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Abstract

The problem of weak instruments is due to a very small concentration parameter. To

boost the concentration parameter, we propose to increase the number of instruments

to a large number or even up to a continuum. However, in finite samples, the inclusion

of an excessive number of moments may be harmful. To address this issue, we use

regularization techniques as in Carrasco (2012) and Carrasco and Tchuente (2013). We

show that normalized regularized 2SLS and LIML are consistent and asymptotically

normally distributed. Moreover, their asymptotic variances reach the semiparametric

efficiency bound unlike most competing estimators. Our simulations show that the

leading regularized estimators (LF and T of LIML) work very well (are nearly median

unbiased) even in the case of relatively weak instruments. An application to the effect

of institutions on output growth completes the paper.
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Non-technical summary

The identification of coefficients on endogenous variables in linear structural equa-

tions is achieved using instrumental variables that are assumed to be correlated with

the right hand side endogenous variables (strong) and uncorrelated with the structural

error (valid). However, when instruments are weak, when the correlation between the

instrument and the endogenous variable is low, conventional estimation procedure can

be misleading.

The problem of weak instruments is due to a very small concentration parameter.

The concentration parameter is a measure of the strength of the instruments. To boost

the concentration parameter, we propose to increase the number of instruments to a

large number. An excessive number of moments may induce a bias. The effect of the

number of instruments is mitigated by using regularization techniques.

In the many weak instruments framework, we show that normalized regularized

2SLS and limited information maximum likelihood (LIML) are consistent and asymp-

totically normally distributed. Moreover, their asymptotic variances are smaller than

most competing estimators. A Monte Carlo experiment shows that the leading regu-

larized estimators (Tikhonov and Landweber-Fridman of LIML) work very well (are

nearly median unbiased) even in the case of relatively weak instruments.

An application to the effect of institutions on output growth completes the paper.

Hall and Jones (1999) argue that the difference between output per worker across

countries is mainly due to the differences in institution and government policies - the

so-called social infrastructure. They used some instruments for social infrastructure

that are weak (see Dmitriev (2013)). To address this issue, we increased the number of

instruments from 4 to 18. Our finding confirms the causal liked between social capital

and output growth. The use of many instruments first increase the bias. When the

regularization is introduced, this bias shrinks.

2



1 Introduction

The problem of weak instruments or weak identification has recently received consid-

erable attention in both theoretical and applied econometrics1. Empirical examples

include Angrist and Krueger (1991) who measure return to schooling, Eichenbaum,

Hansen, and Singleton (1988) who consider consumption asset pricing models. The-

oretical literature on weak instruments includes papers by Staiger and Stock (1997),

Zivot, Startz, and Nelson (1998), Guggenberger and Smith (2005), Chao and Swanson

(2005), Han and Phillips (2006), Hansen, Hausman, and Newey (2008), and Newey and

Windmeijer (2009) among others2. Staiger and Stock (1997) proposed an asymptotic

framework with local-to-zero parametrization of the coefficients of the instruments in

the first-stage regression. They show that with the number of instruments fixed, the

two-stage least squares (2SLS) and limited information maximum likelihood (LIML)

estimators are not consistent and converge to nonstandard distributions. Subsequent

work focused on situations where the number of instruments is large, using an asymp-

totic framework that lets the number of instruments go to infinity as a function of

sample size. In these settings, the use of many moments can improve estimator ac-

curacy. Unfortunately, usual Gaussian asymptotic approximation can be poor and IV

estimators can be biased.

Carrasco (2012) and Carrasco and Tchuente (2013) proposed respectively regular-

ized versions of 2SLS and LIML estimators for many strong instruments. The regular-

ization permits to address the singularity of the covariance matrix resulting from many

instruments. These papers use three regularization methods borrowed from inverse

problem literature. The first estimator is based on Tikhonov (ridge) regularization, the

second estimator is based on an iterative method called Landweber-Fridman (LF), the

third estimator is based on the principal components associated with the largest eigen-

values. We extend these previous works to allow for the presence of a large number of

1Hahn and Hausman (2003) define weak instruments, by two features: (i) two-stage least squares (2SLS)
analysis is badly biased toward the ordinary least-squares (OLS) estimate, and alternative unbiased esti-
mators such as limited-information maximum likelihood (LIML) may not solve the problem; and (ii) the
standard (first-order) asymptotic distribution does not give an accurate framework for inference. Weak in-
strument may also be an important cause of the finding that the often-used test of over identifying restrictions
(OID test) rejects too often.

2Section 4 discusses related literature in more details.
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weak instruments or weak identification. We consider a linear model with homoskedas-

tic error and allow for weak identification as in Hansen, Hausman, and Newey (2008)

and Newey and Windmeijer (2009). This specification helps us to have different types

of weak instruments sequences, including the many instruments sequence of Bekker

(1994) and the many weak instruments sequence of Chao and Swanson (2005). We

impose no condition on the number of moment conditions since our framework allows

for an infinite countable or even a continuum of instruments. The advantage of regular-

ization is that all available moments can be used without discarding any a priori. We

show that regularized 2SLS and LIML are consistent in the presence of many weak in-

struments. If properly normalized, the regularized 2SLS and LIML are asymptotically

normal and reach the semiparametric efficiency bounds. Therefore, their asymptotic

variance is smaller than that of Hansen, Hausman, and Newey (2008) and Newey and

Windmeijer (2009). All these methods involve a regularization parameter, which is the

counterpart of the smoothing parameter that appears in the nonparametric literature.

A data driven method was developed in Carrasco (2012) and Carrasco and Tchuente

(2013) to select the best regularization parameter when the instruments are strong. We

use these methods in our simulations for selecting the regularization parameter when

the instruments are weak but we do not prove that these methods are valid in this

case. A related paper is that of ? who propose a regularized jackknife instrumental

variables estimator in a strong instruments setting where the design is not sparse.

Our Monte Carlo experiment shows that the leading regularized estimators (LF

and T LIML) perform very well (are nearly median unbiased) even in the case of weak

instruments.

The paper is organized as follows. Section 2 introduces four regularization methods

we consider and the associated estimators. Section 3 derives the asymptotic properties

of the estimators. Section 4 discusses efficiency and related results. Section 5 presents

Monte Carlo experiments. Section 6 considers an application to the effect of social

infrastructure on per capita income. Section 7 concludes. The proofs are collected in

Appendix.
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2 Presentation of the regularized 2SLS and LIML

estimators

This section presents the weak instruments setup and the estimators used in this paper.

Estimators studied here are the regularized 2SLS and LIML estimators introduced in

Carrasco (2012) and Carrasco and Tchuente (2013). They can be used with many or

even a continuum of instruments. This work extends previous works by allowing for

weak instruments as in Hansen, Hausman, and Newey (2008).

Our model is inspired by Hausman, Newey, Woutersen, Chao, and Swanson (2012).

The model is  yi = W ′iδ0 + εi,

Wi = γi + ui,

i = 1, 2, ...., n. The parameter of interest δ0 is a finite dimensional p× 1 vector.

E(ui|xi) = E(εi|xi) = 0; E(ε2i |xi) = σ2ε . yi is a scalar and xi is a vector of exogenous

variables. Some rows of Wi may be exogenous, with the corresponding rows of ui being

zero. γi = E(Wi|xi) is a p×1 vector of reduced form values with E(γiεi) = 0. γi is the

optimal instrument which is typically unknown. The estimation is based on a set of

instruments Zi = Z(τ ;xi), indexed by τ ∈ S. The index τ may be an integer or may

take its values in an interval. Examples of Zi are the following.

- when xi is a large L × 1 vector, then one can select Zi = xi. In this case, S =

{1, 2, ....L} thus we have L instruments.

- assume that xi is a scalar and Z(τ ;xi) = (xi)
τ−1 with τ ∈ S = N, we obtain an

infinite countable sequence of instruments.

- assume that xi is a vector and Z(τ ;xi) = exp(iτ ′xi) where τ ∈ S = Rdim(xi), we

obtain a continuum of moment.

