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UNOBSERVED HETEROGENEITY IN INCOME DYNAMICS:
AN EMPIRICAL BAYES PERSPECTIVE

JIAYING GU AND ROGER KOENKER

Abstract. Empirical Bayes methods for Gaussian compound decision problems
involving longitudinal data are considered. The new convex optimization formu-
lation of the nonparametric (Kiefer-Wolfowitz) maximum likelihood estimator for
mixture models is employed to construct nonparametric Bayes rules for compound
decisions. The methods are first illustrated with some simulation examples and
then with an application to models of income dynamics. Using PSID data we esti-
mate a simple dynamic model of earnings that incorporates bivariate heterogeneity
in intercept and variance of the innovation process. Profile likelihood is employed
to estimate an AR(1) parameter controlling the persistence of the innovations. We
find that persistence is relatively modest, ρ̂ ≈ 0.48, when we permit heterogeneity
in variances. Evidence of negative dependence between individual intercepts and
variances is revealed by the nonparametric estimation of the mixing distribution,
and has important consequences for forecasting future income trajectories.

1. Introduction

Unobserved heterogeneity has become a pervasive concern throughout applied econo-
metrics. Longitudinal data presents special opportunities and challenges for models
of unobserved heterogeneity; in virtually all econometric applications involving panel
data there will be some form of latent, i.e. unobserved, individual specific effects.
Classical econometric methods adopt either a differencing strategy designed to purge
these effects, or some form of shrinkage method to mitigate their undesirable “in-
cidental parameter” effect. In this paper we will describe some new nonparametric
empirical Bayes methods for estimation and prediction in panel data models with
unobserved heterogeneity.

As stressed in recent work of Efron (2010, 2011), empirical Bayes methods pioneered
by Robbins (1951, 1956) provide a statistical framework for many contemporary “big
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2 Heterogeneous Income Dynamics

data” applications. Although they predate the development of hierarchical Bayes
methods exemplified in the work of Lindley and Smith (1972) and Chamberlain and
Leamer (1976), they share many common features. The transition from parametric
to nonparametric empirical Bayes methods brings exciting new opportunities that
greatly expand the flexibility of existing approaches to panel data modeling and its
treatment of unobserved heterogeneity.

We will begin with a brief overview of empirical Bayes methods beginning with
Robbins (1951). In Section 3 we extend the predominant Gaussian location mixture
framework to accommodate nonparametric location and scale mixtures with covari-
ates in the classical Gaussian panel data setting, including some simulation evidence
to illustrate the performance of the new methods. Section 4 describes an extended
application to models of heterogeneous income dynamics that illustrates both estima-
tion and prediction aspects of the new methods including, notably, the introduction
of a bivariate joint distribution of unobserved heterogeneity and covariate effects via
profile likelihood methods.

In sharp contrast to the classical Gaussian hierarchical Bayes framework for panel
data, or its frequentist analogues, the nonparametric mixture formulation of our pro-
posed methods offers a much more flexible view of unobserved heterogeneity while
preserving most of the virtues of the likelihood formalism.

2. Empirical Bayes: A Brief Overview

Given a simple parametric model, there is a natural temptation to complicate it
by admitting that those immutable natural constants that constitute the model’s
original parameters might instead be random. One of the earliest examples of this
type is the classical Gaussian random effects, compound decision problem introduced
by Robbins (1951). We observe independent Y1, · · · , Yn each Gaussian with known,
common variance, θ but individual specific means, Yi ∼ N(αi, θ). Our objective is to
estimate all the αi’s subject to squared error loss,

L2(α̂,α) = ‖α̂− α‖2
2 =

n∑
i=1

(α̂i − αi)
2.

The naive (unbiased) solution would simply set α̂i = Yi, but the usual presumption
in such circumstances would be that the observations have some common genesis, and
consequently we may be able to “borrow strength” from the full sample to improve
upon these myopic predictions based on a single observation.

Suppose we believed that the αi were drawn iid-ly from the distribution, F, so
the Yi’s would have convolution density g(y) =

∫
φ((y − α)/

√
θ)/
√
θdF(α): What

would the Reverend Bayes advise? Elementary exponential family theory yields the
following proposition. Concise proofs of our propositions appear in the Appendix.
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Proposition 1. For Yi ∼ N(αi, θ) and {αi} iid F, the Bayes rule under L2 loss is:

(1) δ(y) = y+ θg′(y)/g(y)

and δ(y) is non-decreasing in y.

Efron (2011) refers to this expression for δ(y) as Tweedie’s formula, citing Rob-
bins’s (1956) attribution of it to M.C.K. Tweedie. Tukey (1974) provides an earlier
attribution to Arthur Eddington appearing in Dyson (1926). A major objective of the
present paper is to explore the consequences of extending this result to longitudinal
settings in which we can estimate heterogeneity of scale as well as location.

Of course one may well ask: Where did this F come from? And this question
leads us inevitably toward estimation of the density, g, and hence to the empirical
Bayes paradigm. When F comes from a finite dimensional parametric family there
are several prominent special cases, including the family of Stein rule methods. See
Gu and Koenker (2013) for further details on this linkage for parametric settings.

2.1. Non-parametric Estimation of the Gaussian Mixture Model. When we
lack confidence in a particular parametric specification of the mixing distribution,
F, we are faced with a more serious quandary. It is apparent that we need a non-
parametric estimate of F, and in our Gaussian location mixture setting this is tanta-
mount to solving a deconvolution problem: Find F such that the density,

g(y) =

∫
ϕ(y− α)dF(α)

matches that of the observed Yi’s. Deconvolution is notoriously difficult as shown
by Carroll and Hall (1988) and Fan (1991), but before we despair a second look at
Tweedie’s formula (1) reveals that we may not really need an estimate of F. We need
only estimate the mixture density g, a task that can be accomplished at standard
univariate non-parametric convergence rates for smooth densities, and smoothness is
ensured by the Gaussian convolution whatever F might be.

Kernel density estimation of g as proposed by Brown and Greenshtein (2009) seems
to be the natural approach, but in addition to the familiar, but still unsettling, re-
quirement of choosing a bandwidth, kernel estimators of g have the drawback that
they do not enforce the monotonicity of the Bayes rule. The latter failing can be ad-
dressed by a further monotonization step, or by a penalization approach as suggested
in Koenker and Mizera (2014). However, a more direct approach is possible via the
Kiefer-Wolfowitz non-parametric maximum likelihood estimator (KWMLE) for the
mixture model. This approach was first proposed by Jiang and Zhang (2009) for the
Gaussian compound decision problem, suggesting the EM algorithm as a computa-
tional strategy.

Although Kiefer and Wolfowitz (1956) established consistency of their MLE for the
mixing distribution F, it was not until the appearance of Laird (1978) that a viable
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computational strategy for the estimator was available. The EM algorithm has re-
mained the standard approach for its computation ever since. Heckman and Singer
(1984) constitutes an influential econometric application. However, EM has notori-
ously slow convergence in such applications, and this fact has seriously inhibited the
use of the KWMLE in applications. It introduces what is, in effect, a new smoothing
parameter into the computational strategy controlled by the stopping criterion of the
algorithm. Koenker and Mizera (2014) have recently proposed an alternative com-
putational method for the KWMLE that circumvents these problems. For a broad
class of mixture problems, the Kiefer-Wolfowitz estimator can be formulated as a con-
vex optimization problem and solved efficiently by modern interior point methods.
Quicker, more accurate computation of the KWMLE opens the way to a much wider
range of applications of the method for models of heterogeneity.

