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Abstract

The paper proposes a new algorithm for finding the confidence set of a col-
lection of forecasts or prediction models. Existing numerical implementations
for finding the confidence set use an elimination approach where one starts
with the full collection of models and successively eliminates the worst per-
forming until the null of equal predictive ability is no longer rejected at a given
confidence level. The intuition behind the proposed implementation lies in re-
versing the process: one starts with a collection of two models and as models
are successively added to the collection both the model rankings and p-values
are updated. The first benefit of this updating approach is a reduction of one
polynomial order in both the time complexity and memory cost of finding the
confidence set of a collection of M models, falling respectively from O

(
M3

)
to

O
(
M2

)
and from O

(
M2

)
to O (M). This theoretical prediction is confirmed

by a Monte Carlo benchmarking analysis of the algorithms. The second key
benefit of the updating approach is that it intuitively allows for further models
to be added at a later point in time, thus enabling collaborative efforts using
the model confidence set procedure.
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Non-Technical Summary

Social scientists often do not have the benefit of being able to run or replicate ex-
periments in order to generate new data and end up re-using the same datasets when
evaluating the explanatory power of new models compared to older models. As pointed
out by White (2000), such sequential testing of models on a fixed amount of data leads to
the problem known as ‘data snooping’, in which the initially small probability of a poor
model appearing good by random chance gets amplified by repeated testing. Ignoring this
effect or naively selecting the best-fitting model without further testing can often lead to
incorrectly identifying as a ‘best’ a model that in fact has no real predictive power on the
data. In order to help avoid this problem, White proposes a ‘Reality Check’ procedure
which tests the null hypothesis that no model in a given collection outperforms a given
benchmark model.

Hansen et al. (2011) offer a generalisation of the reality check, in the form of the Model
Confidence Set (MCS) approach, which identifies the subset of models which have equal
predictive power on some data and has the benefit of not requiring an a priori benchmark
model. Starting with the full collection of models, the procedure successively eliminates
the worst performing model until the null of equal predictive ability is no longer rejected
at a given confidence level. The surviving subset of models makes up the MCS at that
confidence level. The flexibility of the MCS procedure has made it very popular as a way
of evaluating the forecasting ability of multivariate GARCH models of volatility, leading
to numerous comparison exercises with relatively large collections of models (such as 600
models in Liu et al. (2015)) compared on a small range of data sets such as the S&P 500
index (for example in Neumann and Skiadopoulos (2013) or Wilhelmsson (2013)).

In spite of its flexibility and popularity, this highlights two drawbacks to the MCS
approach. The first is that because the elimination process starts with the full collection
of models and gradually shrinks it down to the subset of models that forms the MCS, it
is not possible to add extra models to a collection ex post without having to rerun the
MCS procedure on the entire, larger, collection. It is therefore not possible to simply
update the confidence set with a few more candidate models, which is something that was
possible with White’s Reality Check, and which one might argue is desirable in view of the
many parallel exercises carried out using similar specifications on the same volatility data.
A second, related, drawback of the elimination process is that its time complexity and
memory requirements increase rapidly with the size of the model collection, thus making
it cumbersome to analyse large model collections.

This paper proposes an alternative approach to obtaining the MCS of a collection of
models which preserves the attractiveness and flexibility of the methodology while ad-
dressing the two potential drawbacks mentioned above. The intuition is that the iterative
process used to find the MCS can be reversed: rather than starting with the full col-
lection of models and shrinking it down the the subset of models that form the MCS, a
collection is initially made up of two models and MCS is gradually updated as models
are added to the collection. The MCS is obtained once all the models in the collection
are processed. Growing the collection of models rather than shrinking it intuitively allows
for further models to be added to the collection at a later point in time. Furthermore,
because only deviations of the new model with respect to the existing collection need to
be calculated and stored for each iteration, this reducing the time complexity of the MCS
procedure from O

(
M3

)
to O

(
M2

)
and the memory requirement from O

(
M2

)
to O (M).

This is confirmed by a Monte Carlo analysis carried out in order to validate this updating
approach.
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1 Introduction

Data snooping is a well-known problem which occurs when attempting to use a fixed

amount of data to identify the best predictor from a collection of models: as the number

of prediction models in the collection increases, the probability of accidentally selecting a

model with no real predictive power increases. As pointed out by Corradi and Swanson

(2013), the starting point of the literature on this issue is Diebold and Mariano (1995),

who provide a test for the null hypothesis that two prediction models have equal accuracy.

This test forms the basis of the “reality check” (RC) test for data snooping, proposed by

White (2000), which sequentially tests a collection of forecasts against a benchmark model

in order to test the null that no model in the collection outperforms the benchmark. The

data snooping bias incurred when sequentially testing different models on the same data is

avoided by the use of a bootstrap implementation. The procedure is improved by Hansen

(2005) with the test for superior predictive accuracy (SPA), which offers better protection

against the inclusion of irrelevant models into the collection.

A further generalisation is proposed by Hansen et al. (2011) in the form of the model

confidence set (MCS) procedure, which unlike the RC and SPA tests does not require an

a priori benchmark, therefore providing greater flexibility when no obvious benchmark is

available. Given a collection of model losses on a dataset, the MCS procedure sequentially

tests the null hypothesis that all models in the collection have equal predictive power

on the data and eliminates worst performing the model from the set if the hypothesis is

rejected. The next worst model is then tested and the process continues until the null

hypothesis can no longer be rejected. The surviving subset of models then forms the

MCS.1

Despite the relatively recent nature of the MCS procedure, it has rapidly become a

popular method of assessing the accuracy of volatility forecasts, leading to a large volume

of research. A few examples of this literature, which focus heavily on multivariate GARCH

forecasting methods, are Patton et al. (2009), Laurent et al. (2012), Amado and Teräsvirta

1Numerical implementations of the MCS procedure are available in the MULCOM package for Ox,
available at http://mit.econ.au.dk/vip_htm/alunde/MULCOM/MULCOM.HTM, in the MFE toolbox for Mat-
lab, available at https://www.kevinsheppard.com/MFE_Toolbox, and in a recent R package provided by
Bernardi and Catania (2014). This paper uses the MFE toolbox implementation as the reference, due to
its wide use in the literature.
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(2014), Hamid (2014), Caporin and McAleer (2014), Hansen et al. (2014). Boudt et al.

