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Abstract

Dynamic portfolio choice has been a central and essential objective for institutional investors

in active asset management. In this paper, we study the dynamic portfolio choice depending on

multiple conditioning variables, where the number of the conditioning variables can be either

fixed or diverging to infinity at certain polynomial rate in comparison with the sample size. We

propose a novel data-driven method to estimate the nonparametric optimal portfolio choice,

motivated by the model averaging marginal regression approach suggested by Li, Linton and

Lu (2014). Specifically, in order to avoid curse of dimensionality associated with the problem

and to make it practically implementable, we first estimate the optimal portfolio choice by

maximising the conditional utility function for each individual conditioning variable, and then

construct the dynamic optimal portfolio choice through the weighted average of the marginal

optimal portfolio across all the conditioning variables. Under some mild regularity conditions,

we have established the large sample properties for the developed portfolio choice procedure.

Both simulation studies and empirical application well demonstrate the performance of the

proposed methodology with finite sample and real data.
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1 Introduction

Dynamic portfolio choice has been widely recognized as a central and essential objective for institu-

tional investors in active asset management. In financial research, in fact, how to choose an optimal

portfolio is a fundamental issue, see, Markowitz (1952), Merton (1969) and Fama (1970) for some

early references, and Back (2010) and Brandt (2010) for some recent surveys. In practice, it is not un-

common that the dynamic portfolio choice depends on many conditioning (or forecasting) variables,

which reflects the varying investment opportunities over time. Generally speaking, there are two ways

to characterize the dependence of portfolio choice on the conditioning variables. One is to assume

a parametric statistical model that relates the returns of risky assets to the conditioning variables

and then solve for an investor’s portfolio choice by using some traditional econometric approaches to

estimate the conditional distribution of the returns. However, the assumed parametric models might

be misspecified, which would lead to inconsistent or biased estimation of the optimal portfolio and

invalid inference on it. The other way that can avoid the possible issue of model misspecification,

is to use some nonparametric methods such as the kernel estimation method to characterize the

dependence of the portfolio choice on conditioning variables. This latter way was first introduced by

Brandt (1999), who also establishes the asymptotic properties for the estimated portfolio choice and

provides an empirical application.

Although the nonparametric method allows for the financial data to “speak for themselves" and is

robust to model misspecification, its performance is however often poor, such as very slow convergence

rates in comparison with the sample size, owing to the “curse of dimensionality" widely identified

in the literature (c.f., Fan and Yao, 2003), when the dimension of the conditioning variables is large

(say, even only larger than three). This indicates that direct use of Brandt (1999)’s nonparametric

method may be inappropriate when there are multiple conditioning variables. In this paper, our

main objective is to address this issue associated with the nonparametric dynamic portfolio choice

depending on multiple conditioning variables, where the number of the conditioning variables can be

either fixed or diverging to infinity at certain polynomial rate in comparison with the sample size.

We will propose a novel data-driven method to estimate the nonparametric optimal portfolio choice.

Specifically, in order to avoid curse of dimensionality associated with the problem and to make it

practically implementable, we first consider the optimal portfolio choice which maximises the condi-

tional utility function for a given individual conditioning variable, and then construct the dynamic

optimal portfolio choice through the weighted average of the marginal optimal portfolio across all

the conditioning variables. This method is partly motivated by the Model Averaging MArginal

Regression (MAMAR) approach suggested in a recent paper by Li, Linton and Lu (2014), which
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shows that such a method performs well in estimating the conditional multivariate mean regression

function and the out-of-sample prediction. Under some mild regularity conditions, we will establish

the large sample properties to show the advantages in convergence for the developed portfolio choice

procedure. Both simulation studies and empirical application will be carried out to demonstrate the

performance of the proposed methodology with both finite sample and real data.

The structure of the paper is as follows. The proposed semiparametric dynamic portfolio choice

with its methodology and estimation will be introduced in Section 2. The large sample theory for

the estimators constructed in Section 2 will be presented in Section 3. The data-driven choice of the

optimal weights for model averaging of the marginal optimal portfolios across all the conditioning

variables is developed in Section 4. Numerical studies including both simulation and empirical

application are reported in Section 5. To make the paper ease of reading, all assumptions and

technical proofs are relegated to Appendices A and B, respectively.

2 Semiparametric dynamic portfolio choice: methodology

and estimation

Suppose that there are n risky assets with an uncertain returns vector Rt = (R1t, . . . , Rnt)
ᵀ
, where

n is assumed to be fixed throughout this paper. Let Ft = (X1t, . . . , XJt)
ᵀ
, where J is the number of

the conditioning or forecasting variables Xjt. In the present paper, we consider two cases: (i) J ≡ J0

is a fixed positive integer, (ii) J ≡ JT is a positive integer which is diverging with T . The dynamic

portfolio choice aims to choose the weights which maximise the conditional utility function defined

by

E
[
u(w

ᵀ
Rt)|Ft−1

]
= E

[
u(w

ᵀ
Rt)|(X1,t−1, . . . , XJ,t−1)

]
, (2.1)

subject to 1
ᵀ
nw =

∑n
i=1wi = 1, where w = (w1, . . . , wn)

ᵀ
, 1n is an n-dimensional column vector with

each element being one, u(·) is a concave utility function which measures the investor’s utility of
the wealth w

ᵀ
Rt at time t. For simplicity, in this paper, we only focus on the case of single-period

portfolio choice. Furthermore, we assume that the investors can borrow assets and sell them (shot

selling), which indicates that some of the optimal weights may take negative values. The classic

mean-variance paradigm considers the quadratic utility function u(x) = −1
2
(x − β)2; one may also

work with the more general CRRA (Constant Relative Risk Aversion) utility function with risk

aversion parameter γ:

u(x) =

{
x1−γ

1−γ , γ 6= 1,

log x, γ = 1.
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More discussions on different classes of the utility function u(·) can be found in Chapter 1 of the
book by Back (2010).

In order to solve the maximisation problem in (2.1), Brandt (1999) proposes a nonparametric

conditional method of moments approach, which can be seen as an extension of the method of

moments approach in Hansen and Singleton (1982). Taking the first-order derivative of u(·) in (2.1)
with respect to w and considering the constraint of 1

ᵀ
nw =

∑n
i=1wi = 1, we may obtain the dynamic

portfolio choice by solving the following equation:

E
[
(Rit −Rnt)u̇(w

ᵀ
Rt)|X1,t−1, . . . , XJ,t−1

]
= 0 a.s. (2.2)

for i = 1, . . . , n− 1, where u̇(·) is the derivative of the utility function u(·). The last element in the
optimal weights (i = n) can be determined by using the constraint of

∑n
i=1wi = 1. Brandt (1999)

suggests a kernel-based smoothing method to estimate the solution to (2.2) which changes according

to the conditioning variables. However, when J is large, the kernel-based nonparametric conditional

method of moments approach would perform quite poorly due to the curse of dimensionality which

has been discussed in Section 1. We next propose a novel dimension-reduction technique to address

this problem.

