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Abstract

The recent increase in the breath of computational methodologies has been matched
with a corresponding increase in the difficulty of comparing the relative explanatory power
of models from different methodological lineages. In order to help address this problem a
universal information criterion (UIC) is developed that is analogous to the Akaike information
criterion (AIC) in its theoretical derivation and yet can be applied to any model able to
generate simulated or predicted data, regardless of its methodology. Both the AIC and
proposed UIC rely on the Kullback-Leibler (KL) distance between model predictions and
real data as a measure of prediction accuracy. Instead of using the maximum likelihood
approach like the AIC, the proposed UIC relies instead on the literal interpretation of the
KL distance as the inefficiency of compressing real data using modelled probabilities, and
therefore uses the output of a universal compression algorithm to obtain an estimate of
the KL distance. Several Monte Carlo tests are carried out in order to (a) confirm the
performance of the algorithm and (b) evaluate the ability of the UIC to identify the true
data-generating process from a set of alternative models.
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Non-Technical Summary

The recent increase in the breadth of computational methodologies has been matched with
a corresponding increase in the difficulty of comparing the relative explanatory power of models
from different methodological lineages, particularly simulations. The traditional statistical and
econometric methods that researchers rely on to evaluate the relative explanatory power of
different models requires that these models possess a specific formal structure of equations and
parameters. This is no longer the case for many of the modelling techniques used nowadays,
making the problem of comparing the predictions of such models an important open question
in the field.

In order to help address this problem the paper develops an information criterion that is
analogous to the traditional Akaike information criterion (AIC) in its theoretical derivation and
yet can be applied much more widely, as it can be used to compare the explanatory power of
any model able to generate simulated data, regardless of its formal structure.

Both the proposed criterion and the AIC are grounded in the same information theoretical
concept of using the Kullback-Leibler (KL) distance between model predictions and real data as
a measure of prediction accuracy. However instead of using the standard maximum likelihood
approach, like the AIC, the proposed criterion relies on the original computer science interpre-
tation of the KL distance as the inefficiency of compressing data using a model that imperfectly
approximates the true process that generated the data.

While this may seem like an unnecessary complication, it is what enables the comparison
of very different formal models, as the algorithm chosen for the procedure simply maps all the
models to a standardised representation (formally, their Markov transition matrices), at which
point their predictions can be compared easily. The specific algorithm used in the paper is the
Context Tree Weighting (CTW) algorithm. The paper establishes that this algorithm is chosen
because it provides the proposed criterion with three desirable properties:

• The criterion is optimal, which essentially guarantees that the measurements produced by
the algorithm reach the maximum theoretical precision.

• It is also universal i.e. the optimal performance mentioned previously is proven for all
Markov processes. Markov processes are a very wide class of data-generating processes
that englobe nearly all the modelling methodologies in existence, from regression models
to simulations. This property underpins the claim that the proposed criterion to compare
the predictions of any model capable of producing simulated data.

• Finally, it is sequential : the criterion can measure the relative prediction accuracy of dif-
ferent models observation by observation. This means that when comparing the predictive
power of different models on a given set of data, statistical testing can be performed to
ensure the measurements obtained are statistically significant.

Two Monte Carlo exercises are carried out validate the proposed methodology. The first of
these is to check that these theoretical properties are realised in practice, which is shown to be
the case, confirming that the algorithm behaves the way information theory predicts.

The second Monte Carlo exercise tests the effectiveness of the methodology at ranking models
according to their accuracy. Seven models (one “true” model and six alternate models) are
simulated and passed through the CTW algorithm. The result of this test confirms that the
methodology can identify the true model from the others and rank all the models according to
their predictive power.
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1 Introduction

The rapid growth in computing power over the last couple of decades, coupled with the devel-

opment of user-friendly programming languages and an improvement of fundamental statistical

and algorithmic knowledge have lead to a widening of the range of the computational methods

available to researchers, from formal modelling to estimation, calibration or simulation method-

ologies. While this multiplication of available methods has offered a greater modelling flexibility,

allowing for the investigation of richer dynamics, complex systems, model switching, time vary-

ing parameters, etc., it has come at the cost of complicating the problem of comparing the

predictions or performance of models from radically different methodological classes. Two re-

cent examples of this, which are by no means exclusive, are the development of the dynamic

stochastic general equilibrium (DSGE) approach in economics, and the increase in the popu-

larity of what is generally referred to as agent-based modelling (ABM), which uses agent-level

simulations as a method of modelling complex systems and for which even the issue of bringing

models to the empirical data can prove to be a problem.