To simplify the presentation, we will present the estimators in the case where Zi is

a L × 1 vector of instruments where L is some large integer. The theoretical results

of Section 3 are proved for an arbitrary L which may be finite or infinite (case with

a countable sequence of or a continuum of instruments). In all cases, L does not
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depend on n. The presentation of the estimators in the case with an infinite number

of instruments is left in Appendix A.

This model allows for γi to be a linear or a non linear combination of Zi. The model

also allows for γi to approximate the reduced form. For example, we could let γi be a

vector of unknown functions of xi and Zi could be power functions of xi or interactions

between elements of xi. Adding extra instruments is a way to boost the concentration

parameter as illustrated in the application in Section 6.

The estimate δ is based on the orthogonality condition.

E[(yi −W ′iδ)Zi] = 0

where the vector of instruments Zi has dimension L.

Let W =



W ′1

W ′2

.

.

W ′n


n× p and u =



u′1

u′2

.

.

u′n


n× p.

Let Z denote the n × L matrix having rows corresponding to Z ′i. Denote ψj the

eigenvectors of the n × n matrix ZZ′/n associated with eigenvalues λj . Recall that

two-stage least squares (2SLS) and LIML estimators involve a projection matrix

P = Z
(
Z′Z

)−1
Z′.

The matrix Z′Z may become nearly singular when L gets large. Moreover, Z′Z is

singular whenever L ≥ n. To cover these cases, we will consider a regularized version

of the inverse of the matrix Z′Z. For an arbitrary n× 1 vector v, we define the n× n

matrix Pα as

Pαv =
1

n

n∑
j=1

q
(
α, λ2j

) (
v′ψj

)
ψj

where q
(
α, λ2j

)
is a weight that takes different forms depending on the regularization

schemes. We consider three types of regularization:

• The Tikhonov (T) regularization: q
(
α, λ2j

)
=

λ2j
λ2j + α

.
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• The Landweber-Fridman (LF) regularization: q(α, λ2j ) = [1− (1− cλ2j )1/α], where

c is a constant such that 0 < c < 1/
∥∥Z ′Z/n∥∥2 and

∥∥Z ′Z/n∥∥ denotes the largest

eigenvalue of Z ′Z/n.

• The Spectral Cut-off (SC): q(α, λ2j ) = I(λ2j ≥ α).

Note that all these regularization techniques involve a tuning parameter α. The

case α = 0 corresponds to the case without regularization, q
(
α, λ2j

)
= 1. Then, we

obtain

P 0 = P = Z
(
Z′Z

)−1
Z′.

Consider regularized k-class estimators defined as follows:

δ̂ν = (W ′(Pα − νIn)W )−1W ′(Pα − νIn)y.

where ν is either a constant term or a random variable. The case where ν = 0 corre-

sponds to regularized 2SLS estimator studied in Carrasco (2012):

δ̂ = (W ′PαW )−1W ′Pαy

and the case ν = να = min
δ

(y −Wδ)′Pα(y −Wδ)

(y −Wδ)′(y −Wδ)
corresponds to the regularized LIML

studied in Carrasco and Tchuente (2013). We denote δ̂ the regularized 2SLS estimator

and δ̂L the regularized LIML estimators.

We study both 2SLS and LIML because LIML may have some advantages over

2SLS. For example when the number of instruments, L, increases with the sample size,

n, so that L/n → c (with c constant), the standard 2SLS estimator is not consistent

whereas standard LIML estimator is consistent.

3 Asymptotic properties

Carrasco (2012) and Carrasco and Tchuente (2013) focused on strong instruments.

They found that regularized 2SLS and LIML estimators are asymptotically normal

and attain the semiparametric efficiency bound. Here, we extend Carrasco (2012) and

Carrasco and Tchuente (2013) results to the case of many weak instruments.
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The weakness of the instruments is measured by the concentration parameter. For

p = 1, the concentration parameter is equal to

CP =

∑n
i=1 γ

2
i

E
(
v2i
) .

When the instruments are weak, CP converges to a constant and the parameter δ is not

identified. This is the weak IV described by Staiger and Stock (1997). This case is not

considered here. We will maintain the assumption that CP diverges. It may diverge at

the n rate (strong instruments) or at a slower rate (many weak IV asymptotics). By

adding more instruments in the first stage equation:

W = ZΠ + V,

the concentration parameter

CP =
Π′Z ′ZΠ

E
(
v2i
)

does not decrease and actually increases if these instruments contain non trivial in-

formation. Hence, adding more instruments is a way to boost the concentration pa-

rameter. Where do you get these new instruments? If you already have exogenous

instruments, it is possible to interact them as it has been done for the estimation of

return to schooling (Angrist and Krueger (1991)) or take higher order power of the

same instruments as in Dagenais and Dagenais (1997). In the case of panel data, the

use of lag variables is usually a source of many instruments. We provide an empirical

application of the use of many weak instruments in Section 6.

Assumption 1:

(i) There exists a p × p matrix Sn = S̃ndiag(µ1n, ..., µpn) such that S̃n is bounded,

the smallest eigenvalue of S̃nS̃
′
n is bounded away from zero; for each j, either

µjn =
√
n (strong identification) or µjn/

√
n→ 0 (weak identification),

µn = min
1≤j≤p

µjn →∞ and α→ 0.

(ii) There exists a function fi = f(xi) such that γi = Snfi/
√
n and µnS

−1
n → S0.

n∑
i=1

‖fi‖4 /n2 → 0,

n∑
i=1

fif
′
i/n is bounded and uniformly nonsingular.
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These conditions allow for many weak instruments. If µjn =
√
n this leads to

asymptotic theory like in Kunitomo (1980), Morimune (1983), and Bekker (1994),

but here we use regularization parameter instead of having an increasing sequence of

instruments. For µ2n growing slower than n, the convergence rate will be slower that
√
n, leading to an asymptotic approximation as that of Chao and Swanson (2007). This

is the case where we have many instruments without strong identification. Assumption

1 also allows for some components of the reduced form to give only weak identification

(corresponding to µjn/
√
n → 0 which allows the concentration parameter to grow

slower than
√
n), and other components (corresponding to µjn =

√
n) to give strong

identification for some coefficients of the reduced form. In particular, this condition

allows for fixed constant coefficients in the reduced form. This specification of weak

instruments can also be viewed as a generalization of Chao and Swanson (2007) but

differs from that of Antoine and Lavergne (2012) who define the identification strength

through the conditional moments that flatten as the sample size increases. To illustrate

Assumption 1, let us consider the following example.

Example 1: Assume that p = 2, S̃n =

 1 0

π21 1

, and µjn =


√
n, j = 1

µn, j = 2

with µn/
√
n → 0.

Then for f(xi) = (f ′1i, f
′
2i)
′ the reduced form is

γi =

 f1i

π21f1i +
µn√
n
f2i

 .

We also have

µnS
−1
n → S0 =

 0 0

−π21 1

 .

Assumption 2:

(i) The operator K is nuclear.

(ii) The ath row of γ, denoted γa, belongs to the closure of the linear span of {Z(.;x)}

for a = 1, ..., p.

(iii) E(Z(., xi)fia) belong to the range of K.
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Condition (i) refers to the covariance operator K defined in Appendix A. K is nu-

clear provided its trace is finite, see for instance Carrasco, Florens, and Renault (2007).

This assumption is trivially satisfied if L is finite but may or may not be satisfied when

L is infinite. This assumption implies in particular that the smallest eigenvalues de-

crease to zero sufficiently fast. For this to be true, the Zi have to be correlated with

each other. If E
(
ZiZ

′
i

)
= IL as in Assumption 5 of Newey and Windmeijer (2009),

all the eigenvalues of the operator K equal 1 and hence K is not nuclear when L goes

to infinity. To see whether Condition (i) is realistic, we examine the properties of the

sample counterpart of K, namely Kn = Z ′Z/n, in three applications: the return to

schooling using 240 instruments from Angrist and Krueger (1991) (see also Carrasco

and Tchuente (2013)), the elasticity of intertemporal substitution (see Carrasco and

Tchuente (2013)), and the application on the effect of institutions on growth (see Sec-

tion 6 of this paper). In the table below, we report the smallest eigenvalue, the largest

eigenvalue, the condition number (which is the ratio of the largest eigenvalue on the

smallest eigenvalue) and the trace of Z ′Z/n in two cases: raw data and standardized

instruments. In the standardized case, the instruments are divided with their stan-

dard deviation. This standardization has no impact on 2SLS and LIML estimators

which are scale invariant. However, our estimators are not scale invariant and stan-

dardization may improve the results. Such standardizations are customary whenever

regularizations are used, see for instance De Mol, Giannone, and Reichlin (2008) and

?. We observe that in all applications, the smallest eigenvalue is close to zero so the

instruments are strongly correlated3. The condition number - which is scale invariant

- is an indicator on how ill-posed the matrix Kn is. The higher the condition number,

the more imprecise the inverse of Kn will be. The smallest possible condition number is

1 (which corresponds to the identity matrix). Here, the condition numbers are all very

large which suggests that regularization will be helpful to improve the reliability of the

estimate of K−1. The trace of Kn appears to be finite throughout the applications.

