of-sample prediction. Under some mild regularity conditions, we will establish
the large sample properties to show the advantages in convergence for the developed portfolio choice
procedure. Both simulation studies and empirical application will be carried out to demonstrate the

performance of the proposed methodology with both finite sample and real data.

The structure of the paper is as follows. The proposed semiparametric dynamic portfolio choice
with its methodology and estimation will be introduced in Section 2. The large sample theory for
the estimators constructed in Section 2 will be presented in Section 3. The data-driven choice of the
optimal weights for model averaging of the marginal optimal portfolios across all the conditioning
variables is developed in Section 4. Numerical studies including both simulation and empirical
application are reported in Section 5. To make the paper ease of reading, all assumptions and
technical proofs are relegated to Appendices A and B, respectively.

2 Semiparametric dynamic portfolio choice: methodology

and estimation

Suppose that there are n risky assets with an uncertain returns vector Ry = (Ry, ..., Ru)', where
n is assumed to be fixed throughout this paper. Let F; = (Xy4,..., X )", where J is the number of
the conditioning or forecasting variables X ;. In the present paper, we consider two cases: (i) J = Jo
is a fixed positive integer, (ii) J = Jr is a positive integer which is diverging with 7. The dynamic
portfolio choice aims to choose the weights which maximise the conditional utility function defined
by

E [u(w' Ry)|Fio1] = E [u(w R)|[(X1-1,- - X)) (2.1)

subject to 1,w = > """ , w; = 1, where w = (wy,...,w,)", 1, is an n-dimensional column vector with

each element being one, u(-) is a concave utility function which measures the investor’s utility of

the wealth w' R, at time t. For simplicity, in this paper, we only focus on the case of single-period

portfolio choice. Furthermore, we assume that the investors can borrow assets and sell them (shot

selling), which indicates that some of the optimal weights may take negative values. The classic
1

mean-variance paradigm considers the quadratic utility function u(x) = —3(z — )% one may also

work with the more general CRRA (Constant Relative Risk Aversion) utility function with risk

1—v

£ 1
u(z) = T v # 1,

logx, ~v=1.

aversion parameter v:
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More discussions on different classes of the utility function u(-) can be found in Chapter 1 of the
book by Back (2010).

In order to solve the maximisation problem in (2.1), Brandt (1999) proposes a nonparametric
conditional method of moments approach, which can be seen as an extension of the method of
moments approach in Hansen and Singleton (1982). Taking the first-order derivative of u(-) in (2.1)
with respect to w and considering the constraint of 1,w = >_"" , w; = 1, we may obtain the dynamic

portfolio choice by solving the following equation:
E [(th — Rnt)U(U)T Rt)‘Xl,tfla e ,XJ’tfl} =0 a.s. (22)

fori=1,...,n —1, where u(-) is the derivative of the utility function u(-). The last element in the
optimal weights (i = n) can be determined by using the constraint of )" ; w; = 1. Brandt (1999)
suggests a kernel-based smoothing method to estimate the solution to (2.2) which changes according
to the conditioning variables. However, when J is large, the kernel-based nonparametric conditional
method of moments approach would perform quite poorly due to the curse of dimensionality which
has been discussed in Section 1. We next propose a novel dimension-reduction technique to address

this problem.

We start with the consideration of the portfolio choice for each univariate conditioning variable

in ;1. Let x = (xq,...,25)". For j =1,...,J, we define the conditional utility function as
E [U(U)T Rt)|Xj,t—1 = J}j} (23)
with the constraint 1;w = >, w; = 1. Then, we have the following first-order conditions at the
optimum: forv=1,...,n —1,
E [(th — ng)U(ij (ij)Rt)‘Xj,tfl = .Z'jj| =0 a.s., (24)
where:
n—1
wj(w;) = [wy (), - weg ()] with w(a;) = 1= wy(a)),
i=1

is the optimal portfolio choice that maximises the conditional utility function defined in (2.3). For
any given j, this is essentially the problem posed and solved by Brandt (1999).

We next consider how to combine the portfolios selected above. Specifically, we shall consider

a weighted average of the marginal portfolio choices w;(x;) over j = 1,...,.J, and obtain the joint
portfolio choice
J
wa(x) = Zajwj(xj)7 Za’j =1, (25)
j=1 j=1



where the weights a; < 0 can be allowed in our portfolio choice as we assume the existence of short
selling. In Section 4 below, we will discuss how to choose the weights a = (ay,...,a;)" in the

combination (2.5).