We start with the consideration of the portfolio choice for each univariate conditioning variable

in Ft−1. Let x = (x1, . . . , xJ)
ᵀ
. For j = 1, . . . , J , we define the conditional utility function as

E
[
u(w

ᵀ
Rt)|Xj,t−1 = xj

]
(2.3)

with the constraint 1
ᵀ
nw =

∑n
i=1wi = 1. Then, we have the following first-order conditions at the

optimum: for i = 1, . . . , n− 1,

E
[
(Rit −Rnt)u̇(w

ᵀ
j (xj)Rt)|Xj,t−1 = xj

]
= 0 a.s., (2.4)

where:

wj(xj) = [w1j(xj), . . . , wnj(xj)]
ᵀ

with wnj(xj) = 1−
n−1∑
i=1

wij(xj),

is the optimal portfolio choice that maximises the conditional utility function defined in (2.3). For

any given j, this is essentially the problem posed and solved by Brandt (1999).

We next consider how to combine the portfolios selected above. Specifically, we shall consider

a weighted average of the marginal portfolio choices wj(xj) over j = 1, . . . , J , and obtain the joint

portfolio choice

wa(x) =

J∑
j=1

ajwj(xj),

J∑
j=1

aj = 1, (2.5)
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where the weights aj < 0 can be allowed in our portfolio choice as we assume the existence of short

selling. In Section 4 below, we will discuss how to choose the weights a = (a1, . . . , aJ)
ᵀ
in the

combination (2.5).

We now turn to the sample problem. Let K(·) be a kernel function and h be a bandwidth that
converges to zero as T tends to infinity. Using the sample information, we may express the first-order

conditions for the utility function as

1

Th

T∑
t=1

(Rit −Rnt)u̇(w
ᵀ
Rt)K

(
Xj,t−1 − xj

h

)
= 0, i = 1, . . . , n− 1. (2.6)

Denote ŵj(xj) = [ŵ1j(xj), . . . , ŵnj(xj)]
ᵀ
as the solution to (2.6), where

ŵnj(xj) = 1−
n−1∑
i=1

ŵij(xj). (2.7)

Then define the joint portfolio choice through the weighted average

ŵa(x) =
J∑
j=1

ajŵj(xj),
J∑
j=1

aj = 1. (2.8)

The asymptotic properties for ŵa(x) when the number of the conditioning variables is either fixed or

divergent will be given in Section 3 below.

3 Large sample theory

We start with the case that J = J0 is a fixed positive integer. Following (2.6) and (2.7), we next

only study the asymptotic theory for ŵ∗j (xj) = [ŵ1j(xj), . . . , ŵn−1,j(xj)]
ᵀ
, the estimate of w∗j =

[w1j(xj), . . . , wn−1,j(xj)]
ᵀ
. Before stating the asymptotic theorems, we first introduce some notations.

Let:

Λj(xj) = fj(xj)E
[
R∗t (R

∗
t )

ᵀ
ü
(
w
ᵀ
j (xj)Rt

)
|Xj,t−1 = xj

]
Zjt(xj) = R∗t u̇

(
w
ᵀ
j (Xj,t−1)Rt

)
K

(
Xj,t−1 − xj

h

)
for j = 1, . . . , J0 and t = 1, . . . , T , where R∗t = (R1t −Rnt, . . . , Rn−1,t −Rnt)

ᵀ
, ü(·) is the second-order

derivative of u(·) and fj(·) is the marginal density function of Xjt. Define

Wjt(xj) = Λ−1j (xj)Zjt(xj) and Wt(x|a) =

J0∑
j=1

ajWjt(xj)
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for t = 1, . . . , T . Following the argument in the proof of Theorem 3.1 in Appendix B and letting

ŵ∗a(x) =

J∑
j=1

ajŵ
∗
j (xj), w∗a(x) =

J∑
j=1

ajw
∗
j (xj),

we may show that
√
Th [ŵ∗a(x)− w∗a(x)] =

1√
Th

T∑
t=1

Wt(x|a) + oP (1) (3.1)

for given a = (a1, . . . , aJ0)
ᵀ
. The asymptotic distribution theory for wj(xj) and wa(x) is given in

Theorem 3.1 below.

Theorem 3.1. Suppose that Assumptions 1—5 in Appendix A are satisfied and the number of the

conditioning variables J is a fixed positive integer J0.

(i) For j = 1, . . . , J0, we have
√
Th
[
ŵ∗j (xj)− w∗j (xj)

] d−→ N (0, Ωj(xj)) , (3.2)

where Ωj(xj) = E
[
Wjt(xj)W

ᵀ
jt(xj)

]
= Λ−1j (xj)E

[
Zjt(xj)Z

ᵀ
jt(xj)

]
Λ−1j (xj).

(ii) For the estimated portfolio choice defined in (2.8) with a set of given weights, we have
√
Th [ŵ∗a(x)− w∗a(x)]

d−→ N (0, Ω(x|a)) , (3.3)

where Ω(x|a) = E
[
Wt(x|a)W

ᵀ
t (x|a)

]
.

Although there are multiple conditioning variables in the nonparametric dynamic portfolio choice,

we can still achieve the root-Th convergence rates as shown in the above theorem, which means that

we can successfully overcome the curse of dimensionality issue. The main reason is that, in the

estimation methodology, we only apply the univariate kernel smoothing to estimate the optimal

portfolio choice for each univariate conditioning variable and then obtain the final portfolio choice

through weighted averages defined as in (2.8). In contrast, if we directly use the multivariate kernel

smoothing as done in Brandt (1999), the convergence rate for the resulting estimation would be

root-ThJ0 , slower than the rates in (3.2) and (3.3) when J0 > 1.

In practice, it is not uncommon that the number of the potential conditioning variables is large,

and so a more reasonable assumptions is that J is divergent, i.e., J ≡ JT → ∞. The following
theorem gives the asymptotic distribution theory for this general case.