Condition (ii) guarantees that the optimal instrument f can be approached by a

sequence of instruments. It is similar to Assumption 4 in Hansen, Hausman, and Newey

3A word of caution: when the number of instruments is large enough relative to the sample size, the
sample covariance matrix Z ′Z/n will be near singular or singular which does not mean that the smallest
eigenvalue of K is not bounded away from 0 in the population. Moreover, eigenvalues are not scale invariant.
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Table 1: Properties of Z ′Z/n
Largest

eigenvalue
Smallest
eigenvalue

Condition
number

Trace

Angrist and Krueger 1.35 0.0000107 126168.22 5.05
Angrist and Krueger

standardized
5.93 0.0012 4941.66 244.47

EIS 1550 1.41× 10−13 1.09929× 1016 1550
EIS standardized 11.8 2.35× 10−5 5.06× 105 11.89

Institutions 474× 107 9.47× 10−6 5.00528× 1014 4.78× 109

Institutions standardized 28.9 0.000116 249137.93 43.58

(2008). Condition (iii) is a technical assumption which can also be found in Carrasco

(2012). Assumptions 2(ii) and (iii) are needed only for efficiency.

Proposition 1. (Asymptotic properties of regularized 2SLS with many weak instru-

ments)

Assume {yi;Wi;xi} are iid, E(ε2i |X) = σ2ε , α goes to zero as n goes to infinity.

Moreover, Assumptions 1 and 2 are satisfied. Then, the T, LF, and SC estimators of

2SLS satisfy:

1. Consistency: S′n(δ̂ − δ0)/µn → 0 in probability as n, nα
1
2 and µn go to infinity.

2. Asymptotic normality:

S′n(δ̂ − δ0)
d→ N

(
0, σ2ε

[
E(fif

′
i)
]−1)

as n, nα and µn go to infinity, where E(fif
′
i) is a nonsingular p× p matrix.

Proof In Appendix.

The first point of Proposition 1 implies the consistency of the estimator, namely

(δ̂ − δ0) → 0 (see the proof of Theorem 1 in ?). Moreover, Proposition 1 shows that

the three estimators have the same asymptotic distribution. Instead of restricting the

number of instruments (which may be very large or infinite), we impose restrictions

on the regularization parameter which goes to zero. This insures us that all available

and valid instruments are used in an efficient way even if they are weak. To obtain

consistency, the condition on α is nα
1
2 go infinity, whereas for the asymptotic normality,

we need nα go to infinity. This means that α is allowed to go to zero at a slower rate.

However, this rate does not depend on the weakness of the instruments.
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Interestingly, our regularized 2SLS estimators reach the semiparametric efficiency

bound. This result will be further discussed in Section 4.

We are now deriving the asymptotic properties of the regularized LIML with many

weak instruments.

Proposition 2. (Asymptotic properties of regularized LIML with many weak instru-

ments)

Assume {yi;Wi;xi} are iid, E(ε2i |X) = σ2ε , E
(
ε4i |X

)
<∞, E

(
u4bi|X

)
<∞, α goes

to zero as n goes to infinity. Moreover, Assumptions 1 and 2 are satisfied. Then, the

T, LF, and SC estimators of LIML with weak instruments satisfy:

1. Consistency: S′n(δ̂L − δ0)/µn → 0 in probability as n, µn and µ2nα go to infinity.

2. Asymptotic normality:

S′n(δ̂L − δ0)
d→ N

(
0, σ2ε

[
E(fif

′
i)
]−1)

as n, µn and µ2nα go to infinity where E(fif
′
i) is a nonsingular p× p matrix.

Proof In Appendix.

Again, Proposition 1 implies the consistency of the estimator, namely (δ̂− δ0)→ 0.

Interestingly we obtain the same asymptotic distribution as in the many strong in-

struments case (with a slower rate of convergence). We also find the same speed of

convergence as in Hansen, Hausman, and Newey (2008) and Newey and Windmeijer

(2009). For the consistency and asymptotic normality, µ2nα needs to go to infinity,

which means that the regularization parameter should go to zero at a slower rate

than the concentration parameter. The asymptotic variance of regularized LIML cor-

responds to the lower bound and is smaller than that obtained in Hansen, Hausman,

and Newey (2008). We believe that the reason, why Hansen, Hausman, and Newey

(2008) obtain a larger asymptotic variance than us, is that they use the number of

instruments as regularization parameter. As a result, they can not let L grow fast

enough to reach efficiency. Our estimator involves the extra tuning parameter α which

is selected so that extra terms in the variance vanish asymptotically. Moreover, we

assume that the set of instruments is sufficiently rich to span the optimal instrument

(Assumption 2(ii)).

Example 1:(cont)

12



S′n(δ̂ − δ0) =

 √n[(δ̂1 − δ01) + π21(δ̂2 − δ02)]

µn(δ̂2 − δ02)

 is jointly asymptotically normal.

The linear combination (δ̂1− δ01)+π21(δ̂2− δ02) converges at rate
√
n. This is the /co-

efficient of fi1 in the reduced form equation for yi. And the estimator of the coefficients

δ2 of Wi2 variables converges at rate
1

µn
.

Now, as in Newey and Windmeijer (2009), we consider a t-ratios for a linear com-

bination c′δ of the parameter of interest. The following proposition is a corollary of

Proposition 2.

Proposition 3. Under the assumptions of Proposition 2 and if we assume that there

exist rn, c and c∗ 6= 0 such that rnS
−1
n c → c∗ and S′nΦ̂Sn/n → Φ in probability with

Φ = σ2ε
[
E(fif

′
i)
]−1

.

Then,
c′(δ̂L − δ0)√

c′Φ̂c

d→ N (0, 1)

as n and µ2nα go to infinity.

This result allows us to form confidence intervals and test statistics for a single

linear combination of parameters in the usual way.

4 Efficiency and Related Literature

4.1 Efficiency

If the optimal instrument γi were known, the estimator would be solution of

1

n

n∑
i=1

γi
(
yi −W ′iδ

)
= 0.

13



Hence,

δ̂ =

(
n∑
i=1

γiW
′
i

)−1 n∑
i=1

γiyi,

δ̂ − δ0 =

(
n∑
i=1

γiW
′
i

)−1 n∑
i=1

γiεi

=

(
Sn

∑n
i=1 fif

′
i

n
S′n + Sn

∑n
i=1 fiui√
n

)−1
Sn

∑n
i=1 fiεi√
n

,

Sn

(
δ̂ − δ0

)
=

(∑n
i=1 fif

′
i

n
+

∑n
i=1 fiui√
n

S′−1n

)−1 ∑n
i=1 fiεi√
n

d→ N
(

0, σ2ε
[
E
(
fif
′
i

)]−1)
.

So the lowest asymptotic variance that can be obtained is σ2ε
[
E
(
fif
′
i

)]−1
. We will

refer to this as the semiparametric efficiency bound4.

In Carrasco (2012, Section 2.4), it was shown that the regularized 2SLS estimator

coincides with a 2SLS estimator that uses a specific nonparametric estimator, γ̂i, of

γi :

δ̂ =

(
n∑
i=1

γ̂′iWi

)−1 n∑
i=1

γ̂′iyi.

This may explain why for the regularized 2SLS estimator, the conditions on α are not

related to µn whereas, in the case of LIML, the rate of convergence of α depends on

how weak the instruments are.