In the next section we will describe how these methods can be adapted to longi-
tudinal data, first for location and scale mixtures separately, then for location-scale
mixtures and finally for location scale mixtures with covariate effects. In contrast to
compound decision problems with cross sectional data, richer longitudinal data offers
new opportunities permitting more complex structures of unobserved heterogeneity.

3. Estimating Gaussian Mixture Models with Longitudinal Data

Extending the Gaussian compound decision problem with one location parameter
per observation to unbalanced longitudinal observations in which we have mi obser-
vations on each individual is quite straightforward. We will describe this relatively
simple setting first, and then gradually introduce heterogeneous variance effects, first
with independent prior assumptions and then with a general form of bivariate hetero-
geneity. Estimation of covariate effects via profile likelihood is then introduced. The
section concludes with some simulation evidence intended to illustrate our estimation
and prediction methods, leading to an extended application of the methods to models
of earning dynamics.

Suppose for convenience that we have unit variance for the noise so uit ∼ N(0, 1),
and we have,

yit = αi + uit, t = 1, · · · ,mi, i = 1, · · · ,n.

Sufficiency can be used to reduce the problem to the sample: ȳi = m−1
i

∑mi

t=1 yit ∼
N(αi,m

−1
i ). When the αi’s are iid from F, we can write the log likelihood of the

observed yit’s as,

`(F|y) = K(y) +

n∑
i=1

log(
√
mi

∫
φ(
√
mi(ȳi − α))dF(α))

Optimizing over an infinite dimensional F necessitates some form of discrete approx-
imation. As in earlier EM implementations, such as that of Jiang and Zhang (2009),
we take F to have a piecewise constant (Lebesgue) density on a relatively fine grid
containing the empirical support of the observed ȳi’s. Maximizing the likelihood
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`(F|y) generally yields a small number of discrete mass points whose location is deter-
mined obviously only up to the scale of the grid. With a few hundred grid intervals
we can obtain a quite accurate estimate. Further refinement is always possible as
discussed in Koenker and Mizera (2014), but already with a uniform grid with 300
points we have very precise positioning of the mass points of the mixing distribution,
more precise than the statistical accuracy of the mass locations would justify. Letting
fj : j = 1, · · · ,p denote the function values of dF on this grid, we can express the
constrained maximum likelihood problem as,

(2) max
f

{

n∑
i=1

log(gi) | g = Af,

p∑
j=1

fj∆j = 1, f > 0},

where A = (Aij =
√
mi

∫
φ(
√
mi(ȳi−αj))) and ∆j is the jth grid spacing. As posed,

the problem is evidently convex, and therefore has a unique solution. It is well-
known, going back to Kiefer and Wolfowitz (1956) and Laird (1978), that variational
solutions to the original problem are discrete with fewer than n atoms. It is somewhat
difficult to appreciate this result by viewing EM solutions, since the number of EM
iterations required to obtain an accurate solution would test the patience of even
the most diligent researchers. But interior point methods make this discreteness
easily apparent. Since the number of non-negligible f̂j > 0 obtained is typically
much smaller than n, often only a handful of points, even in large samples, this also
guides our judgement regarding the adequacy of the original grid. As documented
in Koenker and Mizera (2014) solving a small problem of this type with n = 200
and p = 300 grid points requires about 1 second for the Mosek optimizer and about
10 minutes to achieve a somewhat less precise solution via EM. Ten minutes may
not seem prohibitive, but embedding larger problems of this type in profile likelihood
settings where many such solutions are required is another story. Dicker and Zhao
(2014) have recently shown that grids with p =

√
n yield convergence in Hellinger

distance of the mixture density at rate Op(logn/
√
n), the parametric rate modulo the

log term. Unfortunately, little is known at this stage about the convergence properties
of the mixing distribution beyond the consistency result of Kiefer and Wolfowitz.

The dual formulation of primal problem (2) has proven to be somewhat more
efficient from a computational viewpoint. The dual can be expressed as

(3) max
ν

{

n∑
i=1

log(νi)|A
>ν 6 n1p,ν > 0}.

This formulation reveals that we are only required to solve for the n-dimension vector
ν, albeit subject to an infinite dimensional constraint that we have discretized to an
p dimensional grid, see Koenker and Mizera (2014) for further details.

3.1. Estimating Gaussian Scale Mixtures. Gaussian scale mixtures can be esti-
mated in much the same way that we have described for location mixtures. Suppose
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we now observe,

yit =
√
θiuit, t = 1, · · · ,mi, i = 1, · · · ,n

with uit ∼ N(0, 1). Sufficiency again reduces the sample to n observations on Si =
m−1
i

∑mi

t=1 y
2
it, and thus Si has the gamma distribution with shape parameter, ri =

mi/2, and scale parameter θi/ri, i.e.

γ(Si|ri, θi/ri) =
1

Γ(ri)(θi/ri)ri
Sri−1
i exp{−Siri/θi},

and the marginal density of Si when the θi are iid from F is

g(Si) =

∫
γ(Si|ri, θ/ri)dF(θ).

To estimate F we can proceed exactly as before except that now the matrix A has
typical element γ(Si|θj) for θj on a fine grid covering the support of the sample Si’s.

3.2. Estimating Gaussian Location-Scale Mixtures. When both location and
scale are heterogeneous we must combine the strategies already described. We should
stress that modeling heterogeneity of scale parameters would not be possible with
cross sectional data since individuals are then only measured once. The model is
now,

yit = αi +
√
θiuit, t = 1, · · · ,mi, i = 1, · · · ,n

with uit ∼ N(0, 1). We will provisionally assume that αi ∼ Fα and θi ∼ Fθ are
independent. Again, we have sufficient statistics:

ȳi|αi, θi ∼ N(αi, θi/mi)

and
Si|ri, θi ∼ γ(Si|ri, θi/ri),

where ri = (mi − 1)/2, and the log likelihood becomes,

`(Fα, Fθ|y) = K(y)+

n∑
i=1

log

∫ ∫
γ(Si|ri, θ/ri)

√
miφ(

√
mi(ȳi−αi)/

√
θ)/
√
θdFα(α)dFθ(θ)

Since the scale component of the log likelihood is additively separable from the lo-
cation component, we can solve for F̂θ in a preliminary step, as in the previous sub-
section, and then solve for the F̂α distribution. In fact, under the independent prior
assumption, we can re-express the Gaussian component of the likelihood as Student-t
and thereby eliminate the dependence on θ in the Kiefer-Wolfowitz problem for esti-
mating Fα. This is highly convenient for estimation purposes, however it should be
stressed that prediction restores the interdependence on both Fα and Fσ as we discuss
in more detail below.

When the independent prior assumption is implausible, and this may be typi-
cal of many econometric applications like our income dynamics application, we can
construct two dimensional grids. This makes the constraint matrix, A, a bit more
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unwieldy, but raises no new issues of principle. If, as in our empirical application to
income dynamics, we permit a general bivariate prior for (α, θ), the Bayes rule for
estimating α under L2 loss takes a considerably more complex form summarized in
the following result.