Theorem 3.2. Suppose that Assumptions 1—4 and 5′ in Appendix A are satisfied and the number

of conditioning variables J is a positive integer JT which is diverging with the sample size T . Then,

(3.2) and (3.3) in Theorem 3.1 still hold.
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Theorem 3.2 above indicates that the root-Th convergence rates remain the same even when the

number of the potential conditioning variables is diverging. The restriction on JT is

T 1−1/(2+δ)h

J
1/(2+δ)
T log T

→∞,

which is given in Assumption 5′. Such a restriction means that JT can possibly be larger than T ,

if we are only interested in wa(·) or ŵa(·) for given a. However, some additional restrictions on JT
would be needed when we consider the choice of the optimal a = (a1, . . . , aJT )

ᵀ
, see Section 4 below

for details.

4 Data-driven optimal weight choice in model averaging

The performance of the dynamic portfolio choice defined in (2.8) relies on the choice of the weights

a1, . . . , aJ . Let wat ≡ wa(Ft) =
∑J

j=1 ajwj(Xjt) and define the objective function:

U(a) = E
[
u(w

ᵀ
a,t−1Rt)

]
= E

{
u
[ J∑
j=1

ajw
ᵀ
j (Xj,t−1)Rt

]}
. (4.1)

We may choose the optimal weights by maximising U(a), i.e.,

a0 = arg max
a
U(a) = arg max

a
E

{
u
[ J∑
j=1

ajw
ᵀ
j (Xj,t−1)Rt

]}
. (4.2)

subject to the constraint of
∑J

j=1 aj = 1. This leads to the following first-order conditions:

E

[
(Rw

jt −Rw
Jt)u̇

( J∑
j=1

aj0R
∗
jt

)]
= 0 for j = 1, . . . , J − 1, (4.3)

and aJ0 = 1−
∑J−1

j=1 aj0, where R
w
jt = w

ᵀ
j (Xj,t−1)Rt, Rw

Jt = w
ᵀ
J(XJ,t−1)Rt and aj0 is the j-th element

of a0.

We propose a data-driven optimal weight choice in model averaging by using the sample informa-

tion and replacing the unobservable wj(Xj,t−1) by the estimated value ŵj(Xj,t−1) which is constructed

in (2.6), we may estimate a0 = (a10, . . . , aJ0)
ᵀ
by â = (â1, . . . , âJ)

ᵀ
which is the solution to

1

T

T∑
t=1

(R̂w
jt − R̂w

Jt)u̇
[ J∑
j=1

âjR̂jt

]
= 0 for j = 1, . . . , J − 1, (4.4)
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and âJ = 1−
∑J−1

j=1 âj, where R̂
w
jt = ŵ

ᵀ
j (Xj,t−1)Rt.

To facilitate the proof of the asymptotic theory for â, we need to establish the uniform consistency

results for ŵj(xj) over xj ∈ Xj with Xj being the support of Xjt and j = 1, . . . , J .

Proposition 4.1. Suppose that Assumptions 1—4 in Appendix A are satisfied.

(i) If the number of the conditioning variables J is a fixed positive integer J0 and

h→ 0,
T 1−2/(2+δ)h

log T
→∞, (4.5)

where δ > 0 is specified in Assumption 3 in Appendix A, then

max
1≤j≤J0

sup
xj∈Xj

‖ŵj(xj)− wj(xj)‖ = OP

(
h2 +

√
log T/(Th)

)
, (4.6)

where ‖ · ‖ denotes the Euclidean norm of a vector or the Frobenius norm of a matrix.

(ii) If the number of the conditioning variables J is a diverging positive integer JT and

h→ 0,
T 1−2/(2+δ)h

J
2/(2+δ)
T log T

→∞, (4.7)

then (4.6) still holds with J0 replaced by JT .

In fact, Proposition 4.1(i) can be included as a special case of Proposition 4.1(ii), and the above

uniform consistency results can be seen as the extension of the uniform consistency results for the

nonparametric kernel-based estimation in stationary time series (Hansen, 2008; Kristensen, 2009; Li,

Lu and Linton, 2012) to the scenario of the nonparametric portfolio choice. By modifying the proof

in Appendix B, we may further generalise (4.6) to the case when Xj is an expanding set.
We next study the asymptotic property for â. As âJ = 1 −

∑J−1
j=1 âj, it suffi ces to consider

â∗ ≡ (â1, . . . , âJ−1)
ᵀ
, the estimate of a∗0 ≡ (a10, . . . , aJ−1,0)

ᵀ
. Define ηt = u̇

[∑J
j=1 aj0w

ᵀ
j (Xj,t−1)Rt

]
,

η∗t = ü
[∑J

j=1 aj0w
ᵀ
j (Xj,t−1)Rt

]
, and R∗t (w) =

(
Rw
1t, . . . , R

w
J−1,t

)ᵀ
, V ∗t = R∗t (w)−Rw

Jt1J−1 and let

∆1 = E
[
η∗tV

∗
t (V ∗t )

ᵀ]
.

For j = 1, . . . , J , define εjt = u̇
(
w
ᵀ
j (Xj,t−1)Rt

)
= u̇

(
Rw
jt

)
, and let

εt = (ε1ta10, . . . , εJtaJ0)
ᵀ
, Qt = (Q1t, . . . , QJt)

ᵀ

with Qjt =
{
E
[
η∗sV

∗
s R

ᵀ
sWΛ−1j (Xj,s−1)|Xj,s−1 = Xj,t−1

] }
R∗t and

W =


1 · · · 0
...

...
...

0 · · · 1

−1 · · · −1

 .
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Define

∆2 = Cov(V ∗t ηt +Q
ᵀ
t εt, V

∗
t ηt +Q

ᵀ
t εt).

In the following theorem, we give the asymptotic distribution theory for â when J is fixed.

Theorem 4.2. Suppose that the assumptions in Proposition 4.1(i) are satisfied and the matrix ∆1

is non-singular. Then we have

√
T (â∗ − a∗0)

d→ N
(
0,∆−11 ∆2∆

−1
1

)
. (4.8)

We next deal with the case that J = JT is diverging with the sample size T . Let∆T = ∆−11 ∆2∆
−1
1

which indicates that the size of the matrix relies on T . As the number of the potential conditioning

variables JT tends to infinity, we cannot state the asymptotic normal distribution theory by the same

way as in Theorem 4.2 above. As in Fan and Peng (2004), we let ΨT be a J∗× (JT − 1) matrix with

full row rank such that as T → ∞, ΨTΨ
ᵀ
T → Ψ, where Ψ is non-negative definite J∗ × J∗ matrix

with J∗ being a fixed positive integer. The role of the matrix ΨT is to reduce the dimension from

(JT − 1) to J∗ in the derivation of the asymptotic normality, so it is only involved in the asymptotic

analysis. If we are only interested in the asymptotic behavior for the first J∗ components of â, we

may choose ΨT =
[
IJ∗ , OJ∗×(JT−J∗)

]
, where Ip is a p × p identity matrix and Ok×j is a k × j null

matrix. We next state the asymptotic distribution theory for â when J is diverging.