(2013) uses the MCS to assess the improvement in forecasting performance brought by

incorporating jumps into the standard GARCH forecasts, while Iltuzer and Tas (2013) uses

the full set of RC, SPA and MCS tests to evaluate the measurement of forecast accuracy.

In a different type of application, Neumann and Skiadopoulos (2013) and Wilhelmsson

(2013) who both use the MCS to evaluate density forecasts that integrate higher moments

beyond simple volatility, and both use the S&P 500 index to carry out their analysis.

An attractive aspect of the RC bootstrap implementation which is unfortunately lost

with the MCS procedure is the ability to perform incremental testing. As explained by

White (2000, p. 1110), a collaborative effort can be carried out by posting the boot-

strap indices, the values of the RC test statistic and bootstrapped test statistics, allowing

“researchers at different locations or at different times to further understanding of the

phenomenon modeled without needing to know the specifications tested by their collab-

orators or competitors”. Ferrari and Yang (2015, p.3) point out this is not possible with

the MCS, which “is meant to handle only a fixed and small number of models to begin

with”.

Given the large literature mentioned above, as well as the tight focus on multivariate

GARCH modeling of volatility and use of very similar stock or foreign exchange mar-

ket data, one could argue that it would be desirable to have a methodology that allows

researchers confront their findings. The related issue, pointed out by Ferrari and Yang

(2015) is the relative inability of the MCS implementation to deal with the large model

collections that would result from such a comparison exercise. Liu et al. (2015), for in-

stance, examine a collection of 600 different realised measures of asset price volatility in

an attempt to assess if these can outperform 5-minute realised variance, which is to the

author’s knowledge the largest collection used in a single MCS implementation. In a col-

laborative effort, this number would increase rapidly: Laurent et al. (2012) alone compare

125 models, and while other papers use much smaller collections, the cumulative amount

of specifications to test would be substantial.

This paper outlines and benchmarks an alternative algorithmic approach for determin-

ing the MCS of a collection of models which provides both a dramatic improvement in

performance on large collections and allows the possibility of updating the MCS ex post
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with further models. The intuition underpinning the approach is that rather than starting

with the full collection of models and shrinking it down the the subset of models that form

the MCS, the collection is initially made up of two models and MCS is gradually updated

as models are added to the collection. In this manner, only deviations of the new model

with respect to the existing collection need to be calculated and stored, rather than the

full set of pairwise deviations, thus reducing the computational complexity of the MCS

procedure by one polynomial order. Similarly, growing the collection of models rather

than shrinking it intuitively allows for further models to be added to the collection at a

later point in time.

The remainder of the paper is organised as follows: Section 2 describes the MCS

approach and the existing elimination algorithm. The updating algorithm for obtaining

the MCS is then presented in section 3 and the results of the benchmarking exercise are

detailed in section 4 before section 5 concludes.

2 The Model Confidence Set elimination implementation

Before presenting the proposed MCS updating implementation it is important to briefly

present the MCS approach and its existing implementation. The notation used below

broadly follows Hansen et al. (2011), with a few modifications: n is used to index the

N observations available in the data. Similarly, b will be used to index the B bootstrap

resamples. The indexing notation for the M models to be compared is slightly more

complex: i, j are used where necessary to index the models used in the calculation of the

test statistics, while m is used specifically to identify the model examined in the current

iteration of an algorithm.

The MCS procedure rests on the combination of an equivalence test statistic and an

elimination rule, which are used to test the null hypothesis that all models currently in

the set have equivalent loss, and to identify which model needs to be excluded should

the null be rejected. The MCS is very a general approach in that many combinations of

tests and rules can be chosen, however the focus here will be on the range rule (R), which

(a) is typically used in existing MCS implementations and (b) possesses those interesting

properties, discussed in section 3, which allow for fast updating to be performed.
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Under the R rule the MCS procedure requires an N ×M set of losses L, in order to

calculate the mean loss di,j of model i relative to model j:2

di,j =
1

N

∑
n
(Ln,i − Ln,j) (1)

These are used to calculate the following set of t-statistics under the null hypothesis

that all pairwise deviations are zero-valued, i.e.H0 : di,j = 0. The variance v̂ar (di,j) is

estimated using a bootstrapping procedure explained further below, using B resamples of

the loss data L.

ti,j =
di,j√

v̂ar (di,j)
(2)

The R rule uses the following equivalence test statistic and elimination rule, which

identifies the worst-performing model as the one having the largest pairwise t-statistic ti,j,

i.e. the one that has the highest average loss relative to any other model still in the set.

Tm = max
i∈M

max
j∈M

|ti,j| em = argmax
i∈M

sup
j∈M

ti,j (3)

As stated above, a bootstrapping procedure is used to test null hypothesis that all M

models are in the MCS. Using a set ofN×B bootstrap indexes B allows us to generate B re-

sampled loss matrices Ln,m,b and pairwise deviation matrices δi,j,b = meann (Ln,i,b − Ln,j,b),

which in turn provide the following bootstrapped t-statistics:3

τi,j,b =
δi,j,b − di,j√
varb (δi,j,b)

(4)

These can be used to generate the bootstrapped distribution of t-statistics and p-values

as follows, where I(. . . ) is the boolean indicator function:

2The choice of loss function to use is important for model selection, and the effect of that choice on the
MCS procedure is discussed in Laurent et al. (2013). As is the case in Kevin Sheppard’s MFE toolbox,
however, we simply assume that a set of losses is available for the model forecasts.