Proposition 2. Suppose that yit|αi, θi ∼ N(αi, θi) and (αi, θi) are iid from H(α, θ),
then the Bayes rule for α conditional on the sufficient statistics ȳi and Si is

E(α|ȳi,Si) =
∫
E(α|ȳi, θ)f(θ|ȳi,Si)dθ

where E(α|ȳi, θ) is the Bayes rule of Proposition 1, for fixed θ, and f(θ|ȳi,Si) denotes
the posterior density of θ for individual i under the prior H. The Bayes rule is
monotone in ȳi in the limit as Si → 0 and Si →∞, however for intermediate values
of Si such monotonicity is no longer assured.

Monotonicity rests upon the contribution of d
dȳ
f(θ|ȳi,Si), since for fixed θ the

contribution from inner expectation is monotone by Proposition 1. In the Si limits
the posterior f(θ|ȳi,Si) puts all its mass on the most extreme points of the prior and
consequently also produces a monotone Bayes rule for α as a function of ȳi. However,
for more moderate values of Si the situation is more complicated, and as we shall see
in the empirical section, non-monotonicities can occur.

A natural question at this point might be: How do we know whether we need to
bother with all this? Can we make some preliminary test for parameter heterogene-
ity? There is an extensive literature on this topic: Chesher (1984) and Cox (1983)
constitute notable contributions drawing connections to the White (1982) information
matrix test. Many of the proposals that have been made can be formulated as C(α)
tests as in Neyman (1959) and Neyman and Scott (1966). The C(α) formulation can
be viewed as an extended form of the Rao score test that among other things can
accommodate general forms of nuisance parameter estimation. Gu (2013) provides
a detailed theoretical treatment of C(α) tests for parameter heterogeneity, and Gu,
Koenker, and Volgushev (2013) compares their performance to that of likelihood ratio
tests.

3.3. Covariate Effects. Having seen how to estimate the Gaussian location-scale
mixture model we will now briefly describe how to introduce covariate effects into the
model, which now takes the form,

yit = xitβ+ αi +
√
θiuit.

Given a β it is easy to see that,

ȳi|αi,β, θi ∼ N(αi + x̄iβ, θi/mi)
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so the sufficient statistic for αi is ȳi − x̄iβ. Similarly, the sufficient statistic for θi
can be defined as,

Si =
1

mi − 1

mi∑
t=1

(yit − xitβ− (ȳi − x̄iβ))
2

and Si|β, θi ∼ γ(ri, θi/ri), where as before, ri = (mi − 1)/2. Apparently, using the
familiar panel data terminology, the sufficient statistic for αi contains the between
information, while the within information, deviations from the individual means, is
contained in the Si. A note of caution should be added however since the orthogonality
of the within and between information enjoyed by the classical Gaussian panel data
model no longer holds in this general mixture setting. This can be seen more clearly
by examining the likelihood function,

L(β,h) =

n∏
i=1

g((α,β, θ)|yi1, . . . ,yimi
)

=

n∏
i=1

∫ ∫ mi∏
t=1

θ−1/2φ((yit − xitβ− α)/
√
θ)h(α, θ)dαdθ

= K

n∏
i=1

S1−ri
i

∫ ∫
(θ/mi)

−1/2φ((ȳi − x̄iβ− α)/
√
θ/mi)

e−RiRrii
SiΓ(ri)

h(α, θ)dαdθ

where Ri = risi/θ and K =
∏n
i=1

(
Γ(ri)√
mir

ri
i

(1/
√

2π)mi−1
)

.

Even with the independent prior assumption, h(α, θ) = hα(α)hθ(θ), the likelihood
does not factor because the Gaussian piece depends on both α and θ. However, the
fact that Si, hence the Gamma piece of the likelihood, does not depend on α provides
a convenient estimation strategy by using the Gamma mixture to estimate hθ, and
a Studentized version of the Gaussian mixture, (ȳi − x̄iβ − αi)/

√
Si ∼ tmi−1, for

estimating hα. Including covariates adapts this estimation strategy: Given a β we
can estimate the two mixing distributions and then evaluate the full profile likelihood.
We will illustrate this approach in the empirical section, albeit with a more general
mixture model that drops the independent prior assumption, and allows for covariates
including lagged response. Our approach is related to recent work by Bonhomme and
Manresa (2014) on grouped patterns of heterogeneity in panel data, in the sense that
both approaches reduce the dimensionality of the heterogeneity distribution substan-
tially, although the estimation methods employed are quite different. Convexity of
our likelihood formulation ensures a unique solution and avoids the introduction of
further tuning parameters, while the clustering algorithms employed by Bonhomme
and Manresa require more delicate attention.
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3.4. Empirical Bayes Prediction: Some Simulation Evidence. To develop
some intuition about empirical Bayes methods we will consider some simple illus-
trative simulation examples in this section before turning to our main empirical ap-
plication.

3.4.1. Gaussian Location Mixtures. Suppose that we have a random sample from the
model: yi = αi + ui with iid ui ∼ N(0, 1), and iid αi ∼

2
3
δ−h + 1

3
δ2h as in Chen

(1995). Here, δa denotes the distribution with point mass one at the point a. If we
were successful in estimating the distribution of αi, we would expect that Tweedie’s
formula (1) should deliver predictions that correctly shrink the original observations
toward their respective αi’s. Of course the nature of the shrinkage depends crucially
on the loss function as well as the prior. Thus, L1 loss yields decisions that are
closely related to classification, while L2 loss delivers a Bayes rule whose shrinkage is
somewhat more mild.

In Figure 1 we illustrate the foregoing situation with n = 400 and h = 0.5, which
represents a fairly challenging problem since the marginal density is still unimodal.
In the left panel we have the estimated mixing distribution in red, with the target
distribution represented in blue. The larger of the two actual mass points at x = −0.5
is quite accurately estimated, however the smaller mass point at x = 1 is split into two
pieces by the Kiefer-Wolfowitz estimate. The true mixture distribution in blue in the
middle panel appears to be reasonably accurately estimated by the red curve. The
corresponding Bayes rules as derived in Proposition 1 in the right panel show that
the empirical Bayes rule (in red) shrinks a little too aggressively in the left tail, and
not quite aggressively enough in the right tail, compared to the omniscient Bayes rule
in blue. But we should hasten to add that it represents an enormous improvement
over the unbiased (naive) decision rule, α̂i = yi, depicted in grey.

Replacing the two mass point distribution by αi ∼ U[−h, 2h] yields an even more
challenging problem. The Kiefer-Wolfowitz estimator tries valiantly to mimic the
uniform mixture by a discrete mixture as illustrated in Figure 2. The two point
mixing distribution appearing in the left panel does not seem to be a very satisfactory
surrogate for the uniform, but as can be seen in the middle panel, it does a remarkably
good job of imitating the correct mixture density. The Bayes rule comparison in the
right panel again illustrates that the shrinkage in the tails is not ideal, but much
preferable to the naive, unbiased rule.