Theorem 4.3. Suppose that the assumptions in Proposition 4.1(ii) are satisfied, the matrix ∆1 is

non-singular and

JT

(
h2 +

√
log T

Th

)
→ 0. (4.9)

Then we have √
TΨT∆

−1/2
T (â∗ − a∗0)

d→ N (0,Ψ) . (4.10)

The above theorem is similar to some results in the existing literature such as Theorem 2(ii) in

Fan and Peng (2004) and Theorem 4.3 in Li, Linton and Lu (2014). The condition (4.9) shows that

the dimension JT should not diverge too fast to infinity, and (4.10) indicates that the convergence

rate is
√
T/JT due to the diverging number of the conditioning variables.
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5 Numerical studies

In this section, we set the number of assets under consideration for investment to be n = 5. This

value of n is chosen primarily for convenience of computation. Computation procedures for larger

values of n are exactly the same.

Example 5.1. The time series of gross returns Rt on the assets are generated via the conditioning

variables by the following regression:

log(Rt) = 0.06 + A ∗ log(Xt) + et, (5.1)

where A is an n × J full-rank matrix so generated such that the elements of 1000 ∗ A are random

integers ranging between 1 and 30; et are i.i.d. random vectors distributed as et ∼ N(0, 0.001 ∗ In)

in which In is the n× n identity matrix; {log(Xt)} is a J-dimensional AR(1) process generated as

log(Xt) = −0.01 + 0.9 ∗ log(Xt−1) + ut (5.2)

in which ut are i.i.d. random vectors generated from N(0, 0.002∗IJ). The variables inXt, will be used

as the conditioning variables, and the number of conditioning variables is set to satisfy J = [0.5∗
√
T ],

where [·] denotes the operator that rounds a number to the nearest integer less than or equal to that
number.

We use a CRRA utility function with γ = 1, 5, and 10. For each j = 1, . . ., J , t = 1, . . ., T , and

the observed value, Xj,t−1, of the conditioning variable in the previous time period t−1, we calculate

the j-th set of conditional optimal portfolio weights, ŵj(Xj,t−1), by solving the nonparametric version

of the conditioning equations, i.e., (2.6). Then by solving the equations in (4.4) with respect to aj,

we can obtain the joint optimal portfolio weights, ŵa(Xt−1) =
∑J

j=1 âjŵj(Xj,t−1), conditional on the

values of all the conditioning variables in time period t−1, where Xt−1 = (X1,t−1, . . . , XJ,t−1)
ᵀ
. Note

that in calculating the ŵj(Xj,t−1) and âj, we have imposed
∑J

j=1 ŵj(Xj,t−1) = 1 and
∑J

j=1 âj = 1 so

that the budget constraint is satisfied.

We compare the single-period returns of portfolios constructed with weights calculated from

the proposed semiparametric model averaging method (SMAM) and the unconditional parametric

method (UPM) which solves for the weights that maximise the unconditional utility, i.e., 1
T

∑T
t=1 u(w

ᵀ
Rt),

subject to w
ᵀ
i = 1. Table 5.1 reports the averages of the mean difference (MD) between returns on

the SMAM and UPM constructed portfolios:

MD =
1

T

T∑
t=1

(Rs
t −Ru

t ) ,

11



where Rs
t = ŵ

ᵀ
a(Xt)Rt and Ru

t = ŵ
ᵀ
uRt with ŵu chosen by the UPM. Also reported in Table 5.1 are

the averages of positive frequency (PF) of the NAM, i.e., the frequency at which the return on the

SMAM constructed portfolio exceeds that of the UPM constructed portfolio. These results are based

on 100 independent samples of T = 100, 300, or 500 observations. The numbers in parentheses are

the respective standard errors.

It can be seen from Table 5.1 that in most time periods, the return on the portfolio chosen by

the SMAM is larger than the return on the portfolio chosen by the UPM. This is especially so when

the sample size is relatively small. For example, when γ = 5, the average gain in choosing portfolios

by the SMAM than by the UPM is an additional 5.4% return when T = 100, and this reduces to

0.4% when T = 500. As γ measures the level of risk aversion of an investor with a higher value

representing less willingness for risk taking, the portfolio returns generally decrease as γ increases.

Hence, we see a decreasing trend in the MD values as γ increases in Table 5.1.

Table 5.1. Averages of MD between SMAM and UCM returns and PF of the SMAM for Example 5.1

[dir=NW]γT T = 100 T = 300 T = 500

2*γ = 1 MD 0.0540(0.2695) 0.0993(0.2905) 0.1925(0.3019)

PF 0.5358(0.0674) 0.5178(0.0374) 0.5158(0.0298)

2*γ = 5 MD 0.0543(0.0228) 0.0138(0.0108) 0.0038(0.0023)

PF 0.7076(0.0404) 0.6000(0.0296) 0.5533(0.0259)

2*γ = 10 MD 0.0203(0.0110) 0.0081(0.0037) 0.0058(0.0027)

PF 0.6797(0.0454) 0.6131(0.0309) 0.602(0.0299)

Example 5.2. In this example, the gross returns Rt are generated from a stationary VAR:

log(Rt) = 0.01 +B ∗ log(Rt−1) + et, (5.3)

where et are generated in the same way as in Example 5.1, the AR coeffi cient matrix B is defined as

the transpose of 0.01 ∗magic(n) in which magic(n) denotes the magic matrix of dimension n = 5.

The conditioning variables are taken as the lag-one and lag-two returns, i.e. Xt = (R
ᵀ
t−1, R

ᵀ
t−2)

ᵀ
.

Hence, the number of conditioning variables is J = 2n. The results based on 100 independent samples

of this example are given in Table 5.2. Similar findings can be obtained as those in Example 5.1.