Within the DSGE literature on model validation and comparison, one of the first to identify

and address this problem in a direct and systematic manner is Schorfheide (2000), who intro-

duces a loss function-based method for evaluating DSGE models. This is then complemented

by the DSGE-VAR procedure of Del Negro and Schorfheide (2006); Del Negro et al. (2007),

which explicitly sets out to answer the question ‘How good is my DSGE model?’ (p.28). The

procedures gradually developed over time in this literature are summarised in the section on

DSGE model evaluation of Del Negro and Schorfheide (2011), which outlines several methods

for evaluating DGSE performance, such as posterior odds ratios, predictive checks and the use

of VAR benchmarking.

Similar concerns relating to model evaluation and comparison also exist in the ABM litera-

ture, and in recent years two special journal issues have been published in order to identify and

address them. Fagiolo et al. (2007), as part of the special issue on empirical validation in ABM

of Computational Economics, provide a very good review of the existing practices and provide

advice as to how to approach the problem of validating an agent-based simulation model. Nev-

ertheless, as outlined by Dawid and Fagiolo (2008) in the introduction of the special issue of the

JEBO on adapting ABM for policy design, finding effective procedures for empirical testing,
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validation and comparison of such models are still very much an open question.

This paper attempts to address this general issue of comparing different lineages of mod-

els by providing a proof-of-concept for a universal information criterion (UIC) that generalises

the Akaike (1974) information criterion (AIC) to any class of model able to generate simulated

data. Like the AIC, the proposed criterion is fundamentally an estimate of the Kullback and

Leibler (1951) (KL) distance between two sets of probability densities. The AIC uses the max-

imised value of the likelihood function as an indirect estimate of the KL distance, however,

this obviously requires the model to have a parametric likelihood function which is no longer

straightforward for many classes of modelling methodologies. The proposed criterion overcomes

this problem by relying instead on the original data compression interpretation of the KL dis-

tance as the inefficiency resulting from compressing a data series using conditional probabilities

that are an estimate or approximation of the true data generating process. This fundamental

equivalence between data compression and information criteria has led to the emergence of what

is know as the Minimum Description Length (MDL) principle, which relies the efficiency of data

compression as a measure of the accuracy of a model’s prediction. Grünewald (2007) provides

a good introduction to the MDL principle and its general relation to more traditional infor-

mation criteria, while Hansen and Yu (2001) explore the use of MDL within a model selection

framework, concluding that “MDL provides an objective umbrella under which rather disparate

approaches to statistical modeling can coexist and be compared” (Hansen and Yu, 2001, page

772).

A critical motivation for the proposed criterion is that compression algorithm used to cal-

culate its value is universal, i.e. it provides a guaranteed optimal performance over the widest

possible range of models. The procedure places all models on an equal footing, regardless of

numerical methodology or structure, by treating the simulated data they produce as the result of

a Nth order Markov process, where the number of lags is chosen to capture the time dependency

of the data. As pointed out by Rissanen (1986), Markov process of arbitrary order form a large

subclass (denoted FSMX) of finite-state machines (FSM), i.e. systems where transitions are

governed by a fixed, finite transition table. By mapping every model to be compared its FSM

representation and comparing the transition table probabilities themselves, the UIC is able to

overcome differences in modelling methodologies and produce a standardised criterion for any

model reducible to a Markov process.
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On top of its connections to traditional information criteria and data compression methodolo-

gies, the proposed UIC is related to two additional strands of literature. The first is the indirect

inference approach initiated by Smith (1993), Gouriéroux and Monfort (1993) and Gouriéroux

et al. (1993) which, as will become obvious in the following sections, is similar both in spirit and

in practice to the UIC methodology. In cases where a model has a structure that is too compli-

cated to estimate directly an auxiliary model which is tractable but known to be misspecified

can be estimated using simulated data series generated by this model for various parametrisa-

tions. By comparing this set estimates to the estimation of auxiliary model obtained with the

real data, one is able to identify the best parameter values in the initial model. Similarities and

differences of the UIC approach with indirect inference will be discussed further below, however

for a good general discussion of the procedures involved, the reader is referred to chapter 4 of

Gouriéroux and Monfort (1996).