3.4.2. Gamma Scale Mixtures. To explore the performance of empirical Bayes meth-
ods for gamma scale mixtures we illustrate a couple of similar cases to those appearing
in the previous subsection. We first consider the longitudinal model,

yit = αi +
√
θiuit, t = 1, · · · ,m, i = 1, · · · ,n,

with iid uit ∼ N(0, 1), and θi ∼ F. We takem = 11 and n = 400. We will provisionally
ignore the heterogeneity in the αi, or to be more explicit, adopt the naive practice
of estimating them by ȳi. Denoting the individual specific variance estimates by
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Figure 1. Empirical Bayes estimation for the Chen (1995) example:
A sample of 400 observations from the model with yi = αi+ui with iid
ui ∼ N(0, 1), and iid αi ∼

2
3
δ−h+

1
3
δ2h, is illustrated by the histogram in

the middle panel and the “rug plots” in the adjacent panels. The Kiefer-
Wolfowitz estimate of the mixing distribution is illustrated in the left
panel in red, with the target distribution in blue. The corresponding
estimate of the mixture density and Bayes rule appear in the other
panels contrasted to their blue target functions. The unbiased, naive
decision rule is depicted in the right panel in grey.

xi = (m − 1)−1
∑
t(yit − ȳi)

2, the {xi} are then distributed as Gamma with shape
parameter, r = (m− 1)/2, scale parameter θi/r, and density,

γ(xi|θi) =
1

Γ(r)(θi/r)r
xr−1
i exp(−xir/θi).

Thus, the marginal density of the sample variances is,

g(x) =

∫
γ(x|θ)dF(θ).

The Bayes rule under squared error loss for θi given xi, originally derived by Robbins
(1982), is given in the following proposition. Again, it should be stressed that the
Bayes rule depends only on the mixture density, g, and not directly on the mixing
distribution, F. Of course, indirectly the Bayes rule does depend on F and in particular
the flat portions of the Bayes rule in the third panel of Figure 3 representing the points
of attraction of Bayes shrinkage are essentially determined by the location of the
estimated mass points of F. This is particularly crucial in the tails where even small
mass points of F̂ can exert a large influence on the shrinkage. Whether this sensitivity
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Figure 2. Empirical Bayes estimation for the Chen (1995) example:
A sample of 400 observations from the model with yi = αi+ui with iid
ui ∼ N(0, 1), iid αi ∼ U[−h, 2h], and h = 0.5, is illustrated by the his-
togram in the middle panel and the “rug plots” in the adjacent panels.
The Kiefer-Wolfowitz estimate of the mixing distribution is illustrated
in the left panel in red, with the target distribution in blue. The corre-
sponding estimate of the mixture density and Bayes rule appear in the
other panels contrasted to their blue target functions. The unbiased,
naive decision rule is depicted in the right panel in grey.

can be lessened by replacing the Gaussian mixture assumption by something heavier
tailed constitutes an intriguing question for future research. The next proposition
describes the Bayes rule for estimating the θi’s under L2 loss for Gamma mixtures.
Note that θ is not the natural parameter of the exponential family in this case, so the
monotonicity of the Bayes rule requires a brief additional argument in the Appendix.

Proposition 3. For Xi ∼ Γ(r, θi/r) and {θi} iid F, the Bayes rule under L2 loss is:

(4) δ(x) = rxr−1

∫∞
x

y1−rg(y)dy/g(x)

and δ(x) is non-decreasing in x.

In Figure 3 we illustrate a typical outcome in a format like that of the previous fig-
ures. In this example we take F to be the two point distribution: 2

3
δ1.5+

1
3
δ3. The two

point mixing distribution is quite well estimated by the Kiefer-Wolfowitz procedure,
and the mixture density appears to be quite accurate as well. The empirical Bayes
rule slightly over estimates the variances in the upper tail since it slightly overesti-
mates the location of the upper mass point. But as for the previous examples, there
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Figure 3. Empirical Bayes estimation for Gamma mixture example:
A sample of n = 400 and m = 11 observations from the model
yit =

√
θiuit with iid uit ∼ N(0, 1) and iid θi ∼ 2

3
δ1.5 + 1

3
δ3 is il-

lustrated by the histogram in the middle panel and the “rug plots”
in the adjacent panels. The Kiefer-Wolfowitz estimate of the mixing
distribution is illustrated in the left panel in red, with the target distri-
bution in blue. The corresponding estimate of the mixture density and
Bayes rule appear in the other panels contrasted to their blue target
functions. The unbiased, naive decision rule is depicted in the right
panel in grey. The brown line represents the linearized empirical Bayes
rule proposed in Robbins (1982)

.

is an enormous improvement over the naive decision rule represented by the grey line.
The brown line represents the linearized empirical Bayes rule proposed in Robbins
(1982).

3.4.3. Gaussian Location Scale Mixtures. We now would like to consider joint estima-
tion of location and scale mixtures in the context of our longitudinal model. We will
maintain the assumption that αi’s and θi’s are drawn independently, so we only have
to estimate two univariate mixing densities rather than a general bivariate density.
We illustrate the procedure with an example that combines a three point distribution
for α and a three point distribution for θ: yit = αi +

√
θiuit with iid uit ∼ N(0, 1),

iid αi ∼
1
3
δ−0.5+

1
3
δ1+

1
3
δ3, and iid θi ∼

1
3
δ0.5+

1
3
δ2+

1
3
δ4, Maximizing the likelihood of

Section 3.2, we obtain the estimates appearing in the first two panels of Figure 4 for
the location and scale parameters respectively. As in the previous figures, estimates
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appear in red, and the true mixing distribution is represented by the blue lines. Fo-
cusing on the location parameter, the third panel of the figure depicts the histogram
of the observed ȳi with the estimated marginal density, by integrating out α and θ
with respect to F̂α and F̂θ, superimposed in red, and the true marginal density su-
perimposed in blue. Finally, in the last panel of the figure we illustrate the empirical
and idealized Bayes rule for the αi’s. This version of the Bayes rule presumes that
prediction is based on knowledge of a location estimate, but nothing about the scale
parameter beyond the distribution represented by the estimated mixing distribution.
Even though the mixing distribution of the location parameter has a few extraneous
mass points, the Bayes rule is remarkably accurate.

−2 −1 0 1 2 3 4
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)
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Figure 4. Empirical Bayes estimation for Gaussian location-scale
mixture: A sample of n = 800 andm = 11 observations from the model
yit = αi +

√
θiuit with iid uit ∼ N(0, 1), iid αi ∼

1
3
δ−0.5 +

1
3
δ1 +

1
3
δ3,

and iid θi ∼
1
3
δ0.5 +

1
3
δ2 +

1
3
δ4, is illustrated by the histogram in the

middle panel The Kiefer-Wolfowitz estimate of the mixing distributions
is illustrated in the two left panels in red, with the target distribution
in blue. The corresponding estimate of the mixture density and the
Bayes rule appear in the other panels contrasted to their blue target
functions.

How much can be gained by using an individual specific estimate of variance?
The Bayes rules appearing in the last panel of Figure 4 are conditional only on the
observed ȳ with the variance effect integrated out. Thus, when we see a value of ȳ near
one of the mass points in {−0.5, 1, 3}, the Bayes rule shrinks aggressively toward the
corresponding α. Between these values, the predicted α, being a conditional mean,
takes intermediate values. Extreme values of ȳ in either tail again get aggressively
shrunk toward the extreme points of the estimated prior. The situation we have
just described is artificial in the sense that we effectively are assuming that we have
observed ȳi for each cross sectional unit, but apparently have forgotten to compute
the associated variance estimate. If we now rectify this oversight, we can consider
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a two dimensional Bayes rule that maps (ȳi,Si) pairs into predictions of the αi’s.
Using the same data and the estimates underlying Figure 4 we illustrate a contour
plot of this two dimensional Bayes rule (Proposition 2) in Figure 5. We see that
for central values of ȳi the contours are essentially vertical indicating the variance is
uninformative about the mean, however for outlying values of ȳi the nonlinearity of
the Bayes rule is apparent with large observed variances making us more uncertain
about the αi’s.

