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Abstract

Individual heterogeneity is an important source of variation in demand. Allow-

ing for general heterogeneity is needed for correct welfare comparisons. We consider

general heterogenous demand where preferences and linear budget sets are statis-

tically independent. Only the marginal distribution of demand for each price and

income is identified from cross-section data where only one price and income is

observed for each individual. Thus, objects that depend on varying price and/or

income for an indiviual are not generally identified, including average exact con-

sumer surplus. We use bounds on income effects to derive relatively simple bounds

on the average surplus, including for discrete/continous choice. We also sketch an

approach to bounding surplus that does not use income effect bounds. We apply

the results to gasoline demand. We find tight bounds for average surplus in this

application but wider bounds for average deadweight loss.
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1 Introduction

Unobserved individual heterogeneity is thought to be a large source of variation in em-

pirical demand equations. Often r-squareds are found to be low in cross-section and

panel data applications, suggesting that much variation in demand is due to unobserved

heterogeneity. The magnitude of heterogeneity in applications makes it important to

account correctly for heterogeneity.

Demand functions could vary across individuals in general ways. For example, it

seems reasonable to suppose that price and income effects are not confined to a one

dimensional curve as they vary across individuals, meaning that heterogeneity is multi-

dimensional. Demand might also arise from combined discrete and continuous choice,

where heterogeneity has different effects on discrete and continuous choices. For these

reasons it seems important to allow for general heterogeneity in demand analysis. In this

paper we do so.

Exact consumer surplus quantifies the welfare effect of price changes, including the

deadweight loss of taxes. The average surplus over individuals is a common welfare

measure. We show that for continuous demand average surplus is generally not identified

from the distribution of demand for a given price and income. Nonidentification motivates

a bounds approach. We use bounds on income effects to derive bounds on average surplus.

Surplus bounds are constructed from the average of quantity demanded across consumers.

In the Appendix we extend these bounds to combined discrete and continuous choice.

We also sketch how surplus bounds can be obtained from the distribution of quantity

demanded without knowing bounds on income effects.

Empirical application of these bounds is based on independence of preferences and

budget sets, possibly conditioned on covariates and control functions. Under indepen-

dence, average demand is the conditional expectation of quantity, that can be estimated

by nonparametric, semiparametric, or parametric methods in cross section data. The

distribution of demand can be also estimated in analogous ways.

We apply average surplus bounds to gasoline demand, using data from the 2001 U.S.
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National Household Transportation Survey. We find that average surplus bounds based

on income effects are quite tight in the application, but that bounds on deadweight loss

are wider. We give confidence intervals for an identified set with income effect bounds.

We find that bounds are substantially wider when we just impose utility maximization.

In this paper bounds on derivatives lead to useful bounds for objects of interest, as

have restrictions like monotonicity and concavity in other settings. The focus here on

derivatives is driven by economics, where income effects play a pivotal role in bounding

average surplus.

Choice models with general heterogeneity have previously been considered. In their

analysis of nonlinear taxes, Burtless and Hausman (1978) allowed the income effect to

vary over individuals. McFadden and Richter (1991) and McFadden (2005) allowed for

general heterogeneity in a revealed preference framework. Our paper specializes the

revealed preference work in imposing single valued, smooth demands to facilitate estima-

tion. Lewbel (2001) provided conditions for the average demand to satisfy the restrictions

of utility maximization. Hoderlein and Stoye (2009) showed how to impose the weak ax-

iom of revealed preference. Dette, Hoderlein, and Neumeyer (2011) proposed tests of

downward sloping compensated demands. Kitamura and Stoye (2012) gave tests of the

revealed preference hypothesis. Blomquist and Newey (2002) derived the form of aver-

age demand with nonlinear budget sets; see also Blomquist, Kumar, Liang, and Newey

(2014). Recently Bhattacharya (2014) has derived average surplus for discrete demand

and general heterogeneity.

Blundell, Horowitz, and Parey (2012), Hoderlein and Vanhems (2010), and Blundell,

Kristensen, and Matzkin (2011) have considered identification and estimation of welfare

measures when demand depends continuously on a single unobserved variable. Blundell,

Kristensen and Matzkin (2011) impose revealed preference restrictions on demand func-

tions in that setting. Recently Lewbel and Pendakur (2013) have considered restricted

multivariate heterogeneity. Here we go beyond these specifications and consider general

heterogeneity.

The results of this paper build on Hausman and Newey (1995). This paper is about
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heterogeneity in demand, which was largely ignored in the previous paper, but we do

make use of asymptotic estimation theory from the previous paper. In this paper we

find that bounds should be computed from the nonparametric regression of quantity on

price and income, and not log quantity or some other function of quantity, because the

conditional expectation of quantity averages across individuals in the desired way. The

results of Hausman and Newey (1995) can then be applied for inference in large samples.

2 Demand Functions with General Heterogeneity

We consider a demand model where the form of heterogeneity is unrestricted. To describe

the model let  denote the quantity of a vector of goods,  the quantity of a numeraire

good,  the price vector for  relative to , and  the individual income level relative to

the numeraire price. Also let  = (  )  where throughout we adopt the notational

convention that vectors are column vectors. The unobserved heterogeneity will be repre-

sented by a vector  of unobserved disturbances of unknown dimension. We think of each

value of  as corresponding to a consumer but do allow  to be continuously distributed.

For each consumer  the demand function ( ) will be obtained by maximizing a

utility function (  ) that is monotonic increasing in  and  subject to the budget

constraint, with

( ) = arg max
≥0≥0

(  ) s.t.   +  ≤  (2.1)

Here we assume that demand is single valued and not a correspondence. This assumption

is essentially equivalent to strict quasi-concavity of the utility function. We impose no

form on the way  enters the utility function  and hence the form of heterogeneity in

( ) is also unrestricted Demand functions are allowed to vary across individuals in

general ways.

Utility maximization imposes restrictions on the demand functions as a function of

prices and income. For continuously differentiable demands and positive prices and in-

come these restrictions are summarized in the following condition.

Assumption 1: For each  the demand function ( ) is continuously differentiable
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in   0 and ( )+( )[( )] is symmetric and negative semi-definite

for all  ∈ .

By Hurwicz and Uzawa (1971), this condition is also sufficient for existence of a utility

function, with ( ) maximizing the utility function subject to the budget constraint.

In this sense, formulating a model with demand functions satisfying Assumption 1 is

equivalent to formulating a model based on utility maximization. In what follows we

take as primitive demand functions satisfying Assumption 1. We also need technical

conditions in order to make probability statements using these demand functions. For

convenience we reserve these technical conditions to Assumption A1 of the Appendix.

Let  denote a possible value of quantity demanded,  the distribution of  and

 (| ) the CDF of quantity  when prices and income equal  for all individuals,

 (| ) =
Z
1(( ) ≤ )() (2.2)

The model we consider is one with a CDF for this form for ( ) satisfying Assumption

1 and a distribution  of .

This model is a random utility model (RUM) of the kind considered by McFadden

(2005, see also McFadden and Richter, 1991). The model here specializes the RUM to

single valued demands that are smooth in prices and income. Single valued, smooth

demand specifications are often used in applications. In particular, smoothness has often

proven useful in applications of nonparametric models and we expect it will here. Esti-

mation under a RUM with general preference variation is not often done in applications.

We do so here for average surplus.

Much of the revealed stochastic preference literature is concerned with deriving re-

strictions on  (| ) as a function of  and  that are necessary and sufficient for a

RUM. McFadden (2005) provides a set of inequalities that are necessary and sufficient

for the RUM with continuous demands. With two goods and single valued, smooth de-

mand there is a simple, alternative characterization in terms of quantiles that is useful

in the identification analysis to follow. The characterization is that each quantile is a

demand function. Let ( |) = inf{ :  (| ) ≥ } denote the   conditional
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quantile corresponding to  (| ), where we drop dependence of  on  and  for

notational convenience. The following result holds under technical conditions that are

given in Assumption A2 of the Appendix.

Theorem 1: Suppose that there are two goods, so that ( ) and  are scalars. If

Assumptions 1 and A2 are satisfied then ( |) is a demand function for all 0    1

and    0. If ( |) is a demand function that is continuously differentiable in  for

0    1 and    0 then there is ̃ with (0 1) and CDF ̃ such that Assumption 1

is satisfied for ̃( ̃) = (̃|) and  (| ) =  (| ̃ ̃)

Dette, Hoderlein, and Neumeyer (2011) showed that the quantile function is a demand

function under conditions similar to those of Assumption A2. Theorem 1 also shows

that if the quantile is a demand function then a demand model with a one dimensional

uniformly distributed  gives the distribution of demand. Together these results show

that, under Assumption A2, the CDF of quantity takes the form  (| ) for some 
satisfying Assumption 1 if and only if each quantile is a demand function In this sense,

for two goods and single valued smooth demands the revealed, stochastic preference

conditions are that each quantile is a demand function. This result will be used in the

identification analysis to follow and is of interest in its own right.