Because purpose of the approach is to compare a set of models {M1,M2, ...,Mm} against a

fixed-size data set, the second related strand of literature is the data snooping problem identified

by White (2000) and the reality check procedures that must be carried out to avoid it. Essen-

tially, because statistical tests always have a probability of type I error, repeated testing of a large

(and possibly increasing) set of models on a fixed amount of data creates the risk of incorrectly

selecting a model that is not truly the best model in the set. White (2000) therefore proposes a

procedure that takes into account the size of the model comparison set {M1,M2, ...,Mm} when

testing for performance against a benchmark model M0. A recent development in this literature

is the model confidence set (MCS) methodology of Hansen et al. (2011), which differs from

White’s reality check in that it does not test against a benchmark model, but instead identifies

the subset M̂1−α of the model comparison set that cannot be distinguished from each other

at significance level α. This is well suited to the model-specific scores produced by the UIC,

therefore the MCS was be included in the Monte Carlo analyses presented below.

The remainder of the paper is organised as follows. Section 2 first discusses the use of

universal data compression as an empirical tool for evaluating prediction accuracy and details

the theoretical properties of the UIC. A Monte Carlo analysis is then performed in section 3 in

order to compare the UIC against the AIC benchmark in an ARMA-ARCH setting and evaluate

the criterion’s practical usefulness. Section 4 discusses the findings and concludes.
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2 The UIC: motivation and theoretical properties

Before examining the information-theoretical motivation for the UIC methodology and the core

properties that justify the choice of algorithms, it is important to first briefly clarify the termi-

nology and notation that will be used throughout the paper.

First of all, we define a prediction as a conditional probability mass function over the states

a system can occupy, given knowledge of the system’s history. A model is very loosely defined as

any device that can produce a complete set of predictions, i.e. a prediction for every acceptable

history. This is very similar to the loose definition adopted by Hansen et al. (2011) for their

MCS procedure. Furthermore, no assumption is made on the quality of the predictions: a

uniform distribution over the system’s states is an acceptable prediction. Conceptually, this set of

predictions corresponds to the state transition table of a FSMX, or equivalently, as the transition

matrix of a Markov process. This definition of a model is intended to be very general as anything

from personal belief systems to formal analytical models, as well as calibrated simulations or

fitted econometric specifications are reducible to this class of processes. The accuracy of a model

relates to how its predictions compare to the true, but unobserved, transitions probabilities. This

is done through the encoding operation, which refers to the process of compressing a string of

data into a shorter string. The decoding operation will refer to the reverse process, where the

original data is recovered from the compressed data.

Regarding notation, the binary logarithm will be clearly identified as “log2”, while the natural

logarithm simply be will be “log”. Xt is an unobserved, real-valued random variable describing

the state of a system at time t and xt its observed realisation. Data series are denoted as

xt1 = {x1, x2, . . . , xt}. X t, x t and x t1 are the discretised versions of the same variables, with

r being the number of bits of resolution used for the discretisation and Ω = 2r the resulting

number of discrete states the system can occupy. Because of the binary discretisation used,

x t will refer to both the value of the observation and the corresponding r-length binary string

describing it. When necessary, the kth bit of a given observation x t will be identified as x t {k}.

Pdgp
(
X t|x t−11

)
is the true probability distribution over the Ω states at time t conditional

on the past realisations of the variable. Let PMi

(
X t|x t−1t−L

)
be a corresponding conditional

probability distribution predicted by a model Mi at the same time and over the same state space,

perhaps using a limited number of lags L. Using the chain rule for conditional probabilities,
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P
(
x t1
)

= P
(
X t|x t−11

)
P
(
x t−11

)
, the model predictions and true conditional probabilities can

be used recursively to build the overall probabilities for the series PMi

(
x t1
)

and Pdgp
(
x t1
)
.