3The implementation uses the bootstrap scheme proposed by Hansen et al. (2011) for reasons of com-
parability, however, alternative mechanisms such as the Politis and Romano (1994) stationary bootstrap
can also be used.

6



Tm,b = max
i∈M

max
j∈M
|τi,j,b| Pm =

1

B

∑
b
I (Tm,b ≥ Tm) (5)

If Pm > α then all remaining models are deemed to be part of the MCS at con-

fidence level 1 − α. If this is not the case, the null is rejected and em can be elim-

inated. It is important to point out that the MFE toolbox implementation, which is

used as the benchmark, uses the following elimination rule where di =
∑

j∈M di,j and

δi,b = meanj∈Mmeann (Ln,i,b − Ln,j,b) are average of the relative mean losses (1) over all

the other models j still in the collection:

em = argmax
i∈M

di√
varb (δi,b)

(6)

As pointed out in Hansen et al. (2011, p. 466), (6) is actually the elimination rule

used for the ‘max’ test statistic. However, the MFE toolbox implementation still uses test

statistic (3) and critical values (5), and section 4 shows that this change in elimination rule

makes little difference in the power of the procedure in practice. For the sake of clarity,

rule (6) we will be referred to as the Rmax rule in section 4.

Equations (1)-(5) form the basis of the elimination algorithm 1 for determining the

MCS of a set of candidate models, presented in appendix A. Starting with the full set of

candidate modelsM , each iteration m identifies the worst model em and corresponding test

statistic Tm using the elimination rule (3) and calculates the bootstrapped distribution

and p-value (4). If the null hypothesis is rejected at the 1 − α level, the model em is

removed from the set and the algorithm proceeds to the following iteration. This process

continues until the null hypothesis ceases to be rejected. The elimination sequence can be

stored in a vector e, which lists the models in the order in which they are are eliminated.

This provides the ranking of the candidate models from worst to best in terms of their

test statistic Ti. The reverse ranking of models (best to worst), which will be required

later, is defined as r.

Each iteration of the R rule elimination algorithm requires finding the maximum value

of the matrices of true and bootstrapped t-statistics ti,j and τi,j,b. Given that the number

of models in the confidence set starts at M and shrinks by one in each iteration, the total
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number of operations required is proportional to the square pyramidal number
∑M

i=1 i
2,

which implies a time complexity of O(M3). Similarly, the implementation requires storing

the bootstrapped t-statistics τi,j,b in a M ×M × B array, leading to a O(M2) memory

cost.

3 A fast updating implementation for the R elimination rule

The proposed updating implementation takes advantage of two important properties of-

fered by the R rule (3) to improve both the time complexity and memory requirement of

finding the MCS. The first is that the values of the pairwise t-statistics ti,j and τi,j,b un-

derpinning Tm, em and Tm,b are independent of the order e1, e2, ..., eM in which models are

eliminated, which is visible from the fact that in algorithm (1) both can are pre-computed

before the start of the iterative elimination procedure. As models are eliminated from

the MCS, Tm and Tm,b are drawn from successively smaller sub-matrices of the initial

set of ti,j and τi,j,b statistics. Conceptually, this means that these initial sets of pairwise

t-statistics for M models can themselves be considered as the submatrices of a larger set

of M+1 models. This opens the door to the possibility of growing and updating the MCS

as models are added rather than shrinking the MCS as models are eliminated.

The second property is that by construction the matrix of t-statistics (2) and (4) are

skew symmetric, with ti,j = −tj,i and τi,j,b = −τj,i,b. This implies that when an additional

model m is added to the comparison set, only the vector of t-statistics pertaining to the

deviations from m need be stored and processed rather than the full matrix of pairwise

statistics. As will be shown below, this is what enables the reduction of both the time

complexity and memory requirements by one polynomial degree.

3.1 Updating the equivalence test and elimination rule

The first task that needs to be carried out is to update the test statistic and elimination

rule (3) as the set of candidate models increases from 2 to M , in order to produce the

entries of the elimination vector ei and corresponding test statistics Ti. This is done by

initialising the vector of test statistics with Ti = 0 ∀ i, then for m = 2→M , calculating

the m-length vector of t-statistics ti from the deviations di = meann(Ln,i − Ln,m) of all
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past models i from the the current model m. This vector is used to update the test

statistics Ti as follows:





Tm = max
i

(−ti) s.t. − ti∗ > Ti∗

Ti = max (Ti, ti) ∀ i < m : ti > Tm

(7)

The first part of the rule uses the fact that tj,i = −ti,j to identify the maximum t-

statistic of current model m against the models that have already been processed. The

constraint that −ti∗ > Ti∗ ensures that model i∗, against which the maximum statistic

for m is obtained, is itself ranked better than m and would therefore still be included in

the set of models under the elimination rule (3). The second rule updates the t-statistics

of the m − 1 previously processed models. Again, the condition ti > Tm ensures that

only those models ranked worse then the current model m can be updated with pairwise

t-statistics calculated with respect to it, as under the elimination rule (3) these statistics

would no longer be included in the set once m is eliminated.

Once all M models have been processed using the updating rules (7), the entries in

the resulting vector T contain the largest deviation of a model i with respect to all the

other j models ranked batter than itself, i.e. Ti = max
j∈M

ti,j. Sorting the test statistics

Ti from largest to smallest value provides the elimination order e for the M models, or

equivalently sorting from smallest to largest provides the model rankings r, which will

play an important role in the updating of the the bootstrapped distribution below.

e, r ← sortindex (Ti) (8)

For a given set of N ×M losses L and boostrap indices B, this updating procedure will

provide the same rankings ri and test statistics Ti as those obtained using the R rule (3) in

the elimination algorithm 1. A similar updating scheme can be used to obtain the second

element required for the MCS procedure, the bootstrapped distribution of t-statistics (5).