3 Exact Consumer Surplus

We focus on equivalent variation though a similar analysis could be carried out for com-

pensating variation. Let (  ) = min≥0≥0{  +  s.t. ( ) ≥ } be the ex-
penditure function and () = ̄ − (0 1 ) be the equivalent variation for individual

 for a price change from 0 to 1 with income ̄ and 1 the utility at price 1. The

corresponding deadweight loss is () = ()− (1 ̄ )∆ where ∆ = 1 − 0

It is helpful to express surplus and deadweight loss in terms of demand. Let {()}1=0
be a continuously differentiable price path with (0) = 0 and (1) = 1. As discussed in

Hausman and Newey (1995), Shephard’s Lemma implies that for a scalar  the equivalent
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variation () is the solution (0 ) at  = 0 to

( )


= −(() ̄ − ( ) )

()


 (1 ) = 0 (3.3)

where (1 ) = 0 pins down the constant of integration in this ordinary differential

equation. () does not depend on the price path as long as the demand function ( )

satisfies Assumption 1 and (()  ̄ − ( )) remains in .

A change in the price of a single good, say the first one, is a common example. In

that case 0 = (01 ̄

2 )

 and 1 = (11 ̄

2 )

 for some fixed ̄2 A natural choice of price

path is () = 1 + (1 − )0 = (01 + ∆1 ̄

2 )

  where ∆1 = 11 − 01 In this case

equation (3.3) becomes

( )


= −1(01 + ∆1 ̄2 ̄ − ( ) )∆1 (1 ) = 0

Thus with multiple goods the exact consumer surplus for a price change for a single

good can be computed from the demand function for that good by varying its price and

varying income to keep utility constant, as shown by Hausman (1981).

The objects we will focus on and that are of common interest are the average surplus

̄ and deadweight loss ̄ across individuals, given by

̄ =

Z
()() ̄ =

Z
()()

As is known from Hicks (1939), when ̄ is positive it is possible to redistribute income so

that individuals are better off under 0 than under 1. Also, ̄ is often used as a practical

measure of social welfare even though it implicitly evaluates money as having equal weight

across individuals. For these reasons we will focus on average surplus and deadweight

loss in this paper. Some results could be extended to other interesting objects, like the

distribution of surplus. We leave such extensions to future work.

Average surplus depends only on average demand ̄( ) =
R
( )() when the

income effect is constant. Suppose that 1(1 ̄2  ) =  over 1 ∈ [01 11]  ∈
[̄ − () ̄] and . Then () is the solution at  = 0 to

( )


= −[1(01 + ∆1 ̄2 ̄ )− ( )]∆1  (1 ) = 0 (3.4)
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This is a linear differential equation with explicit solution

() = ∆1

Z 1

0
1(

0
1+∆1 ̄2 ̄ ) exp(−∆1) =

Z 11

01

1(1 ̄2 ̄ ) exp(−(1−01))1

Taking expectations under the integral gives

̄ =

Z 11

01

̄1(1 ̄2 ̄) exp(−(1 − 01))1

This can also be represented as the solution at  = 0 to

̄()


= −̄(() ̄ − ̄())

()


 ̄ (1) = 0 (3.5)

Comparing equation (3.5) with (3.3) we see that, with one price changing and income

effect constant for that good, average surplus solves the same differential equation as

individual surplus, with average demand replacing individual demand. This result gener-

alizes to multiple price changes where the income effects are constant for all goods with

changing prices.

Obtaining average surplus from average demand is consistent with the well known

aggregation results of Gorman (1961), who showed that constant income effects are nec-

essary and sufficient for demand aggregation. The preceding discussion is a demonstration

of a partial dual result, that when the price of one good is changing and the income effect

is constant for that good then exact surplus for average demand is the average of exact

surplus. McFadden (2004) derived and used this result in the case where income effects

are constant for all goods.

Marshallian surplus solves equation (3.3) while replacing ( ) on the right-hand side

with zero, i.e. while not compensating income to remain on the same indifference curve.

Average Marshallian surplus ̄ is given by

̄ =

Z
{
Z 1

0
(() ̄ ) [()]}() =

Z 1

0
̄(() ̄) [()]

This surplus measure is a function of average demand in general but it ignores income

effects. Ignoring income effects results in a poor approximation to deadweight loss, see

Hausman (1981). For this reason we focus on exact surplus in our analysis, though

we do find that average Marshallian surplus provides a useful upper bound for average

equivalent variation for a normal good, as shown for individual demands by Willig (1976).
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4 Identification

We consider identification of objects of interest when we know the CDF  (| ) of
demand over a set ̄ of prices and income. This corresponds to knowing the distribution

of demand in cross-section data, where we only observe one price and income for each

individual. If more than one value of  were observed for each individual, as in panel

data, then one could identify some joint distributions of demand at different values of .

We leave consideration of this topic to future research.

We adapt a standard framework to our setting, as in Hsiao (1983), by specifying that

a structure is a demand function and heterogeneity distribution pair () where for

notational convenience we suppress the arguments of  and 

Definition 1: () and (̃ ̃) are observationally equivalent if and only if for all

 and  ∈ ̄,

 (| ) =  (| ̃ ̃)

The set ̄ will correspond to the set of  that is observed. We allow ̄ to differ from

 of Assumption 1 in order to allow the Slutzky conditions to be imposed outside the

range of the data. We consider identification of an object () that is a function of the

structure (). Here () is a map from the demand function and the distribution of

heterogeneity into some set. The identified set for  we consider will be the set of values

of this function for all structures that are observationally equivalent.

Definition 2: The identified set for  corresponding to (0 0) is Λ(0 0) =

{(̃ ̃) : (0 0) and (̃ ̃) are observationally equivalent}.

The (0 0) in this definition can be thought of as the true values of the demand

function and heterogeneity distribution. The identified set Λ(0 0) is the set of  that

is consistent with the distribution of demand  (| 0 0) implied by the true values.

The set Λ(0 0) is nonempty since it always includes the true value (0 0). The set

Λ(0 0) is sharp, given only knowledge of  (| 0 0) because it consists exactly of
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those  that correspond to some (̃ ̃) that generates the same distribution of demand as

the true values. In other words, sharpness of Λ(0 0) holds automatically here because

we are explicitly formulating the identified set in terms of all the restrictions on the

distribution of demand that are implied by the model, and we are assuming that the

distribution of demand is all we know.

Viewing demand as a stochastic process indexed by  helps explain identification.

Here ( ) is a function of  for each  that varies stochastically with , i.e. ( )

is a stochastic process. In this way the structure () can be thought of as a demand

process. In the language of stochastic processes the distribution of ( ) for fixed  is

a marginal distribution, while the distribution of ((1 )  (  )) for some fixed

set {1  } of prices and income is a joint distribution. In our notation the marginal
CDF of this stochastic process is  (| ). Thus, two demand processes will be

observationally equivalent if and only if they have the same marginal distribution.

Objects () that depend only on the marginal distribution of the demand process

are point identified, because they are the same for all observationally equivalent struc-

tures. For example, average demand ̄() =
R
( )() =

R
 (| ) is iden-

tified, as are functionals of it, such as average surplus with constant income effect in

equation (3.6).

Joint distributions of the demand process, such as the joint distribution of ((̃ ) (̄ ))

for two different values of , will not be identified. We will show this result for certain

demand processes below and the intuition is straightforward. Intuitively, joint distribu-

tions are not identified from marginal distributions. Because joint distributions are not

identified, distributions and averages of objects that depend on varying  for given  will

not be identified. As we show rigorously below, such nonidentified objects will include

average surplus, which depends on varying both price and income for a given .

It will generally be impossible to identify demand functions for individuals from the

marginal distribution of demand. Again the intuition is straightforward, with individual

demands not identified because we only observe one price and income for each indi-

vidual. More formally, we can think of the ability to identify individual demands as
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0(̃ ) being perfectly predictable for each ̃ if we know 0(̄ ) for some ̄, i.e. as

 (̃(̃ ̃)|̃(̄ ̃)) = 0 for any (̃ ̃) that is observationally equivalent to the truth.

This is a property of the joint distribution of the demand process, and so is not identified

from the marginal distribution of the demand process.