When ȳ is in the extremes, the Bayes rule should shrink its estimate of α to the
extreme mass points at -0.5 and 3, but since the estimated prior has smaller mass
points nearby very extreme observations are attracted to these values. In both tails
one can see the effect of the variance estimate on this shrinkage effect; when the
estimated variance is small then there is more shrinkage to the nearest mass point of
the α distribution. When the observed variance is large, then the posterior for α is
more evenly divided among several mass points and consequently the posterior mean
is more central. For example, when ȳ = 1.5 and the estimated variance is low, then
we can be quite confident that the observation comes from the α = 1 population.
Similarly when ȳ = −1.5 and the estimated variance is low, we can be confident that
this is a α = −0.5 observation. However, in either of these cases as the variance
increases our confidence ebbs, and the Bayes rule assigns more probability to the
other nearby mass points. For central values of ȳ the contours are nearly vertical
indicating that the observed variance is not informative in this region. The observed
pairs (ȳi,Si) are superimposed on the contours to give some sense of their dispersion.

This form of the Bayes rule clearly illustrates that variances are informative about
the means in such circumstances, but the fact that we’ve imposed independence
between α and θ may sacrifice valuable information in many applications. If we allow
for dependence and estimate their joint distribution as in our empirical application,
we will see that the sample variances provide crucial information for estimating αi.

4. Heterogeneous Income Dynamics

The vast literature on longitudinal models of income dynamics can be conveniently
decomposed into two strands: one focusing on a permanent-transitory time-series
structure that eschews individual specific sources of heterogeneity, exemplified by
MaCurdy (1982), and going back at least to Friedman (1957), and another that re-
lies on heterogeneity to account for observed persistence, as for example in Lillard
and Weiss (1979), Baker (1997), Haider (2001), Guvenen (2009), Browning, Ejrnæs,
and Alvarez (2010) and Hospido (2012). Considerable flexibility can be introduced
into the former approach with the aid of age specific deterministic trends in mean
and variances, as for example in Blundell, Graber, and Mogstad (2014), or stochas-
tic specifications of the variance process, as in Meghir and Pistaferri (2004). While
most of the foregoing work relies on first and second order moment information and
therefore, at least implicitly adopts a Gaussian framework, there is evidence that
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Figure 5. Bayes Rule for Gaussian location-scale mixture: Based on
the observations from Figure 4 we illustrate the two dimensional Bayes
rule for the mean parameter α as a contour plot.

such assumptions may distort important features of the earnings process. Mixture
models of individual heterogeneity introduce further flexibility: Horowitz and Marka-
tou (1996) and Bonhomme and Robin (2010) explore semiparametric deconvolution,
while Geweke and Keane (2000) and Hirano (2002) propose Bayesian MCMC methods
for estimating semiparametric mixture models. Our nonparametric empirical Bayes
approach maintains the mixture model formulation, but expands the nature of the
heterogeneity to encompass both location and scale effects. In terms of estimation
methods our approach is closest to that of Hirano since the KWMLE can be viewed
as a limiting form of his Dirichlet process prior for the scale mixture setting. See
Gu and Koenker (2013) for further details on this relationship, illustrated with an
application to Gaussian location mixtures.

Our empirical analysis is based on the PSID sample used in Meghir and Pistaferri
(2004), Browning, Ejrnæs, and Alvarez (2010) and Hospido (2012). The initial data
consists of log real earnings of 2069 individuals between the ages of 25 and 55, with
at least 9 consecutive records between 1968 and 1993. We further reduce the sample
to 938 individuals who have continuous records from age 25 onwards.

We consider the model,

yit = αi + βixit + vit
vit = ρvit−1 +

√
θiεit, εit ∼ N(0,σ2

ε)
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Following standard practice in the literature, yit denotes residuals from distinct an-
nual regressions of log real earnings on a quadratic in age, and indicators for race,
educational attainment, region and marital status. Heterogeneity around the mean
earnings profile is captured by the random intercept and slope parameters; experi-
ence, xit, is defined as age minus max{years of schooling, 12} − 6. Heterogeneity in
the variance of earnings is captured by the θi’s. More complex short run dynamics
could obviously be introduced, but our strategy is to proceed parsimoniously trying to
understand at each stage the consequences of expanding the flexibility of the model.

4.1. Homogeneous Trend and Variance. Under the restrictions that βi ≡ 0 and
θi ≡ 1 we can rewrite the model as,

yit = ρyit−1 + (1 − ρ)αi + εit.

This is a textbook dynamic panel model; in such models of earnings dynamics esti-
mates of ρ are typically very close to one. These findings have led to considerable
controversy over whether individual earnings processes “have a unit root.” In contrast
to Meghir and Pistaferri (2004), who postulate a permanent component of earnings
with a unit-root, Browning, Ejrnæs, and Alvarez (2010) – using the same data –
find no unit root after introducing further heterogeneity in covariance structure of
the model. In Figure 6, we present some preliminary evidence that helps to explain
why the persistence of innovations may be reduced by introducing heterogeneity, for
example, by relaxing the restrictions of a homogeneous variance.

The QQ plots of Figure 6 confirm earlier evidence of Horowitz and Markatou (1996)
and Guvenen, Karahan, Ozkan, and Song (2014) based on more extensive CPS and
Social Security data respectively that earnings innovations are considerably heavier
tailed than our usual Gaussian assumptions would imply. There are a variety of
possible treatments for this disease: one option would be to abandon the Gaussian
assumption entirely, but this would lead us into realm of choosing a non-Gaussian
likelihood model that would, inevitably, be rather arbitrary. It is well known that
heavy tailed distributions can be very flexibly modeled as scale mixtures of Gaussians,
see for example the extensive discussion in Andrews, Bickel, Hampel, Huber, Rogers,
and Tukey (1974), and we have already seen that it is relatively straightforward to
estimate these mixture models; so this is approach we will adopt.

To provide a further visual impression of the degree of individual heterogeneity
we present in Figure 7 scatter plots of the individual specific sample means, ȳ, and
log variances, S, for the partial differenced yit data for several ρ’s. In addition to
confirming that there is substantial heterogeneity in these quantities the Figure also
reveals that more moderate values of ρ yield a more elliptical scatter that seems to
be favored by our Gaussian/Gamma location-scale mixture likelihood as we will see
in the next subsection.
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Figure 6. Normal QQ Plots of Partial Differenced Earnings for Various ρ:
For ρ ∈ {0.2, 0.3, · · · 1.0} we plot empirical quantiles of the partial differences
yit − ρyit−1 standardized by their empirical standard deviation, against the corre-
sponding Gaussian quantiles. The ρ’s are indicated in the thin strip at the top of
each panel, the solid line in each plot is the 45 degree line indicating conformity to
the Gaussian hypothesis. It is apparent from the plot that the observed quantiles
are far too leptokurtic, that is much too peaked near the median and exhibiting
much heavier tails than the Gaussian. For small ρ there is also some left skewness
in innovations that becomes less apparent for larger ρ.