We now turn to the sample problem. Let K(-) be a kernel function and i be a bandwidth that
converges to zero as T' tends to infinity. Using the sample information, we may express the first-order

conditions for the utility function as

T
1 LT X’, -1 — Ty .
Th Z(R“ — Ru)u(w Ry)K (%) =0, i1=1,...,n—1. (2.6)
=1
Denote w;(x;) = [@1(z;),...,Wni(z;)]" as the solution to (2.6), where

n—1
Dj(ag) = 1= y(ay). (2.7)

i—1

Then define the joint portfolio choice through the weighted average

Wo(z) = Zaj@j(g;j), » aj=1 (2.8)

J
Jj=1

J=1

The asymptotic properties for w,(z) when the number of the conditioning variables is either fixed or

divergent will be given in Section 3 below.

3 Large sample theory

We start with the case that J = Jy is a fixed positive integer. Following (2.6) and (2.7), we next

only study the asymptotic theory for @¥(z;) = [Wy;(x;), ..., Wn1;(2;)]", the estimate of w} =
[wi;(2;), ..., wn_1,(z;)] . Before stating the asymptotic theorems, we first introduce some notations.
Let:

Aj(zy) = fi(a))E [Ry(R) i (w) () Re) | X1 = ]
. T Xji-1—T;
Zji(x;) = Ry (0 (Xj1)Re) K (%)
forj=1,...,Jpandt =1,...,T, where Rf = (Ryt — Ryt, ..., Rp—14 — Rm)T, ii(-) is the second-order
derivative of u(-) and f;(-) is the marginal density function of X;;. Define

Wi(a;) = A; (a5) Zje(z;) and Wi(zla) = a;Wii(x))

Jj=1



fort=1,...,T. Following the argument in the proof of Theorem 3.1 in Appendix B and letting
J J
@ () = Y a;wy(wy), wi(z) =Y ajw;(zy),
j=1 j=1

we may show that

VIR (3(a) )] = = 3 Wiala) + on(D) (3.1)

for given a = (ay,...,ay ) . The asymptotic distribution theory for w;(z;) and w,(x) is given in
Theorem 3.1 below.
THEOREM 3.1. Suppose that Assumptions 1-5 in Appendixz A are satisfied and the number of the
conditioning variables J is a fized positive integer Jy.
(i) For j =1,...,Jy, we have
VT [ () = wj(a;)] = N (0, (). (3.2)

J J

where Q;(x;) = E [Wii(2;)Wj(x5)] = A7 (2)E [Ze() Z5,(x5) ] Aj ().

j j
(ii) For the estimated portfolio choice defined in (2.8) with a set of given weights, we have

VTh[@:(z) — w(z)] -5 N (0, Q(z|a)), (3.3)

a

where Q(x]a) = E [Wy(z]|a)W] (z]a)].

Although there are multiple conditioning variables in the nonparametric dynamic portfolio choice,
we can still achieve the root-T'h convergence rates as shown in the above theorem, which means that
we can successfully overcome the curse of dimensionality issue. The main reason is that, in the
estimation methodology, we only apply the univariate kernel smoothing to estimate the optimal
portfolio choice for each univariate conditioning variable and then obtain the final portfolio choice
through weighted averages defined as in (2.8). In contrast, if we directly use the multivariate kernel

smoothing as done in Brandt (1999), the convergence rate for the resulting estimation would be
root-Th’, slower than the rates in (3.2) and (3.3) when Jy > 1.

In practice, it is not uncommon that the number of the potential conditioning variables is large,
and so a more reasonable assumptions is that J is divergent, i.e., J = Jr — oo. The following

theorem gives the asymptotic distribution theory for this general case.

THEOREM 3.2. Suppose that Assumptions 1-4 and 5 in Appendixz A are satisfied and the number

of conditioning variables J is a positive integer Jr which is diverging with the sample size T'. Then,

(3.2) and (3.83) in Theorem 3.1 still hold.



Theorem 3.2 above indicates that the root-T'h convergence rates remain the same even when the

number of the potential conditioning variables is diverging. The restriction on Jr is
T1-1/2+8)p,
J%/(Hé) log T’

which is given in Assumption 5. Such a restriction means that Jr can possibly be larger than T,
if we are only interested in w,(-) or w,(-) for given a. However, some additional restrictions on Jr
would be needed when we consider the choice of the optimal a = (ai, ..., ay,)", see Section 4 below

for details.