3.2 Updating the bootstrapped distribution

Updating the bootstrapped distribution (5) is more complicated than updating the rank-

ings, as in certain circumstances the value of Tm,b = maxi∈M maxj∈M |τi,j,b| can fall as the
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rankings are updated using (7). In order to help illustrate this issue and the updating rules

required to get around it, a simple example of the updating process for the bootstrapped

distribution Tm,b for a given bootstrap replication b is provided in figure 1, which shows

a situation where the vector of t-statistics τi,m from model m = 6 (in light grey) is added

to an existing collection of five models.

Supposing for the moment that the sixth model enters the rankings without disturbing

them, as shown in figure 1, then only two simple sets of updating rules are required. The

first initialises a bootstrapped distribution Tm,b for the new model m, and the second

updates the existing bootstrapped distributions of those past models ranked worse than

m (models 1,3 and 5 here)4

0

0

0

0

0

0

1

2

3

4

5

6

1 2 3 4 5 6

× ×

×

† † †
Rankings r

M = 5

M = 6

2 4 1 3 5

2 4 6 1 3 5

Figure 1: Updating rule for bootstrapped t-statistics

The first set of rules (9) creates a distribution Tm,b for the new model m. Let k be the

ranking of the current model m, such that rk = m. If the if the current model is ranked

best (k = 1), one sets Tm,b = 0 ∀ b and if k > 1 the bootstrapped distribution (5) is

initialised as such:





τmax
b = maxi∈{r1,...,rk} |τi,b|

Tm,b = max
(
τmax
b ,Trk−1,b

) ∀ b (9)

In figure 1, the possible locations of Tm,b = maxi∈Mmaxj∈M |τi,j,b| for m = 6 and

M = {2, 4, 6} are marked with a ‘×’ symbol.5 The first part of the rule defines τmax
b as

the vector of running maxima of τi,m over the B bootstrap resamples, and in figure 1 this

identifies which of the two ‘×’ locations in the sixth column is largest. The second part of

4It should be obvious from the elimination rule (3) that the bootstrapped distributions Ti,b of those
models ranked better than m do not require updating, as once m is eliminated from the confidence set,
the information in τi,m is discarded.

5Because the B |τi,j,b| matrices are symmetric, the information in the dark grey area can be discarded.
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the rule then selects T6,b as the largest of either τmax
b itself, or of T4,b, which is available

in the white ‘×’ location.

The second set of rules is used to update the distributions Ti,b of the set of m − k

models that are ranked worse than the current model, i.e. i ∈ {rk+1, ..., rm}. For the case

of model 1 in figure 1, this involves incorporating the τi,j values indicated with the ‘†’

symbol. The first part of the rule updates the running maxima over τi,m by taking the

maximum of either τmax
b or the grey ‘†’ and the second part of the rule then compares the

value of the updated τmax
b the the existing value of T1,b, which is already the maximum

over the white ‘×’ and ‘†’ locations.





τmax
b = max

(
τmax
b , |τrk+i,b|

)

Trk+i,b = max
(
τmax
b ,Trk+i,b

) ∀ b (10)

Unfortunately, in general when the mth model enters the rankings in kth place, relative

rankings in the set of worse models {rk+1, ...rm} can change. As an example, suppose now

that the introduction of model 6 in figure (1) switches the ranking of the three worse

models as follows: 1, 3, 5→ 5, 3, 1. In the following discussion this will be refereed to as a

‘ranking swap’. When this happens the second set of updating rules (10) will not produce

the correct outcome, as the existing bootstrapped distributions Trk+i,b no longer correctly

reflect the model rankings prior to being updated with the current model. In our example

for instance, T1,b will tend to be undervalued: in the 5th iteration it was calculated on the

basis of M = {2, 4, 1}, however because model 1 is now ranked last, T1,b should reflect

information from the full set of modelM = {2, 4, 5, 3}. Conversely, T5,b will be overvalued,

having used taken the maximum of τi,j over the full set of 5 models instead of the more

restricted setM = {2, 4, 5}.

Two strategies are proposed to get around ranking swaps without having to incur

the time cost of recalculating the full pairwise bootstrapped distributions every time one

occurs. The first is based on the observation that ranking swaps only affect worse ranked

models, and are therefore not an issue if the current model always enter rankings in last

place. In such a case, only the updating rule for the current model (9) needs to be used, as

there are no worse models to update. This forms the basis of the fast updating algorithm

2, which calculates the model rankings (7) over the full collection of models in a first pass

11



before updating the bootstrapped distributions in a second pass, relying on the rankings

obtained in the first pass to process the models from best to worst.

The fast updating algorithm 2 is designed to produce exactly the same result as the

elimination algorithm 1 for a given set of losses L and bootstrap indices B.6 Importantly,

however, each of the M iterations now only requires finding the maximum of the true and

bootstrapped vectors of t-statistics ti and τi,b with respect to the current model m rather

than the full matrices of pairwise statistics ti,j, τi,j,b for all models i and j still in the

confidence set. The total number of operations required is therefore proportional to the

triangular number
∑M

i=1 i, which leads to a smaller theoretical time complexity of O(M2).

Because there is now no need to store the full set of pairwise bootstrapped t-statistics τi,j,b,

the memory requirement is essentially dominated by the B×M bootstrapped distribution

for each model Ti,b, leading to a linear O(M) memory requirement.