Table 5.2. Averages of MD between SMAM and UPM returns and PF of the SMAM for Example 5.2

12



[dir=NW]γT T = 100 T = 300 T = 500

2*γ = 1 MD 0.2838(0.8739) 0.1022(0.1125) 0.2158(0.0957)

PF 0.5487(0.0590) 0.5373(0.0489) 0.5755(0.0403)

2*γ = 5 MD 0.0619(0.0270) 0.0178(0.0081) 0.0163(0.0061)

PF 0.7229(0.0430) 0.6220(0.0305) 0.6138(0.0215)

2*γ = 10 MD 0.0226(0.0102) 0.0111(0.0052) 0.0108(0.0048)

PF 0.6596(0.0475) 0.6295(0.0306) 0.6219(0.0253)

6 Conclusions and Extensions

We have solved a portfolio problem for each conditioning variableXj and then combined the portfolio

weights from each of those "experts". This is quite a common approach in the machine learning liter-

ature, see for example Györfi, Ottucsák, and Urbán (2011). We could instead seek to approximate the

objective function Q(w;x) = E
[
u(w

ᵀ
Rt)|Xt−1 = x

]
by using the MAMAR method to approximate

this conditional expectation by a sum of one dimensional nonparametric regressions, i.e.,

Q̃(w;x) =
J∑
j=1

αjE
[
u(w

ᵀ
Rt)|Xjt−1 = xj

]
for weights αj, and then optimizing Q̃(w;x) with respect to w. This method is likely to give similar

results except that it provides less diagnostic information, and it is perhaps harder to define a method

for selecting αj.

It is also possible to introduce constraints such as absence of short selling or position limits at

each stage of our method at the cost of computational complexity.

A Assumptions

We next list the regularity conditions which are used to prove the asymptotic results. Some of these

conditions might not be the weakest possible.

Assumption 1. (i) The utility function u(·) is concave and has continuous derivatives up to the
second order.

(ii) The optimal weight functions wj(·), j = 1, . . . , J , have continuous derivatives up to the

second order.
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Assumption 2. The process of the conditioning variables
{
Xt = (X1t, . . . , XJt)

ᵀ}
is strictly sta-

tionary and α-mixing with the mixing coeffi cient decaying at a geometric rate, αX(k) ∼ γk0,

0 < γ0 < 1. Each component variable Xjt has a continuous marginal density function fj(·) on
a compact support denoted by Xj. For all t > 1, the joint density function of (X1, Xt) exists

and is uniformly bounded.

Assumption 3. The process of the asset returns
{
Rt = (R1t, . . . , Rnt)

ᵀ}
is strictly stationary and

α-mixing with the mixing coeffi cient decaying at a geometric rate, αR(k) ∼ γk0, 0 < γ0 < 1.

Furthermore, there exists a δ > 0 such that

max
1≤j≤J

E
[∥∥R∗t (R∗t )ᵀü (wᵀ

j (Xj,t−1)Rt

)∥∥2+δ +
∥∥R∗t u̇ (wᵀ

j (Xj,t−1)Rt

)∥∥2+δ] <∞,
where R∗t is defined in Section 3. Let

E
[
R∗t (R

∗
t )

ᵀ
ü
(
w
ᵀ
j (xj)Rt

)
|Xj,t−1 = xj

]
be non-singular uniformly for xj ∈ Xj, j = 1, . . . , J .

Assumption 4. The kernel function K(·) is positive, continuous and symmetric with a compact
support and

∫
K(z)dz = 1.

Assumption 5. The bandwidth h satisfies h→ 0,

Th4 = o(1) and
T 1−1/(2+δ)h

log T
→∞.

Assumption 5′. The bandwidth h satisfies h→ 0,

Th4 = o(1) and
T 1−1/(2+δ)h

J
1/(2+δ)
T log T

→∞.

The above assumptions are mild and justifiable. Some of the assumptions are similar to those

in Brandt (1999). In this paper, we impose the stationarity and mixing dependence condition on

the processes of the returns of the risky assets and the conditioning variables, see, for example,

Assumptions 2 and 3. The methodology and theory developed in the present paper are also applicable

to the more general dependence structure, say the near epoch dependent process (Li, Lu and Linton,

2012). To facilitate our proofs, we assume that the mixing coeffi cients decay at a geometric rate,

which can be relaxed to a polynomial rate at the cost of more lengthy proofs. The bandwidth

conditions in Assumptions 5 and 5′ indicate that there is a trade-off between the moment conditions

and the bandwidth restriction. And the condition Th4 = o(1) shows that certain under-smoothing

is needed in the asymptotic analysis, which is not uncommon in semiparametric estimation.
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B Proofs of the theoretical results

We next give the proofs of the theoretical results stated in Sections 3 and 4. In this appendix, we

let C be a positive constant whose value may change from line to line.

Proof of Theorem 3.1. Throughout this proof, J = J0 is a fixed positive integer. By the

definition of ŵ∗j (xj) = [ŵ1j(xj), . . . , ŵn−1,j(xj)]
ᵀ
or ŵj(xj) = [ŵ1j(xj), . . . , ŵnj(xj)]

ᵀ
, we have

1

Th

T∑
t=1

(Rit −Rnt)u̇
(
ŵ
ᵀ
j (xj)Rt

)
K

(
Xj,t−1 − xj

h

)
= 0 (B.1)

for i = 1, . . . , n− 1 and j = 1, . . . , J0. By Assumption 1 and using the Taylor’s expansion for u̇(·),

u̇
(
ŵ
ᵀ
j (xj)Rt

)
= u̇

(
w
ᵀ
j (xj)Rt

)
+ ü

(
w
ᵀ
�(xj)Rt

) {
(R∗t )

ᵀ [
ŵ∗j (xj)− w∗j (xj)

]}
,

where w�(xj) lies between ŵj(xj) and wj(xj), and w∗j (xj) = [w1j(xj), . . . , wn−1,j(xj)]
ᵀ
. Then we may

prove that

ŵ∗j (xj)− w∗j (xj) = A−1nj (xj)Bnj(xj) (B.2)

with

Anj(xj) =
1

Th

T∑
t=1

R∗t (R
∗
t )

ᵀ
ü
(
w
ᵀ
�(xj)Rt

)
K

(
Xj,t−1 − xj

h

)
,

Bnj(xj) =
1

Th

T∑
t=1

R∗t u̇
(
w
ᵀ
j (xj)Rt

)
K

(
Xj,t−1 − xj

h

)
.

By Assumptions 2—5 in Appendix A and following the standard argument in nonparametric

kernel-based smoothing in time series (c.f., Robinson, 1983), we can show that

Anj(xj) = Λj(xj) + oP (1) (B.3)

when ŵj(xj) is suffi ciently close to wj(xj), where Λj(xj) is defined in Section 3. The convergence in

(B.3) holds uniformly for xj ∈ Xj and j = 1, . . . , J0 (c.f., the proof of Proposition 4.1 below). On

the other hand, we recall that Zjt(xj) = R∗t u̇
(
w
ᵀ
j (Xj,t−1)Rt

)
K
(
Xj,t−1−xj

h

)
. By Assumptions 1(i)(ii)

and the Taylor’s expansion for u̇
(
w
ᵀ
j (·)Rt

)
, we may show that

Bnj(xj) =
1

Th

T∑
t=1

Zjt(xj) +OP (h2). (B.4)
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Noting that nh4 = o(1) in Assumption 5 and by (B.2)—(B.4),

√
Th
[
ŵ∗j (xj)− w∗j (xj)

]
= Λ−1j (xj)

1√
Th

T∑
t=1

Zjt(xj) + oP (1). (B.5)

Then, using the central limit theorem for the stationary α-mixing sequence (e.g., Section 2.6.4 in

Fan and Yao, 2003), we can complete the proof of (3.2) in Theorem 3.1(i).

