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Abstract

The present paper aims to test a new model comparison methodology by
calibrating and comparing three agent-based models of financial markets on
the daily returns of 18 indices. The models chosen for this empirical appli-
cation are the herding model of Gilli & Winker, its asymmetric version by
Alfarano, Lux & Wagner and the more recent model by Franke & Westerhoff,
which all share a common lineage to the herding model introduced by Kirman
(1993). In addition, standard ARCH processes are included for each financial
series to provide a benchmark for the explanatory power of the models. The
methodology provides a clear and consistent ranking of the three models. More
importantly, it also reveals that the best performing model, Franke & Wester-
hoff, is generally not distinguishable from an ARCH-type process, suggesting
their explanatory power on the data is similar.
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of financial markets and to James Holdsworth for his help in maintaining the computer cluster on which
the model comparison exercise was run. Any errors in the manuscript remain of course the author’s.
†School of Economics, Keynes College, University of Kent, Canterbury, CT2 7NP, UK

tel : +44 (0)1 227 824 092, email: s.barde@kent.ac.uk
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Non-Technical Summary

The present paper provides the first empirical application of a novel and innovative
model comparison methodology designed to provide an information criterion on a given
set of data for any model that is reducible to a Markov process. The rationale behind the
development of this methodology is to allow the explanatory power of simulation models
to be compared to more traditional modeling approaches. This has been identified as one
of the main hurdles to the development of simulation methods, particulary agent-based
models, in the field of economics.

The empirical exercise carried out calibrates and compares three agent-based models of
financial markets on the daily returns of 18 financial indices, the end goal being to establish
both the robustness of their respective calibrations and their explanatory power on the
data. The models chosen for this empirical application are the herding model of Gilli and
Winker (2003), its asymmetric version by Alfarano et al. (2005) and the more recent model
by Franke and Westerhoff (2011, 2015). Two justifications explain the specific choice of
these three models amongst the many available in the literature on agent-based models of
finance:

• All three models have already been calibrated on financial market data, and all
replicate the stylised facts of financial markets such as volatility clustering and fat
tails in the distribution of returns.

• All three share a common theoretical lineage to the herding mechanism introduced
by Kirman (1993). Each of them modifies this mechanism is some way, but the basic
herding mechanism exists in all three.

The intention is to produce a setting where the structure and predictions of the models
are similar, providing a challenging test when ranking the models. In addition to these
three models, a set of standard ARCH/GARCH processes are estimated and included for
each financial series. The purpose of including these econometric specifications is firstly to
provide a benchmark for the explanatory power of the agent based models and secondly to
demonstrate the ability of the methodology to compare very different modeling approaches.

The main findings are that the methodology provides a clear and consistent ranking
of the three herding models over the 18 data series. The model of Gilli and Winker (2003)
performs the worst on the 18 data series, and is beaten by Alfarano et al. (2005), itself
beaten by Franke and Westerhoff (2011, 2015). More importantly, the ranking exercise
also reveals that Franke & Westerhoff is generally not distinguishable from the best ARCH
process, suggesting their explanatory power on the data is similar. More detailed analysis
using a narrow observation window also reveals that all three models can dramatically out-
perform the ARCH processes during periods of financial turmoil, strongly suggesting that
the herding mechanism explains these periods in time better than the standard economet-
ric specifications. Because this could be due to levels of noise in the demand functions of
agents or to differences in the herding process itself, more analysis is needed to identify the
precise reason for the better performance of the agent-based models during these periods.

Finally, beyond the importance of these findings for the literature on herding in agent-
based models of financial markers, the empirical exercise confirms the methodology’s abil-
ity to rigorously compare the explanatory power of very different modeling approaches on
a given set of data.
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1 Introduction

The emergence of agent-based modeling as an alternative to the more traditional fully

rational representative agent approach has enabled the integration many new mechanisms

and behaviours into economic analysis. As pointed out by Tesfatsion (2006), such models

allow for bounded rationality, learning, switching, etc. and typically offer great flexibility

for investigating the emergence of aggregate equilibria from the interaction of often simple

behaviours at the individual level. This increase in modeling flexibility has come at a cost,

however. Even as the methodology increased in popularity over the last decade and a

half, concerns were being voiced about the issue of calibrating and validating these models

as well as comparing their predictions to more traditional approaches. Durlauf (2005,

p. F241) for instance, finding weaknesses in the existing empirical literature of the time

relating to the analysis of complexity, warned that “it will not become a major component

of economic reasoning until a tight connection between theoretical work and empirics is

developed. Unless such a connection is achieved, even an open-minded complexity advo-

cate will be justified in taking the Scottish legal option of concluding that the importance

of complexity in understanding socioeconomic phenomena is ‘not proven’.” Fagiolo et al.

(2007) and Dawid and Fagiolo (2008) also identify this issue of validation as the main

open question facing the agent-based simulation community.

The first hurdle is the use of data to estimate the parameters that govern the sim-

ulation. This process is often complicated by the presence of nonlinearity and/or emer-

gence of complexity from simple rules, which makes the inference of parameter values

with traditional statistical methods difficult. Solutions to this problem have been found

which rely on simulation methods such as simulated maximum likelihood (SML) or the

method of simulated moments (MSM), both reviewed in Gouriéroux and Monfort (1993).

More recently, Bianchi et al. (2007) advocates the use of the indirect inference approach

of Gouriéroux and Monfort (1996), which generalises MSM by using a binding function

rather than directly selecting the moments that need matching.