3.3 Enabling incremental testing

While algorithm 2 allows for faster comparison and larger model sets than the elimination

version 1, the fact it requires two passes on the Loss data to get around the problem of

ranking swaps means it will also suffer from the same problem as the elimination algorithm

1, in that it cannot easily update a previously calculated MCS. Should one wish to add a

handful of models to a previously processed collection of models, one would have no choice

but to re-run the entire procedure on the larger collection.

The second strategy proposed for dealing with ranking swaps when updating the boot-

strapped distribution uses a heuristic which specifically allows for such incremental updat-

ing of model collections. This heuristic, which forms the basis of the incremental algorithm

3, is based on the fact that while the updating rules (9) and (10) cannot identify the true

value of Ti,b when a ranking swap occurs they can be modified to generate a reliable interval

for the value, thus providing a ‘best guess’ for Ti,b.

In practice, once the model rankings have been updated using (7) the algorithm iden-

tifies the location of any ranking swaps amongst models that are ranked worse than the

current model m = rk, i.e. {rk+1, ...rm}. If none have occurred, then rule (10) can safely

6This is illustrated in a demonstration file (demo_update.m) provided in the supplementary material,
which compares the output of the elimination and updating algorithms for identical losses and bootstrap
indices.
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be applied on all models. If some ranking swaps have occurred, the swap range is identified

as the location of the first affected model up to the location of the last affected model.

Rule (10) is applied on those models outside the affected range and the heuristic rule (11)

below is applied to those within the range.





τmax
b = max

(
τmax
b , |τrk+i,b|

)

T rk+i,b
= max

(
τmax
b ,Trk+i−1,b

)

T rk+i,b = max
(
T rk+i,b

,Trk+i,b

)
∀ b (11)

The first part of the rule simply updates the running maximum τmax
b over the τi,b

bootstrapped t-statistics, as was the case for updating rules (9) and (10). The second part

corresponds to (9) and treats model rk+i as if it were a new addition to the collection, by

disregarding the existing (and incorrect) value of Trk+i,b. Because this information is not

included, the procedure either produces the correct value (if it happens that the maximum

is in fact located in τmax
b ) or an incorrect but lower value that can be used as a lower

bound for the heuristic. The third part corresponds to (10) combined with a constraint

that under rule (5) the values of the bootstrapped distribution Ti,b cannot decrease as the

models get worse. This can be written as T rk+i,b = max
(
Trk+i−1,b, τ

max
b ,Trk+i,b

)
, which

can be rearranged into the specification in (11) to generate the upper value for the interval.

The updated value for the bootstrapped distribution of each model is then simply set to

the midpoint of the interval, i.e. Trk+i,b =
1
2

(
T rk+i,b + T rk+i,b

)
.

This heuristic is unable to systematically find the true value of Trk+i,b for those models

rk+i, affected by a ranking swap, nevertheless it should provide good performance. The

main reason is that the updating of the bootstrapped distributions is an iterative process

and ranking swaps will not systematically affect all models on any given iteration, therefore

all that is required is that the heuristic track the true value of Trk+i,b for models affected

by ranking swaps well enough to ‘patch the gap’ so that they can be correctly updated by

(10) in those later iterations where they are unaffected. The heuristic (11) will occasionally

provide the correct value7 and is also anchored to the true Trk+i,b values either side of the

range of ranking swaps by the use of the correct rule (10). Combined with the fact that (11)

provides values of Trk+i,b that are non-decreasing in model rankings rk+i, as required by

7This will happen in (11) when the true value is located in τ
max
b and T rk+i,b

> Trk+i,b in the third line.
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(5), the heuristic is expected to provide this good tracking performance. Finally, because

the heuristic (11) produces a value equal to, smaller, or larger than the correct value of

Trk+i,b, the bootstrapped nature of the MCS procedure also ensures that when averaged

over B resamples, the p-values (5) are close to the correct ones even when models affected

by ranking swaps are not subsequently updated.

The use of the heuristic (11) enables each model to be processed in a single iteration,

resulting in the incremental algorithm 3, in appendix. The main implication of this single-

pass updating is that the MCS procedure need not be carried out in one go: a subset of the

full collection can be processed at a given point in time, with the rest of the models added

later on.8 As is the case for the White (2000) RC test, this theoretically allows for collab-

orative research and incremental testing of models. As for the RC test, some information

needs to be made available for this to be possible. Specifically, researchers attempting to

compare their models to a pre-existing collection would require the corresponding model

losses L, bootstrap indices B (or equivalently the seed of a random number generator if

the bootstrap method is known), the test statistics T and the bootstrap distributions T .

4 Monte Carlo benchmarking

A series of benchmarking exercises are carried out on the algorithms 1 - 3 in order to

confirm that their time complexity and memory costs are in line with what is expected, as

well as to check that their power corresponds to the findings of Hansen et al. (2011).9 In

order to ensure comparability, the Monte Carlo framework follows the one used in Hansen

et al. (2011). A synthetic N ×M matrix of losses L is generated as follows:

Ln,i = θi +
an√
E (a2n)

Xn,i (12)

Where the individual components are given by:

8An illustration is provided in the demonstration file demo_increment.m in which a collection of models
is processed in two separate runs, with the MCS outcome being compared to that of algorithm 2.

9All the benchmarking work was carried out on a 32-worker cluster made up of 8 machines with the
following specifications: An ASUS B85M-G motherboard with a Core i5 4670 (3.40GHz) processor and
16 GB (DDR3 - 1600 MHz) of memory. The MATLAB code used is available as supplementary material
from the author.
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Figure 2: MCS implementation benchmarking





θi =
λ√
N

(
0, 1

M−1 , ...,
M−2
M−1 , 1

)

an = exp (yn)

yn = − ϕ
2(1+ϕ) + ϕyn−1 +

√
ϕεn

(13)

The free parameters are λ, which controls the dispersion of the mean loss θi of a

given model, ρ which controls the degree of correlation of losses across models and ϕ

which allows for the possibility of conditional heteroskedasticity in the losses. The two

stochastic elements are Xn,i ∼
iid

NM (0,Σ), where the diagonal elements of the variance

covariance matrix Σ are equal to one, with all the off-diagonal elements set to ρ ∈ [0, 1]

and εn ∼
iid

N(0, 1). Finally, each time a loss matrix is generated using (12) and (13) the M

columns are randomly shuffled in order to ensure that models are not processed in order

of worsening performance. This is important for testing the heuristic (11), as the ranking

swaps which can affect the bootstrapped distribution do not occur if models are processed

from best to worse.