4 Data-driven optimal weight choice in model averaging

The performance of the dynamic portfolio choice defined in (2.8) relies on the choice of the weights

ai,y ... a5. Let wy = we(F) = Z;]:l a;w;(Xj;) and define the objective function:

U(a) =E [u(w;,t_lRt = E{ Za] Xjt-1 Rt}} (4.1)

We may choose the optimal weights by maximising U(a), i.e.,

J
ap = argmax U(a) = argmaxE {“[Z a;jw; (X1 R } (4.2)

J=1

subject to the constraint of ijl a; = 1. This leads to the following first-order conditions:

E — RY)4 ZaJOR]t =0 for j=1,...,J—1, (4.3)

and ajo =1 — Zj fajo, where RY, = w, (Xji-1)Re, RY, = w}(Xj4-1) R and ajo is the j-th element
of ag.
We propose a data-driven optimal weight choice in model averaging by using the sample informa-
tion and replacing the unobservable w;(X,;—1) by the estimated value w,;(X;;_1) which is constructed
n (2.6), we may estimate ag = (ayg, . ..,a5) by @ = (ai,...,a;)" which is the solution to
1, =
T > (RY -~

t=1

=0 for j=1,....,J -1, (4.4)

IIM&



and a; =1 — Zj:_ll a;, where ﬁ;“”t = W; (Xj4-1) Ry

To facilitate the proof of the asymptotic theory for @, we need to establish the uniform consistency
results for w;(x;) over x; € &; with X; being the support of X;; and j =1,...,J.
PROPOSITION 4.1. Suppose that Assumptions 1-4 in Appendix A are satisfied.

(i) If the number of the conditioning variables J is a fixed positive integer Jy and
T1-2/2+0)],
TeeT
where 0 > 0 1is specified in Assumption 3 in Appendix A, then

max sup ||w;(z;) —w;(z;)|| =Op <h2 + +/log T/(Th)) : (4.6)

1<5<J0 o€,

h — 0, — 00, (4.5)

where || - || denotes the Euclidean norm of a vector or the Frobenius norm of a matriz.
(i) If the number of the conditioning variables J is a diverging positive integer Jr and
T1—2/(2+6)h

J%/(%é) logT

h — 0,

— 00, (4.7)

then (4.6) still holds with Jy replaced by Jr.

In fact, Proposition 4.1(i) can be included as a special case of Proposition 4.1(ii), and the above
uniform consistency results can be seen as the extension of the uniform consistency results for the
nonparametric kernel-based estimation in stationary time series (Hansen, 2008; Kristensen, 2009; Li,
Lu and Linton, 2012) to the scenario of the nonparametric portfolio choice. By modifying the proof
in Appendix B, we may further generalise (4.6) to the case when X} is an expanding set.

We next study the asymptotic property for a. As a; = 1 — ZJJ:_II aj, it suffices to consider
@* = (@y,...,0y_1) , the estimate of af = (ay9, ..., as_10) . Define n, = u[z;le ajow; (Xj—1) Ry,
= a[ ) ajow} (Xj—1)Re], and Ri(w) = (RY,....RY_,,) . Vi = Ri(w) — R%1;_; and let

A =E [V (i)'

For j =1,...,J, define e, = i (w} (X;4—1)R;) = i (RY), and let

J
e = (enano, - enag0) , Qr=(Qu,.. ., Q)

with Q;; = {E (VA RIWAS (X0 )X e 1 = Xj4i] }R;: and



Define

In the following theorem, we give the asymptotic distribution theory for @ when J is fixed.

THEOREM 4.2. Suppose that the assumptions in Proposition 4.1(i) are satisfied and the matriz A,

18 non-singular. Then we have

VT (@ —ag) 5 N (0, AT A,AY) . (4.8)

We next deal with the case that J = Jr is diverging with the sample size T'. Let Ap = AflAgAfl
which indicates that the size of the matrix relies on 7. As the number of the potential conditioning
variables Jr tends to infinity, we cannot state the asymptotic normal distribution theory by the same
way as in Theorem 4.2 above. As in Fan and Peng (2004), we let W1 be a J, x (Jr — 1) matrix with
full row rank such that as T' — oo, \IIT\IITT — W, where W is non-negative definite .J, X J, matrix
with J, being a fixed positive integer. The role of the matrix Wy is to reduce the dimension from
(Jr — 1) to J, in the derivation of the asymptotic normality, so it is only involved in the asymptotic
analysis. If we are only interested in the asymptotic behavior for the first .J, components of a, we
may choose W = I:[J*7 OJ*X(JT_J*)], where I, is a p X p identity matrix and Oy ; is a k x j null
matrix. We next state the asymptotic distribution theory for @ when J is diverging.

THEOREM 4.3. Suppose that the assumptions in Proposition 4.1(ii) are satisfied, the matriz A, is

non-singular and

log T
2
Jr <h + Th > — 0. (4.9)
Then we have
VTOr ALY @ = af) S N(0,%). (4.10)

The above theorem is similar to some results in the existing literature such as Theorem 2(ii) in
Fan and Peng (2004) and Theorem 4.3 in Li, Linton and Lu (2014). The condition (4.9) shows that
the dimension Jp should not diverge too fast to infinity, and (4.10) indicates that the convergence
rate is m due to the diverging number of the conditioning variables.
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5 Numerical studies

In this section, we set the number of assets under consideration for investment to be n = 5. This
value of n is chosen primarily for convenience of computation. Computation procedures for larger
values of n are exactly the same.