A second issue, the comparison of agent-based models against each other and against

other approaches, still remains somewhat of a problem today. As pointed out in Hommes

(2011, p. 2) one of the problems with agent-based models is the great number of degrees of
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freedom they offer for modeling agent behaviour, leading to a “wilderness” where a large

number of models can coexist that all seem to replicate the stylised facts.1 Addressing this

issue requires not only estimation methods but also dedicated model selction/comparison

methods. Using the estimation methods mentioned above to compare models is possible

but potentially problematic, as they often require tailoring to the model specification being

estimated, making direct comparison across specification difficult. For example, Franke

and Westerhoff (2012, p. 1208) argue that one advantage of using the MSM to estimate

models it that “it is [...] a very transparent method as it requires the researcher to make up

his or her mind about the stylized facts that a model should be able to reproduce, and to

set up the precise summary statistics (the moments) by which he or she wants to quantify

them”. However, this requirement of deciding which moments to reproduce complicates

the problem of comparison across models. A simple illustration of this is that while two of

the agent-based models of financial markets used in this paper, Gilli and Winker (2003)

and Franke and Westerhoff (2015), are estimated using the MSM, the former uses two

moments, the latter nine, none of which are the same.2

Recent work by Barde (2015) and Lamperti (2015) argues that the comparison of simu-

lation models is best carried out with standardised criteria based on accepted information-

theoretical measures such as the Kullback and Leibler (1951) divergence between model

and data. The methodological approach is different in both cases, however, given a data

set and a simulated series produced by a model, both produce an information criterion

which scores the performance of the model on the data. For large scale model comparisons,

such as the one carried out here, Barde (2015) has the additional benefit that it scores

each model at the level of individual data observations, which means that it integrates

seamlessly with the model comparison set (MCS) approach developed by Hansen et al.

(2011). The central implication is that not only can models be ranked in terms of their

explanatory power on the data, this ranking can be testing statistically to determine the

subset of candidate models that can be rejected at a chosen confidence level.

1Hommes (2011) refers to 1000 papers over 20 years on learning and bounded rationality mechanisms
alone, one can only suppose that this problem has since worsened.

2Gilli and Winker (2003) match the ARCH(1) parameter estimate and the kurtosis of the raw simulated
returns, Franke and Westerhoff (2015) use the mean of the absolute returns, the first order autocorrelation
of the raw returns, six lags of the autocorrelation function of the absolute returns and the Hill estimator
of the tail index of the absolute returns
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This paper aims to run a full-scale model comparison test of Barde (2015) in order to

evaluate the methodology’s potential for model selection. The aim and setting is similar

to the recent model contest of Franke and Westerhoff (2012), which to the author’s knowl-

edge is the only existing example of a direct contest between agent-based models. The

comparison exercise carried out here aims to go beyond Franke and Westerhoff (2012),

however, by directly incorporating models calibrated by different authors as well as econo-

metric ARCH/GARCH specifications to serve as a benchmark for explanatory power. The

chosen setting, agent-based models of herding in financial markets, possesses several ideal

characteristics for the exercise. First of all, there is an established literature on the herd-

ing mechanism which crucially offers several models that have been calibrated but not yet

systematically compared. The second desirable characteristic is that because these models

typically attempt to explain the dynamics of stock market returns, they offer a univariate

setting with plentiful data which simplifies the problem of comparison. Finally, the fo-

cus on stock market returns also means that standard econometric models of conditional

heteroscedasticity can be used to provide a reliable benchmark for comparison.

The three models selected for the comparison exercise are those of Gilli and Winker

(2003), Alfarano et al. (2005) and Franke and Westerhoff (2011, 2015). The very thorough

reviews of Hommes (2006) and Westerhoff (2009) show that the literature on agent-based

models of financial markets is extensive and contains many different behavioural mech-

anisms. The first reason for this specific selection of models is that they have all been

calibrated on empirical data using either SML or MSM, which means that the robustness

of each calibration can be evaluated and compared to the others. A second consideration

is that all three share a common theoretical lineage with the herding mechanism initi-

ated by Kirman (1993), which should hopefully make it more difficult to separate them

empirically, thus offering the model comparison methodology a decent challenge.

The remainder of the paper is organised as follows. Section 2 starts by reviewing the

three candidate models examined in the comparison exercise and presents their respective

herding mechanisms. Section 3 then details the econometric benchmark, data and com-

parison protocol used to assess performance. The results of the comparison exercise are

presented and discussed in section 4, while section 5 draws the main conclusions.
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2 Agent-based models of herding in financial markets

The three models in the comparison exercise from the lineage of Kirman (1993), which sets

up a basic recruitment framework where two populations of agents coexist, and members of

one category can recruit members from the other. The framework assumes a population

of N ∈ N agents, divided into two strategy types: “fundamentalists” and “chartists”.

Describing the state of the system is simple: at any point in time, let nt be the number

of fundamentalist agents in the market, the remaining N −nt agents being the number of

chartists. In the following discussion, it will be convenient to refer to xt = nt/N as the

fundamentalist share of the population, with 1−xt = (N−nt)/N as the share of chartists.

As pointed out in Kirman (1993), agents can change strategy over time, either spon-

taneously or because they are recruited by an agent using the other strategy. If ε is the

probability of an agent spontaneously changing strategy and ρ the probability of a success-

ful recruitment following an encounter between agents using two different strategies, then

the dynamic evolution of the system is governed by the following transition probabilities,

where superscripts fc and cf respectively indicate the case where a fundamentalist agent

switches to chartist strategies and the reverse case where a chartist becomes a fundamen-

talist.

 P cft = (1− xt) (ε+ ρxt)

P fct = xt (ε+ ρ (1− xt))
(1)

It is important to point out that the notation used below has been harmonised and

is somewhat different from that used in each of the three papers. This has been done in

order to facilitate the exposition of the mechanisms and their comparison across models.

2.1 The Gilli and Winker (2003) model of herding

The Gilli and Winker (2003) model follows the literal interaction mechanism described by

Kirman (1993) to produce a system whose time-evolution is governed by the transition

probabilities (1). Essentially, it directly simulates the interactions of a population of N

agents: at each point in time, three agents are randomly selected from the population,

with the first convincing the second to switch to his strategy with probability ρ and the
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Table 1: Calibrated values of model parameters

Parameter Interpretation Value

Gilli & Winker (GW)

N Number of agents 100∗

τ Number of interactions per trading day 50∗

φ Adjustment speed in fundamentalist expectations 0.0225∗

σs Standard deviation of price shocks 0.25∗

σx Standard deviation noise in majority assessment 0.219
ε Probability of random switch 0.0001
ρ Probability of direct recruitment 0.264

Alfarano, Lux & Wagner (ALW)

ε1 Propensity for fundamentalist → chartist switch 16
ε2 Propensity for chartist → fundamentalist switch 4.9
ρ Herding tendency 0.0025

Franke & Westerhoff (FW)

φ Agressiveness of fundamentalists 0.198
χ Aggressiveness of chartists 2.263
σf Noise in fundamentalist demand 0.782
σc Noise in chartist demand 1.851
µ Market impact factor of demand 0.01∗

p∗ Log of fundemental value 0∗

ν Flexibility in population dynamics 0.05∗

α0 Predisposition parameter -0.155
αx Herding parameter 1.299
αm Misalignment parameter 12.648

Gilli and Winker (2003) is calibrated on the DM/US-$ exchange rate.
Alfarano et al. (2005) is calibrated on the DAX index.
Franke and Westerhoff (2015) is calibrated on the S&P500 index.
‘*’ indicates the parameter value is assumed by the authors, not calibrated.

third spontaneously switching strategy with probability ε.