4.2 Related Literature

In the literature on many weak instruments, the asymptotic behavior of estimators

depends on the relation between the number of moment conditions L and sample size

n. For the CUE, L and n need to satisfy L2/n → 0 for consistency and L3/n → 0

for asymptotic normality. Under homoskedasticity, Stock and Yogo (2005) require

L2/n → 0. Hansen, Hausman, and Newey (2008) allowed L to grow at the same rate

as n, but restricted L to grow slower than the square of the concentration parameter,

4We do not provide a formal proof that this bound is the semiparametric bound. This proof is beyond
the scope of the present paper. We refer the interested readers to Newey (1990), ?, and ?.
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for the consistency of LIML and FULL. Andrews and Stock (2006) require L3/n → 0

when normality is not imposed.

Caner and Yildiz (2012) in a recent work consider a Continuous Updating Estima-

tor (CUE) with many weak moments under nearly singular design. They show that

the nearly singular design affects the form of asymptotic covariance matrix of the es-

timator compared to that of Newey and Windmeijer (2009). Our work is also related

to Hausman, Lewis, Menzel, and Newey (2011) who modify the continuous updating

estimator (CUE) by introducing two tuning parameters which perform a Tykhonov-

type regularization. They show that their estimator has finite moments when the

regularization parameters are positive. On the other hand, their estimator is shown to

be asymptotically equivalent to the conventional CUE under many weak asymptotics

when the regularization parameters go to zero. There are two main differences with

our approach. First, they introduce two tuning parameters instead of one. Second,

they restrict the number of moments as in Newey and Windmeijer (2009), whereas we

allow for the number of instruments to exceed the sample size.

Belloni, Chen, Chernozhukov, and Hansen (2012) propose to use an alternative

regularization named lasso in the IV context. This regularization imposes a l1 type

penalty on the first stage coefficient. Assuming that the first stage equation is approxi-

mately sparse, they show that the postlasso estimator reaches the asymptotic efficiency

bound.

Just as 2SLS is not consistent if L is too large relative to n, LIML estimator is

not feasible if L > N because the matrix Z ′Z is not invertible. Therefore, some form

of regularization needs to be implemented to obtain consistent estimators when the

number of instruments is really large. Regularization has also the advantage to deliver

an asymptotically efficient estimator.

Table 2 gives an overview of the assumptions used in the main papers on many

weak instruments.
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Table 2: Comparison of different IV asymptotics
Number of instruments Extra assumptions

Conventional Fixed L
Phillips (1989) Fixed L, Cov(W,x) = 0

Staiger and Stock (1997) Fixed L, Cov(W,x) = O(n−1/2)

Bekker (1994) L/n→ c < 1, µ2n = O(n)

Han and Phillips (2006) L→∞ and
L

ncn
→ c

cn µn constant or zero

Chao and Swanson (2005)
L

µ2n
→ 0 or

L1/2

µ2n
→ 0

Hansen et al. (2008) (I)
L

µ2n
bounded or (II)

L

µ2n
→∞

∑
ziz
′
i/n nonsingular

Newey and Windmeijer (2009) L→∞,
L

µ2n
bounded,

L3

n
→ 0

Carrasco (2012) No condition on L, possibly continuum Compactness of
strong instruments covariance matrix

Belloni et al. (2012) log(L) = o(n1/3), Approximately sparse
strong instruments first stage equation

5 Monte Carlo study

We now carry out a Monte Carlo simulation for the simple linear IV model where the

disturbances and instruments have a Gaussian distribution and the instruments are

independent from each other as in Newey and Windmeijer (2009). The parameters of

this experiment are the correlation coefficient ρ between the structural and reduced

form errors, the concentration parameter (CP ), and the number of instruments L.

The data generating process is given by:

yi = W ′iδ0 + εi,

Wi = x′iπ + ui,

εi = ρui +
√

1− ρ2vi,

ui ∼ N (0, 1), vi ∼ N (0, 1), xi ∼ N (0, IL)

π =

√
CP

Ln
ιL

where ιL is an L-vector of ones. The sample size is n = 500. The instruments are
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Zi = xi and the number of instruments L equals 15, 30, and 50. Note that this setting

is not favorable for us because the eigenvalues of the matrix Z ′Z/n are all equal to

1. If L were infinite, the matrix Z ′Z/n would become an infinite dimensional identity

matrix which is not nuclear. Therefore, our basic assumption of compactness of the

operator K would not satisfied if we would let L go to infinity. However, here L being

no larger than 50, K is nuclear.

In the simulations, ρ = 0.5 and δ0 = 0.1. The values of CP equal 4, 8, 35, and 65.

The estimators we proposed in this paper depend on a regularization (smoothing)

parameter α that needs to be selected. In the simulations, we use a data-driven method

for selecting α based on an expansion of the MSE and proposed in Carrasco (2012) and

Carrasco and Tchuente (2013). These selection criteria were derived assuming strong

instruments and may not be valid in presence of weak instruments. Providing a robust

to weak instruments selection procedure is beyond the scope of this paper.

We report the median bias (Med.bias), the median of the absolute deviation of the

estimator from the true value (Med.abs), the difference between the 0.1 and 0.9 quan-

tiles (dis) of the distribution of each estimator, and the coverage rate (Cov.) of a nomi-

nal 95% confidence interval for unfeasible instrumental variable regression (IV), regular-

ized two-stage least squares (T2SLS (Tikhonov), L2SLS (Landweber Fridman), P2SLS

(Principal component)), LIML and regularized LIML (TLIML (Tikhonov), LLIML

(Landweber Fridman), PLIML (Principal component)) and Donald and Newey’s (2001)

2SLS and LIML (D2SLS and DLIML). For confidence intervals, we compute the cover-

age probabilities using the following estimate of asymptotic variance as in Donald and

Newey (2001) and Carrasco (2012).

V̂ (δ̂) =
(y −Wδ̂)′(y −Wδ̂)

n

(
Ŵ ′W−1

)−1
Ŵ ′Ŵ

(
W ′Ŵ

)−1
where Ŵ = PαW for 2SLS and Ŵ = (Pα − νIn)W for LIML. Note that the formulaes

for the confidence intervals is the same as for strong instruments (see Carrasco and

Tchuente (2013)).

Table 3 reports simulation results. We use different strength (measured by the con-

centration parameter) of instruments and number of instruments. We investigate the

case of very weak instruments for example, when CP = 4 and L = 50, the first stage
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Table 3: Simulations results with CP = 4, 8, 35 and 65 ; n = 500; L = 15, 30 and 50; 1000
replications.

T2SLS L2SLS P2SLS D2SLS TLIML LLIML PLIML DLIML IV
L=15 CP=4 Med.bias 0.3939 0.0215 0.3567 0.4093 0.1521 0.0212 0.3652 0.4016 0.0212

Med.abs 0.3949 0.3474 0.5334 0.5633 0.5616 0.3474 0.5191 0.5208 0.3476
Disp 0.5563 1.5397 2.6328 2.4639 3.2144 1.5882 1.8150 1.9161 1.5407
Cov 0.5000 0.9510 0.7750 0.7750 0.4510 0.9510 0.7250 0.7130 0.9520

CP=8 Med.bias 0.3244 0.0030 0.3036 0.3385 0.0388 0.0085 0.2664 0.2873 0.0031
Med.abs 0.3263 0.2502 0.3917 0.4080 0.3671 0.2556 0.3820 0.3864 0.2506

Disp 0.5051 1.0218 1.5854 1.7167 1.9271 1.0512 1.3442 1.3465 1.0210
Cov 0.5600 0.9510 0.7420 0.7380 0.5670 0.9480 0.7450 0.7210 0.9500

CP=35 Med.bias 0.1447 0.0011 0.1584 0.1940 -0.0022 0.0034 0.0323 0.0400 0.0012
Med.abs 0.1518 0.1215 0.1938 0.2123 0.1370 0.1198 0.1312 0.1313 0.1214

Disp 0.3465 0.4550 0.4974 0.4297 0.5100 0.4603 0.5036 0.4920 0.4551
Cov 0.7640 0.9540 0.7770 0.7430 0.8510 0.9490 0.8490 0.8640 0.9540