ExXAMPLE 5.1. The time series of gross returns R; on the assets are generated via the conditioning

variables by the following regression:
log(R;) = 0.06 + A x log(X;) + e, (5.1)

where A is an n x J full-rank matrix so generated such that the elements of 1000 * A are random
integers ranging between 1 and 30; e; are i.i.d. random vectors distributed as e; ~ N(0,0.001 * 1,,)

in which 7, is the n x n identity matrix; {log(X;)} is a J-dimensional AR(1) process generated as
log(X;) = —0.01 4+ 0.9 * log(X;—1) + w, (5.2)

in which u; are i.i.d. random vectors generated from N(0, 0.002x /). The variables in X;, will be used
as the conditioning variables, and the number of conditioning variables is set to satisfy J = [0.5%+/T],
where [-] denotes the operator that rounds a number to the nearest integer less than or equal to that

number.

We use a CRRA utility function with v =1, 5, and 10. Foreach j =1, ..., J,t=1, ..., T, and
the observed value, X, 1, of the conditioning variable in the previous time period ¢ — 1, we calculate
the j-th set of conditional optimal portfolio weights, w;(X;;_1), by solving the nonparametric version
of the conditioning equations, i.e., (2.6). Then by solving the equations in (4.4) with respect to aj,
we can obtain the joint optimal portfolio weights, w,(X;_1) = ijl a;w;(X;¢—1), conditional on the
values of all the conditioning variables in time period ¢ — 1, where X; 1 = (X1,.1,..., X ;1) . Note
that in calculating the w;(X;, 1) and @;, we have imposed Z}]:1 W;(X;i—1) =1 and ijl a;=1so
that the budget constraint is satisfied.

We compare the single-period returns of portfolios constructed with weights calculated from
the proposed semiparametric model averaging method (SMAM) and the unconditional parametric
method (UPM) which solves for the weights that maximise the unconditional utility, i.e., 7 Zthl u(w' Ry),
subject to w'i = 1. Table 5.1 reports the averages of the mean difference (MD) between returns on
the SMAM and UPM constructed portfolios:

T
1 S U
MD:T§ (Rf — RY),
t=1

11



where R} = w, (X;)R; and R* = @, R; with @, chosen by the UPM. Also reported in Table 5.1 are
the averages of positive frequency (PF) of the NAM, i.e., the frequency at which the return on the
SMAM constructed portfolio exceeds that of the UPM constructed portfolio. These results are based
on 100 independent samples of 7" = 100, 300, or 500 observations. The numbers in parentheses are

the respective standard errors.

It can be seen from Table 5.1 that in most time periods, the return on the portfolio chosen by
the SMAM is larger than the return on the portfolio chosen by the UPM. This is especially so when
the sample size is relatively small. For example, when v = 5, the average gain in choosing portfolios
by the SMAM than by the UPM is an additional 5.4% return when 7" = 100, and this reduces to
0.4% when T" = 500. As v measures the level of risk aversion of an investor with a higher value
representing less willingness for risk taking, the portfolio returns generally decrease as v increases.

Hence, we see a decreasing trend in the MD values as 7y increases in Table 5.1.

TABLE 5.1. Averages of MD between SMAM and UCM returns and PF of the SMAM for Example 5.1

[dir=NW],T T =100 T = 300 T = 500
2%y =1 | MD 0.0540(0.2695) 0.0993(0.2905) 0.1925(0.3019)
PF  0.5358(0.0674) 0.5178(0.0374) 0.5158(0.0298)
2%y =5 | MD 0.0543(0.0228) 0.0138(0.0108) 0.0038(0.0023)
PF  0.7076(0.0404) 0.6000(0.0296) 0.5533(0.0259)
2%y =10 | MD 0.0203(0.0110) 0.0081(0.0037) 0.0058(0.0027)
PF  0.6797(0.0454) 0.6131(0.0309) 0.602(0.0299)

ExXAMPLE 5.2. In this example, the gross returns R; are generated from a stationary VAR:

log(R:) = 0.01 + B *log(R:—1) + e, (5.3)

where e; are generated in the same way as in Example 5.1, the AR coefficient matrix B is defined as

the transpose of 0.01 * magic(n) in which magic(n) denotes the magic matrix of dimension n = 5.