An important aspect of the model is that the current population share of fundamen-

talists is imperfectly evaluated by agents, who receive a signal x̃t∼N
(
xt, σ

2
x

)
containing

a measurement error. This reflects the fact that the beliefs of traders and the strategies

they use are likely to be private information and leads to the following expected population

share.

ωt = P

(
x̃t >

1

2

)
(2)

Chartist and fundamentalist agents differ in the way they form price expectations,

and therefore in their excess demand functions. Fundamentalists expect future prices to

correct to their fundamental value p̄ at a given rate φ, while chartists simply extrapolate
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from past price movements.

 Ef (∆pt) = dft = φ (p̄− pt−1)

Ec (∆pt) = dct = pt−1 − pt−2

(3)

Combining the expected share (2) with the excess demands (3) and adding an exoge-

nous perturbation ut∼N
(
0, σ2

s

)
provides the equation determining the evolution of the

price at each point in time:

pt = pt−1 + ωtφ (p̄− pt−1) + (1− ωt) (pt−1 − pt−2) + ut (4)

Gilli and Winker (2003) intend this process to describe the evolution of the price pt

and agents share xt at the time scale of individual interactions. In order to produce a

daily series, which is the typical time frequency used for empirical applications, one must

specify a parameter τ for the number of interactions per trading day, and sample each τ th

observation from the raw interaction-level series (4).

2.2 The Alfarano, Lux and Wagner (2005) model of asymmetric herding

The Alfarano et al. (2005) model of herding similarly embeds the Kirman (1993) mecha-

nism, but describes the time evolution of the state xt directly from the transition prob-

abilities rather than simulating the agent-level interactions. The transition probabilities

for their model are given by:

 P cft = (N − nt) (ε1 + nt) ρ

P fct = nt (ε2 + (N − nt)) ρ
(5)

While slightly different in appearance, this system is nevertheless broadly equivalent

to (1), as redefining ρ = ρ′/N2, ε∗ = (ε′∗N)/ρ′ and setting xt = nt/N recovers the

specification of the Kirman (1993) transition probabilities.3 The first difference with

Kirman (1993) and Gilli and Winker (2003) is the fact that Alfarano et al. (2005) allow

for different autonomous probabilities of switching, governed by ε1 and ε2, which may not

3Should one try to perform this reparametrisation with the values shown in Table 1 however, one would
find they do not agree across models. This is because of the different time scales involved: the Gilli and
Winker (2003) parameters are calibrated for τ transitions per daily return, while the Alfarano et al. (2005)
model parameters embed a single transition per daily return
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be equal to each other, allowing for asymmetry in the herding mechanism.

The second difference is that rather than simulating the agent interactions, Alfarano

et al. (2005) provide an analytical solution to the time evolution of the system by solving

the Fokker-Plank approximation in continuous time to the Master equation generated by

the transition probabilities (5) for large N . This results in the following time evolution of

the population share for an arbitrary time increment ∆t.

xt+∆t = xt + ρ (ε1 + ε2) (x̄− xt) ∆t+ λt
√

2ρ (1− xt)xt∆t (6)

The drift term of this time evolution depends on x̄ = ε1/(ε1 + ε2), which is the mean

population share of fundamentalists over time, while the second part is a diffusion term

determined by λt, which follows an i.i.d. standard normal distribution.

As is the case in Gilli and Winker (2003), the two types of agents differ in their de-

mand functions. Fundamentalists are defined similarly as expecting log prices pt to revert

to their fundamental level p̄. Chartists, on the other hand, are essentially noise traders

whose demands are determined by a random variable ηt, which is uniformly distributed

over [−1, 1] and a scaling parameter r0 which governs the expected size of the price fluc-

tuations.4 Given population sizes nt and N − nt, the excess demands are given by:

 dft = nt (p̄− pt)

dct = (N − nt) r0ηt

(7)

Setting the sum of excess demands (7) equal to zero directly leads to the following

expression for the value of the log returns rt:

rt = r0
xt

1− xt
ηt (8)

This results in a very elegant and parsimonious model, which only requires the two

autonomous switching parameters ε1, ε2 and the direct recruitment parameter ρ. Returns

can be simulated by drawing a set of standard normal variables λt and a set of uniformly

distributed variables ηt and using them in equations (6) and (8) with ∆t = 1.

4Alfarano et al. (2005) offer two options for the chartist noise specification, ‘spin’ noise, which takes
values {−1,+1} with equal probability, and uniform noise, which is used here. They also show that
choosing a scaling parameter r0 = (ε2 − 1)/ε1 results in a unit-variance daily returns series.
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2.3 The Franke and Westerhoff (2011) structural stochastic volatility

model

The model proposed by Franke and Westerhoff (2011) also uses the basic herding mecha-

nism of Kirman (1993), but expresses the state variable slightly differently. The population

state is defined as x′t = (2nt −N)/N , leading to x′t = −1 if all the population is chartist

(nt = 0) and x′t = 1 if all the population is fundamentalist (nt = N).5 This is done to

facilitate the exposition of the herding mechanism in the transition probabilities, which

relies on the exponential of a switching propensity st.