The first Monte Carlo exercise is a simple replication of the Hansen et al. (2011, p.

478) symmetric loss setting, which aims to establish that the Rmax elimination algorithms

from the MFE toolbox and the R elimination algorithm 1 have the expected power and

size, and have therefore been implemented correctly. The choice of parameters is therefore

similar to Hansen et al. (2011), in that we set M = 100, N = 250, λ ∈ {5, 10, 20, 40},
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ρ ∈ {0, 0.5, 0.75, 0.95}, ϕ ∈ {0, 0.5, 0.8} with a bootstrap block of l = 2 with B = 1000

resamples. Table 1 in appendix B shows that the MFE toolbox and algorithm 1 imple-

mentations of the MCS replicate the size and power characteristics in table (II) of Hansen

et al. (2011). While the MFE toolbox Rmax rule (6) has slightly more power than the R

rule (3) on models with low dispersion λ and low correlation ρ, their general performance

is comparable.

The main benchmarking exercise is carried out by measuring the running time and

memory requirements of algorithms 1 - 3 for 32 values of M such that log10(M) is evenly

spaced over [2, 4] with N , l and B unchanged. The values of λ, ρ and φ do not matter here

as for the purpose of comparing the worst case runtime performance all three algorithms

examine all M models regardless of their accuracy. Figure 2 shows the average running

time and memory consumption over 32 separate runs. As expected, the time complexity

of the R rule elimination algorithm 1 is O
(
M3

)
, with a memory requirement of O

(
M2

)
.

In fact, as is visible in figure 2 this exercise had to be stopped at M = 690 models for

algorithm 1, as by this point the 3.6 GB memory requirement was reaching the maxi-

mum manageable level of 4 GB per cluster worker.10 It also confirms that the updating

algorithms 2 and 3 both have O
(
M2

)
time complexity and O (M) memory requirement.

Finally, as expected, because the incremental algorithm 3 only requires a single pass on

the loss data Ln,m, it is slightly faster than the updating algorithm 2 which requires one

pass to establish the rankings r and another to obtain the bootstrapped distribution T .

The final exercise evaluates the power of the updating algorithms on large scale model

comparisons, with M ∈ {1000, 2500, 5000}, in order to ensure that the effectiveness of the

R rule remains when the size of model collections become increasingly large. Because of

the increased time required for running 1000 Monte Carlo replications of these large model

collections, the parameter space is reduced to λ ∈ {10, 20, 40}, ρ ∈ {0.5, 0.75, 0.95} with

ϕ = 0.5. The bootstrap settings remain the same with l = 2 and B = 1000, as does the

number of observations N = 250. The results of this analysis, shown in table 2, confirm

that the size test is unaffected and that although the power of the R rule falls slightly

as collection size increases, as expected, the values of the test remain comparable to the

10Larger values of M could have been run by using virtual memory to supplement the RAM but the
resulting paging would have biased the measurement of the time complexity.
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corresponding entries in table 1. A second result of interest is that the power statistics of

the updating algorithm 2 and the incremental algorithm 3 are very similar. Furthermore,

the mean difference in p-values across the algorithms is around 10−3 and is smaller in

magnitude than the standard deviation of the difference in p-values, suggesting that the

heuristic updating rule (11) is reliable, even when models are processed in a completely

random order.

5 Conclusion

The main result of this paper is that one can obtain the confidence set of a collection

of models using the R rule with an updating approach that has a smaller time complex-

ity and memory requirement than the existing elimination approach, allowing for faster

comparisons and larger collections. The first proposed version of the methodology is a

two-pass algorithm that replicates exactly the elimination implementation of the R rule

for a given set of bootstrap indices, but offers one polynomial order less time and memory

cost. As an illustration of the resulting performance gain, finding the MCS of a collec-

tion of models similar to Liu et al. (2015) (600 models) using their bootstrap settings

takes the elimination implementation 5.5 minutes and requires 2.75 GB of memory. The

fast updating algorithm can carry out the same task in 28 seconds with only 53.5 MB

of memory. Pushing the comparison to the extreme, finding the MCS of a collection of

5000 models would take the fast algorithm around 15 minutes using 200 MB of memory,

while extrapolating from the O
(
M3

)
time complexity and O

(
M2

)
memory requirement

suggests the elimination algorithm would require 53 hours and an untractable 186 GB to

provide the same result.

Because large model collections would probably result from a gradual accretion over

time, as newly developed models or forecasts are compared to past methods, a second ver-

sion is proposed which allows for incremental and collaborative testing. This is achieved

by using a single-pass algorithm in which model rankings and p-values are updated si-

multaneously when a model is added to the collection. While this single pass incremental

version allows ex post updating and is faster than the two-pass updating algorithm, it does

come at the cost of ability to replicate exactly the p-values of the elimination algorithm
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for a given set of bootstrap indices. This is because the ranking of the existing models

in the collection can change when new models are added, requiring the use of a heuristic

in order to be able to update the bootstrapped distribution of t-statistics. The Monte-

Carlo analysis confirms that this heuristic performs well, providing very similar p-values

to the updating algorithm, suggesting that this tradeoff between exact replication of the

elimination algorithm and the ability to add models ex post is acceptable.