4.2. Homogeneous Trend with Heterogeneous Variances. If we fix ρ and σ2
ε,

and let zit = yit − ρyit−1, we can rewrite our model as,

zit = (1 − ρ)αi +
√
θiεit.
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Figure 7. Scatterplot of Individual Specific Mean and Log Variance Effects for
Various ρ: For ρ ∈ {0.4, 0.6, 0.8, 1.0} we plot sample means, ȳ, and log variances,
S, of the partial differences yit − ρyit−1. The ρ’s are indicated in the thin strip
at the top of each panel. The more elliptical shape of the scatter for smaller ρ
may suggest that it could be more parsimoniously fit by our Gaussian/Gamma
location-scale mixture model.

As in Section 3, under Gaussian conditions, sufficient statistics for αi and θi are
respectively the sample mean and sample variance:

ȳi = 1
Ti

∑Ti
t=1 zit

Si = 1
Ti−1

∑Ti
t=1(zit − ȳi)/σε)

2.

Furthermore, we have, ȳi | αi, θi ∼ N((1 − ρ)αi, θiσ
2
ε/Ti) and (Ti − 1)Si/θi | θi ∼

χ2
Ti−1. Assuming the pairs (αi, θi) are iid with distribution function H, we can dis-

cretizeH on a two dimensional grid and write the likelihood of observing (zi1, . . . , ziTi)
as a function of H, ρ and σ2

ε, and apply the KWMLE.
Various special case of this model has been considered in the literature, for example

the random effects model of Alvarez and Arellano (2003) assumes θi to be degenerate
taking value 1 while αi ∼ N(ψyi0,σ2

h). This leads to a marginal density for the ȳi
conditional on yi0 as ȳi ∼ N(ψyi0,σ2

α) with σ2
α = σ2

ε/Ti + σ
2
h as a free parameter.

The parameters (ρ,ψ,σ2
h,σ2

α) can then be estimated by maximizing the likelihood
conditional on yi0. The Gaussian assumption on the αi is very convenient and very
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commonly employed, notably in Chamberlain (1980), Chamberlain and Hirano (1999)
among many others. However, the normality assumption on the αi may be hard to
justify. As we have seen in Figure 7, there is also considerable heterogeneity in the
θi, and it seems plausible that there may be some dependence between α and θ.
These considerations motivate us to consider a non-parametric maximum likelihood
framework allowing us to estimate the non-parametric mixing distribution H(α, θ)
conditional on some structural parameters like ρ, that can, in turn, be estimated by
maximizing a profile likelihood.

Without loss of generality, we can set σ2
ε = 1, since it is not identified once we

allow individual specific θi unless we make further moment restrictions on θi. We
have the following KWMLE problem:

Ĥρ := argmax
H∈H

n∏
i=1

∫ ∫
f(ȳi | α, θ)g(Si | θ)dH(α, θ)

where H is the space of all two dimensional distribution functions on the domain of
R × R+. Here, f is the conditional normal density of ȳi and g is the conditional
gamma density for Si. The KWMLE for H is indexed by ρ because both ȳi and
Si involve ρ, which we have suppressed in the notation, but can be estimated by
maximizing the profile log likelihood,

l(ρ, Ĥρ) =

n∑
i=1

K(ȳi,Si) + log

∫ ∫
f(ȳi | α, θ)g(Si | θ)dĤρ(α, θ).

Allowing heterogeneous individual variances in earnings innovations is not new.
Geweke and Keane (2000) contend that variance heterogeneity is crucial to account
for non-Gaussian features of innovation distribution and use a three-component mix-
ture formulation. Hirano (2002) adopts a more flexible Dirichlet prior specification
for similar reasons. Browning, Ejrnæs, and Alvarez (2010) also find significant evi-
dence that the variance of innovations varies across individuals. Their model posits
eight latent factors all of which are constrained to obey parametric marginals. They
comment “Nowhere in the literature is there any indication of how to specify a general
joint distribution for these parameters, nor is there any hope of identifying the joint
distribution non-parametrically.” In contrast, Our approach allows only two latent
factors, but has the advantage that it permits non-parametric estimation of their joint
distributions.

What if ρ̂ ≈ 1? Our joint distribution for (αi, θi) would then be meaningless,
since the αi’s would be annihilated. The left panel of Figure 8 plots the profile
likelihood for ρ, which (fortunately) peaks at 0.48. The shaded region indicates a 0.95
confidence interval for ρ as determined by the classical Wilks inversion procedure, see
e.g. Murphy and Van der Vaart (2000), and Fan, Zhang, and Zhang (2001). Our
estimate of ρ is close to the estimate of Hospido (2012) who also allows a individual
specific variance component in a ARCH effect variance. She adopts a fixed effect
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Figure 8. Profile Likelihood for the ρ Parameter and Heterogeneity Distribution
H(α, θ): In the left panel we plot the Kiefer-Wolfowitz profile likelihood as a function
of ρ. The shaded region represents a 0.95 confidence interval for ρ based on the
usual Wilks inversion procedure. In the right panel we plot the estimated joint
heterogeneity distribution, evaluated at the optimal ρ̂, Ĥρ̂(α, θ). Darker hexagons
indicate greater mass, lighter ones less mass and white regions contain no mass.

specification for (αi, θi) and uses a bias corrected estimator for ρ to account for the
asymptotic bias introduced by estimating all the incidental parameters (αi, θi), i =
1, · · · ,n. A plausible explanation for why estimates of ρ tend to be close to one in
models without heterogeneity in variances is that individual specific persistence is
mistaken for AR persistence in innovations.

The right panel of Figure 8 plots the two-dimensional non-parametric estimate of
Ĥρ̂(α, θ) on a 60 × 60 grid. Mass points of the estimated distribution are indicated

by shaded hexagons with darker shading indicating more mass. The support of Ĥ is
determined by the support of the observed (ȳi,Si). The mixing distribution shows
some negative dependence between α and θ, especially for α < 0. So a low draw for
α is more likely to be accompanied by a more risky (higher) θ. Most of the mass of

Ĥ is concentrated at very low levels of θ, but it is not at all obvious how one might
represent this estimated heterogeneity by a conventional parametric model.

4.3. Heterogeneous Trends and Variances. Reintroducing trend heterogeneity
to our model of earnings dynamics gives us,

yit − ρyit−1 = (1 − ρ)αi + βiρ+ (1 − ρ)βixit +
√
θiεit,
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and obviously brings a new layer of complexity to the estimation problem. Our frame-
work is capable of incorporating this third dimension of heterogeneity and we have
made some tentative estimation efforts for the full model. However, this is challenging
not only due to the jump from 2d to 3d grids, but because the trend term invalidates
our sufficient statistic dimension reduction device. Some preliminary testing for trend
heterogeneity using the LM test recently proposed in Juhl and Lugovskyy (2014) pro-
duced very weak evidence against homogeneity. We have also considered a variety of
other, more elaborate, modeling strategies for the variance effect including ARCH ef-
fects, and deterministic trends in the variance. These can be estimated by adding new
parameters to the profile likelihood problem, but again we saw no compelling evidence
that they were needed. However, further study, particularly with larger datasets like
that of Guvenen, Karahan, Ozkan, and Song (2014) may reveal something different
within our framework.

4.4. Prediction. We now return to our original objective: we would like to adapt the
well-known univariate empirical Bayes rules described earlier to compound decision
problems for longitudinal data models. This objective is closely aligned with the
objectives of Chamberlain and Hirano (1999), although our computational methods,
and perhaps our philosophical outlook, are quite distinct. Given an initial trajectory
for an individual’s earnings we would like to predict the remainder of the trajectory
based not only on the prior history for the given individual, but also on the observed
experience of a large sample of similar individuals. Chamberlain and Hirano motivate
this prediction problem as one facing a typical financial advisor; similar problems
present themselves in biomedical settings where diagnosis is based on reference growth
charts.