The specific nonidentification results we show are for two goods where Theorem 1

provides the key to the proof. Combining its first and second conclusion implies that

( |) is a demand function and that (̃|) for ̃ ∼ (0 1) gives the same conditional

distribution of quantity as true demand. Thus, under the conditions of Theorem 1, the

quantile demand is observationally equivalent to true demand. The joint distribution

of the quantile process can differ from the true one. For example, the true demand

may have  ((̃ )|(̄ ))  0 but (̃|) will be one-to-one in ̃ for each  so

 ((̃|̃)|(̃|̄)) = 0.
For example consider a true demand process that is linear in  with varying coeffi-

cients, where

0( ) = 1 + 2+ 3

This demand process is a familiar specification. By Theorem 1 quantile demand will

be observationally equivalent to the true demand. Thus, there is no way to distinguish

nonparametrically a true, linear, varying coefficients process from quantile demand. Also,

true average surplus will generally be different than average surplus for quantile demand.

Intuitively, true average surplus is the average over 3 of the surplus for a demand function

that is linear in  and . In contrast, the quantile demand will generally be nonlinear

in  because it is the inverse of the CDF of demand. Also, average quantile surplus

is obtained by averaging over a scalar uniform distribution. These differences between

the true and quantile demand processes will often lead to quantile average surplus being

different from true average surplus, except when 3 is constant.

We prove nonidentification by showing numerically that the true average surplus is

different than the average surplus for quantile demand in an example of a linear varying

coefficients model.
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Theorem 2: If 0( ) = 1 − + 2 1 ∼ (0 1) 2 is distributed independently

of 1 with two point support {13 23} and Pr(2 = 13) = 12 the average equivalent
variation ̄ is not identified for 0 = 1 1 = 2, and ̄ = 34.

It can be seen from equation (3.3) that average surplus should be continuous in the

demand function  and distribution  in an appropriate sense. Thus, the nonidentifica-

tion result of Theorem 2 should hold for demand processes that are close to the example

of Theorem 2. We also expect nonidentification of average surplus to be generic in the

class of demand processes with varying income effects though it is beyond the scope of

this paper to prove this result.

5 Income Effect Bounds

Known bounds on income effects can be used to bound average surplus and deadweight

loss using average demand. The idea is to extend Section 2, where constant income

effects allow identification of average surplus from average demand, to identify bounds

on surplus from average demand. To describe the result, for any constant  let

̄ =

Z 1

0
[̄(() ̄)

()


]− (5.6)

be the solution ̄() at  = 0 to the linear differential equation

̄()


= −̄(() ̄) ()


+̄() ̄(1) = 0 (5.7)

From Section 2 we see that ̄ would be the average surplus if just the price of the

first good were changing and the demand for the first good had a constant income effect

1(()  ) = ∆1

Theorem 3: If i) (() ̄− )() ≥ 0 for  ∈ [0 ()] ii) there are constants
 and  such that  ≤ [( )] () ≤  for all  ∈ ; iii) all prices in ()

are bounded away from zero then

̄ ≤ ̄ ≤ ̄ ̄ − ̄(1 ̄)∆ ≤ ̄ ≤ ̄ − ̄(1 ̄)∆
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Condition i) is a restriction on the price path that is automatically satisfied when only

the price of the first good is changing and 11  01. Also, the bounds in the conclusion

are satisfied under weaker conditions than bounded income effects. To conserve space

here we give the more general result in the Appendix.

The key ingredient for these average surplus bounds are bounds on the income effect

[( )]

(). Economics can deliver such bounds. Consider again, and for

the rest of this Section, a price change in the first good, where  and  are bounds on

∆11( ) and∆1  0 If 1 is a normal good then the income effect is nonnegative,

so we can take  = 0. Then an upper bound for average equivalent variation and

deadweight loss can be obtained from Marshallian surplus for average demand as

̄ ≤ ̄ =

Z 1

0

h
̄(() ̄)()

i
 ̄ ≤ ̄ − ̄(1 ̄)∆

The upper bound on average deadweight loss could be useful for policy purposes, e.g. to

proceed with a tax if average public benefits (e.g. environmental benefits) exceed average

deadweight loss and the appropriate separability conditions are satisfied.

Economics can also deliver upper bounds on income effects. If no more than a fraction

 of additional income is spent on 1 then

1( ) ≤ 1 ≤ 01

so that ̄ = ∆1
0
1 = (11

0
1 − 1) is an upper bound on [( )] ().

For example, in the gasoline demand application below we are quite certain that only

a small fraction of any increase in income is spent on gasoline, making our choice of ̄

very credible. The Slutzky condition also can limit the size of income effects relative to

price effects an quantity. In the next Section we consider bounds based on the Slutzky

condition.

The quantiles of the demand distribution are informative about income effects. Let

1( |) denote the conditional quantile of the first good, where we continue to suppress
dependence on  and . By Hoderlein and Mammen (2007),


1
( |)


= [
1( )


|1( ) = 

1
( |)]
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where  is a random variable with distribution  Note that constancy of the income

effect will also imply constancy of 
1
( |) as  varies. Thus, if 

1
( |) varies

with  the income effect for the first good is heterogenous. Also, a necessary condition

for  and  to bound ∆11( ) is  ≤ ∆11
( |) ≤  This result can

be used to guide the choice of bounds on income effects. For example, one might choose

an upper bound that is much larger than derivatives of many quantiles, as we do in the

gasoline application to follow. Note though that this approach does not serve to identify

the bounds, because we cannot tell from the quantile derivative how the income effect

varies over  with 1( ) = 1( |)
The conditional quantile is also informative about the surplus bounds. Let  be the

exact surplus obtained by treating 1( |) as if it were a demand function, obtained as
the solution (0) at  = 0 to the differential equation

()


= −1( |01 + ∆1 ̄2 ̄ −  ())∆1  (1) = 0

With two goods and scalar heterogeneity, the average surplus would be
R 1
0 

 . It turns

out that
R 1
0 

 is between the surplus bounds in general.

Corollary 4: If the conditions of Theorem 1 are satisfied and only the first price

is varying then

̄ ≤
Z 1

0
 ≤ ̄

Surplus bounds are relatively insensitive to income effect bounds when a small pro-

portion of income is spent on the good. This result is related to the Hotelling (1938)

result that when expenditure is small approximate consumer surplus is typically close to

actual consumer surplus. Differentiate equation (5.6) with respect to  to obtain

̄−1
̄


= −̄−1

Z 1

0
[̄(() ̄)()]−

= −
Z 11

01

[̄1(1 ̄2 ̄)1̄](
1− 101

∆1
) exp(−1 − 01

∆1
)1

In this way the bounds are less sensitive to  when share ̄1(1 ̄2 ̄)1̄ of income spent

on the first good is smaller.
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6 General Bounds with Two Goods

It is possible to drop knowledge of income effects and obtain average surplus bounds

based only on utility maximization We do this by finding the supremum and infimum of

average surplus over an approximation to the set of demand processes that are consistent

with the distribution of demand. We focus here on the two good case. The approximation

is based on a series expansion around the quantile demand where the coefficients of the

series terms have a discrete distribution. We consider a demand process of the form

̃( ) = (̃|) +
X

=1

̆()

where (),  = 1   are approximating functions, ̃ ∼ (0 1) and ̆ = (̆1  ̆)


has a discrete distribution with  points of support {̆1  ̆} that is independent of ̃.
In this approximation we draw the support points ̆ at random, keeping only those where

̃( ̃) = (̃|) +P
=1 ̆


() satisfies the Slutzky condition over a grid of values for

̃ and  ∈ . Let  = Pr(̆ = ̆) and  (|) = −1(|) be the CDF corresponding the
quantile ( |). Integrating over ̃ gives

 (| ̃ ̃) =
X
=1

 ( −
X
=1

̆()|)

The integration over ̃ here helps to smooth out the CDF which should provide a better

fit in applications.

We allow the mixture probabilities  to vary and look for the maximum and minimum

average surplus subject to restrictions imposed by the data. Let ̃(̃) be the surplus for

̃( ̃) and ̄ =
R 1
0 ̃

(̃)̃, which can be approximated using a grid of ̃ values. We

can get an approximate upper bound for surplus by solving the linear program

max
1

X
=1

̄ s.t.  (|) =
X
=1

 (−
X

=1

()|) ( ) ∈ Γ  ≥ 0
X
=1

 = 1

where Γ is a grid where the constraints are imposed. This is a linear program so compu-

tation is straightforward. However, as for other estimators of partially identified objects

(e.g. Manski and Tamer, 2002), it may be important to include some slackness in the
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constraints, by solving instead

max
1

X
=1

̄ s.t.
X

()∈Γ
[ (|)−

X
=1

 (−
X

=1

()|)]2 ≤   ≥ 0
X
=1

 = 1

for some   0. This quadratic program can be computed using standard software.