Finally, given the order of magnitude gap in the collection sizes used in this paper

compared to those in the existing literature, and given that the time and memory costs

of the elimination algorithm are perfectly acceptable for small to medium collections, it

is important to comment on the practical usefulness of these updating algorithms. The

first and immediate benefit is of course the gain in speed illustrated above. The wider

aspiration, similar to what was suggested by White (2000) for the reality check, is to

facilitate future collaborative efforts over very large scale model collections. While clearly

there are other obstacles to such large scale collaborative efforts, providing a methodology

that enables these efforts in the first place is an important step.
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A Algorithms

Algorithm 1 MCS elimination algorithm with R rule

Require: L: N ×M matrix of losses
Require: B: N ×B matrix of bootstrap indexes
Require: α: cutoff criterion of the MCS

Part 1: preprocess data
1: L ← L (B) ⊲ Bootstrap resamples
2: di,j ← meann (Ln,i − Ln,j) ∀ i, j
3: δi,j,b ← meann (Ln,i,b −Ln,j,b) ∀ i, j, b
4: ti,j ← di,j/

√
varb (δi,j,b)

5: τi,j,b ← (δi,j,b − di,j) /
√

varb (δi,j,b) ⊲ δ can be deleted

Part 2: iterative elimination
6: for m = 1→M − 1 do

7: T ← maxi∈Mmaxj∈M |ti,j| ⊲ Get test statistic
8: em ← argmaxi∈M supj∈M ti,j ⊲ Identify worst model
9: Tb ← maxi∈Mmaxj∈M |τi,j,b| ∀ b ⊲ Bootstrapped statistic

10: Pm ← max (
∑

b (Tb > T ) /B,Pm−1) ⊲ Non-decreasing p-values
11: M←M\ em ⊲ Remove worst model
12: end for

13: m∗ ← argminm (Pm > α)
14: Mexcl ← {e1, e2, ..., em∗} ⊲ Excluded models
15: M1−α ← {em∗+1, em∗+2, ..., eM} ⊲ Confidence set

return P ,Mexcl,M1−α
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Algorithm 2 MCS fast updating algorithm with R rule

Require: L: N ×M matrix of losses
Require: B: N ×B matrix of bootstrap indexes
Require: α: cutoff criterion of the MCS

Pass 1: update rankings
1: for m = 2→M do

2: di ← meann (Ln,i − Ln,m) ∀ i ≤ m
3: Li,b ← Li (B) ⊲ Bootstrap resamples
4: δi,b ← meann (Li,b − Lm,b) ∀ b, i ≤ m
5: ti ← di/

√
varb (δi,b)

6: Tm ← maxi (−ti) s.t. − ti∗ > Ti∗
7: Ti ← max (Ti, ti) ∀ i < m : ti > Tm

8: end for

9: r ← sort (T ) ⊲ Sort best to worst
10: e← sort (T ) ⊲ Sort worst to best

Pass 2: update distributions
11: for m = 2→M do

12: δi,b ← meann (Li,b − Lm,b) ∀ b, i ≤ m
13: τi,b ← (δi,b − di) /

√
varb (δi,b) ∀ b, i ≤ m

14: τmax
b ← maxi≤m |τi,b| ∀ b ⊲ Current maximum

15: Tm,b ← max
(
Trm−1,b, τ

max
b

)
∀ b ⊲ Update statistic

16: end for

17: Pi ←
∑

b (Ti,b > Ti) /B ∀ i ⊲ Get p-values
18: m∗ ← argminm (Pm > α)
19: Mexcl ← {e1, e2, ..., em∗} ⊲ Excluded models
20: M1−α ← {em∗+1, em∗+2, ..., eM} ⊲ Confidence set

return P ,Mexcl,M1−α, T (optional), T (optional)
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Algorithm 3 MCS incremental updating algorithm with R rule

Require: L: N ×M matrix of losses
Require: B: N ×B matrix of bootstrap indexes
Require: α: cutoff criterion of the MCS
Require: T0: M0 vector of previous scores (optional)
Require: T0: B×M0 matrix of previous bootstrapped statistics (optional)

1: if M0 = 0 then

2: ρ← 1 ⊲ Initialise past ranking
3: else

4: ρ← sort (T ) ⊲ Sort past models best to worst
5: end if

6: for m = M0 + 1→M do

7: di ← meann (Ln,i − Ln,m) ∀ i ≤ m
8: Li,b ← Li (B) ∀ b, i ≤ m ⊲ Bootstrap resamples
9: δi,b ← mean (Li,b −Lm,b) ∀ b, i ≤ m

10: ti ← di/
√

varb (δi,b)
11: Tm ← maxi (−ti) s.t. − ti∗ > Ti∗
12: Ti ← max (Ti, ti) ∀ i < m : ti > Tm

13: r ← sort (T ) ⊲ Sort best to worst

14: k, s← compare(ri, ρi) ⊲ Get rank of m & swap range

15: τi,b ← (δi,b − di) /
√

varb (δi,b) ∀ b, i ≤ m
16: τmax

b ← maxi∈{r1,...,rk} |τi,b| ∀ b ⊲ Current maximum
17: Tm,b ← max

(
Trk−1,b, τ

max
b

)
∀ b ⊲ Statistics for current model

18: for j = k + 1→ m do

19: τmax
b ← max

(
τmax
b , |τrj ,b|

)
∀ b ⊲ Update running maximum

20: if sj = 1 then ⊲ In the swap range
21: T rj ,b

← max
(
τmax
b ,Trj−1,b

)
∀ b ⊲ use heuristic

22: T rj ,b ← max
(
T rj ,b

,Trj ,b
)
∀ b

23: Trk+j,b ← 0.5×
(
T rj ,b

+ T rj ,b

)
∀ b

24: else

25: Trj ,b ← max
(
Trj ,b, τmax

b

)
∀ b ⊲ Normal updating

26: end if

27: end for

28: ρ← r ⊲ Save rankings
29: end for

30: e← sort (T ) ⊲ Sort worst to best
31: Pi ←

∑
b (Ti,b > Ti) /B ∀ i ⊲ Get p-values

32: m∗ ← argminm (Pm > α)
33: Mexcl ← {e1, e2, ..., em∗} ⊲ Excluded models
34: M1−α ← {em∗+1, em∗+2, ..., eM} ⊲ Confidence set

return P ,Mexcl,M1−α, T (optional), T (optional)
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B Monte Carlo benchmarking