 P cft = ν exp (st)

P fct = ν exp (−st)
(9)

The propensity to switch st is determined by several factors. The first is an exogenous

effect α0, which aims to capture the existence of autonomous switching, similar to the ε

parameter of the previous models. The second term, which depends on the population

state x′t, encapsulates the herding concept, increasing the probability of switching to a

strategy based on the current popularity of that strategy. Should the two populations

be balanced (nt = N/2), one has x′t = 0 and there is no herding effect. The final term,

which depends on the squared deviation of the log price pt from its fundamental value p̄,

is designed to encourage switching to fundamentalism when the price deviates from the

fundamental value. Given that such deviations tend to occur mainly when a large share of

the population uses chartist strategies, this feedback mechanism will generate asymmetry

in the switching process.

st = α0 + αxx
′
t−1 + αm (pt−1 − p̄)2 (10)

The transition probabilities (9) lead to the the following population dynamics for the

model:

x′t = x′t−1 +
(
1− x′t−1

)
P cft−1 −

(
1 + x′t−1

)
P fct−1 (11)

5The x′ notation is used to emphasise this difference from the other models. Setting xt = (1 + x′t)/2 in
the model equations recovers the standard share variable xt = nt/N used in the previous two models.
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The excess demand functions of the fundamentalists and chartists, below, mirror (3)

as used by Gilli and Winker (2003), with two exceptions. First of all, the price expecta-

tions of chartists now also have an adjustment parameter χ, similar to the φ controlling

the fundamentalist adjustment. Secondly, both excess demands now incorporate a noise

component uft ∼N
(

0, σ2
f

)
and uct ∼N

(
0, σ2

c

)
.

 dft = φ (p̄− pt) + uft

dct = χ (pt − pt−1) + uct

(12)

Given the evolution of the population index (11) and the demand functions (12), the

time evolution of log price is described by the following equation:

pt = pt−1 + µ

((
1 + x′t−1

)
2

φ (p̄− pt) +

(
1− x′t−1

)
2

χ (pt − pt−1) + ut

)
(13)

The noise term ut∼N(0, σ2
t ) forms the structural stochastic volatility component of

the model, as the variance of this noise is governed by the population-weighted average of

the fundamentalist and chartist noise terms.

σ2
t =

1

2

((
1 + x′t

)2
σ2
f +

(
1− x′t

)2
σ2
c

)
(14)

3 The model comparison protocol

3.1 The ARCH family benchmark

As stated previously, a set of ARCH models is included as part of the model comparison

exercise. The purpose of this is twofold: firstly, to provide a reliable benchmark for the

explanatory power of the agent-based models and secondly, to demonstrate the ability of

the methodology described in section 3.2 to cope with a wide range of modeling approaches,

from agent-based simulations to more traditional regression methods.

All the ARCH models of daily returns rt in the benchmark set have the same AR(2)

mean equation, and only differ in the specification of the time-varying volatility σt in the

error term εt = σtzt, where zt is a standard normal variable.

11



rt = c+ a1rt−1 + a2rt−2 + σtzt (15)

Several specifications are included, in order to provide as wide a target as possible.

The first and most basic specification for the time-varying variance is the ARCH model.

A single version is included, with p = 5 lags. It is expected that this will be misspecified

for most of the data series, however the intention is to provide some ‘low hanging fruit’

for the agent-based models in the comparison exercise.

σ2
t = σ0 +

p∑
i=1

αiε
2
t−i (16)

The second specification included is a standard GARCH model. As for the ARCH

specification, it is not expected to provide the best specification for the daily returns

series, but instead provide a reasonable target for the agent based-models.

σ2
t = σ0 +

p∑
i=1

αiε
2
t−i +

q∑
j=1

βjσ
2
t−j (17)

An important consideration in choosing the ARCH specifications is that both the ALW

and FW models allow for asymmetry in herding. The preferred ARCH family specifications

are therefore the three following models, which all include asymmetry terms γk allowing

positive and negative lags of the error term to have differently effects on the volatility.

These are the threshold GARCH (TGARCH) specification (18), with negative lags identi-

fied by the indicator variable It−k, the exponential GARCH (EGARCH) specification (19)

and finally the power GARCH (PGARCH) specification (20).

σ2
t = σ0 +

p∑
i=1

αiε
2
t−i +

q∑
j=1

βjσ
2
t−j +

r∑
k=1

γkIt−kε
2
t−k (18)

ln
(
σ2
t

)
= σ0 +

p∑
i=1

αi

∣∣∣∣ εt−iσt−i

∣∣∣∣+

q∑
j=1

βj ln
(
σ2
t−j
)

+
r∑

k=1

γk
εt−k
σt−k

(19)

σδt = σ0 +

p∑
i=1

αi (|εt−i| − γiεt−i)δ +

q∑
j=1

βjσ
δ
t−j (20)

Three versions of each of the specifications (17) to (20) are estimated, corresponding
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to one, two and three (p, q, r) lags. This results in 13 ARCH family models for each data

series, which were estimated using Eviews 8. Two examples of the estimation results are

provided in as an illustration, in Tables 8 for the FSTE index and 9 for the S&P500 index.

The full set of 18 estimations, which is not included here in the interest of brevity, is

available as supplementary material to the paper.

3.2 The model comparison methodology

Before discussing the data used to evaluate these agent-based models of herding, it is

important to briefly review the main aspects of the methodology that will be used for

the model comparison exercise, as the purpose of the paper is as much to evaluate the

methodology as it is to evaluate the models themselves. The implementation details of the

methodology and a proof-of-concept are provided in Barde (2015) and its supplementary

material.

The general spirit of the methodology is to map the data-generating processes of a

set of candidate models {M1,M2, ...,Mm} to a corresponding set of standardised Markov

processes (or equivalently finite state machines). Let us assume for the moment that

a discrete random variable Yt describes the time evolution of a system, and that the

formal structure of a model Mi enables the researcher to calculate the following conditional

probabilities for every possible history of the system yt−1, yt−2, ..., yt−L. This full set of

conditional probabilities forms the transition matrix of the Lth order Markov process

underlying Mi.