This approach provides approximate bounds for surplus for a series approximation

to the set of all demand processes that are consistent with a quantile demand ( |).
Approximation to the true bounds depends on large  and  . The choice of  and 

and the corresponding approximation and inference theory are beyond the scope of this

paper. Note though that these bounds are of interest even for some fixed  As long as

̆ = 0 for some  the average quantile surplus will be between the bounds, so that the

bounds give a measure of how much surplus can vary away from the quantile surplus for

other random utility specifications consistent with the data. Further, if they turn out

to be wider than bounds based on knowing income effects then we can be assured that

using income effects produces narrower bounds, because increasing  will increase the

width of the general bounds.

This series approximation approach provides a way of empirically implementing the

RUM, i.e. of finding identified sets for objects of interest under revealed stochastic

preference conditions. This approach differs from Kitamura and Stoye (2012) where

revealed stochastic preference inequalities are imposed. Here we impose the Slutzky

conditions on a grid and then interpolate between points using a series approximation.

This approach relies on and exploits smoothness in underlying demand functions.

7 Empirical Application

The previous results are based on the average and distribution of demand for fixed

price and income. These objects are identified when prices and income in the data are

independent of preferences, i.e. when the data are ( ) ( = 1  ) with  = 0( )

and  and  are statistically independent. In that case

[| = ] = ̄0()Pr( ≤ | = ) =  (| 0 0)
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Here average demand is the conditional expectation of quantity given prices and income

in the data, and similarly for the distribution of demand. The conditional expectation

of quantity, and not some other function of quantity, such as the log, is special because

it equals the average demand which is used in bounds based on income effects. Average

demand could also be recovered from the conditional expectation of the share of income

spent on 

The conditional expectation [| = ] could be estimated by nonparametric re-

gression, as we do in the gasoline demand application below. Alternatively, if there are

many goods, so that nonparametric estimation is affected by the curse of dimensionality,

a semiparametric or parametric estimate of the conditional expectation of quantity could

be used. Those estimators could have functional form misspecification but are useful

with high dimensional regressors.

Independence of  and  encompasses a statistical version of a fundamental hypoth-

esis of consumer demand, that preferences do not vary with prices. It is also based on

the individual being small relative to the market of observation, as would hold when

different observations come from different markets. The independence of income from

preferences has been a concern in some demand specifications where allowance is made

for dynamic consumption, but is an important starting point and is commonly imposed

in the gasoline demand application we consider.

Independence of  and  could be relaxed to allow for covariates. Consider an index

specification where there are covariates  and it is assumed that there is a vector of

functions ( ) that affect utility such that  and (

  


 )

 are independent. These

covariates might be demographic variables that represent observed components of the

utility. For example, one could use a single, linear index ( ) = 1 + 
2 , with the

usual scale and location normalization imposed. The demand function 0( ( 0) )

would then depend on the index ( 0) as would the average demand

̄0( ( 0)) =

Z
0( ( 0) )() = [| =  ( 0) = ]

Here average demand is equal to a partial index regression of quantity  on  and ( )

[16]



Similar approaches to conditioning on covariates are common in demand analysis.

Endogeneity can be accounted for if there is an estimable control variable  such that

 and  are independent conditional on  and the conditional support of  given 

equals the marginal support of  In that case it follows as in Blundell and Powell (2003)

and Imbens and Newey (2009) that

Z
[| =   = ]() = ̄0()

Z
Pr( ≤ | =   = )() =  (| 0 0)

where () is the CDF of . Although conditions for existence of a control variable are

quite strong (see Blundell and Matzkin, 2014), this approach does provide a way to allow

for some forms of endogeneity.

8 Estimation and Welfare Analysis of Gasoline De-

mand

In this section we estimate average consumer surplus and deadweight loss from changes

in the gasoline tax in the US while allowing for unrestricted multidimensional individ-

ual heterogeneity. We use data from the 2001 U.S. National Household Transportation

Survey (NHTS). This survey is conducted every 5-8 years by the Federal Highway Ad-

ministration. The survey is designed to be a nationally representative cross section

which captures 24-hour travel behavior of randomly-selected households. Data collected

includes detailed trip data and household characteristics such as income, age, and num-

ber of drivers. We restrict our estimation sample to households with either one or two

gasoline-powered cars, vans, SUVs and pickup trucks. We exclude Alaska and Hawaii.

We use daily gasoline consumption, monthly state gasoline prices, and annual household

income. The data we use consists of 8,908 observations. Summary statistics are given

in Table 1. Note that the mean price of gasoline was $1.33 per gallon with the mean

number of drivers in a household equal to 2.04.

To estimate average gasoline demand we estimate up to a 4th degree polynomial with

[17]



interaction and predetermined variables along with price and income for household :

d̄() =
4X

=1

̂(ln )
(ln )(( ̂)) (8.8)

We estimate equation (8.8) taking the price of gasoline as predetermined assuming a

world market for gasoline. We also allow for the gasoline price to be jointly endogenous

using state tax rates as instruments and also distance of the state from the Gulf of Mexico,

as in Blundell, Horowitz and Parey (2012). Here we take a control function approach

where in the first stage we use the instruments , along with household income, and the

predetermined variables . We then take the estimated residuals from this first stage ̂

and use them as a control function in equation (8.8), constructing

d[| ] =
4X

=1

̃(ln )
(ln )(0)(̂) (8.9)

where ̃ are the coefficients from the regression of  on log price, income, the

covariates index, and the first stage residual. The average demand is then estimated by

averaging over the estimated residuals ̂ holding , , and  fixed.

In Figure 1 we plot the OLS average demand estimate for monthly gasoline con-

sumption. Note that it is generally downward sloping except at low prices. In Figure 2

we estimate the demand function using the control function approach and find it to be

better behaved. In Table 2 we consider the estimated price elasticities for OLS and IV.

We see that the estimated price elasticity has the incorrect sign for the 75th quantile

for three out of the four specifications, while the IV estimates all have the correct sign.

However, the IV estimates are somewhat large except perhaps for the 3rd and 4th order

specification. In Table 3 we see that the estimated income elasticities for both OLS and

IV are quite similar and also similar to previous estimates, e.g. Hausman and Newey

(1995).

To set bounds on income effects we assume that gasoline is a normal good and so

choose the lower bound  to be 00. To set the upper bound we estimate a local linear

quantile regression of log of gasoline demand on log price and log income and evaluate

the income derivative of the gasoline quantile at median price and income. We find that
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this income effect is increasing in the quantile  . We take the upper bound on the income

effect to be 0197., which is 20 times the quantile derivative at  = 9. This income effect

is very large, corresponding to more than two cents of every additional dollar of income

being spent on gasoline. We are confident that no one would have such a large income

effect for gasoline. Estimating linear, varying coefficients demand we find a precisely

estimated mean income effect of 000726. From the squared residual regression the upper

95% confidence bound on the square root of the coefficient of 2 which estimates the

standard deviation of the income effect, is 00241 Here .0197 is well out in the distribution

of income effects, implying the bound is approximately correct; see the Appendix.

In Figure 3 we graph the bounds on the monthly average equivalent variation for a

price increase from the stated price on the lower axis to $140 per gallon. We use the

estimates from the 3rd order power series, with a control function, evaluated at median

income. Note that the lower bound and upper bound estimates are almost the same

and it is difficult to distinguish between them. This result follows from the small share

of gasoline expenditure in overall household expenditure. The results demonstrate that

although the welfare function is not point identified, in this type of situation the upper

and lower bound estimates are very similar.

In Figure 4 we graph the bounds on deadweight loss for a price increase from the

price on the lower axis to $1.40. Again we use the 3rd order power series control function

estimates evaluated at the median income. Again, the lower and upper bound estimates

are quite similar and difficult to distinguish except for very low gasoline prices. Since

deadweight loss is a second order calculation compared to the first order calculation of

equivalent variation, e.g. Hausman (1981), the closeness of the bounding estimates allows

for policy evaluation, even in the absence of point identification.