CP65 Med.bias 0.0891 0.0008 0.0953 0.1198 0.0007 0.0024 0.0112 0.0061 0.0009
Med.abs 0.1029 0.0879 0.1222 0.1343 0.0920 0.0885 0.0915 0.0920 0.0881

Disp 0.2785 0.3240 0.3359 0.3039 0.3453 0.3402 0.3530 0.3473 0.3240
Cov 0.8310 0.9550 0.8340 0.8120 0.8950 0.9450 0.8910 0.8980 0.9550

L=30 CP=4 Med.bias 0.4518 0.0283 0.3622 0.4197 0.2262 0.0370 0.4006 0.4160 0.0280
Med.abs 0.4518 0.3819 0.5737 0.6374 0.6524 0.3569 0.4872 0.5266 0.3822

Disp 0.3989 1.5903 2.8445 3.2928 3.7210 1.5973 1.6529 1.9753 1.5888
Cov 0.1920 0.9600 0.7870 0.7780 0.2870 0.9560 0.7330 0.7010 0.9600

CP=8 Med.bias 0.4006 -0.0093 0.3113 0.3802 0.0711 -0.0047 0.3251 0.3742 -0.0096
Med.abs 0.4006 0.2628 0.4665 0.5419 0.4506 0.2469 0.4360 0.4652 0.2624

Disp 0.3898 1.0192 2.4811 2.6333 2.4185 1.0549 1.5180 1.7457 1.0184
Cov 0.2410 0.9540 0.7740 0.7180 0.3750 0.9520 0.7410 0.7190 0.9540

CP=35 Med.bias 0.2333 -0.0043 0.2216 0.2681 0.0071 -0.0026 0.0942 0.1337 -0.0046
Med.abs 0.2333 0.1205 0.2617 0.2912 0.1513 0.1186 0.1733 0.1948 0.1203

Disp 0.2942 0.4364 0.6190 0.6097 0.6229 0.4590 0.5995 0.6845 0.4363
Cov 0.4700 0.9580 0.6930 0.6270 0.7140 0.9570 0.7820 0.7370 0.9580

CP=65 Med.bias 0.1594 -0.0030 0.1582 0.2026 0.0039 -0.0021 0.0349 0.0341 -0.0032
Med.abs 0.1597 0.0883 0.1868 0.2186 0.1020 0.0874 0.1023 0.1028 0.0883

Disp 0.2515 0.3156 0.4219 0.4517 0.3925 0.3324 0.3888 0.3957 0.3156
Cov 0.5950 0.9590 0.7370 0.6750 0.8280 0.9580 0.8320 0.8270 0.9590

L=50 CP=4 Med.bias 0.4595 0.4609 0.4388 0.4710 0.2363 0.2708 0.4659 0.4772 0.0104
Med.abs 0.4595 0.4609 0.6686 0.6988 0.6457 0.6732 0.5557 0.5801 0.3617

Disp 0.3213 0.3631 3.1782 3.5704 4.2559 4.0867 2.0354 2.1010 1.7490
Cov 0.0580 0.1350 0.7830 0.7970 0.2390 0.2500 0.7220 0.6950 0.9570

CP=8 Med.bias 0.4287 0.4222 0.3933 0.4166 0.1141 0.1303 0.4048 0.4250 -0.0042
Med.abs 0.4287 0.4222 0.5661 0.6089 0.5061 0.5014 0.4839 0.5253 0.2548

Disp 0.3146 0.3538 2.7942 3.1653 3.1462 3.2328 1.7514 1.8235 1.0971
Cov 0.0730 0.1440 0.7670 0.7730 0.2920 0.3120 0.6930 0.6830 0.9510

CP=35 Med.bias 0.2933 0.2797 0.2631 0.2948 -0.0024 -0.0083 0.1546 0.2108 -0.0020
Med.abs 0.2933 0.2797 0.2993 0.3414 0.1754 0.1801 0.2204 0.2554 0.1185

Disp 0.2641 0.2813 0.9371 1.2226 0.7222 0.7513 0.7612 0.8481 0.4712
Cov 0.1770 0.2550 0.6710 0.6390 0.5920 0.6070 0.7080 0.6820 0.9520

CP=65 Med.bias 0.2158 0.2038 0.1967 0.2431 -0.0055 -0.0062 0.0602 0.0670 -0.0014
Med.abs 0.2158 0.2038 0.2244 0.2735 0.1100 0.1145 0.1215 0.1240 0.0856

Disp 0.2247 0.2385 0.5012 0.6035 0.4410 0.4383 0.4394 0.4815 0.3408
Cov 0.3110 0.3920 0.7070 0.6510 0.7320 0.7550 0.7740 0.7400 0.9470
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F-statistic equals
CP

L
+ 1 = 1.08.

We observe that

(a) The performances of the regularized estimators increase with the strength of

instruments but decrease with the number of instruments. Providing regularization

parameter selection procedure robust to weak instruments would certainly improve

these results.

(b) The bias of regularized LIML is quite a bit smaller than that of regularized

2SLS.

(c) The bias of our regularized estimators are smaller than those of the correspond-

ing Donald and Newey’s estimators. On the other hand, DN estimator has often better

coverage.

(d) LF LIML and T-LIML estimators have very low median bias even in the case

of relatively weak instruments (CP = 8).

(e) The coverage of our estimators deteriorates when the instruments are weak.

6 Empirical application: Institution and Growth

This section revisits Hall and Jones (1999) empirical work. Hall and Jones (1999) argue

that the difference between output per worker across countries is mainly due to the

differences in institution and government policies - the so-called social infrastructure.

They write ”Countries with corrupt government officials, severe impediments to trade,

poor contract enforcement, and government interference in production will be unable

to achieve levels of output per worker anywhere near the norms of western Europe,

northern America, and eastern Asia.” To quantify the effect of social infrastructure

on per capita income, they use two-stage least squares (2SLS) with four instruments:

the fraction of population speaking English at birth (EnL), the fraction of population

speaking one of the five major European languages at birth (EuL), the distance from

the equator5 (latitude , Lt) and Romer and Frankel (1999) geography-predicted trade

5The distance from the equator is measured as the absolute value of latitude in degrees divided by 90 to
place it on a 0 to 1 scale.
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intensity (FR). The linear IV regression model is given by:

y = c+ δS + ε,

where y is an n × 1 vector of log income per capita, S is an n × 1 vector which is

the proxy for social infrastructure, θ is an L× 1 vector, c and δ are scalars. Dmitriev

(2013) points out the fact that the instruments6 X = [EnL,EuL,Lt, FR] are weak.

To address this issue, we increased the number of instruments from 4 to 18. The 18

instruments in our regression are derived from X and are given by7

Z = [X,X.2, X.3, X(:, 1) ∗X(:, 2), X(:, 1) ∗X(:, 3), X(:, 1) ∗X(:, 4), X(:, 2) ∗X(:, 3), X(:

, 2) ∗X(:, 4), X(:, 3) ∗X(:, 4)] where all instruments are divided by their standard de-

viation.

The use of many instruments increased the concentration parameter from µ̂2n = 28.6

to µ̂2n = 51.48. However, it also increased the condition number of the Z ′Z matrix from

1.08e+04 for 4 instruments to 2.48e+05 for 18. The regularized 2SLS and LIML correct

the bias due to the use of many instruments. This enables us to have better points

estimates.

We use a sample of 79 countries for which no data were imputed8. The results are

reported in Table 4 below. Robust to heteroskedasticity standard errors are given in

parentheses. They are computed using the formula of Carrasco and Tchuente (2013):

V̂ (δ̂) =
(
Ŵ ′W

)−1
Ŵ ′Ω̂Ŵ

(
W ′Ŵ

)−1
where Ŵ = PαW for 2SLS, Ŵ = (Pα − νIn)W for LIML, and Ω̂ is the diagonal

matrix with ith diagonal element equal to ε̂2i =
(
yi −W ′i δ̂

)2
.

Our findings suggest that ”social infrastructure” has a significant causal effect on

long-run economic performance throughout the world. The use of many instruments

first increase the bias as illustrated by the fact that the distance between 2SLS and

LIML is larger when 18 instruments are used. When the regularization is introduced,

6This correspond to the specification (iv) of Dmitriev (2013).
7X.k = [Xk

ij ] , X(:, k) is the kth column of X and X(:, k) ∗ X(:, l) is a vector of interactions between
columns k and l.