As in Section 3, let

Wjt(xj) = Λ−1j (xj)Zjt(xj), Wt(x|a) =

J0∑
j=1

ajWjt(xj).

By (B.5) and the definitions of ŵ∗a(x) and w∗a(x), we have

√
Th [ŵ∗a(x)− w∗a(x)] =

1√
Th

T∑
t=1

Wt(x|a) + oP (1). (B.6)

Using (B.6), we can readily prove (3.3) in Theorem 3.1(ii). �

Proof of Theorem 3.2. The proof of this theorem is similar to the proof of Theorem 3.1 above.

The only difference that the stronger bandwidth condition in Assumption 5′ is needed when we prove

(B.3) uniformly for xj ∈ Xj and j = 1, . . . , JT . �

Proof of Proposition 4.1. We only consider the proof of (4.6) for the case when J = JT is

diverging, as the case of J = J0 is similar and simpler. Noting that ŵnj(xj) = 1−
∑n−1

i=1 ŵij(xj) and

using (B.2) and (B.3) in the proof of Theorem 3.1, we only need to show that

max
1≤j≤JT

sup
xj∈Xj

∥∥∥∥∥ 1

Th

T∑
t=1

R∗t u̇
(
w
ᵀ
j (xj)Rt

)
K

(
Xj,t−1 − xj

h

)∥∥∥∥∥ = OP

(
h2 +

√
log T/(Th)

)
, (B.7)

as Λj(xj) is nonsingular uniformly for xj ∈ Xj, 1 ≤ j ≤ JT (see Assumption 3). Note that the

convergence result in (B.4) can be strengthened from the point-wise convergence to the uniform

convergence over xj ∈ Xj, 1 ≤ j ≤ JT . Hence, in order to prove (B.7), we only need to show that

max
1≤j≤JT

sup
xj∈Xj

∥∥∥∥∥ 1

Th

T∑
t=1

Zjt(xj)

∥∥∥∥∥ = OP

(√
log T/(Th)

)
, (B.8)

where Zjt(xj) is defined in the proof of Theorem 3.1.
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For simplicity, denote ξT =
(
log T
Th

)1/2
. The main idea of proving (B.8) is to consider covering

the compact support Xj by a finite number of disjoint subsets Xj(k) which are centered at xjk with

radius rT = ξTh
2, k = 1, . . . ,Nj. It is easy to show that max1≤j≤JT Nj = O(r−1T ) = O(ξ−1T h−2) and

max
1≤j≤JT

sup
xj∈Xj

∥∥∥∥∥ 1

Th

T∑
t=1

Zjt(xj)

∥∥∥∥∥ ≤ max
1≤j≤JT

max
1≤k≤Nj

∥∥∥∥∥ 1

Th

T∑
t=1

Zjt (xjk)

∥∥∥∥∥+

max
1≤j≤JT

max
1≤k≤Nj

sup
xj∈Xj(k)

∥∥∥∥∥ 1

Th

T∑
t=1

Zjt(xj)−
1

Th

T∑
t=1

Zjt (xjk)

∥∥∥∥∥
≡ ΠT1 + ΠT2. (B.9)

By the continuity condition on K(·) in Assumption 4 and using the definition of rT , we readily have

ΠT2 = OP

(rT
h2

)
= OP (ξT ). (B.10)

For ΠT1, we apply the truncation technique and the Bernstein-type inequality for the α-mixing

dependent random variables which can be found in Bosq (1998) and Fan and Yao (2003) to obtain

the convergence rate. Let MT = M1(TJT )1/(2+δ),

Zjt (xjk) = Zjt (xjk) · I
{∥∥R∗t u̇ (Rw

jt

) ∥∥ ≤MT

}
and

Z̃jt (xjk) = Zjt (xjk) · I
{∥∥R∗t u̇ (Rw

jt

) ∥∥ > MT

}
,

where I{·} is an indicator function and Rw
jt = w

ᵀ
j (Xj,t−1)Rt as in Section 4. Then we have

ΠT1 ≤ max
1≤j≤JT

max
1≤k≤Nj

∥∥∥∥∥ 1

Th

T∑
t=1

{
Zjt(xjk)− E

[
Zij(xjk)

]}∥∥∥∥∥+

max
1≤j≤JT

max
1≤k≤Nj

∥∥∥∥∥ 1

Th

n∑
i=1

{
Z̃jt(xjk)− E

[
Z̃jt(xjk)

]}∥∥∥∥∥
≡ ΠT3 + ΠT4. (B.11)

Note that for M2 > 0 and any ε > 0, by Assumption 3 and the Markov inequality,

P
(

ΠT4 > M2ξT

)
≤ P

(
max
1≤j≤JT

max
1≤k≤Nj

max
1≤t≤T

∥∥∥Z̃jt(xjk)∥∥∥ > 0

)
≤

JT∑
j=1

T∑
t=1

P
(∥∥R∗t u̇ (Rw

jt

)∥∥ > MT

)
≤ M

−(2+δ)
1 · max

1≤j≤JT
E
[∥∥R∗t u̇ (Rw

jt

)∥∥2+δ] < ε,
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if we choose

M1 >

{
max
1≤j≤JT

E
[∥∥R∗t u̇(Rw

jt)
∥∥2+δ]}1/(2+δ) ε−1/(2+δ).