PMi (Yt = yt| yt−1, yt−2, ..., yt−L) (21)

If a data series {y1, y2, ....yN} is available, the researcher can very easily obtain a score

for each observation by taking the logarithm of the model probabilities (21) for the state

configuration {yt−L, ..., yt−2, yt−1, yt} corresponding to each observation:

λi (yt) = ln
1

PMi (Yt = yt| yt−1, yt−2, ..., yt−L)
(22)

Barde (2015) shows that the mean value of the observation-level score (22) is an esti-

mate of cross entropy of the real data with the model Mi, providing a universal information
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criterion (UIC) similar in spirit to the Akaike information criterion or a log-likelihood:

UICi=
1

N − L

N∑
t=L+1

λi (yt) (23)

Differences in (23) across models Mi,Mj directly reflect differences in the Kullback and

Leibler (1951) divergence between model and data, with the best model identified as the

one with the lowest score, or equivalently (taking the negative) the highest log-likelihood.

Thus, while the method used to obtain the measurement (23) might be new or unfamiliar,

the nature of the measurement itself should not be.

The technical challenge resides in efficiently mapping the simulated data produced by

the set of models {M1,M2, ...,Mm} to their underlying Markov process, i.e. efficiently ob-

taining the conditional probabilities (21) from the simulated data produced by each model

Mi. This is achieved by relying on a universal data compression algorithm, the context

tree weighting (CTW) algorithm of Willems et al. (1995), which is specifically designed

to determine the Markov transition matrix of a data generating process directly from the

data. The central justification for choosing this technique is that the CTW algorithm’s

mapping of the data to the transition matrix is optimal on all Markov processes of arbi-

trary order, in that the inefficiency cost incurred by having to determine the transition

matrix from the data is proven to achieve the theoretical lower bound. As shown by Barde

(2015), this central property, referred to as universality, allows for the correction of the

resulting measurement error in the observation score (22). This justifies the choice of the

algorithm as the basis of the methodology and also underpins the choice of name for the

criterion.

The CTW algorithm’s proven optimal performance stems from the fact that it operates

on a binary representation of the data series {y1, y2, ....yN}, where each observation is

treated as the result of a set of Bernoulli trials. The only variables that need to be

estimated are the set of Bernoulli parameters that determine the probability of a given

observation bit being ‘1’ conditional on a particular system history. The CTW algorithm

obtains these using the Krichevsky and Trofimov (1981) estimator, which is proven to

possess the tightest possible bound on its inefficiency.

This is made possible by the way the state space is discretised. Given a choice of bounds
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[bl, bu] and resolution r, observations can take 2r distinct states spanning the support

determined by the bounds. Given an additional choice of L lags of time dependence, this

means that the CTW algorithm produces a standardised transition matrix of size 2rL×2r

for each model Mi. Each state is identified with a distinct r-bit representation where each

1/0 value indicates if the observation is in the top/bottom half of the subset of the support

determined by the previous bits.6

The crucial benefit of this binary representation is that even large state spaces, with

relatively high values of the resolution r, can be represented as a sequence of chained

Bernoulli trials and the probability of an observation being in any of the 2r states can be

reconstructed by chaining the probabilities that each successive trial results in the value

given by the r-bit representation. Similarly, the score for a given observation (22) is simply

the sum of the binary log scores for each of the r bits that make up the observation. This

produces a observation-level vector of scores, which sums up to the aggregate score for the

model, as can be seen from (23).

The availability of a vector of observation-level scores (22) has two crucial benefits

compared to alternative methods of evaluating models. The first is the ability to use the

variance in scores at the observation level to test the statistical significance of the aggregate

criterion (23) in any model comparison exercise, using the data snooping procedure of

White (2000) or the model confidence set of Hansen et al. (2011). The second benefit is

the ability to evaluate the relative explanatory power of models over subsets of the data.

Both these aspects are illustrated in the comparison exercise.

3.3 The stock market index data and comparison protocol

The data used for the model comparison exercise are the daily logarithmic returns for a

set of 18 stock market indices.7 These cover markets in the major time-zones of Asia,

Europe and the Americas, with 6 indices selected from each of these zones. Furthermore,

most series consist of over five thousand daily observations since the mid 1980s, capturing

key events such as the 1987 crash, the asian crisis of the late 1990’s, the dot-com bubble

6As an example, a resolution r = 3 indicates observations can take 8 distinct values. Given an obser-
vation of ‘101’, the first bit indicates the observation is in bins 5,6,7 or 8, the second indicates that the
observation is in either the 5th or 6th bin, and the final bit determines that the observation is in the 6th

bin.
7The index series used here are publicly available from the historical prices section of finance.yahoo.com.
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of the early 2000s up to the turmoil following the fall of Lehman Brothers in late 2008.

This wide geographical selection and long time period is intended to provide a broad test

of the explanatory power of the agent based models of herding by enabling evaluation of

the models both at the aggregate level as well as on individual events. Table 6 in the

appendix provides greater detail such as the starting date, the number of observations

and the results of the diagnostic tests for each data series.

Because the model comparison methodology operates on discrete variables, the raw

logarithmic returns are discretised to a 7-bit resolution, i.e. 128 discrete bins, within

the bounds [-0.15,0.15], any observations outside of those bounds being truncated to the

bound itself. As seen from the 5th column of Table 6, out-of-bounds observations are not a

major problem. The more important aspect is the choice of resolution for the data, i.e. 7

bits. While the discretisation of the returns is required by the methodology, the procedure

inevitably discards information and it is important to ensure that this does not affect the

measurement. As explained in Barde (2015), the resolution r should be large enough to

ensure that the discretisation error is i.i.d uniform and uncorrelated with the discretised

variable. When this is the case, any extra bit of resolution will take value 0 or 1 with

equal probability 0.5, regardless of any conditioning on the past values of the variable. A

larger choice of resolution r will simply increase the resulting information criterion by a

constant for all models in the comparison set and will therefore not affect comparisons

made by using differences in the information criterion across models.

The discretisation diagnostics are reported in the last 3 columns of Table 6 and show

that the 7-bit discretisation of the data is sufficient for most series. Uniformity of the

discretisation error is rejected for the HS, AEX and S&P500 indices, but this is due to

the presence of a relatively large number of zero returns (144, 180 and 207 respectively)

created by reported closing index values that are unchanged over two or more days. These

exact zeros create a systematic spike in the discretisation error, leading to the rejection

of uniformity, but are not a major concern for the methodology. The only slight concern

is for the DJ industrial index, for which the autocorrelation in the error term cannot

be rejected. The discretisation error, however, seems uniform and uncorrelated with the

discretised variable, which suggests that the problem is not critical.