8The data were downloaded from Charles Jones’ webpage: http://www.stanford.edu/˜chadj/HallJones400.asc
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Table 4: Institutions and growth
2SLS (4) 2SLS (18) T2SLS L2SLS P2SLS

4.6612 (0.7027) 4.0124 (0.5041) 4.2916 (0.338) 4.27 (0.431) 4.03 (0.327)
α=0.01 Number of iterations 1000 Number of eigenvalues 15

LIML (4) LIML (18) TLIML LLIML PLIML
5.2683 (0.7602) 5.7090 (0.899) 5.3062 (0.631) 4.73 (0.687) 5.57 (0.846)

α=0.01 Number of iterations 1000 Number of eigenvalues 15
µ̂2
n=28.6 µ̂2

n=51.48

NB: We report 2SLS and LIML for 4 and 18 instruments. For LIML with 18 instruments, we report the many

instrument robust standard error of Hansen, Hausman, and Newey (2008) in parentheses. The regularized

estimators are computed for 18 instruments. For the regularized estimators, the heteroskedasticity robust

standard errors are given in parentheses.

this gap shrinks. For instance, the regularized LF, LIML and 2SLS are very close, this

may be due to bias correction. But, for the PC regularization, the gap remains wide.

The reason may be due to the lack of factor structure in the instruments set.

7 Conclusion

This paper illustrates the usefulness of regularization techniques for estimation in the

many weak instruments framework. We derived the properties of the regularized 2SLS

and LIML estimators in the presence of many or a continuum of moments that may be

weak. We show that if well normalized the regularized 2SLS and LIML are consistent

and reach the semiparametric efficiency bound. Our simulations show that the leading

regularized estimators (LF and T of LIML) perform well.

In this work, we restricted our investigation to 2SLS and LIML with weak instru-

ments. It would be interesting, for future research, to study the behavior of regularized

version of other k-class estimators, such as FULL (Fuller (1977)) and bias adjusted

2SLS or other estimators as generalized method of moments or generalized empirical

likelihood, in presence of many weak instruments. This will help us to have results that

can be compared with those of Newey and Windmeijer (2009) and Hansen, Hausman,

and Newey (2008). Another topic of interest is the use of our regularization tools to

provide version of robust tests for weak instruments as Anderson-Rubin tests, that can

be used with a large number or a continuum of moment conditions.
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A General notation

Here we consider the general case where the estimation is based on a sequence of

instruments Zi = Z(τ ;xi), τ ∈ S. Let π be a positive measure on S. We denote L2(π)

the Hilbert space of square integrable functions with respect to π.

We define the covariance operator K of the instruments as

K : L2(π)→ L2(π)

(Kg)(τ1) =

∫
E(Z(τ1;xi)Z(τ2;xi))g(τ2)π(τ2)dτ2

where Z(τ2;xi) denotes the complex conjugate of Z(τ2;xi).

K is assumed to be a nuclear operator. Let λj and φj , j = 1, 2, ... be respectively,

the eigenvalues (ranked in decreasing order) and orthonormal eigenfunctions of K. K

can be estimated by Kn defined as:

Kn : L2(π) → L2(π)

(Kng)(τ1) =

∫
1

n

n∑
i=1

Z(τ1;xi)Z(τ2;xi)g(τ2)π(τ2)dτ2.

If the number of moment conditions is infinite then the inverse of Kn needs to be

regularized because it is not continuous. By definition (see Kress, 1999, page 269), a

regularized inverse of an operator K is

Rα : L2(π) → L2(π)

such that lim
α→0

RαKϕ = ϕ, ∀ϕ ∈ L2(π).

Three different types of regularization schemes are considered: Tikhonov (T),

Landwerber Fridman (LF), Spectral cut-off (SC) or Principal Components (PC). They

are defined as follows:
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1. Tikhonov(T)

This regularization scheme is related to the ridge regression.

(Kα)−1 = (K2 + αI)−1K

(Kα)−1r =

∞∑
j=1

λj
λ2j + α

〈
r, φj

〉
φj

where α > 0 is the regularization parameter. A fixed α would result in a loss of

efficiency. For the estimator to be asymptotically efficient, α has to go to zero

at a certain rate which will be determined later on. This regularization is closely

related to ridge regularization. Ridge regularization was first used in regression

in a context where there were too many regressors. The aim was then to stabilize

the inverse of X ′X by replacing X ′X by X ′X + αI. However, this was done at

the expense of a bias relative to OLS estimator. In the IV regression, the 2SLS

estimator has already a bias and the use of many instruments usually increases its

bias. The selection of an appropriate ridge parameter for the first step regression

helps to reduce this bias. This explains why, in the IV case, ridge regularization

is useful.

2. Landweber Fridman (LF)

This method of regularization is iterative. Let 0 < c < 1/‖K‖2 where ‖K‖ is the

largest eigenvalue of K (which can be estimated by the largest eigenvalue of Kn).

ϕ̂ = (Kα)−1r is computed using the following algorithm:

 ϕ̂l = (1− cK2)ϕ̂l−1 + cKr, l=1,2,...,
1

α
− 1;

ϕ̂0 = cKr,

where
1

α
− 1 is some positive integer. We also have

(Kα)−1r =
∞∑
j=1

[1− (1− cλ2j )
1
α ]

λj

〈
r, φj

〉
φj .

3. Spectral cut-off (SC)
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This method consists in selecting the eigenfunctions associated with the eigen-

values greater than some threshold. The aim is to select those who have greater

contribution.

(Kα)−1r =
∑
λ2j≥α

1

λj

〈
r, φj

〉
φj

for α > 0.

This method is similar to principal components (PC) which consists in using the

first eigenfunctions:

(Kα)−1r =

1/α∑
j=1

1

λj

〈
r, φj

〉
φj

where
1

α
is some positive integer. It is equivalent to projecting on the first princi-

pal components of W . Interestingly, this approach is used in factor models where

Wi is assumed to depend on a finite number of factors (see Bai and Ng (2002),

Stock and Watson (2002)) As the estimators based on PC and SC are identical,

we will use PC and SC interchangeably.

These regularized inverses can be rewritten in common notation as:

(Kα)−1r =
∞∑
j=1

q(α, λ2j )

λj

〈
r, φj

〉
φj

where for T: q(α, λ2j ) =
λ2j

λ2j + α
,

for LF: q(α, λ2j ) = [1− (1− cλ2j )1/α],

for SC: q(α, λ2j ) = I(λ2j ≥ α), for PC q(α, λ2j ) = I(j ≤ 1/α).

In order to compute the inverse of Kn we have to choose the regularization param-

eter α. Let (Kα
n )−1 be the regularized inverse of Kn and Pα a n× n matrix defined as

in Carrasco (2012) by Pα = T (Kα
n )−1T ∗ where

T : L2(π) → Rn

28



Tg =



〈
Z1, g

〉〈
Z2, g

〉
.

.〈
Zn, g

〉



and

T ∗ : Rn → L2(π)

T ∗v =
1

n

n∑
i=1

Zivi

such that Kn = T ∗T and TT ∗ is an n × n matrix with typical element

〈
Zi, Zj

〉
n

.

Let φ̂j , λ̂1 ≥ λ̂2 ≥ ... > 0, j = 1, 2, ... be the orthonormalized eigenfunctions and

eigenvalues of Kn. λ̂j are consistent estimators of λj the eigenvalues of TT ∗. We then

have T φ̂j =
√
λjψj and T ∗ψj =

√
λjφ̂j .

For v ∈ Rn, Pαv =
∞∑
j=1

q(α, λ2j )
〈
v, ψj

〉
ψj . It follows that for any vectors v and w of

Rn :

v′Pαw = v′T (Kα
n )−1T ∗w

=

〈
(Kα

n )−1/2
n∑
i=1

Zi (.) vi, (K
α
n )−1/2

1

n

n∑
i=1

Zi (.)wi

〉
. (1)

B Proofs

Proof of Proposition 1:

We first prove the consistency of our estimator.