2.1 Information criteria and Minimum Description Length

Given a model Mi, a reasonable metric for evaluating the accuracy of the overall prediction

PMi

(
xt1
)

with respect to Pdgp
(
xt1
)

is the Kullback and Leibler (1951) (KL) distance measure

between the two distributions, which was developed as an extension of the fundamental concept

of information entropy introduced in Shannon (1948).

DKL

(
PMi

(
xt1
)∥∥Pdgp (xt1)) = Edgp

[
log

Pdgp
(
xt1
)

PMi (xt1)

]
(1)

In terms of notation, the Edgp [. . . ] operator indicates that the expectation is taken with

respect to the true distribution Pdgp
(
xt1
)
. The first obvious consequence of (1) is that the

KL divergence DKL is zero whenever PMi

(
xt1
)

= Pdgp
(
xt1
)
. As shown by Cover and Thomas

(1991), by taking into account the strict concavity of the logarithm and applying Jensen’s

inequality to the expectation term in (1) one can show that the KL distance is strictly positive

for PMi

(
xt1
)
6= Pdgp

(
xt1
)
, making it a strictly proper scoring rule in the sense of Gneiting and

Raftery (2007). This property underpins the use of the KL distance as a conceptual criterion for

determining the accuracy of a model, as minimising the KL distance with respect to the choice

of prediction model should theoretically lead to the identification of the true model.

While the KL distance is a desirable measure of accuracy in theory, it suffers from not being

directly computable in practice, as this would require knowledge of Pdgp. The key insight of

Akaike (1974) was to identify that it is possible to use the maximum likelihood estimation of

the model Mi, to obtain an estimate of the following cross entropy, without requiring knowledge

of the true distribution Pdgp:

Edgp

[
log

1

PMi (xt1)

]
= DKL

(
PMi

(
xt1
)∥∥Pdgp (xt1))+ Edgp

[
log

1

Pdgp (xt1)

]
(2)

Assuming that the model Mi uses a vector of κi parameters θi, and that θ̂i are the parameter

values that maximise the likelihood L
(
θi|xT0

)
, Akaike (1974) showed the cross entropy between

the data and the model can be estimated asymptotically by the following relation, directly

leading to the classical definition of the AIC for a set of models:
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AICi

2
= Edgp

[
log

1

PM̂i

(
xT1
)] = − log

[
L
(
θ̂i

∣∣∣xT1 )]+ κi (3)

The fact that (3) is not directly an estimate of the KL distance (1) but instead of the cross

entropy (2) explains why Akaike (1974) recommends looking at the AIC differences between

models, ∆AICi,j = AICi − AICj , as this removes the model-independent Shannon entropy

terms and keep only the relative KL distance ∆DKL

(
PMi

(
xt1
)∥∥Pdgp (xt1))i,j .

As emphasised by the MDL literature, the originally interpretation of the KL distance (1)

relates to the fundamental theoretical limits to compressibility of data. Given a discretised data

series x t1, the binary Shannon entropy −Edgp
[
log2 Pdgp

(
x t1
)]

gives the number of bits below

which the data series cannot be compressed without loss. Because the true probability over

states of nature Pdgp is unknown, practical data compression has to rely on a predetermined

model of how the data is distributed, PMi . Intuitively this should introduce some inefficiency,

thus increasing the theoretical limit below which the data cannot be compressed. This higher

limit, measured by the cross entropy (2), is the sum of the Shannon entropy and the KL distance

between M and the true data generating process. In other words, on top of the number of bits

required to encode the true information content of the data, one has to add extra bits to account

for the fact that the model distribution PMi does not exactly match the true distribution Pdgp.

The MDL principle is at the core of the proposed UIC precisely because of the flexibility

it offers, enabling practical model comparison on the basis of simulated data alone. However,

as pointed out by Grünewald (2007), MDL only provides a guiding principle for analysis and

does not prescribe a specific methodology. It is therefore important choose any implementation

carefully and verify its efficiency. The context tree weighting (CTW) proposed by Willems et al.