The conditioning variables are taken as the lag-one and lag-two returns, i.e. X; = (R;_{, R; ,)".
Hence, the number of conditioning variables is J = 2n. The results based on 100 independent samples

of this example are given in Table 5.2. Similar findings can be obtained as those in Example 5.1.

TABLE 5.2. Averages of MD between SMAM and UPM returns and PF of the SMAM for Example 5.2

12



[dir=NW]yT T = 100 T = 300 T = 500
2%y =1 | MD 0.2838(0.8739) 0.1022(0.1125) 0.2158(0.0957)
PF  0.5487(0.0590) 0.5373(0.0489) 0.5755(0.0403)
2%y =5 | MD 0.0619(0.0270) 0.0178(0.0081) 0.0163(0.0061)
PF  0.7229(0.0430) 0.6220(0.0305) 0.6138(0.0215)
2%y =10 | MD 0.0226(0.0102) 0.0111(0.0052) 0.0108(0.0048)
PF  0.6596(0.0475) 0.6295(0.0306) 0.6219(0.0253)

6 Conclusions and Extensions

We have solved a portfolio problem for each conditioning variable X; and then combined the portfolio
weights from each of those "experts". This is quite a common approach in the machine learning liter-
ature, see for example Gyorfi, Ottucsak, and Urbén (2011). We could instead seek to approximate the
objective function Q(w;x) = E [u(w' R;)|X;_1 = z] by using the MAMAR method to approximate
this conditional expectation by a sum of one dimensional nonparametric regressions, i.e.,

J
Q(w; ) = ZajE [u(w' Ry)|Xji-1 = 4]
j=1
for weights «;, and then optimizing @ (w; ) with respect to w. This method is likely to give similar
results except that it provides less diagnostic information, and it is perhaps harder to define a method
for selecting o;.
It is also possible to introduce constraints such as absence of short selling or position limits at

each stage of our method at the cost of computational complexity.

A Assumptions

We next list the regularity conditions which are used to prove the asymptotic results. Some of these

conditions might not be the weakest possible.

AssuMPTION 1. (i) The utility function u(-) is concave and has continuous derivatives up to the

second order.

(ii) The optimal weight functions w;(-), j = 1,...,.J, have continuous derivatives up to the

second order.
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ASSUMPTION 2. The process of the conditioning variables {Xt = (X1 .- ,XJt)T} is strictly sta-
tionary and a-mixing with the mixing coefficient decaying at a geometric rate, ax (k) ~ &,
0 < 7, < 1. Each component variable X; has a continuous marginal density function f;(-) on
a compact support denoted by X;. For all t > 1, the joint density function of (X, X;) exists
and is uniformly bounded.

AssuMPTION 3. The process of the asset returns {Rt = (Ruty .-, Rnt)T} is strictly stationary and
a-mixing with the mixing coefficient decaying at a geometric rate, ag(k) ~ v, 0 < v, < 1.
Furthermore, there exists a ¢ > 0 such that

max E [HR?(RI)W (w; (Xje-1) Re) |

1<5<J J

where R} is defined in Section 3. Let

E [R:(R:)Tij (w; (l’j)Rt) | X1 = xj]

2+4

| R () (-0 R[]

< 00,

be non-singular uniformly for z; € &}, j =1,...,J.

AssuMPTION 4. The kernel function K(-) is positive, continuous and symmetric with a compact
support and [ K(z)dz = 1.

AssumMPTION 5. The bandwidth h satisfies h — 0,
T1-1/(240),

Th4 = 0(1) and W — OCQ.

AssuMPTION 5'. The bandwidth A satisfies h — 0,
Tl—l/(2+5)h

Th*=o0(1) and —————
JH @ 10g T

— 00.

The above assumptions are mild and justifiable. Some of the assumptions are similar to those
in Brandt (1999). In this paper, we impose the stationarity and mixing dependence condition on
the processes of the returns of the risky assets and the conditioning variables, see, for example,
Assumptions 2 and 3. The methodology and theory developed in the present paper are also applicable
to the more general dependence structure, say the near epoch dependent process (Li, Lu and Linton,
2012). To facilitate our proofs, we assume that the mixing coefficients decay at a geometric rate,
which can be relaxed to a polynomial rate at the cost of more lengthy proofs. The bandwidth
conditions in Assumptions 5 and 5’ indicate that there is a trade-off between the moment conditions
and the bandwidth restriction. And the condition Th* = o(1) shows that certain under-smoothing

is needed in the asymptotic analysis, which is not uncommon in semiparametric estimation.
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B Proofs of the theoretical results

We next give the proofs of the theoretical results stated in Sections 3 and 4. In this appendix, we

let C' be a positive constant whose value may change from line to line.