Let gn =
1

n

n∑
i=1

ZiWi = Sn

[
1

n

n∑
i=1

Zifi

]
/
√
n +

1

n

n∑
i=1

Ziui = Sngn1/
√
n + gn2 (remem-

ber that gn is a function indexed by τ and Zi is also a function of τ , such a rep-

resentation can handle both countable and continuum of instruments). Note that

gn2 =
1

n

n∑
i=1

Ziui = op(1),
√
ngn2 = Op (1) and Sn/

√
n is bounded by Assumption 1(i).

29



δ̂ − δ0 = (W ′PαW )−1W ′Pαε

We have S′n(δ̂ − δ0)/µn = [S−1n W ′PαWS−1
′

n ]−1[S−1n W ′Pαε/µn] and by construction9

of Pα :

W ′PαW = n
〈

(Kα
n )−1/2gn, (K

α
n )−1/2g′n

〉
= Sn

〈
(Kα

n )−1/2gn1, (K
α
n )−1/2g′n1

〉
S′n

+Sn

〈
(Kα

n )−1/2gn1, (K
α
n )−1/2g′n2

〉√
n

+
〈

(Kα
n )−1/2gn2, (K

α
n )−1/2g′n1

〉
S′n
√
n

+
〈

(Kα
n )−1/2gn2, (K

α
n )−1/2g′n2

〉
n.

S−1n W ′PαWS−1
′

n =
〈

(Kα
n )−1/2gn1, (K

α
n )−1/2g′n1

〉
+
〈

(Kα
n )−1/2gn1, (K

α
n )−1/2

√
ng′n2

〉
S−1

′
n

+S−1n

〈
(Kα

n )−1/2
√
ngn2, (K

α
n )−1/2g′n1

〉
+S−1n

〈
(Kα

n )−1/2
√
ngn2, (K

α
n )−1/2

√
ng′n2

〉
S−1

′
n .

Hence,

S−1n [W ′PαW ]S−1
′

n =
〈
(Kα

n )−
1
2 gn1, (K

α
n )−

1
2 g′n1

〉
+ op(1).

At this stage, we can apply the same proof as that of Proposition 1 of Carrasco (2012)

which shows that 〈
(Kα

n )−
1
2 gn1, (K

α
n )−

1
2 g′n1

〉
→
〈
g1, g

′
1

〉
K

9Let g and h be two p vectors of functions of L2(π). By a slight abuse of notation,
〈
g, h′

〉
; denotes the

matrix with elements
〈
ga, hb

〉
a, b = 1, ..., p
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in probability as n and nα
1
2 go to infinity, with

〈
g1, g

′
1

〉
K

a p × p matrix with (a, b)

element
〈
K−

1
2E(Z(., xi)fia),K

− 1
2E(Z(., xi)fib)

〉
which is assumed to be nonsingular.

S−1n W ′Pαε

µn
=

nS−1n
µn

〈
(Kα

n )−1/2gn, (K
α
n )−1/2

1

n

n∑
i=1

Ziεi

〉

=
1

µn

〈
(Kα

n )−1/2gn1, (K
α
n )−1/2

1√
n

n∑
i=1

Ziεi

〉

+
µnS

−1
n

µ2n

〈
(Kα

n )−1/2
√
ngn2, (K

α
n )−1/2

1√
n

n∑
i=1

Ziεi

〉
= op (1)

because µnS
−1
n → S0 by Assumption 1(ii) and

1√
n

n∑
i=1

Ziεi = Op (1). This proves the

consistency of the regularized 2SLS.

For the asymptotic normality we write

S′n(δ̂ − δ0) = [S−1n W ′PαWS′−1n ]−1[S−1n W ′Pαε]

We then have

S−1n W ′Pαε = nS−1n
〈
(Kα

n )−1gn,
1

n

n∑
i=1

Ziεi
〉

=

〈
(Kα

n )−1/2gn1, (K
α
n )−1/2

1√
n

n∑
i=1

Ziεi

〉

+S−1n

〈
(Kα

n )−1/2
√
ngn2, (K

α
n )−1/2

1√
n

n∑
i=1

Ziεi

〉

=

〈
(Kα

n )−1/2gn1, (K
α
n )−1/2

1√
n

n∑
i=1

Ziεi

〉
+op (1) .
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Moreover, 〈
(Kα

n )−1/2gn1, (K
α
n )−1/2

1√
n

n∑
i=1

Ziεi

〉
(2)

=
〈
(Kα

n )−1gn1 −K−1g1,
1√
n

n∑
i=1

Ziεi
〉

(3)

+
〈
K−1g1,

1√
n

n∑
i=1

Ziεi)
〉
.

The first term is negligible since〈
(Kα

n )−1gn1−K−1g1,
1√
n

n∑
i=1

Ziεi)
〉
≤ ‖(Kα

n )−1gn1−K−1g1‖‖
1√
n

n∑
i=1

Ziεi‖ = op(1)Op(1).

By the functional central limit theorem, we obtain the following result〈
K−1g1,

1√
n

n∑
i=1

Ziεi
〉
→ N (0, σ2ε

〈
g1, g

′
1

〉
K

) as n and nα go to infinity.

We then apply the continuous mapping theorem and Slutzky’s theorem to show that

S′n(δ̂ − δ0)
d→ N (0, σ2ε

〈
g1, g

′
1

〉−1
K

).

By assumption, g1a = E(Z(., xi)fia) belong to the range of K. Let L2(Z) be the

closure of the space spanned by {Z(x, τ), τ ∈ I} and g1 is an element of this space. If

fi ∈ L2(Z) we can compute the inner product in the RKHS and show that

〈
g1a, g1b

〉
K

= E(fiafib).

This can be seen by applying Theorem 6.4 of Carrasco, Florens, and Renault (2007).

It follows that

S′n(δ̂ − δ0)
d→ N

(
0, σ2ε

[
E
(
fif
′
i

)]−1)
This completes the proof of Proposition 1.

Proof of Proposition 2:

To prove this proposition, we need three lemmas. The first lemma corresponds to

lemma A0 of Hansen, Hausman, and Newey (2008).

Lemma 1: Under assumption 1 if ‖S′n(δ̂L−δ0)/µn‖2/(1+‖δ̂L‖2)
P→ 0 then ‖S′n(δ̂L−

δ0)/µn‖
P→ 0.

Proof: The proof of this lemma is the same as in Hansen, Hausman, and Newey

(2008).
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Lemma 2: Let us assume that there exists a constant C such that E(‖εi‖4|X) ≤ C

and E(‖uai‖4|X) ≤ C for all i. Then,

V ar(ε′Pαua) ≤ C(
∑
j

q2j ),

ε′Pαua − E(ε′Pαua|X) = O((
∑
j

q2j )
1
2 ),

ε′Pαε

µ2n
= Op

(
1

αµ2n

)
= op (1) .

Proof:

For notational simplicity, we suppress the conditioning onX. LetE(ε2i ) = σ2ε , E(εiuai) =

σεua and E(u′aiuai) = σ2ua ,

V ar(ε′Pαua) = E(ε′Pαuau
′
aP

αε)− E(ε′Pαua)E(u′aP
αε).

Using the spectral decomposition of Pα, we have

E(ε′Pαuau
′
aP

αε) =
1

n2

∑
j,l

qjqlE
{

(ε′ψl)(u
′
aψl)

′(ε′ψj)(u
′
aψj)

}
=

1

n2

∑
j,l

qjqlE
{∑

i

εiu
′
aiψ

2
li

∑
b

εbuabψ
2
jb

+
∑
c

εcu
′
acψlcψjc

∑
d

εduadψjdψld

+
∑
c

ε2cψlcψjc
∑
d

u′aduadψjdψld

}
= (

∑
j

qj)
2σ′εuaσεua + (σ′εuaσεua + σ2εσ

2
ua)
∑
j

q2j

by the fact that (uai, εi) are independent across i and the eigenvectors are orthonormal.

E(ε′Pαua) =
1

n

∑
l

qlE{(
∑
k

u′akψlk)(
∑
i

εiψli)}

=
1

n

∑
l

qlnσ
′
εua

= σ′εua(
∑
j

qj).
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Thus

V ar(ε′Pαua) = (σ′εuaσεua + σ2εσ
2
ua)
∑
j

q2j ≤ C(
∑
j

q2j ).