Table 1: Monte Carlo analysis of MCS elimination algorithms

ρ, Rmax elimination rule ρ, R elimination rule

λ 0 0.5 0.75 0.95 0 0.5 0.75 0.95

ϕ = 0

Size test: frequency at whichM∗ ∈ M̂90%

5 1.000 0.997 0.999 0.994 1.000 0.998 1.000 0.994
10 0.996 0.997 0.993 0.994 0.997 0.997 0.993 0.994
20 0.997 0.998 0.996 0.996 0.997 0.998 0.996 0.996
40 0.992 0.992 0.994 1.000 0.992 0.992 0.994 1.000

Power test: Average number of models in M̂90%

5 74.875 53.517 37.852 16.412 77.717 55.651 39.042 16.593
10 37.154 26.214 18.390 8.041 38.389 26.758 18.618 8.057
20 18.556 12.880 9.068 3.928 18.807 12.994 9.099 3.929
40 8.937 6.066 4.283 1.979 8.974 6.071 4.283 1.979

ϕ = 0.5

Size test: frequency at whichM∗ ∈ M̂90%

5 0.997 0.996 0.992 0.997 1.000 0.998 0.997 0.998
10 0.998 0.991 0.990 0.993 1.000 0.995 0.993 0.993
20 0.998 0.996 0.995 0.995 1.000 0.997 0.995 0.995
40 0.996 0.992 0.995 0.998 0.998 0.992 0.995 0.998

Power test: Average number of models in M̂90%

5 64.522 47.100 33.215 15.257 74.313 53.053 36.539 15.931
10 33.597 23.832 16.741 7.634 37.192 25.673 17.651 7.790
20 16.805 12.094 8.489 3.810 17.830 12.475 8.668 3.819
40 8.505 5.880 4.243 1.974 8.708 5.934 4.256 1.976

ϕ = 0.8

Size test: frequency at whichM∗ ∈ M̂90%

5 0.975 0.982 0.992 0.993 1.000 1.000 1.000 1.000
10 0.986 0.984 0.992 0.995 1.000 1.000 0.999 0.997
20 0.994 0.993 0.991 0.994 0.999 0.999 0.995 0.994
40 0.998 0.995 0.997 1.000 0.999 0.995 0.997 1.000

Power test: Average number of models in M̂90%

5 45.283 33.626 25.934 13.065 64.170 45.117 32.441 14.723
10 25.025 18.837 14.060 6.762 31.926 22.639 16.038 7.149
20 13.651 10.217 7.265 3.447 15.997 11.310 7.770 3.505
40 7.461 5.168 3.925 1.907 7.936 5.416 4.025 1.913

The size and power averages are calculated over 1000 Monte Carlo replications.
The Rmax elimination rule (6) is the method provided in the MFE toolbox, while the
R rule corresponds to (3).
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Table 2: Monte Carlo analysis of fast algorithms on large scale collections

ρ, M = 1000 ρ, M = 2500 ρ, M = 5000

λ 0.5 0.75 0.95 0.5 0.75 0.95 0.5 0.75 0.95

Updating algorithm

Size test: frequency at whichM∗ ∈ M̂90%

10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
20 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
40 1.000 0.998 0.998 1.000 1.000 1.000 1.000 1.000 0.999

Power test: Average number of models in M̂90% as a percentage of M

10 27.952 19.482 8.634 28.570 19.984 8.719 28.830 20.207 8.933
20 13.721 9.574 4.199 14.061 9.885 4.332 14.302 10.015 4.412
40 6.654 4.726 2.056 6.872 4.812 2.101 7.039 4.958 2.160

Incremental algorithm

Size test: frequency at whichM∗ ∈ M̂90%

10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
20 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
40 1.000 0.998 0.998 1.000 1.000 1.000 1.000 1.000 0.999

Power test: Average number of models in M̂90% as a percentage of M

10 28.003 19.505 8.618 28.651 20.043 8.735 28.913 20.268 8.958
20 13.720 9.562 4.175 14.097 9.902 4.328 14.341 10.041 4.420
40 6.637 4.701 2.029 6.880 4.810 2.090 7.057 4.967 2.157

Heuristic diagnostics

Mean difference in bootstrapped P-values (×10−3)

10 1.592 0.993 0.088 1.671 1.266 0.505 1.495 1.144 0.537
20 0.466 0.174 −0.182 0.817 0.570 0.102 0.825 0.566 0.234
40 −0.014 −0.184 −0.197 0.351 0.140 −0.061 0.425 0.265 0.057

Standard deviation of differences in bootstrapped P-values (×10−3)

10 2.582 1.910 0.797 2.000 1.811 0.914 1.626 1.331 0.743
20 1.293 0.880 0.367 1.315 1.005 0.397 1.146 0.795 0.408
40 0.545 0.337 0.200 0.783 0.450 0.149 0.636 0.473 0.207

The size and power averages are calculated over 1000 Monte Carlo replications.
For the power tests, the number of models in M̂90% is normalised by M to make the
numbers comparable to table 1.
The third section provides the mean and standard deviations of the difference between
the bootstrapped P-values of the fast and incremental algorithms 2 and 3.
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