PrOOF OF THEOREM 3.1. Throughout this proof, J = J, is a fixed positive integer. By the

definition of @*(x;) = [@1;(x;), . .., Ba_1j(z;)]" or @;(x;) = [@1;(x;), ..., Dn;(z;)] , We have

]_ T X]t 1— Ty
fori=1,...,n—1and j=1,...,J5. By Assumption 1 and using the Taylor’s expansion for #(-),

i () 0 ) = i (o} o )+ o ) Re) ) [ — i)

where w,(7;) lies between w;(z;) and w;(z;), and w(z;) = [wy;(z;), . .. Jw,_1;(x;)]". Then we may
prove that

w5 (x;) — wi(x;) = A} () Bnj(x;) (B.2)
with

Anj(5) = %ZR;(R;)T&(@UT(%)&) K(W)

* .77 _x
Bui(ey) = ThZR ) K (0

By Assumptions 2-5 in Appendix A and following the standard argument in nonparametric

kernel-based smoothing in time series (c.f., Robinson, 1983), we can show that
Anj(;) = Aj(x;) + op(1) (B.3)

when @, (z;) is sufficiently close to w;(x;), where A;(x;) is defined in Section 3. The convergence in
(B.3) holds uniformly for z; € &; and j = 1,...,.Jy (c.f., the proof of Proposition 4.1 below). On
the other hand, we recall that Z;,(z;) = Rju ( (X 1)Rt) K (%) By Assumptions 1(i)(ii)

and the Taylor’s expansion for (w; (-)Rt), we may show that

T
1
By;(z;) = T—Z it(z;) + Op(h?). (B.4)
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Noting that nh* = o(1) in Assumption 5 and by (B.2)—(B.4),

VTh [@5 () — wi(z;)] = Z )+ op(1). (B.5)

Then, using the central limit theorem for the stationary a-mixing sequence (e.g., Section 2.6.4 in
Fan and Yao, 2003), we can complete the proof of (3.2) in Theorem 3.1(i).

As in Section 3, let
Wii(z;) = Aj_l(xj)Z]t(xj Wi(z|a) ZCZJ it ().
By (B.5) and the definitions of w}(x) and w’(z), we have
L Z
VTh|w:(z) —wi(z)] = —= ) Wy(z|a)+ op(1). B.6
[a() a()] \/ﬁ; t(|) P() ( )

Using (B.6), we can readily prove (3.3) in Theorem 3.1(ii). |

PrROOF OF THEOREM 3.2. The proof of this theorem is similar to the proof of Theorem 3.1 above.
The only difference that the stronger bandwidth condition in Assumption 5’ is needed when we prove
(B.3) uniformly for x; € &; and j =1,..., Jr. [ |
PROOF OF PROPOSITION 4.1. We only consider the proof of (4.6) for the case when J = Jr is
diverging, as the case of J = .J; is similar and simpler. Noting that @,;(z;) = 1 — 3.1, @(z;) and
using (B.2) and (B.3) in the proof of Theorem 3.1, we only need to show that

max sup
1<5<Jr T;EX;

TihZR;‘u (w;(xj)Rt)K( P H Op h? +\/log T/( Th) (B.7)

t=1

as Aj(x;) is nonsingular uniformly for z; € X;, 1 < j < Jr (see Assumption 3). Note that the
convergence result in (B.4) can be strengthened from the point-wise convergence to the uniform

convergence over z; € X;, 1 < j < Jp. Hence, in order to prove (B.7), we only need to show that

hz (@)

where Zj;(z;) is defined in the proof of Theorem 3.1.

- ( log T/(Th)> , (B.8)

max sup
1<5<Jdr T;€X;
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lOgT)l/Z. The main idea of proving (B.8) is to consider covering

Th
the compact support &; by a finite number of disjoint subsets X;(k) which are centered at z;;, with

radius rr = &4h%, k= 1,...,N;. It is easy to show that max;<;<;, Nj = O(r3') = O(£7'h72) and

For simplicity, denote &, = (

T T
1 1
=3 Zu(ay)|| < = Z(a
15800 en, | Th &= 3(23) 12520 12heN, (| Th 4= e (@sw)|| +
1 < 1 &
3" Zu(ay) — Y Zy (g
1580 15KEN 4 e g || Th 2= @) = 7p Lot (3t)
= HTl -+ HT2- (Bg)

By the continuity condition on K(-) in Assumption 4 and using the definition of 7, we readily have
Ty = Op ( h2) — Op(&y). (B.10)

For Il7;, we apply the truncation technique and the Bernstein-type inequality for the a-mixing
dependent random variables which can be found in Bosq (1998) and Fan and Yao (2003) to obtain
the convergence rate. Let Mp = M, (T Jp)'/(2+9),