The second conclusion follows by Markov inequality.

E
(
ε′Pαε

)
= tr

(
PαE

(
εε′
))

= σ2ε(
∑
j

qj) = Op (1/α) .

Using the result for ε′Pαua with ε in place of ua, we obtain

V ar(ε′Pαε) ≤ C(
∑
j

q2j ).

It follows that
(
ε′Pαε− E

(
ε′Pαε

))
/µ2n = Op


∑

j

q2j

1/2

/µ2n

 = op

∑
j

qj/µ
2
n

 .

Hence, the third equality holds.

Lemma 3: Let Â =
f ′Pαf

n
and B̂ =

W̄ ′W̄

n
with W̄ = [y,W ] , there exist two

constants C and C ′ such that Â ≥ CIp and ‖B̂‖ ≤ C ′.

Proof: By the definition of Pα, we have (see Equation (1)):

Â =
f ′Pαf

n
=
〈
(Kα

n )−
1
2 fn, (K

α
n )−

1
2 f ′n
〉

with

fn =
1

n

∑
i

Zifi.

By Lemma 5(i) of Carrasco (2012) and the law of large numbers,

f ′Pαf

n
=
f ′f

n
+ op (1) = E(f ′ifi) + op(1)

as α goes to zero. Because E(f ′ifi) is positive definite, there exists a constant C such

that

Â ≥ CIp
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with probability one.

We have W̄ = [y,W ] = WD0 + εe where D0 = [δ0, I], δ0 is the true value of the

parameter and e is the first unit vector.

B̂ =
W̄ ′W̄

n

= D′0Sn
f ′f

n
S′nD0/n+D′0Sn

f ′u

n
D0/
√
n+D′0Sn

f ′ε

n
e/
√
n

+ D′0
u′f

n
S′nD0/

√
n+D′0

u′u

n
D0 +D′0

u′ε

n
e

+ e′
ε′f

n
S′nD0/

√
n+ e′

ε′u

n
D0 + e′

ε′ε

n
e.

Using the law of large numbers, we can conclude that ‖B̂‖ ≤ C ′, where C ′ is a constant,

with probability one.

Proof of consistency

Let us consider

Q̂(δ) =
(y −Wδ)′Pα(y −Wδ)/µ2n

(y −Wδ)′(y −Wδ)/n
.

δ̂L = argminQ(δ).

For δ = δ0, Q̂(δ0) =
ε′Pαε/µ2n
ε′ε/n

. With probability one ε′ε/n > C and by lemma 2

ε′Pαε/µ2n = op(1).

Hence Q̂(δ0) = op(1).

Since 0 ≤ Q̂(δ̂L) ≤ Q̂(δ0) it is easy to see that Q̂(δ̂L) = op(1).

Let us show that

µ−2n (y −Wδ)′Pα(y −Wδ) ≥ C‖S′n(δ − δ0)/µn‖2.

Let D (δ) = µ−2n (y − Wδ)′Pα(y − Wδ) = µ−2n (1,−δ′)W̄ ′PαW̄ (1,−δ′)′. Moreover,

D (δ) = µ−2n (1,−δ′)D′0Sn
f ′Pαf

n
S′nD0(1,−δ′)′+op(1) = µ−2n (1,−δ′)D′0SnE

(
ff ′
)
S′nD0(1,−δ′)′+

op(1). It follows from lemma 3 that

D (δ) ≥ C‖S′n(δ − δ0)/µn‖2.
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We also have that (y −Wδ)′(y −Wδ)/n = (1,−δ′)B̂(1,−δ′)′. Hence,

‖S′n(δ̂L − δ0)/µn‖2

(1 + ‖δ̂L‖2)
≤ CQ̂(δ̂L).

Then by Lemma 1 we have S′n(δ̂L − δ0)/µn → 0 in probability as n and µ2nα go to

infinity. This proves the consistency of LIML with many weak instruments.

Now let us prove the asymptotic normality.

Proof of asymptotic normality

Denote A(δ) = (y −Wδ)′Pα(y −Wδ)/2 , B(δ) = (y −Wδ)′(y −Wδ) and

Λ(δ) =
A(δ)

B(δ)
.

We know that the LIML is δ̂L = argminΛ(δ).

We calculate the gradient and Hessian Λδ(δ) = B(δ)−1[Aδ(δ)− Λ(δ)Bδ(δ)],

Λδδ(δ) = B(δ)−1[Aδδ(δ)− Λ(δ)Bδδ(δ)]−B(δ)−1[Bδ(δ)Λ
′
δ(δ)− Λδ(δ)B

′
δ(δ)].

Then by the mean-value theorem applied to the first-order condition Λδ(δ̂) = 0, we

have:

S′n(δ̂L − δ0) = −[S−1n Λδδ(δ̃)S
−1′
n ]−1[S′nΛδ(δ0)]

where δ̃ is the mean-value. By the consistency of δ̂L, δ̃ → δ0.

It then follows that

Bδ(δ̃)/n = −2
∑
i

Wiε̃i/n,

= −2
∑
i

(γi + ui)ε̃i/n

= −2Sn/
√
n(
∑
i

fiε̃i/n)− 2(
∑
i

uiε̃i/n)

= −2σuε + op(1)

under the assumption that Sn/
√
n is bounded, with ε̃i = (yi−W ′i δ̃) and σuε = E(uiεi).

B(δ̃)/n
P→ σ2ε , Bδ(δ̃)/n

P→ −2σuε
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Λ(δ) =
(y −Wδ)′Pα(y −Wδ)/2n

(y −Wδ)′(y −Wδ)/n

For δ = δ0, Λ(δ0) =
ε′Pαε/2n

ε′ε/n
. With probability one, ε′ε/n > C, and by Lemma 2 and

µ2n ≤ n,

ε′Pαε/n = op(1).

We have Λ(δ0) = op(1). Therefore, Λ(δ̃)
P→ 0. By the first order condition, we also have

Λδ(δ̃)
P→ 0.

Bδδ(δ̃) = 2W ′W/n
P→ 2E(WiW

′
i ), Aδδ(δ̃)/n = W ′PαW/n.

We can then conclude that Λδδ(δ̃) = nB−1(δ̃)[Aδδ(δ̃)/n] + op(1). Hence

nσ̃2εΛδδ(δ̃) = W ′PαW

= Sn
〈
(Kα

n )−
1
2 gn1, (K

α
n )−

1
2 g′n1

〉
S′n + op(1)

= SnHS
′
n + op(1)

with H = E(f(xi)f(xi)
′) and σ̃2ε = (y −Wδ̃)′(y −Wδ̃)/n.

Hence

nσ̃2εS
−1
n Λδδ(δ̃)S

−1′
n = H + op(1).

Let φ̂ =
W ′ε

ε′ε
, φ =

σuε
σ2ε

and v = u− εφ′. It is useful to remark that v′Pαε = Op(1/
√
α)

using Lemma 2 with v in place of u and E (uivi) = 0. Moreover, φ̂−φ = Op(1/
√
n) by

the central limit theorem and the delta method. Hence, (φ̂− φ)ε′Pαε = Op(1/α
√
n).

Furthermore, f ′ (I − Pα) ε/
√
n = Op(∆

2
α) = op(1) by Lemma 5(ii) Carrasco (2012)

with ∆α = tr(f ′ (I − Pα)2 f/n) = Op

(
αmin(β,2)

)
= op (1) . We have

−nσ̃2S−1n Λδ(δ0) = S−1n (W ′Pαε− ε′PαεW
′ε

ε′ε
)

= f ′ε/
√
n− f ′ (I − Pα) ε/

√
n+ S−1n v′Pαε− S−1n (φ̂− φ)ε′Pαε

= f ′ε/
√
n+ op(1) + S−1n Op(1/

√
α) + S−1n Op(1/α

√
n)

= f ′ε/
√
n+ op(1)

d→ N (0, σ2εH)
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as n, αµ2n go to infinity under the assumption µnS
−1
n → S0.

The conclusion follows from Slutzky’s theorem.
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