We now estimate confidence sets for our estimated bounds. We use the Beresteanu and

Molinari (2008) confidence interval for the identified set with .95 coverage probability. Let

the estimated set identification regions be given by Θ̂ = [̂, ̂] and the joint estimated

asymptotic variance matrix ̂ and ̂ be Σ̂. It will follow from Hausman and Newey (1995)

that the bounds are joint asymptotically normal. We form Σ̂ by treating the model as
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if it were parametric and applying the delta method, as works for series estimates, as in

Newey (1997). Here we use the delta method on the estimated equation (5.6) with the

nonparametric series estimator used in place of ̄. The results are given in Table 4 for

the equivalent variation estimates with the estimate standard errors in parenthesis and

the 95% confidence intervals given in brackets. Concentrating on the 3rd order estimates

which we plotted before we see that the estimated standard errors are quite small at

both the lower bound and the upper bound and the 95th percentile confidence interval

goes from $13.72 to $16.24 which is small enough for reliable policy analysis. In Table 5

we give the standard errors and bounds and the DWL estimates. Here we find that the

standard errors are reasonably small but the estimate confidence intervals are sufficiently

large to impact the policy analysis.

We also estimated the general bounds described in Section 6. We used a third order

power series in ln  and ln  to estimate the quantile of ln  and for () where  cor-

responded to a cubic in logs specification, analogous to the main empirical specification

with income effect bounds given above. We estimated the conditional quantile at many

values of  imposed the Slutzky condition on a grid, and drew two sets of  = 1000 coef-

ficients, with Slutzky imposed at the same values for  and  as for quantile estimation,

with more details given in the Appendix. We calculated the general surplus bounds for

a price change from 1.10-1.45 accounting for the distribution constraints at five quantile

values for  including the median, and replacing  (|) in the constraints by a smoothed
version of ̂−1(|). The results for three values of  are reported in Table 6. We find
that, for the smallest value of  the bounds are informative but substantially wider in

percentage terms than those we obtained with bounds on income effects. Thus, in this

data the surplus bounds based on income effects turn out to be more informative than

general bounds, as well as being easier to compute.

We have used our bounds approach to estimate household gasoline demand functions

allowing for unrestricted heterogeneity. While the welfare measures are not point iden-

tified, we find that the lower and upper bound estimates are close to each other and

provide precise information about exact surplus with general heterogeneity.
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9 Appendix

In this Appendix we give proofs of the results in the paper along with some supplementary

results.

9.1 Proofs of Theorems in the Paper

The following two technical conditions are referred to in the text and used in the proofs.

Assumption A1:  belongs to a complete, separable metric space and ( ) and

( ) are continuous in ( ).

Assumption A2:  = ( ) for scalar  and Assumption A1 is satisfied for  = ( )

for a complete, separable metric space that is the product of a complete separable metric

space for  with Euclidean space for , ( ) = (  ) is continuously differentiable

in  there is   0 with (  ) ≥ 1 k( )k ≤  everywhere,  is

continuously distributed conditional on  with conditional pdf (|) that is bounded
and continuous in .

Before proving Theorem 1 we give a result on the derivatives of the quantile with

respect to .

Lemma A1: If Assumptions 1 and A2 are satisfied then ( ) is continuously

distributed for each  ∈  and Pr(( ) ≤ ) and ( |) are continuously differentiable
in  and  and for the pdf () of ( ) at ,

 Pr(( ) ≤ )


= −()[( )


|( ) = ]

( |)


= [
( )


|( ) = ( |)]

Proof: Let (|) = Pr( ≤ |) = R 
−∞ (|) Then by the fundamental theorem

of calculus, (|) is differentiable in  and the derivative (|) is continuous in  by

hypothesis. Let −1(  ) denote the inverse function of (  ) as a function of .

Then

Pr(( ) ≤ ) = [1( ≤ −1(  ))] = [(
−1(  )|)]
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By the inverse function theorem −1(  ) is continuously differentiable in  and  with

−1(  ) = [(  −1(  ))]−1 −1(  ) = −(  
−1(  ))

(  −1(  ))


By Assumption A2 both −1(  ) and −1(  ) are bounded. Then by

the chain rule  (−1(  )|) is differentiable in  and  with bounded continuous

derivatives, so that [(
−1(  )|)] is differentiable in  and  with

[(
−1(  )|)]


= [(
−1(  )|){(  −1(  ))}−1] = [(|)] = ()

where () and (|) are the marginal and conditional pdf of ( ) respectively and
the second equality follows by the change of variables  = (  ). Similarly,

[(
−1(  )|)]


= −[(−1(  )|)(  
−1(  ))

(  −1(  ))
]

= −
Z
( )[

(  −1(  ))


]()

= −()[( )


|( ) = ]

where ( ) is a joint pdf with respect to the product of Lebesgue measure and a

dominating measure  for  and the last equality follows by multiplying and dividing

by (). This results gives the first conclusion. The second conclusion follows by the

inverse function theorem. Q.E.D.

Proof of Theorem 1: Since ( ) satisfies Assumption 1 we have ( ) +

( )( ) ≤ 0 for all . Therefore, following Dette et. al. (2011), we have

by Lemma A1 that for each  with 0    1 the quantile ( |) is continuously
differentiable in  and

( |)


+( |)( |)


= [
( )


+( |)( )


|( ) = ( |)]

= [
( )


+ ( )

( )


|( ) = ( |)] ≤ 0

It is well known that with two goods and a continuously differentiable demand function

that the Slutzky condition for the non numeraire good suffices for the function to be a

demand function for   0   0, giving the first conclusion.
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For the second conclusion note that ̃( ̃) satisfies Assumption 1 for 0  ̃  1 by

( |) being a continuously differentiable demand function and therefore the Slutzky
condition being satisfied. Also, ( |) ≤  if and only  ≤  (| ) by the definition
of ( |) and the properties of  (| ) as a function of  To show this suppress the
  arguments in  and  Note that by the definition () = inf{̃ :  (̃) ≥ }
we have ()   implies    (). Now suppose    () By  () continuous from

the right there is   0 such that  (̃)   for ̃ ∈ [  + ). Also, by  () monotonic

increasing,  (̃) ≥  implies ̃ ≥  + . Therefore ()  . It follows that ()  

if and only if    () This also implies its contrapositive, () ≤  if and only if

 ≤  () It then follows thatZ
1(̃( ̃) ≤ )̃(̃) =

Z 1

0
1((̃|) ≤ )̃ =

Z 1

0
1(̃ ≤  (| ))̃ =  (| )

Proof of Theorem 2: In this proof we proceed by calculating the true average

surplus and the quantile average surplus and finding that they are numerically different

for the specification given in the statement of Theorem 2. We first consider the true

average surplus for the demand specification

(  ) = 1 − + 2 1 ∼ (0 1)Pr(2 = 13) = Pr(3 = 23) = 12

for a price change with 0 = 1 1 = 2 and ̄ = 34 Note that for all 1 ∈ [0 1]
2 ∈ {13 23} and  ∈ [1 2] we have

1 − + 2̄ ≥ 0 (1 − + 2̄) ≤ ̄ − 1 + 2(1 − + 2̄)  0

so that over the range of  and  we consider demand is positive, within the budget

constraint, and satisfies the Slutzky condition.

Next, for a linear demand function (which has constant income effect 3) and two

goods we have

() = ∆

Z 1

0
(0 + ∆ ̄ ) exp(−3∆) =

Z 1

0
(+) exp(−)

=


− [exp(−)]
1
0 +



− [ exp(−)]
1
0 +



−2
[exp(−)]10
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=



+



2
− −(




+




+



2
)

 = ∆(1 + 2
0 + 3̄)  = (∆)22  = 3∆

Note that  and  are linear in 1 and 2 Assuming that (1 2) is independent of 3

gives

Z
()(1 2 3) =

̄


+

̄

2
− −(

̄


+

̄


+

̄

2
)

̄ = ∆(̄1 + ̄2
0 + 3̄) ̄ = (∆)2̄2

For 0 = 1 1 = 2 ̄ = 34 ̄1 = 12 ̄2 = −1 and for 3 equal to 13 or 23 with
probability 5 we find that

̄ = 0070673

Next we derive the quantile demand and then calculate average surplus. For clarity

we do this when 1 ∼ (0 1) 2 is a constant  and when 3 =  with probability 

and 3 = ̄ with probability (1− ) where ̄   and 3 is independent of 1 Define

0 = +  1 = + ̄ 2 = + 1 +  3 = + 1 + ̄

Assuming that 1 +   ̄ we have that

 (|) = Pr(( ) ≤ ) = Pr(1 + + 3 ≤ )

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0   0
( − 0) 0 ≤   1

( − 1) +  (1|) 1 ≤   2
(1− )( − 2) +  (2|) 2 ≤   3

1  ≥ 3



Note that this CDF is a mixture, over two values of 3 of two CDFs for a (0 1) It has

slope  or 1 −  over the ranges where only one CDF is increasing and slope 1 where

both are increasing. Inverting this function as a function of  gives the corresponding

quantile function

( | ) =
⎧⎪⎨⎪⎩

0 +


 0   ≤ (1 − 0)