In practice, the model comparison exercise takes the form of a sensitivity analysis of
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Table 2: Parameter values used in sensitivity analysis

Parameter Values tested N◦ models

Gilli & Winker (GW)

σx 0.20 - 0.22 - 0.24 - 0.26 - 0.28 - 0.30 - 0.32 - 0.34 - 0.36
729ε (0.5 - 1 - 1.5 - 2 - 2.5 - 3 - 3.5 - 4 - 4.5)× 10−3

ρ 0.05 - 0.10 - 0.15 - 0.20 - 0.25 - 0.30 - 0.35 - 0.40 - 0.45

Alfarano, Lux & Wagner (ALW)

ε1 2 - 4 - 6 - 8 - 10 - 12 - 14 - 16 - 18
729ε2 2 - 4 - 6 - 8 - 10 - 12 - 14 - 16 - 18

ρ ( 1 - 1.5 - 2 - 2.5 - 3 - 3.5 - 4 - 4.5 - 5 )× 10−3

Franke & Westerhoff (FW)

χ 0.263 - 1.263 - 2.263 - 3.263 - 4.263

625
σf 0.282 - 0.532 - 0.782 - 1.032 - 1.332
σc 1.851 - 2.851 - 3.851 - 4.851 - 5.851
αx 0.599 - 0.799 - 0.999 - 1.299 - 1.399

the GW, ALW and FW models using the parameter values in table 2. Parameters are

varied around the calibrated values in table 1 with each possible combination of parameters

generating a candidate model for the comparison exercise. For the GW and ALW models,

three parameters are varied with seven values each, leading to 37 = 729 candidate models.

For the case of the FW model, four parameters are tested with five possible values (in

order to keep the overall number of models tractable) resulting in 45 = 625 combinations.

The values of those parameters of the GW and FW models not present in Table 2 remain

identical to the ones in Table 1. Similarly, 13 sets of simulated series are generated for

the ARCH benchmark using the specifications (15) - (20) and the parameter estimates

corresponding to each data series. This implies that the simulated data for the ARCH

benchmark is specific to each of the 18 data series, which is not the case of the agent-based

models, where the parameterisation resulting from the combinations in Tables 1 and 2 are

the same for all data series.

Each of the 2096 candidate models is used to produce a simulated series with 500000

observations, which is discretised to a 7-bit resolution in accordance with the discretisation

tests run on the data series and mentioned above. In the first stage of the methodology

these discretised series are processed by the CTW algorithm using L = 3 lags of memory

to recover their Markov transition matrix, which scored against the 18 data series in the

second stage of the methodology.
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Table 3: UIC scores on financial data series

GW ALW FW ARCH
Index min(UIC) id min(UIC) id min(UIC) id min(UIC) id

AOI 4.2112 661 3.9141 705 3.8836 482 3.8793∗ 5
NIKKEI 4.7434 573 4.6175 657 4.5297 122 4.5196∗ 7
KOSPI 4.7733 407 4.6024 655 4.5231 111 4.5201∗ 7
ST 4.4938 385 4.2498 722 4.2029∗ 235 4.2198 3
HS 4.9870 431 4.8461 722 4.7214 122 4.7000∗ 5
NIFTY 5.0241 421 4.8701 656 4.7736 122 4.7323∗ 7
DAX 4.7310 573 4.5998 656 4.4936∗ 123 4.4945 7
CAC 4.7431 573 4.6294 722 4.5099 122 4.5053∗ 7
FTSE 4.3917 581 4.1450 723 4.1077∗ 368 4.1095 13
IBEX 4.7660 571 4.6190 576 4.5211 123 4.5155∗ 7
AEX 4.5845 385 4.3511 713 4.2915∗ 368 4.2975 3
STOXX 4.5936 500 4.4063 722 4.3335∗ 238 4.3428 5
IPC 4.8869 431 4.7093 722 4.6002∗ 122 4.6075 5
DJ 4.3313 385 4.0684 641 4.0269∗ 360 4.0360 5
S&P 500 4.3772 581 4.1469 723 4.0830∗ 365 4.0976 3
NASDAQ 4.9462 421 4.8239 655 4.7167 122 4.6952∗ 1
OEX 4.4145 581 4.2113 723 4.1512 368 4.1473∗ 7
GSPTSE 4.1547 611 3.8249 722 3.7996 479 3.7947∗ 5

Bold indicates the best model is in the model confidence set at the 90% level
‘*’ indicates the best overall model for the series

4 Results

The aggregate results of the model comparisons exercise on each of the 18 series is displayed

in Table 3. Its main finding, which is relatively consistent across series, is that the best GW

calibration displays the highest score and is systematically beaten by the best ALW model,

which in turn is systematically outperformed by the best FW calibration. Interestingly,

the results also reveal that the latter model is comparable to the best ARCH-type model in

terms of overall explanatory power, although there are differences between series. Because

the parameters used for the ARCH simulations, obtained by estimation, are specific to

each series while the parameter values used for the three sets of agent-based simulations

are fixed ex ante, it was reasonable to expect the ARCH benchmark to outperform the

agent-based models. It is therefore interesting to note that despite this potential handicap

the best FW calibration can approach, and in some cases exceed, the performance of the

ARCH benchmarks.