Given a trajectory Y0 = {yt : t = 1, · · · , T0} for a hypothetical individual we can
easily determine a posterior, p(α, θ|Y0), based on our estimated mixture model. This
KWMLE posterior is necessarily discrete, but one may feel entitled to draw uniformly
from the grid rectangles of the estimated model for simulation purposes. In any
case, the following simulation strategy can be employed to construct an ensemble of
completed trajectories:

(1) Draw (α, θ) from p(α, θ|Y0),
(2) Simulate Y1 = {yt : t = T0 + 1, · · · , T } as,

yT0+s = α+ ρ̂yT0+s−1 +
√
θus, s = 1, · · · , T − T0, and us ∼ N(0, 1),

to obtain m paths, Y1, then
(3) Repeat steps 1 and 2 M times.

This procedure yields mM trajectories from which it is easy to construct pointwise
and/or uniform prediction bands.

From a formal Bayesian perspective the foregoing procedure is rather heretical.
We began with a perfectly legitimate likelihood formulation: data was assumed to be
generated from a very conventional Gaussian model, but individuals had idiosyncratic
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Figure 9. Fan Plot of Earnings Forecasts for Two Individuals: Based on the ini-
tial 9 years earnings, pointwise prediction bands are shown with graduated shading
indicating bands from the 0.05 to 0.95 quantiles.

(α, θ) parameters whose distribution, H, could be viewed as a prior. If this H were
delivered on a silver platter by some local oracle we could proceed just as we have
described. Bayes rule would allow us to update H in the light of the observed initial
trajectory, Y0 for each individual, and we would use these updated, individual specific,
H̃i’s to construct an ensemble of forecast paths. Various functionals of these forecast
paths could then be presented. Lacking a local oracle, we have relied instead on
the KWMLE and the largess of the PSID to produce an Ĥ. Not only H, but also
ρ and potentially other model parameters are estimated by maximum likelihood.
Remarkably, no further regularization is required, and profile likelihood delivers an
asymptotically efficient estimator of these “homogeneous” parameters. Admittedly,
we have “sinned” – we’ve peeked when we shouldn’t have peeked, but our peeking has
revealed a much more plausible H than we could have otherwise expected to produce
by pure introspection. This is the charm of the empirical Bayes approach.

Our prediction exercise takes T0 = 9 so the first nine years of observed earnings have
been used as Y0 to construct individual specific H̃i that are then used to construct
pointwise confidence bands for earnings in subsequent years. We have selected a few
pairs of individuals to illustrate the variety of earnings predictions generated by our
model. In Figure 9 we contrast predictions for an individual with relatively large
mean, high α, and large variance, high θ, with an individual with large variance,
but lower mean. The “fan plot” depicts pointwise quantile prediction bands from
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Figure 10. Fan Plot of Earnings Forecasts for Two Individuals: Based on the
initial 9 years earnings, pointwise prediction bands are shown with graduated shad-
ing indicating bands from the 0.05 to 0.95 quantiles.

0.05 to 0.95 based on the simulated trajectories described above. For the high mean
individual, the bands are relatively narrow reflecting the fact that the “prior” assigns
little mass to high θ individuals. In contrast, for the lower mean individual the bands
are much wider, indeed the upper portion of the band overlaps with the lower portion
of the band for the higher α individual. Nevertheless, we see that the lower 0.05
quantile of the prediction band is exceeded. Our uniform band (not shown) for this
individual just barely covers this excursion.

In Figure 10 we contrast high mean, low variance individual with low mean, high
variance one. The prediction band is very narrow for the former individual, and much
wider for the latter. Other features are also apparent from these figures: individuals
who begin the forecast period below their pre-forecast mean, like PSID 59, are pre-
dicted to come back to their mean, and some asymmetry is visible, for example in
PSID 44, whose lower tail is somewhat wider than the upper one. Note that asymme-
try requires some asymmetry in the location component of the mixture distribution
Ĥ, since pure scale mixtures of Gaussians are necessarily symmetric.

4.5. Estimation of Random Effects. To conclude our discussion of earning dy-
namics we will briefly consider the problem of estimating random effects. Such prob-
lems have a long history; in econometrics they can be traced back to the seminal work
of Goldberger (1962) on best linear unbiased prediction (BLUP). For a comprehensive
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survey of the early literature, see Robinson (1991). It may seem odd to consider es-
timation of random effects, but in many applications including our earning dynamics
setting it is natural to ask: How would we estimate αi’s? The BLUP approach has
a long history in animal breeding where αi’s are interpreted as a latent productiv-
ity variable. Our approach is considerably more flexible than earlier methods that
assumed conjugate parametric priors for the mixing distributions.

In this section we illustrate the Bayes rule for estimating αi’s given the observed
pair (ȳi,Si) for a given individual, and interpret the resulting shrinkage rules. Because
of the general bivariate structure of estimated prior these shrinkage strategies can be
considerably more complicated than those illustrated in the independent prior setting
of the previous section. Figure 11 plots contours of the Bayes rule, α̂i = E(α|ȳi,Si)
in Proposition 2. This figure is analogous to Figure 5 except that the nature of the
shrinkage for moderate Si is more severe. If we first focus on the right side of the plot
for positive ȳi’s we see that observations with moderate variances are shrunken quite
substantially toward zero. So, for example, if we saw an observation with ȳ = 0.5
and S = 0.25 the Bayes rule estimates α = 0. Why? The first thing to say is that
we never saw points like this, the observed (ȳ,S) pairs are depicted as the grey dots,
so an S as big as 0.25 is much more likely to come from a low α individual and this
accentuates the shrinkage. We should stress that the empirical distribution of the
points appearing in the plot although they are a key ingredient in the construction of
the estimated prior Ĥ illustrated in Figure 7, is only a starting point for building the
Bayes rule underlying the contour plot. The Bayes rule requires updating individuals
posterior for (α, θ) in the light of Ĥ and the observed (ȳ,S) and then computing
expectations as in Proposition 2. On the left side of the plot, for ȳ < 0 the situation
is somewhat similar, but the shrinkage is less severe.

In Figure 12 we illustrate the Bayes rule for α as a function of ȳ for several fixed
values of S, essential plotting our contour values for horizontal cross-sections. The
naive estimator, α̂ = ȳ is shown as the 45 degree line. For both low and high values
of S we have monotone Bayes rules, so larger ȳ implies larger α̂, however for the inter-
mediate S = 0.272 value we see that the Bayes rule is clearly non-monotone. Similar
calculations could be employed to estimate the variability parameter, θ, as a func-
tion of “observed” (ȳ,S). (Recall that (ȳ,S) implicitly depends upon an estimated
ρ parameter.) Of course, there is nothing sacred about L2 loss, and it is entirely
reasonable to consider other loss functions that would lead to alternative Bayes rules:
posterior medians, posterior modes, etc.