1 +  − (1 − 0) (1 − 0)    2 − 1 + (1 − 0)

2 +
−[2−1+(1−0)]

1−  2 − 1 + (1 − 0) ≤   1
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In terms of the original parameters the quantile function is given by

( | ) =
⎧⎪⎨⎪⎩

+  + 

 0   ≤ (̄− )

+ ̄ +  − (̄− ) (̄− )    1− (1− )(̄− )

1 + +  +
−[1−(1−)(̄−)]

1−  1− (1− )(̄− ) ≤   1

Plugging in  = −1,  = 5  = 13 and ̄ = 23 we obtain the quantile demand implied

by the true model, equaling

( | ) =
⎧⎪⎨⎪⎩

−+ 3 + 2 0   ≤ 6

−+ 2 +  6    1− 6

−+ 23 + 2 − 1 1− 6 ≤   1



We can rewrite this as a function of  for given  = ̃ as

̃(  ̃) =

(
−+ 1(  6̃) (2 + ̃) + 1( ≥ 6̃)(3 + 2̃) ̃ ≤ 12

−+ 1(  6(1− ̃)) (2 + ̃) + 1( ≥ 6(1− ̃))(23 + 2̃ − 1) ̃  12


where we have used the fact that we only need to evaluate this demand where   3. This

is the quantile demand function, which is observationally equivalent to the true demand

by construction. It is nonlinear in , with an income effect that varies as  crosses over

a threshold.

Note that  ≤ 34 is in the income range relevant for our calculation. When ̃ ∈
[18 78] the demand function will be linear income over the evaluation range for the

consumer surplus calculation, with income effect equal to 12 For smaller ̃ or values of ̃

closer to 1 the income effect can change with  The mix of nonlinearities that is evident in

the comparison of this complicated demand function with the simple true linear, varying

coefficients specification results in the quantile average surplus being different from the

true average surplus.

Because the demand function is nonlinear in  for ̃ ∈ [18 78] we compute surplus
numerically for each value of ̃ and then average. We do this by drawing 50 000 values

of ̃ from a (0 1), computing the equivalent variation from a price change with 0 =

1 1 = 2 ̄ = 34  = 12  = 13 ̄ = 23 and averaging across the draws to obtain

an average quantile surplus of 0070774 This value is different than the true average

surplus computed above. Therefore, average surplus for the observationally equivalent
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quantile demand is different than for true demand and hence average surplus is not

identified. Q.E.D.

Proof of Theorem 3: By (  ) differentiable in  with derivative that is contin-

uous in  and  we know that the solution ( ) to the differential equation (3.3) exists

and is unique. By condition i) we have ( ) ≤ 0 so that ( ) ≥ 0 for all  ∈ [0 1]
by (1 ) = 0 Let

( ) = 
Z 1


[(() ̄ )

()


]−

be the solution to

( )


= ( ) +( ) (1 ) = 0 (9.10)

( ) = −(() ̄ ) ()




Then expanding the right-hand side of equation (3.3) around  = 0 it follows that

( )


= −

"
(() ̄ )− ( ̄ − ̇( ) )


( )

#
() (9.11)

≥ −(() ̄ )()+( ) =
( )




where ̇( ) is a mean value in [0 ( )]. Since (1 ) = 0 = (1 ) it follows by

this inequality that ( ) ≥ ( ) It follows similarly that ( ) ≤ ( ) so that

evaluating at  = 0 we have

(0 ) ≤ (0 ) = () ≤ (0 ) (9.12)

Evaluating at  = 0 we have (0 ) =
R 1
0 (() ̄ )

 [()]− Also note that

() is bounded by continuity of () on [0 1] and that by all the elements of

() bounded away from zero and (() ̄ )() ≤ ̄ the demand vector (() ̄ ) is

bounded uniformly in  and . Therefore by the Fubini theorem,

[(0 )] =

Z 1

0
̄(() ̄) [()]− = ̄
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Taking expectations of equation (9.12) then gives

̄ = [(0 )] ≤ ̄ ≤ [(0 )] = ̄ 

Proof of Corollary 4: It follows by Lemma A1 that 1( |) is continuously differ-
entiable in  and

1( |)


= [
1( )


|1( ) = 1( |)],1( |)


= [

1( )


|1( ) = 1( |)]

As shown by Dette, Hoderlein, and Neumeyer (2011), it follows that the Slutzky condition

for the first price is satisfied by the conditional quantile, i.e.

1( |)
1

+1( |)1( |)


≤ 0

Therefore, at each 0    1 1( |) is a demand function as a function of 1 and .

Furthermore, by  ≤ ∆11( ) ≤  we have

 ≤ [∆1
1( )


|1( ) = 1( |)] = ∆1

1( |)


≤ 

Consider the demand process ̃1( ̃) = 1(̃|) for ̃ ∼ (0 1) Note that
R 1
0 

 is

average surplus for this demand process. Also,

Z
̃1( ̃)̃(̃) =

Z 1

0
1(̃|)̃ = ̄1()

Therefore, the conclusion follows by the conclusion of Theorem 3. 

9.2 The Expenditure Function and Exact Consumer Surplus

for Discrete and Continuous Choice

Discrete and continuous choice models are important in applications. For instance, gaso-

line demand could be modeled as gasoline purchases that are made jointly with the

purchase of automobiles. In those models the heterogeneity can influence the discrete

choices as well as the demand for a particular commodity, e.g. see Dubin and McFadden

(1984) and Hausman (1985). Multiple sources of heterogeneity are an integral part of
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these models, with separate disturbances for discrete and continuous choices. The gen-

eral heterogeneity we consider allows for such multi dimensional heterogeneity. Here we

consider discrete and continuous choice with general heterogeneity, focusing on the effect

of price changes in the continuous demand. Bhattacharya (2014) has recently considered

surplus for changes in the prices of the discrete alternatives with general heterogeneity.

We first consider the individual choice problem and the associated expenditure func-

tion. We adopt the framework of Dubin and McFadden (1984) and Hausman (1985),

extending previous results to the expenditure function. Suppose that the agent is choos-

ing among  discrete choices in addition to choosing . The consumer choice problem

is

max


(  ) s.t. 
  + +  ≤  (9.13)

where  is the usage price of choice  relative to the price of the numeraire good . Here

we assume that for each  and  the function ( ) is strictly quasi-concave (preferences

are strictly convex) and satisfies local nonsatiation. Let

(  ) = argmax


(  ) s.t. 
  +  ≤ 

be the demand function associated with the  utility function and let

(  ) = ((  )  −  (  ) )

be the associated indirect utility function. The utility maximizing choice of the discrete

good will be argmax ( − ) and the indirect utility function will be  (   ) =
max (  −  ), where  = (1  )

 . When there is a unique discrete choice

 (depending on ,  , and ) that maximizes utility, i.e. where (  −  ) 

(  −  ) for all  6= , the demand (   ) will be

(   ) = (  −  )

When there are multiple values of the discrete choice that maximize utility the demand

will generally be a correspondence, containing one point for each value of  that maximizes

utility.
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In what follows we will assume that (1( −1 )  ( −  )) is continuously
distributed and that the probability of ties is zero. Nevertheless the case with ties is im-

portant for us. Surplus is calculated by integrating the demand function as price changes

while income is compensated to keep utility constant. As compensated income changes

ties may occur and the demand for  may jump. With gasoline demand, compensated

income changes could result in a choice of car with different gas mileage, leading to a

jump. Such jumps must be accounted for in the bounds analysis.

Turning to welfare analysis, let (   ) denote the expenditure function in this

discrete/continuous choice setting, defined as

(   ) = min{ s.t. max


{(  ) s.t. 
  + +  ≤ } ≥ }

As usual it is the minimum value of income that allows individual  to attain utility level

. There is a simple, intuitive relationship between this expenditure function, the ones

associated with the continuous choice of  for each  and the indirect utility function

 (   ) = max (  −  ). Let (  ) = min{  +  : (  ) ≥ } be
the expenditure function for the utility function (  ), ( = 1  )

0.

Lemma A2: If for each  and  the utility (  ) is strictly quasi-concave and

satisfies local nonsatiation then (  ) = min{(  )+}  (  (   ) ) =
 and (   (   ) ) = 

Proof: For notational convenience drop the  argument. Define ̄(  ) = min{( )+
} By the definition of ̄(  ) it follows that ̄(  ) = ∗( ) + ∗ for some 

∗

that need not be unique. By the definition of ∗( ) and standard results there is 
∗

such that ∗(
∗ ∗) ≥  and  ∗ + ∗ = ∗( ), so 

 ∗ + ∗ + ∗ = ̄(  ). Since

∗(
∗ ∗) ≥  and  ∗ + ∗ + ∗ ≤ ̄(  ), it follows that

max

{(  ) s.t. 