Then, by letting ε be arbitrarily small, we can show that

ΠT4 = OP (ξT ). (B.12)

On the other hand, note that∥∥Zjt(xjk)− E
[
Zjt(xjk)

]∥∥ ≤ C0MT , (B.13)

and

Var
[
Zjt(xjk)

]
≤ C0h (B.14)

where C0 is a positive constant. By (B.13), (B.14) and Theorem 1.3(2) in Bosq (1998) with p =

[(M2MT ξT/4)−1] which tends to infinity by (4.7), we have

P(ΠT3 > M2ξT ) = P

(
max
1≤j≤JT

max
1≤k≤Nj

∥∥∥∥∥ 1

Th

T∑
t=1

{
Zjt(xjk)− E

[
Zij(xjk)

]}∥∥∥∥∥ > M2ξT

)

=

JT∑
j=1

Nj
(

4 exp

{
−qM2

2 ξ
2
T

4C0M2MT ξT/h+ 16C0/(ph))

}
+ 22 (1 + 4C0MT/(M2hξT )) qγp0

)

≤ C

JT∑
j=1

Nj
[
exp {−M2 log T}+ TM2

Tγ
p
0

]
= o(1),

where M2 is chosen suffi ciently large and q = T/(2p). Hence we have

ΠT3 = OP (ξT ). (B.15)

In view of (B.10)—(B.12) and (B.15), we have shown (B.8), completing the proof of Proposition 4.1.

�

Proof of Theorem 4.2. Recall that

â∗ = (â1, . . . , âJ−1)
ᵀ
, a∗0 = (a10, . . . , aJ−1,0)

ᵀ
,

Rt(w) = (Rw
1t, . . . , R

w
Jt)

ᵀ
, R∗t (w) =

(
Rw
1t, . . . , R

w
J−1,t

)ᵀ
,

R̂t(w) =
(
R̂w
1t, . . . , R̂

w
Jt

)ᵀ
, R̂∗t (w) =

(
R̂w
1t, . . . , R̂

w
J−1,t

)ᵀ
.
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As in the proof of Theorem 3.1, throughout this proof, we let J = J0 be a fixed positive integer.

As âJ0 = 1 −
∑J0−1

j=1 âj and aJ00 = 1 −
∑J0−1

j=1 aj0, by Proposition 4.1(i), Assumption 1(i) and the

Taylor’s expansion for u̇(·), we may show that

u̇
[ J0∑
j=1

âjŵ
ᵀ
j (Xj,t−1)Rt

]
− u̇
[ J0∑
j=1

aj0ŵ
ᵀ
j (Xj,t−1)Rt

]
= ü

[ J0∑
j=1

aj0w
ᵀ
j (Xj,t−1)Rt

] J0∑
j=1

(âj − aj0) ŵ
ᵀ
j (Xj,t−1)Rt + oP (‖â− a0‖)

= ü
[ J0∑
j=1

aj0w
ᵀ
j (Xj,t−1)Rt

]
(â− a0)

ᵀ
R̂t(w) + oP (‖â− a0‖)

= ü
[ J0∑
j=1

aj0w
ᵀ
j (Xj,t−1)Rt

]
(â∗ − a∗0)

ᵀ
[
R̂∗t (w)− R̂w

J0t
1J0−1

]
+ oP (‖â∗ − a∗0‖)

and

u̇
[ J0∑
j=1

aj0ŵ
ᵀ
j (Xj,t−1)Rt

]
− u̇
[ J0∑
j=1

aj0w
ᵀ
j (Xj,t−1)Rt

]
= ü

[ J0∑
j=1

aj0w
ᵀ
j (Xj,t−1)Rt

] J0∑
j=1

aj0 [ŵj(Xj,t−1)− wj(Xj,t−1)]
ᵀ
Rt +OP

(
h4 +

log T

Th

)

= ü
[ J0∑
j=1

aj0w
ᵀ
j (Xj,t−1)Rt

]
a
ᵀ
0

[
R̂t(w)−Rt(w)

]
+OP

(
h4 +

log T

Th

)
.

Hence, we have

u̇
[ J0∑
j=1

âjŵ
ᵀ
j (Xj,t−1)Rt

]
= u̇

[ J0∑
j=1

aj0w
ᵀ
j (Xj,t−1)Rt

]
+ u̇
[ J0∑
j=1

âjŵ
ᵀ
j (Xj,t−1)Rt

]
− u̇
[ J0∑
j=1

aj0w
ᵀ
j (Xj,t−1)Rt

]
= u̇

[ J0∑
j=1

aj0w
ᵀ
j (Xj,t−1)Rt

]
+ u̇
[ J0∑
j=1

âjŵ
ᵀ
j (Xj,t−1)Rt

]
− u̇
[ J0∑
j=1

aj0ŵ
ᵀ
j (Xj,t−1)Rt

]
+u̇
[ J0∑
j=1

aj0ŵ
ᵀ
j (Xj,t−1)Rt

]
− u̇
[ J0∑
j=1

aj0w
ᵀ
j (Xj,t−1)Rt

]
= ηt + η

∗
t

[
R̂∗t (w)− R̂wJ0t1J0−1

]ᵀ
(â∗ − a∗0) + η∗t

[
R̂t(w)−Rt(w)

]ᵀ
a0

+OP

(
h4 +

log T

Th

)
+ oP (‖â∗ − a∗0‖), (B.16)
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where ηt = u̇
[∑J0

j=1 aj0w
ᵀ
j (Xj,t−1)Rt

]
and η∗t = ü

[∑J0
j=1 aj0w

ᵀ
j (Xj,t−1)Rt

]
.

By (4.4) and (B.16), we have

0 =
1

T

T∑
t=1

[
R̂∗t (w)− R̂w

J0t
1J0−1

]
u̇
[ J∑
j=1

âjŵ
ᵀ
j (Xj,t−1)Rt

]
=

1

T

T∑
t=1

[
R̂∗t (w)− R̂w

J0t
1J0−1

]{
ηt + η∗t

[
R̂∗t (w)− R̂w

J0t
1J0−1

]ᵀ
(â∗ − a∗0)

+η∗t

[
R̂t(w)−Rt(w)

]ᵀ
a0

}
+OP

(
h4 +

log T

Th

)
+ oP (‖â∗ − a∗0‖). (B.17)

By (B.17), we readily have

√
T (â∗ − a∗0)

P∼
[

1

T

T∑
t=1

η∗t V̂
∗
t (V̂ ∗t )

ᵀ

]−1{
1√
T

T∑
t=1

V̂ ∗t ηt +
1√
T

T∑
t=1

V̂ ∗t η
∗
t

[
R̂t(w)−Rt(w)

]ᵀ
a0

}
,

(B.18)

where V̂ ∗t = R̂∗t (w)− R̂w
J0t

1J0−1 and αn
P∼ βn denotes that limn→∞ αn/βn = 1.

By Proposition 4.1 and the law of larger numbers, we readily have

1

T

T∑
t=1

η∗t V̂
∗
t (V̂ ∗t )

ᵀ
=

1

T

T∑
t=1

η∗tV
∗
t (V ∗t )

ᵀ
+ oP (1) = ∆1 + oP (1), (B.19)

where ∆1 is defined in Section 4. Note that

1√
T

T∑
t=1

V̂ ∗t ηt =
1√
T

T∑
t=1

V ∗t ηt +
1√
T

T∑
t=1

(
V̂ ∗t − V ∗t

)
ηt.