The parameter values for the best models identified in Table 3 are provided in Table

4, for those models selected at least twice in the exercise, and Table 7 in the appendix for

the full set of identified models. Because the model comparison exercise is a sensitivity
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Table 4: MCS model parameters

Gilli & Winker (GW)

σq 0.22 0.28 0.3 0.3 0.34 0.34
ρ 0.25 0.35 0.35 0.4 0.3 0.25
ε 0.0005 0.0035 0.001 0.002 0.0005 0.001

model id 86 385 421 431 573 581
N◦ series 0 3 2 2 3 3

Alfarano, Lux & Wagner (ALW)

ε1 16 2 2 18 18
ε2 4 14 16 4 6
ρ 0.0025 0.005 0.005 0.005 0.005

model id 308 655 656 722 723
N◦ series 0 2 2 6 3

Franke & Westerhoff (FW)

χ 1.263 2.263 2.263 2.263
σf 1.332 1.332 1.032 0.782
σc 5.851 5.851 5.851 1.851
αx 0.599 0.599 0.999 1.299

model id 122 123 368 388
N◦ series 7 2 3 0

Bold indicates the model id corresponding to the calibrations of the
original works

analysis rather than a full calibration, it is important to be cautious in the interpretation

of the parameters for any specific series. Even though the original calibrations (in bold)

are never matched exactly, for most parameters there is either broad agreement with, or

variation around, the original values. The only systematic deviations seem to be in the

noise parameters, which are higher than the original calibrations. For GW, σs > 0.3 in

nearly every series, above the original value of 0.22. The ρ parameter of ALW, which enters

the diffusion term of the fundamentalist share (6) is also higher than the original value.

Finally, the clearest example is provided by the noise component of chartist demand σc

in the FW model, which is much larger than the value obtained in Franke and Westerhoff

(2015). The implication of this is discussed below.

As explained in section 3.2, one of the benefits of using the UIC (23) to score the

models is that the methodology returns an observation-level vector of scores (22), which

can be used to test the statistical significance of these rankings. This is done with the

MCS procedure of Hansen et al. (2011) using 1000 replications of the Politis and Romano
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Table 5: Size of model confidence set per class of model

Index |M90| GW ALW FW ARCH

AOI 336 0 0 327 9
NIKKEI 134 0 0 124 10
KOSPI 235 0 0 225 10
ST 300 0 0 294 6
HS 16 0 0 12 4
NIFTY 14 0 0 9 5
DAX 210 0 0 202 8
CAC 98 0 0 86 12
FTSE 353 0 0 340 13
IBEX 162 0 0 149 13
AEX 364 0 0 354 10
STOXX 320 0 0 310 10
IPC 96 0 0 90 6
DJ 255 0 0 247 8
S&P 500 360 0 0 356 4
NASDAQ 118 0 0 107 11
OEX 353 0 0 343 10
GSPTSE 140 0 0 133 7

N◦ of models: 2096 729 729 625 13

(1994) block bootstrap.8 The results, shown in Table 5, confirm that none of the ALW

and GW calibrations make it into the confidence set at the 90% confidence level, which is

restricted to a subset of the FW models and the ARCH benchmarks.

The second benefit of having an observation-level vector of scores is that the rela-

tive performance of models over relatively short time-lengths can also be examined, as

illustrated in Figure 1 for three of the series where FW is identified as the best model.9

The three line plots show the relative scores ∆λ̄i,arch(rt) of the three agent based models

against the ARCH benchmark, smoothed using a moving average window of 200 obser-

vations. Using smoothed scores means that an MCS test can be carried out on the 200

individual observation scores λi(rt) to evaluate the significance of the resulting average

λ̄i(rt). In order to avoid complicating the figures further and given the rankings in Table 3,

the test is only carried out on the FW/ARCH head-to-head comparison and the resulting

MCS composition is displayed using the vertical banding.

The observation-level plots reveal two important features not discernable from the

aggregate rankings in Table 3. The first is that while they confirm the relative rankings

8The optimal block length for each series was determined by running the Politis and White (2004)
algorithm on the scores prior to performing the bootstrapped analysis

9As for the series-specific ARCH estimations discussed in section 3.1, the complete set of plots covering
all 18 series is not included here to save space, but is available in the supplementary material.
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of the three models, in particular the poor performance of GW, they also reveal that the

performance of the FW and ALW models is close and their scores relative to the best

ARCH model often co-move. This suggests that they both explain similar features of the

data and capture similar mechanisms. The second important feature is the presence of

clear spikes in performance around turbulent events, in particular the 2008 crash. These

spikes, along the vertical bands where the MCS is restricted to the FW model alone,

indicate that over these time periods, the FW model drastically outperforms the ARCH

benchmark.10 Crucially, in most cases both the ALW and GW models exhibit similar

spikes over the same periods.

Let us summarise at this stage what these findings imply for the various herding

mechanisms discussed in section 2. First of all, the spikes in relative scores identified in

Figure 1 around critical market events and the co-movement GW and ALW with FW

relative to ARCH strongly suggest that herding models offer an important explanation

for the dynamics of conditional heteroscedasticity during turbulent events. The poor

performance of the GW model compared to ALW and FW, however, indicates that the

basic herding mechanism (1) of Kirman (1993) is probably too simplistic. The superior

performance of ALW and FW as well as their co-movement on the data series support the

hypothesis of Alfarano et al. (2005) that asymmetry is an important part of the herding

story, and the lack of this mechanism in GW may explain its performance. Finally, allowing

for noise in the chartist demand function rather than pure momentum trading also seems to

improve performance. In GW the demand function of chartists (3) is purely momentum

driven, with no specific noise component other than the overall exogenous error in (4)

controlled by σs. On the other hand, the chartist demand of the ALW model (7) has no

momentum component and is entirely driven by noise trading, while in the FW model the

chartist demand (12) contains both momentum and noise trading, with Table 4 suggesting

a large noise component σc. This more flexible specification for chartist demand probably

contributes to the higher performance of FW (and to a lesser extent ALW) compared to

the basic momentum trading of GW.

10It is also important to note that for most of those series in Table 3 where the ARCH benchmarks
beat FW the spike ‘events’ are absent, which probably explains why FW does not perform better. These
diagrams are available in the supplementary material.
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Figure 1: Agent based model scores relative to ARCH benchmark for ST, FTSE and
S&P 500
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5 Conclusion

Two types of conclusions can be drawn from the model comparison exercise carried out

in this paper. The first relates to the agent-based models of herding in financial markets

that were being compared, with the results suggesting that population switching is an

important factor for explaining the stylised facts of financial markets such as volatility

clustering and fat tails. This is not only supported by the aggregate ranking of the models,

but also by the plots of sub-sample relative scores, which indicate that the performance of

herding models is better than ARCH-type models on key events where one would expect

these stylised facts to be prominent. The results also suggest that the herding mechanism

is more complex than the basic framework of Kirman (1993) and better captured by

richer mechanisms building in asymmetries in the propensity to switch, or feedback effects

where the probability of switching is also determined by the perceived deviation from the

fundamentals. Similarly, the findings suggest that the traditional division of population

into ‘fundamentalists’ driven purely by reversion to fundamentals and ‘chartists’ driven

purely by momentum strategies is also over-simplistic as the results support the idea that

noise traders, either independently or as a component of chartist demand, play a role in

explaining the dynamics of these markets. The limitations of the exercise, discussed below,

mean that is is not really possible to identify whether the better performance of the ALW

and FW models compared to the basic GW model is due to the richer herding model or

the noisier chartist demand, leaving this as an open question for future research.