5. Conclusion

Models of unobserved heterogeneity for longitudinal data are common in applied
econometrics. We have argued that empirical Bayes methods based on nonparametric
maximum likelihood estimation of mixture models offer a natural formulation of these
models. Recent developments in convex optimization greatly facilitate estimation of
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Figure 11. Contour Plot of the Bayes Rule E(α|ȳ,S). The plot illus-
trates pairs (ȳi,Si) that produce the same posterior mean of α.

such models. Semiparametric versions of these models including covariate effects
are shown to be effectively analyzed with profile likelihood. A potential criticism of
the foregoing approach is that it requires us to assume a parametric form for the
base distribution, in our setting the Gaussian. Of course, location-scale mixtures of
Gaussians is quite a general class, so from a prediction perspective the normality
assumption seems not to be terribly onerous.

Empirical Bayes applications have generally either assumed a parametric form for
parameter heterogeneity as in the hierarchical Bayes literature or considered univari-
ate parametric heterogeneity as in the more recent compound decision literature. We
are not aware of any prior nonparametric bivariate heterogeneity specifications. Many
econometric applications, however, involve mean-variance trade-offs that naturally
suggest more flexible bivariate specifications. As we have seen, modern optimization



26 Heterogeneous Income Dynamics

−1.5 −1.0 −0.5 0.0 0.5

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

y

α̂

s=0.129
s=0.272
s=1.132

Figure 12. Bayes Rule α̂ = E(α|ȳ,S) for several (fixed) S. The plot
depicts the posterior mean of α as a function of ȳ for several values of
S.

methods linked to the Kiefer-Wolfowitz MLE accommodate such models quite easily.
Because the formulation is cast directly in terms of likelihood there are convenient
methods of handling estimation and inference for other (global) parametric compo-
nents via profiling. We would also like to stress that there is nothing crucial about the
Gaussian framework that we have employed; other specifications of the base measure
for the mixture can be easily accommodated. In addition to the normal-gamma mix-
tures explored here, we have also considered Weibull, Gompertz, Pareto, Binomial
and Poisson mixtures in other work.

There are many possible extensions left to explore. More flexible treatment of the
covariates in the initial stage of our procedure would be desirable; in larger datasets
this could be easily handled with further stratification of the sample. More flexible
treatment of the variance effects would also be desirable, either with deterministic
age effects or some form of stochastic ARCH-type effects. Trend heterogeneity is
also feasible, but perhaps only with larger scale data sources. We have tried to
encourage further exploration of these methods by providing the R package REBayes
that implements the methods we have described here as well as a variety of other
model specifications.
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Appendix A. Proof of Proposition 1

The simplest way to derive Tweedie’s Formula in Proposition 1 for the Gaussian case seems to
be to consider the more general exponential family compound decision problem in which

g(y) =

∫
ϕ(y,η)dF(η),

where ϕ is a known exponential family density with natural parameter η, so we may write,

ϕ(y,η) = m(y)eyηh(η),

and F is again a mixing distribution over the parameter η. Quadratic loss implies that the Bayes
rule is the conditional mean:

δ(y) = E[η|Y = y]

=

∫
ηϕ(y,η)dF/

∫
ϕ(y,η)dF

=

∫
ηeyηh(η)dF/

∫
eyηh(η)dF

=
d

dy
log(

∫
eyηh(η)dF

=
d

dy
log(g(y)/m(y))

Differentiating again,

δ′(y) =
d

dy

[∫
ηϕdF∫
ϕdF

]
=

∫
η2ϕdF∫
ϕdF

−

(∫
ηϕdF∫
ϕdF

)2

= E[η2|Y = y] − (E[η|Y = y])2

= V[η|Y = y] > 0,
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implying that δ must be monotone. When ϕ is Gaussian with known variance θ we have natural
parameter η = α/θ,

ϕ(y,α/θ) = φ((y− α)/
√
θ)/
√
θ = K exp{−(y− α)2/2θ} = Ke−y

2/2θ · eyα/θ · e−α2/2θ,

so m(y) = e−y
2/2θ and the logarithmic derivative yields our Bayes rule in Proposition 1.

Appendix B. Proof of Proposition 2

Suppose we have yit | αi, θi ∼ N(αi, θi). Let ȳi and Si be defined respectively as the sample mean
and sample variance with conditional density φ(ȳi | αi, θi) and γ(Si | θi). Denote the marginal
density for the vector (yi1, . . . ,yimi) as g(ȳi,Si). Under squared error loss, we wish to minimize
the expected loss,

min
α̂

Eα,θ[‖α̂− α‖22].

This leads to the Bayes rule:

α̂i = E[α | ȳi,Si] =
∫
α α

∫
θ f(α, θ | ȳi,Si)dθdα

=
∫
θ(
∫
α αφ(ȳi | α, θ)h(α | θ)dα)γ(Si | θ)h(θ)dθ/g(ȳi,Si)

=
∫
θ E[α | ȳi, θ]

γ(Si|θ)
∫
αφ(ȳi|α,θ)h(α|θ)dαh(θ)

g(ȳi,Si)
dθ

=
∫
θ E[α | ȳi, θ]f(θ | ȳi,Si)dθ

To check for monotonicity with respect to ȳ, we differentiate E[α | ȳ,S] for some fix S, which leads
to

d

dȳ
E(α | ȳ,S) =

∫
d

dȳ
E(α | ȳ, θ)f(θ | ȳ,S)dθ+

∫
E(α | ȳ, θ)

d

dȳ
f(θ | ȳ,S)dθ

The first piece is non-negative due to Proposition 1, while the sign of the second piece is undeter-
mined.

Appendix C. Proof of Proposition 3

For the gamma mixture case there is an analogous formula as the Gaussian case in Proposition
1, for the natural parameter −r/θ, proceeding as before,

δ̃(x) = E[−r/θ|X = x] =

∫
− r
θ
f(x|θ)dG(θ)∫
f(x|θ)dG(θ)

=
d

dx
log(

g(x)

xr−1
) =

g ′(x)

g(x)
−
r− 1

x
.
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If, on the other hand, we would, quite naturally, like to compute the expectation of the unnatural
parameter θ, then we obtain instead,

δ(x) = E[Θ|X = x]

=

∫
θγ(x, θ)dF(θ)/

∫
γ(x, θ)dF(θ)

=

∫
θ

Γ(r)(θ/r)r
xr−1 exp(−xr/θ)dF(θ)/g(x)

= rxr−1

∫
(r/θ)r

Γ(r)

θ

r
) exp(−xr/θ)dF(θ)/g(x)

= rxr−1

∫
(r/θ)r

Γ(r)

∫∞
x

exp(−xr/θ)dF(θ)/g(x)

= rxr−1

∫∞
x

yr−1

∫
γ(y|θ)dF(θ)dy/g(x)

= rxr−1

∫∞
x

y1−rg(y)dy/g(x).

It remains to show that this formulation of the Bayes rule is monotone:

δ′(x) =
r(r− 1)xr−2

∫∞
x y

1−rg(y)dy+ rxr−1(−x1−r)g(x)

g(x)

−
rxr−1

∫∞
x y

1−rg(y)dyg ′(x)

g2(x)

=
rxr−1

∫∞
x y

1−rg(y)dy

g(x)

[
r− 1

x
−
g ′(x)

g(x)

]
− r

= −δ(x)δ̃(x) − r

= δ(x)

[
E[
r

θ
|X = x] −

r

E[θ|X = x]

]
= δ(x)r

[
E[

1

θ
|X = x] −

1

E[θ|X = x]

]
,

which is positive by Jensen’s inequality.