By Assumptions 2 and 3 and following the argument in the proof of Lemma B.3 in Li, Linton and

Lu (2014), we may show that the second term on the right hand side of (B.19) is asymptotically

negligible. Hence, we have
1√
T

T∑
t=1

V̂ ∗t ηt
P∼ 1√

T

T∑
t=1

V ∗t ηt. (B.20)

We next consider 1√
T

∑T
t=1 V̂

∗
t η
∗
t

[
R̂t(w)−Rt(w)

]ᵀ
a0. It is easy to see that

1√
T

T∑
t=1

V̂ ∗t η
∗
t

[
R̂t(w)−Rt(w)

]ᵀ
a0

P∼ 1√
T

T∑
t=1

V ∗t η
∗
t

[
R̂t(w)−Rt(w)

]ᵀ
a0 (B.21)
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by using Proposition 4.1. Let W be an n× (n− 1) matrix which is defined by

W =


1 · · · 0
...

...
...

0 · · · 1

−1 · · · −1

 .

It is easy to show that for any j = 1, . . . , J0 and xi ∈ Xj,

ŵj(xj)− wj(xj) = W
[
ŵ∗j (xj)− w∗j (xj)

]
. (B.22)

Hence, by (B.22) and using the argument in the proofs of Theorem 3.1 and Proposition 4.1, we may

show that

R̂w
jt −Rw

jt = [ŵj(Xj,t−1)− wj(Xj,t−1)]
ᵀ
Rt

=
[
ŵ∗j (Xj,t−1)− w∗j (Xj,t−1)

]ᵀ
W

ᵀ
Rt

P∼ R
ᵀ
tWΛ−1j (Xj,t−1) ·

[
1

Th

T∑
s=1

Zjs(Xj,t−1)

]

= R
ᵀ
tWΛ−1j (Xj,t−1) ·

[
1

Th

T∑
s=1

R∗su̇
(
w
ᵀ
j (Xj,s−1)Rs

)
K

(
Xj,s−1 −Xj,t−1

h

)]

= R
ᵀ
tWΛ−1j (Xj,t−1) ·

[
1

Th

T∑
s=1

R∗sεjsK

(
Xj,s−1 −Xj,t−1

h

)]
, (B.23)

where εjs = u̇
(
w
ᵀ
j (Xj,s−1)Rs

)
= u̇

(
Rw
js

)
and Zjs(·) is defined in the proof of Theorem 3.1. By (B.23),

we readily have

[
R̂t(w)−Rt(w)

]ᵀ
a0 = R

ᵀ
tWΛ−1j (Xj,t−1) ·

[
1

Th

T∑
s=1

J0∑
j=1

R∗sεjsaj0K

(
Xj,s−1 −Xj,t−1

h

)]
,
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which indicates that

1√
T

T∑
t=1

V ∗t η
∗
t

[
R̂t(w)−Rt(w)

]ᵀ
a0

P∼ 1√
T

T∑
t=1

V ∗t η
∗
tR

ᵀ
tWΛ−1j (Xj,t−1) ·

[
1

Th

T∑
s=1

J0∑
j=1

R∗sεjsaj0K

(
Xj,s−1 −Xj,t−1

h

)]

=
1√
T

T∑
s=1

J0∑
j=1

εjsaj0

[
1

Th

T∑
t=1

η∗tV
∗
t R

ᵀ
tWΛ−1j (Xj,t−1)K

(
Xj,s−1 −Xj,t−1

h

)]
R∗s

P∼ 1√
T

T∑
s=1

J0∑
j=1

εjsaj0Qjs, (B.24)

where

Qjs =
{
E
[
η∗tVtR

ᵀ
tWΛ−1j (Xj,t−1)|Xj,t−1 = Xj,s−1

] }
R∗s.

Recall that εt = [ε1ta10, . . . , εJ0taJ00]
ᵀ
and Qt = (Q1t, . . . , QJ0t)

ᵀ
. Then we have

1√
T

T∑
t=1

V ∗t η
∗
t

[
R̂t(w)−Rt(w)

]ᵀ
a0

P∼ 1√
T

T∑
t=1

Q
ᵀ
t εt (B.25)

By (B.20), (B.21) and (B.25), we have

1√
T

T∑
t=1

V̂ ∗t ηt +
1√
T

T∑
t=1

V ∗t η
∗
t

[
R̂t(w)−Rt(w)

]ᵀ
a0

P∼ 1√
T

T∑
t=1

(
V ∗t ηt +Q

ᵀ
t εt
)
. (B.26)

By the central limit theorem for the α-mixing sequence, we can prove that

1√
T

T∑
t=1

(
V ∗t ηt +Q

ᵀ
t εt
) d→ N (0,∆2) (B.27)

Then, we can complete the proof of Theorem 4.2 by (B.18)—(B.21), (B.26) and (B.27). �

Proof of Theorem 4.3. The main idea in this proof is similar to the proof of Theorem 4.2 above

with some modifications. Hence, we next only sketch the proof.

Following the proof of (B.18) and using the condition (4.9), we may show that

√
TΨT∆

− 1
2

T (â∗ − a∗0) = ΨT∆
− 1
2

T

[
1

T

T∑
t=1

η∗t V̂
∗
t (V̂ ∗t )

ᵀ

]−1 [
1√
T

T∑
t=1

V̂ ∗t ηt

+
1√
T

T∑
t=1

V̂ ∗t η
∗
t

(
R̂t(w)−Rt(w)

)ᵀ
a0

]
. (B.28)
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Note that (B.19) still holds by using Proposition 4.1(ii) and (4.9). Hence, by (B.28), we have

√
TΨT∆

− 1
2

T (â∗ − a∗0)
P∼ ΨT∆

− 1
2

T ∆−11

[
1√
T

T∑
t=1

V̂ ∗t ηt +
1√
T

T∑
t=1

V̂ ∗t η
∗
t

(
R̂t(w)−Rt(w)

)ᵀ
a0

]
. (B.29)

Furthermore, using the argument in proving (B.26), we obtain

√
TΨT∆

− 1
2

T (â− a0)
P∼ ΨT∆

− 1
2

T ∆−11

[
1√
T

T∑
t=1

(
V ∗t ηt +Q

ᵀ
t εt
)]
. (B.30)

By the central limit theorem and using the condition that ΨTΨ
ᵀ
T → Ψ, we can complete the proof

of Theorem 4.3. �
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