The second set of conclusions relates to the model comparison methodology itself. The

exercise demonstrates that is possible to effectively compare large numbers of agent-based

simulation models to more traditional regression models on the the basis of their simulated

output alone. In itself this is not necessarily surprising as a body of work already exists us-

ing simulation-based estimation, however, the potential strength of this new methodology

rests in the fact that it provides several desirable characteristics not present in alternative

methods. The first is that while the algorithms used to obtain the measurement might

seem unfamiliar, its nature - a log score of the conditional probability structure of a model

- directly links up with the standard literature on maximised likelihoods and information

criteria, making the interpretation of the results straightforward. The second desirable
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characteristic is the fact that the log score is produced at the observation level, enabling

model comparison over sub-sets of the data and allowing the use of the Hansen et al. (2011)

MCS methodology to provide statistical confidence when comparing models. These as-

pects are both illustrated in the comparison exercise and reveal much more information

about the relative performance of the three models against the benchmark than would be

available from the set of aggregate rankings alone.

The methodology does possess some limits, which should be the focus of future devel-

opment work. The first, as pointed out in Barde (2015) is that in its current version the

methodology is not designed for estimation, but for comparison of models that already

possess calibrated parameters, even if the calibration is poor. This should be visible in the

protocol used for comparison, as for each of the three models a ‘brute force’ grid search

is used to test the sensitivity of parameters around existing calibrations. Unsurprisingly,

this grid search rapidly encounters the curse of dimensionality, as the FW models can only

test five values on four parameters compared to seven values per parameter on the ALW

and GW models. The methodology can rank the performance of different models and

perhaps perform some basic sensitivity testing, but if the researcher’s goal is simply to

calibrate a single model, it currently cannot compare for example with the Nelder-Mead

simplex search used in Gilli and Winker (2003). An objective for future development is

therefore to investigate if the methodology can be used as the loss function in a more

refined search algorithm, which would allow for more effective parameter calibration. The

other current limitation of the methodology is its univariate nature, which is perfectly

appropriate for models of financial indices, but is problematic if multivariate models need

to be tested. There is no theoretical hurdle stopping the CTW algorithm from being

extended to multivariate settings, however, and developing such an extension is a second

important development goal for the future.
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A Extended tables

Table 6: Descriptive statistics and discretisation tests on financial series

/∈ Test 1 Test 2 Test 3
Index Start date Obs. Zeros [−0.15, 0.15] KS Stat. LB Stat. LB Stat.

AOI 03/08/1984 7684 60 1 0.0090 23.0947 25.2689
(0.9149) (0.5720) (0.4474)

NIKKEI 04/01/1984 7619 22 3 0.0098 22.8884 25.0043
(0.8525) (0.5841) (0.4621)

KOSPI 04/01/1980 9511 36 0 0.0146 36.1121 23.3394
(0.2598) (0.0699) (0.5578)

ST 31/12/1985 6770 54 0 0.0121 28.5121 24.1152
(0.7009) (0.2848) (0.5127)

HS 02/01/1980 8734 144 4 0.0185∗ 17.4125 13.4567
(0.0980) (0.8663) (0.9704)

NIFTY 03/07/1990 5891 17 1 0.0100 32.4911 15.4849
(0.9280) (0.1443) (0.9293)

DAX 26/11/1990 6091 20 0 0.0087 27.9607 23.4626
(0.9747) (0.3097) (0.5506)

CAC 01/03/1990 6280 18 0 0.0091 34.8334 22.3324
(0.9574) (0.0913) (0.6165)

FTSE 02/04/1984 7756 19 0 0.0182 19.8943 35.3451
(0.1525) (0.7524) (0.0821)

IBEX 06/09/1991 5863 16 0 0.0109 25.9464 22.6266
(0.8742) (0.4105) (0.5994)

AEX 25/11/1988 6757 180 0 0.0269∗∗ 23.6209 20.4041
(0.0146) (0.5414) (0.7253)

STOXX 31/12/1986 7200 22 0 0.0075 22.1629 15.5075
(0.9871) (0.6263) (0.9287)

IPC 08/11/1991 5776 7 0 0.0132 29.3852 19.4519
(0.6967) (0.2481) (0.7750)

DJ 01/10/1928 21665 102 1 0.0060 44.8689∗∗∗ 19.8889
(0.8292) (0.0087) (0.7526)

S&P 500 31/12/1979 9143 207 2 0.0271∗∗∗ 17.5026 19.1225
(0.0023) (0.8628) (0.7912)

NASDAQ 01/10/1985 7363 9 2 0.0125 23.2413 20.2894
(0.6109) (0.5635) (0.7315)

OEX 02/08/1982 8164 28 1 0.0075 15.6071 17.9312
(0.9762) (0.9260) (0.8453)

GSPTSE 31/12/1976 9551 20 0 0.0084 32.0618 34.1488
(0.8898) (0.1562) (0.1048)

Test 1 - Kolmogorov-Smirnov test on discretisation error.
H0: Discretisation error is uniformly distributed over [0, 1].

Test 2 - Ljung-Box test on 25 lags of the discretisation error
H0: Discretisation error is independently distributed (no autocorrelation).

Test 3 - Ljung-Box test of the discretisation error against 25 lags of the discretisation series
H0: Discretisation error is not correlated with discretised series.

P-values in parenthesis, ‘∗’ indicates significance at the 10% level, ‘∗∗’ at the 5% level and ‘∗ ∗ ∗’
at the 1% level.
The last observation, for all series, is the 12th of December 2014.
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