  + +  ≤ ̄(  )} ≥ (
∗ ∗) ≥ 

It follows that (  ) ≤ ̄(  ). Next, consider any ̄  ̄(  ). Then by the
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definition of ̄(  ) we have ̄−   ( ) for all  ∈ {1     }. Since ( ) is the
expenditure function it follows that max{( ) s.t. 

  +  ≤ ̄ − }   for every

, and so max{( ) s.t. 
 +  ≤ ̄− }   It follows that ̄  (  ) Since

this is true for every ̄  ̄(  ) it follows that ̄(  ) = (  )

Next, note that by the definition of the expenditure function (  ) as the minimum

income level that will allow an individual to reach utility  we have  (  (  )) ≥ 

Also,  (  ) is monotonically increasing in  by ( −) monotonically increasing in
 for each  and ( ( )) =  by standard results for indirect utility and expenditure

functions. By the definition of  (  ) and monotonicity of ( − ) in  there is 

with

 (  (  )) = ( ( )− ) ≤ ( ( )) = 

where the inequality holds by the first conclusion that implies ( ) ≤ ( ) + .

Therefore we have  ( (  ) ) = . Similarly, we have (   (  )) ≤  by the

definitions and there is  such that by ( ) increasing in ,

(   (  )) = (  (  )) +  ≥ ( (  − )) +  = 

so that (   (  )) =  Q.E.D.

Turning now to exact surplus for discrete/continuous choice, the equivalent variation

for a price change from 0 to 1 with income ̄ for individual  is () = ̄−(0  1 )
where 1 is the utility at 1  and ̄ Consider a price path () as in the body of the

paper. Then ( ) = ̄ − (()  1 ) is the equivalent variation for a price change

from () to 1 for income ̄ where 1 is the utility at 1. The next result gives conditions

for ( ) to satisfy the same differential equation as in the continuous case.

Lemma A3: If for each  and  the utility (  ) is strictly quasi-concave and

satisfies local nonsatiation then at any () and  such that there is  with (() ̄ −
( )−  )  (() ̄ − ( )−  ) for all  6=  it follows that ( ) is differ-

entiable and
( )


= −(()  ̄ − ( ) )()
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Proof: For notational convenience suppress the  argument and let  = (). By

definition we have ( ) = ̄ − (()  1 ) Consider ∗ such that

 (  (  1)) = ∗( (  
1)− ∗)

For any  6= ∗ it follows by duality that ( ( 1)) = 1 Therefore, we have

( ( 
1)) = 1 =  (  (  1)) = ∗( (  

1)−∗)  ( (  
1)−)

By ( ) monotonically increasing in , it follows that ( 
1)  (  1)−. Since

this is true for every  6= ∗ we have

(  1) = ∗( 
1) + ∗  ( 

1) + , for all  6= .

Also note that by standard duality results, for the Hicksian demand ∗( )

( 
1)


= ∗( ) = ∗( ∗( )) = ∗( (  

1)− ∗)

= ∗( ̄ − ()− ∗) = (  ̄ − ())

where the last equality follows by the (  ) = ∗(  − ∗) when ∗(  − ∗) 

(  − ) for all  6= ∗. Since each ( 
1) is continuous in , the previous in-

equality continues to hold in a neighborhood of . Therefore, by ∗( 
1) differentiable,

Shephard’s lemma, and the chain rule, on that neighborhood () =  − (()  1) is

differentiable and

()


= −(()  

1)


= −(() 

1)




()


= −(()  ̄ − ())

()






The discontinuity of individual demand does affect the bounds for average consumer

surplus. The previous bounds depend on income effects. With jumps we construct bounds

that are based on limits on the size of the jump and on the proportion of individuals whose

demand would jump as income is compensated along with the price change. For that

purpose we make use of a demand decomposition into continuous and jump components.
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Assumption A3: There are functions ̇(   ), ̌(   ) () and constants

,  such that ̄ = [()] exists and for  ∈ [0 1] and 0 ≤  ≤ ( ),

(()  ̄ −  ) = ̇(()  ̄ −  ) + ̌(()  ̄ −  )¯̄̄
̌(()  ̄ −  )()

¯̄̄
≤ ()

 ≤ [̇(()  ̄ )− ̇(()  ̄ −  )]

() ≤ 

Here we assume that the demand function can be decomposed into a jump compo-

nent ̌(   ) and a Lipschitz continuous component ̇(   ), with lower and upper

bounds  and  respectively, on how much ̇(()  ̄ −  )() may vary with

  0. The term () is an individual specific bound on the jump. It will be zero

for individuals whose demand function does not jump as income is compensated up to

the surplus amount () = (0 ). For example, for gasoline demand it will be zero for

individuals who would not change car types over the range of income being compensated.

To describe bounds on average surplus that allow for jumps, let

̄() = 
Z 1


[̄(()  ̄)()− ]−

be the solution to the differential equation

̄()


= −̄(()  ̄) ()


+ +̄() ̄(1) = 0

Letting ̄ = ̄(0) we have

̄ =

Z 1

0
[̄(()  ̄)()]− +





³
− − 1

´


Theorem A4: If Assumptions 1, A1, and A3 are satisfied, the elements of () are

bounded away from zero, and with probability one for all but a finite number of  values

there is  with (() ̄ − ( ) −  )  (() ̄ − ( ) −  ) for all  6=  it

follows that

̄2̄ ≤ ̄ ≤ ̄−2̄
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Also, if (()   −  )() ≤ (()   )() for all  ∈ [0 1] and  ∈
[0 ( )] then ̄ ≤ ̄0 =

R 1
0 [̄(()  )

()]

Proof: For notational convenience suppress the  argument. Let

() = 
Z 1


[(()  ̄)()− ]−

be the solution to the differential equation

()


= −(()  ̄)()+ +() (1) = 0

By Assumption A3

[(()  ̄)− (()  ̄ − )]
()



= [̇(()  ̄)− ̇(()  ̄ − ) + ̌(()  ̄)− ̌(()  ̄ − )]
()


≤ + 2

Therefore, by Lemma A3 it follows that at any point where (() ̄ − () − ) 

(() ̄ − ()− ) for all  6=  () is differentiable and

()


= −(()  ̄ − ())

()


≤ −(()  ̄) ()


+() + 2 =

2()




Note that () is continuous by continuity of the expenditure function and (). Consider

the event E where there are no ties in the values of the indirect utility functions (i.e. where
there is ∗ depending on  such that ∗(() ̄− ( )− ∗)  (() ̄− ( )− )

for all  6= ∗), at all  except a finite number. When E occurs we have

() = −
Z 1



()




Similarly we have 2() = −
R 1


h
2()

i
 Then by () ≤ 2() it

follows that () ≥ 2() Evaluating at  = 0 we get  ≥ 2(0). It follows similarly

that  ≤ −2(0) Thus, adding back the  notation, when the event E occurs we have

2(0 ) ≤ () ≤ −2(0 )

Also, it follows similarly to the proof of Theorem 3 that

[(0 )] = ̄
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Since Pr(E) = 1 taking expectations through the previous inequality gives the first con-
clusion.

For the second conclusion note that, (()  −( ) )() ≤ (()   )()

so that
( )


= −(()  ̄ − () )

()


≥ −(()  ̄ ) ()




The second conclusion then follows similarly to the first one. 

These bounds adjust for the possible presence of discontinuity in individual demands

by adding 2[ ()] to −̄( ) in the equation for the upper bound and subtracting the
same term in the equation for the lower bound. This adjustment will be small when the

largest possible jump is small or when the proportion of individuals with a discontinuity

is small. One can drop this term for the bound for normal goods.