Zji (i) = Zyn () - || By (R) || < Mo}
and
Zio () = Zj <a:jk>-1{HRz‘u B | > Mr,
where I{-} is an indicator function and RY, = w} (X;;-1)R; as in Section 4. Then we have

1
Iy < max max Z{th Tjk) E[_w (jk ” +

T
1<j<r 1<k<N; || Th —

max max LG:{Z (1) [th(ﬂfjk)]}

1<j<Jr 1<k<N; || Th -
1=

= HT3 + HT4. (Bll)

Note that for M, > 0 and any € > 0, by Assumption 3 and the Markov inequality,

P(HT4 > M2§T> < P ( max max max ‘

1<j<Jr 1<k<N; 1<t<T

th(:cjk)H > 0)

Jr T )
< 2 2P ([Ria (R > Mr)
SE
< M max E || ()| <
1<5<Jp
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if we choose

- 1/(2496)
M, > { max E [HRIU(R;%)H + }} e~ 1/(2+9)
1<5<Jr

Then, by letting e be arbitrarily small, we can show that

gy = Op(&p). (B.12)
On the other hand, note that
| Zje(xj) — E [Zje(xn)] || < CoMr, (B.13)
and
Var [Zj(z)] < Coh (B.14)

where Cj is a positive constant. By (B.13), (B.14) and Theorem 1.3(2) in Bosq (1998) with p =
[(MyMp&/4)71] which tends to infinity by (4.7), we have

P(HTg > MQ&T) = P ( max max h Z {_jt<xjk) —E [?Z](J?]k)]} > M2£T>

1<j<Jr 1<k<N;

J
. - _qM22§2T p
= ]El N <4 exp {4COM2MT§T/h 16Co/(ph) } + 22 (1 4+ 4Co My /(Mahé 7)) QVO>

Jr
< C) N [exp {=Mzlog T} + TMij) = o(1),

J=1

where My is chosen sufficiently large and ¢ = T'/(2p). Hence we have

s = Op(£q). (B.15)

In view of (B.10)—(B.12) and (B.15), we have shown (B.8), completing the proof of Proposition 4.1.
|

ProOOF OF THEOREM 4.2. Recall that

fo *

Cl* = (/a\l, PN ,&\J,l)T s CLO = (alo, e ,aJ,L(J)T ,

Ry(w) = (Ry,.....RY)", Ri(w)=(Ry,....RY )
~ ~ T ~ ~ ~ T
Ri(w) = (Ryy,.. Ry) . Biw) = (B, Ry,
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As in the proof of Theorem 3.1, throughout this proof, we let J = Jy be a fixed positive integer.
Asay; =1-— Z;}O 1'a; and ag0 = 1 — Zj" 1 ajo, by Proposition 4.1(i), Assumption 1(i) and the

Taylor’s expansion for 4(+), we may show that

J() JO
U[ aj’ﬁ)\; (Xj,tfl)Rt} - U[ CLjo'L/l}; (Xj,t—l)Rt]
j—l j=1
Jo
= Z%Ow Xji1)R] Z( — ajo) W; (X;4-1)Re + op(|[@ — aol|)
j=1

= Zagow Xj1)Re](@— ao) Ry(w) + op(|[a — aol|)

Jo

— i[> ajow) (Xje )R @ — ag)" | Ri(w) = RipyLy ] +op(lla* — a)
j=1
and
Jo
U|: CL]'()’&J\;(XJt 1 Rt — U Zajow jt 1 Rt]
j—l
T 4 logT
= Zaﬂ)w ]t 1 Rt ZG][) wj X]t 1) wj(XN,l)] Rt+OP h + Th
j=1
.. JO 4 logT
— i[> ajow] (X 1) R ay [Rt( ) — Rt(w)}+op n o).
j=1
Hence, we have
Jo
Tl[ /CL\J’L/l}; (Xj7t_1)Rt] = Zajow ]t 1 Rt + ZCLJ jt 1)Rt —u Za]()’w Xj,t—l)Rt]
j=1 7j=1 7=1
Jo
= Z%ow Xji-1)Re] + 1 Z% (Xja—)Re] =iy ajow; (Xji-1)Ri]
Jj=1 j=1
Zagow Xji-1)R] — Z%ow Xj1-1)Ry]

j=1
T

T ~
=y |[Riw) = Ry, Lse1| @ = a3)+ i |Rew) = Rew)| ao

logT s .
+0p (14 55D ) + on(la ~ 1), (B.16)
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where 7, = 4| 3111 ajow; (Xj4-1)R] and nj = U[Z‘]j‘]:l ajow} (Xj-1)Ry].
By (4.4) and (B.16), we have

logT

-+ [Et(w) - Rt(w)]T ao} +Op <h4 +

) +onlla” - ail) (B.17)