9.3 Generalized Conditions for Bounds on Exact Consumer

Surplus

The purpose of this section is to show that known bounds on income effects are not

required for validity of the bounds in Theorem 3. To describe this result, let

() = max
∈[01]∈[0()]

(()  −  )




()




This bound is an individual specific upper bound for income effects. Such bounds always

exist for continuous demand functions. This can be thought of as an individual specific

version of the income effect bounds. Also let

() =

Z 1

0
[(() ̄ )()]−()

̄0 =

Z
1(() ≥ )()() ̄

00
 =

Z
1(()  )()()

() =

Z 1

0
[(() ̄ )()]−

̄0 =

Z
1(() ≥ )()() ̄

00
 =

Z
1(()  )()()

We have the following result:
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Theorem A5: Suppose that Assumptions 1 and A1 are satisfied, i) ( )() ≥
0; and ii) all prices in () are bounded away from zero. If ̄0 − ̄0 ≤ ̄00 − ̄00 then

̄ ≥ ̄ ̄ ≥ ̄ − ̄(1 ̄)∆

Also, if ̄0 ≤  then

̄ ≥ ̄ −  ̄ ≥ ̄ − − ̄(1 ̄)∆

Proof: Let note that () = (0 ) where

( ) = ()
Z 1


[(() ̄ )()]−()

is the solution to

( )


= ( ) +()( ) (1 ) = 0

( ) = −(() ̄ ) ()




It follows exactly in the proof of Theorem 3 that () ≥ () so that

̄ = [()] ≤ ̄

Also, we have

̄ = ̄0 + ̄00 ̄ = ̄0 + ̄00

Therefore, ̄0 − ̄0 ≤ ̄00 − ̄00 if and only if ̄ ≤ ̄, which implies ̄ ≤ ̄.

Now suppose ̄0 ≤ . Note that ̄00 ≤ ̄00 and ̄0 ≥ 0 Then

̄ −  = ̄00 + ̄0 −  ≤ ̄00 ≤ ̄00 ≤ ̄ ≤ ̄ 

The first conclusion of this result gives a more general condition for validity of the

bounds. Although the result is simple the decomposition helps clarify that the surplus

bounds hold over a much wider class of conditions than just bounded income effects.

When  is well into the tail of the distribution of () it should be the case that

̄0 − ̄0 is small while ̄
00
 − ̄00 is large, leading to the bounds being satisfied.
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The second conclusion gives a more general bound that may sometimes be applica-

ble. For example, suppose that only the price of the first good is changing and let

̄ = sup0≤≤1[1(() ̄ )|() ≥ ]. Then by the usual Chebyshev inequality type

argument,

̄0 =

Z
1(() ≥ ){

Z 1

0
[(() ̄ )()]−}()

= ∆1

Z 1

0
Pr(() ≥ )[1(() ̄ )|() ≥ ]−

≤ ̄∆1

µZ 1

0
−

¶
Pr(() ≥ ) ≤ ̄∆1[()

]




where the last inequality follows by − ≤ 1 and hence R 10 − ≤ 1, and by the Holder
inequality.

9.4 Bounding Surplus Bound Error in Gasoline Application

This reasoning just above applies to the justification of the lower bound for surplus in

the gasoline demand example. In a linear varying coefficients model we estimate the

bounding term in the above equation for  = 2 to be

̄∆1[()
2]

2
=

̄∆1[(000726)
2 + (00241)2]

(0197)2
≤ ̄∆1(015)

It is reasonable to suppose that average demand for large income effects is not very large

relative to overall average demand. If anything, given the essential nature of transporta-

tion we might expect that average demand is smaller for those with high income effects.

This makes ̄∆1 ≤ 2̄̄ a very reasonable assumption. Applying the inequality at

the end of the last Section we thus find that if the linear random coefficients model were

true, ̄0 ≤ (03)̄ Then by the second conclusion of Theorem A5 we have ̄ ≥ (97)̄̄,
so that the lower bound given in the empirical application is very close to correct. We

note that this calculation of (97)̄̄ as a lower bound is very conservative, giving us high

confidence in the lower abound used in the empirical application.
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9.5 Details for General Bounds Estimation

We used a third order power series in ln  and ln  to estimate the quantile of ln We also

used the same power series for () which corresponds to the empirical specification

with income effect bounds. We estimated the conditional quantile at 99 evenly spaced

values,  ∈ {01 02  99} We imposed the Slutzky condition appropriate for the
natural log of demand on the quantiles at 81 values of  corresponding to nine price

and income values drawn randomly from the range of the data. We drew two sets

of  = 1000 coefficients, ensuring that each coefficient vector gave a demand at each

 ∈ {01 02  99} satisfying the Slutzky condition on the same  and  grid. We

evaluated the constraints at five quantile values for  including the median. We calculated

the bounds as described in Section 6, using ̂ (|) = P99
=1Φ([−̂(01|)]01) in place

of  (|) in the constraints, where Φ() is the (0 1) CDF that is used to smooth out
̂−1(|).
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Notes: Demand estimated from 3rd order series regression evaluated at median income.

Figure 1. Estimated Demand: OLS

Figure 2. Estimated Demand: Control Function

Notes: Demand estimated from 3rd order power series control function regression evaluated at 
median income.



Figure 3. Equivalent Variation Bounds

Notes: Graph shows change in equivalent variation for a price increase from p to $1.40, evaluated at upper 
and lower bounds of income derivative and at median income and estimated from 3rd order power series 
control function estimated demand.

Figure 4. Deadweight Loss Bounds

Notes: Graph shows change in deadweight loss for a price increase from p to $1.40, evaluated at 
upper and lower bounds of income derivative and at median income and estimated from 3rd order 
power series control function estimated demand.



Variable Mean Median Std Dev Max
price ($) 1.33 1.32 0.08 1.46
quantity (gallons) 4.90 2.65 7.53 195.52
income (1,000 $) 62.19 47.5 47.47 170.72
number of drivers 2.04 2 0.78 7
public transit availability 0.24 0 0.42 1
Observations

Quantiles 0.25 0.5 0.75 0.25 0.5 0.75
Order 1 -0.698 -0.656 -0.631 -1.111 -1.060 -1.043

(0.254) (0.244) (0.243) (0.282) (0.280) (0.291)

Order 2 -1.597 -0.798 0.069 -1.675 -1.350 -1.111
(0.469) (0.283) (0.509) (0.476) (0.320) (0.657)

Order 3 -1.214 -0.798 0.271 -1.037 -1.102 -0.872
(0.753) (0.570) (0.721) (0.860) (0.670) (0.952)

Order 4 -0.713 -0.583 0.140 -0.389 -0.588 -0.853
(0.877) (0.623) (0.801) (1.158) (0.707) (1.032)

Quantiles 0.25 0.5 0.75 0.25 0.5 0.75
Order 1 0.168 0.157 0.151 0.167 0.159 0.157

(0.022) (0.019) (0.017) (0.022) (0.019) (0.018)

Order 2 0.221 0.244 0.261 0.210 0.233 0.262
(0.032) (0.025) (0.031) (0.032) (0.025) (0.034)

Order 3 0.217 0.221 0.236 0.220 0.221 0.256
(0.057) (0.040) (0.039) (0.059) (0.041) (0.043)

Order 4 0.266 0.305 0.275 0.267 0.294 0.277
(0.067) (0.054) (0.047) (0.074) (0.058) (0.052)

OLS Estimates

Control Function Estimates

Min
1.14
0.01
2.08

1
0

Table 2. Estimated Price Elasticities

Table 3. Estimated Income Elasticities

Control Function Estimates

8,908

Table 1. Summary Statistics

OLS Estimates



Lower Bound Upper Bound Lower Bound Upper Bound
Order 1 16.777 16.794 32.281 32.343

0.349 0.349 0.502 0.501

Order 2 28.829 28.884
0.443 0.443 0.753 0.751

Order 3 14.972 14.987 28.845 28.900
0.647 0.646 0.884 0.882

Order 4 14.625 14.639 28.546 28.601
0.660 0.659 0.924 0.922

Lower Bound Upper Bound Lower Bound Upper Bound
Order 1 0.646 0.663 2.467 2.529

0.175 0.175 0.669 0.668

Order 2 2.821 2.876
0.233 0.233 0.728 0.727

Order 3 0.485 0.500 2.434 2.489
0.393 0.393 1.04 1.039

Order 4 0.321 0.335 1.827 1.882
0.498 0.497 1.137 1.135

Table 5. Bounds on Deadweight Loss Estimates

[-0.272, 1.257] [0.447, 4.475]

[-0.641, 1.298] [-0.343, 4.052]

From $1.20 to 1.30 From $1.20 to 1.40

[0.319, 0.990] [1.219, 3.776]

[0.277, 1.178] [1.452, 4.245]

0.735

Table 4. Bounds on Equivalent Variation Estimates

[13.715, 16.244] [27.163, 30.583]

[13.340, 15.925] [26.788, 30.360]

From $1.20 to 1.30 From $1.20 to 1.40

[16.104, 17.468] [31.355, 33.270]

[14.275, 16.005]

15.147

[27.405, 30.309]



Table 6: General Average Surplus Bounds
Data 1 Data 2

 Max CS Min CS Dif CS Max CS Min CS Dif CS

.001 56.283 45.771 10512 56.451 45.774 10.677

.0001 53.073 48.927 4.146 53.070 48.924 4.146

.00001 51.603 50.088 1.515 51.606 50.130 1.476

[40]
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