By (B.17), we readily have

T

1 -
\/T(EL\* —ap) ~ %ZU:‘Z*(‘Z*)T {LT Z ‘71‘,*7% + LT Z ‘75‘?775 |:§t<w) - Rt(w)]T ao} 5
t=1 t=1 t=1 (B.18)
where V* = R} (w) — ﬁqj’otljo,l and a, ~ B,, denotes that lim,, .., a, /3, = 1.
By Proposition 4.1 and the law of larger numbers, we readily have
1= on o 1
72 VIV =5 ) Vi (V) +op(1) = Ar+op(1), (B.19)
t=1 t=1

where A is defined in Section 4. Note that

T T T
1 = 1 1 .
_Zm*nt: _Z‘/t*nt+_z (Vt* _Vt*> U
vT t=1 VT t=1 VT t=1

By Assumptions 2 and 3 and following the argument in the proof of Lemma B.3 in Li, Linton and
Lu (2014), we may show that the second term on the right hand side of (B.19) is asymptotically

negligible. Hence, we have

— Z ‘Z*Wt ~ L Z Vin,. (B.20)

~ ~ T
We next consider —= $°% Vi | Re(w) — Ry(w)| ag. It is easy to see that
f t 't



by using Proposition 4.1. Let W be an n x (n — 1) matrix which is defined by

It is easy to show that for any j =1,...,.Jp and z; € &j,
Wj(x5) — wi(x;) = W [@] () — wj ()] - (B.22)

Hence, by (B.22) and using the argument in the proofs of Theorem 3.1 and Proposition 4.1, we may
show that

RY —RY = [@;(Xje1) — wj(Xje1)] R
= [@5(Xj0) —wi(X;0)] WR,

J J

T
o 1
N RIWAT (Xjma) - - > ZjS(Xj,t_l)]
L s=1

1 « X. 1 —X.
= BWAT (X)) ﬁZszw;(xj,s_l)Rs)K( k- )]
L s=1

, (B.23)

h

T
T _ 1 N X's— _X‘ _
— RIWAP (X0 | g Rk (S22
L s=1

where €5 = 4 (wT- (Xjﬁ_l)Rs) =1 (R;”S) and Z,,(-) is defined in the proof of Theorem 3.1. By (B.23),

J
we readily have

T Jo

1 X Xjs—1— Xj1
B Y (Vi ) |

s=1 j=1

[ﬁt(w) - Rt<w)]T ap = R WA (X))
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which indicates that

T
1 R T
— Vi'n; [R w) — R w} a
JT ; ny [Ri(w) i(w) 0
T T Jo
P ]‘ EIR 3 X‘,S—l - X‘,t—l
L S VR WA (X,) ThZZR gjsajoK( BB )]
t=1 s=1 j—1
T Jo
1 N Xjso1— X1 "
oy, PP F v i (Y )
T Jo
¢y
~ = €jsaj0Qjs, (B.24)
ﬁ s=1 j=1
where
Qjs = {E (ViR WA (X4 1) X1 = X }R:-
Recall that ¢; = [e1;a49, - . . ,5J0taJ00]T and Q; = (Q1t,---,Qst) - Then we have

= Ve [Rulw) = Riw)] a0 £ =3 0l (B.25)

By (B.20), (B.21) and (B.25), we have

T T i .
% Z Vim + % Z Vi [Ruw) = Rifw)| g X LT Z (Vim + Qley). (B.26)
By the central limit theorem for the a-mixing sequence, we can prove that
1« x T d
JT ; (Vi + Quee) = N(0,Ay) (B.27)
Then, we can complete the proof of Theorem 4.2 by (B.18)—(B.21), (B.26) and (B.27). [

PrROOF OF THEOREM 4.3. The main idea in this proof is similar to the proof of Theorem 4.2 above
with some modifications. Hence, we next only sketch the proof.

Following the proof of (B.18) and using the condition (4.9), we may show that
—1

VTOrALZ (@ —af) = $rAL°

+— ET: Vi (Ri(w) - Rt(w)>T a()] . (B.28)



Note that (B.19) still holds by using Proposition 4.1(ii) and (4.9). Hence, by (B.28), we have

T
3 ot * —3 - 1 1% * % T
VTOrAL? (@ —a) X UrA2AT! [ﬁ;‘é n, + ZV ( — Ry(w )) ag| . (B.29)
Furthermore, using the argument in proving (B.26), we obtain
T
VIO AL (G — ag) X UrALZAT [ 772 Z (Vin, + Q; st)] . (B.30)
By the central limit theorem and using the condition that lIlT\IlTT — W, we can complete the proof
of Theorem 4.3. [ ]
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