(1995) and used as the basis of the proposed UIC is chosen specifically because of its desirable

theoretical properties, discussed below. Another implication of the MDL as a guiding principle

rather than a prescriptive approach is that the universality of the specific methodology proposed

here refers to its ability to perform optimally on all FSM sources, and does not imply that it is

unique, or even the ‘best’ with regards to other objective criteria.1

1As an illustration, ongoing work by Lamperti (2015) also explores the possibility of comparing models on the
basis of simulated data alone. The approach chosen, however, is very different from the one used here and does
not offer the same theoretical guarantees, focusing instead on lower computational requirements.
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2.2 Theoretical properties of the UIC procedure

Discounting a preliminary data preparation step required to convert the data series xt1 to a

discretised vector x t1, the methodology uses a two stage procedure to obtain the UIC, outlined

in appendix A. In the first stage the CTW algorithm scans the simulated series generated

by each candidate model Mi and produces a set of tree structures containing model-specific

conditional probabilities PMi

(
X t|x t−1t−d

)
. In the second stage, the real data is compressed using

these CTW probabilities, providing the required cross entropy measure (2). 2

Letting λi
(
X t|x t−1t−L

)
be the length (in bits) of the code string produced by the Elias

arithmetic encoder using the probabilities PMi

(
X t|x t−1t−d

)
to encode an observation x t, the

UIC for model Mi will primarily be based on the output length of the arithmetic encoder on

the entire sequence x t1, i.e.:

λi
(
x t1
)

=
∑

t
λi
(
X t|x t−1t−L

)
(4)

This two-stage procedure may seem cumbersome and questions may legitimately be raised

about the potential inefficiencies generated by this very indirect method. In fact, the choice of

the specific algorithms used in both stages rests precisely on the fact that they endow the UIC

with three key properties of interest.

• The measurement of cross-entropy (2) is optimal, which guarantees that the inefficiency in

measurement attains the theoretical minimum and can therefore be controlled for.

• This measurement is universal over finite state machines, i.e. the optimal performance is

proven for all Markov processes of arbitrary order. This key property underpins the name

of the criterion.

• The measurement is sequential, providing a cross entropy measurement for each observation

and allowing for confidence testing of the aggregate UIC value.

Regarding optimality, both stages 1 and 2 in appendix A have a tight bound on measurement

error. Stage 2, which provides the actual measurement, relies on arithmetic encoding, a simple,

elegant and efficient approach to data compression initially outlined by Elias (1975), and further

2Because the aim of the paper is to present the desirable theoretical properties of the proposed criterion and
assess their usefulness in practice, the more technical aspects relating to the algorithmic implementation are
detailed in a technical manual available from the author on request.
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developed by Rissanen (1976) and Rissanen and Langdon (1979) into a practical algorithm. Its

most important property is that the compression efficiency it achieves approaches the theoretical

limit given by Shannon’s source coding theorem, as by construction the length of the its output

is designed to be equal to the binary log score of the data. One of the key contributions of Elias

(1975) is a proof that the inefficiency of the encoder’s output over the entire length of the data

x t1 (4) is guaranteed to be less than 2 bits when compared to the theoretical cross entropy (2).

λi
(
x t1
)
− Edgp

[
log2

1

PMi (x xt1)

]
≤ 2 (5)

Using the expression for cross entropy (2) and the inefficiency bound on arithmetic encoding

(5) one can see that the measurement error induced by the algorithm when comparing the

candidate models Mi and Mj with the relative score ∆λi,j
(
x t1
)

= λi
(
x t1
)
− λj

(
x t1
)

is very

tightly bound:

−2 ≤ ∆λi,j
(
x t1
)
−∆DKL

(
PMi

(
x t1
)∥∥Pdgp (x t1))

i,j
≤ 2 (6)

The inefficiency incurred in the first stage by using the CTW to determine the transition

probabilities can similarly be bounded. The general intuition behind CTW is that each {0, 1}

bit in the binary training series is treated as the result of a Bernoulli trial. More precisely, all the

bits in the series that have the same past historical context x t−1t−L, identified by the binary string

s, and the same initial observation bits x t {1, 2, . . . , k}, identified by string o, are governed

by the same Bernoulli process with with unknown parameter θs,o. As the training series is

processed, each node in the tree maintains a set of counters (as,o, bs,o) for the number of times

it has respectively observed a ‘0’ or a ‘1’ after having seen both context s and the first o bits of

the current observation. Given these (as,o, bs,o) counters, the estimator for Bernoulli processes

developed by Krichevsky and Trofimov (1981) (henceforth referred to as the KT estimator)

can be used to estimate the probability of observing an additional ‘1’, based on the following

recursion:

Pe (as,o, bs,o + 1) =
bs,o + 1

2

as,o + bs,o + 1
Pe (as,o, bs,o) (7)

As one would intuitively expect, such a learning process has an efficiency cost. In this case,
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the inefficiency of compressing the as,o zeros and bs,o ones using probabilities obtained with the

KT estimator (7) compared to the true Bernoulli process with parameter θs,o is measured by

the following term:

χ (as,o, bs,o) = log2
(1− θs,o)as,o θ

bs,o
s,o

Pe (as,o, bs,o)
(8)

The key contribution of Willems et al. (1995) is to prove that χ, the inefficiency cost incurred

by estimating probabilities using the CTW algorithm (8), is bounded above by the following

term:

χ (as,o, bs,o) ≤ 1

2
log2 (as,o + bs,o) + 1 (9)

Importantly, information theory also provides us with a lower bound for the learning cost

χ. In a series of key contributions, Rissanen (1978, 1984) shows that if the probabilities PMi

used to encode data come from a model Mi with a parameter vector θi that first has to be

estimated from the data, then the effective lower bound on compression is higher than the

Shannon entropy alone. Intuitively, there is necessarily an amount of inefficiency to be expected

when using estimated rather than known parameter values. This larger lower bound, referred

to as the Rissanen bound, includes a cost term which depends on the number of parameters κi

used in model Mi and the number of data N used to estimate the parameters:

Edgp

[
log2

1

PMi (xt1)

]
≥ Edgp

[
log2

1

Pdgp (xt1)

]
+

1

2
κi log2 (N) (10)

This result bears a strong resemblance to the Bayesian Information Criterion (BIC) developed

during the same time period by Schwarz (1978), particularly if one considers that, as shown by

Akaike (1974), the maximised likelihood function is a good estimator of the cross entropy (2).

Rissanen (1984) is very aware of the similarity of the bound (10) with the BIC, and refers several

time to the lineage of his work with Akaike (1974).

BICi

2
= − log

[
L
(
θ̂i

∣∣∣xT0 )]+
1

2
κi log (N) (11)

The Rissanen bound (10) can be used as a lower bound for (9). Because the CTW estimates

the parameter of a Bernoulli source, the number of ones and zeros observed must give the total
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number of observations, so Ns,o = as,o+bs,o, and there is only a single parameter θs,o, so κs,o = 1.

One can see below that for each tree node estimator, the inefficiency (8) introduced by having

to estimate the transition probabilities in the first stage of the UIC procedure is very tightly

bound above the theoretical maximum efficiency.

1

2
log2 (as,o + bs,o) ≤ χ (as,o, bs,o) ≤ 1

2
log2 (as,o + bs,o) + 1 (12)

As pointed out by Willems et al. (1995), what makes this result optimal is that it is not

possible to obtain tighter bounds: the lower bound (10) is a fundamental information-theoretic

limit, similar to Shannon entropy, and the upper bound (9) is simply the lower bound plus

the smallest possible increment, i.e. one bit. Another crucial aspect is that Willems et al.

(1995) prove that these bounds (12) hold for all FSMX sources, in particular all Markov process

of arbitrary order L. This proven optimal performance over a very general class of processes

corresponds to the second important property mentioned above, universality, and justifies the

choice of this algorithm for the proposed information criterion.

The third and final property of interest is the fact that the cross entropy measurement

is sequential: observations are encoded one after the other, generating an observation-specific

encoding λMi

(
X t|x t−1t−L

)
, which sums up to the total length of the code string (4). This has

three important implications. First of all it allows for a local version of the UIC and therefore

enables the assessment of the relative accuracy of models both at the global and local level, which

will be illustrated in section 3.3. The second important implication is that the availability of an

observation-by-observation log score λMi

(
X t|x t−1t−L

)
provides the basis for statistical analysis

and confidence testing of the UIC measurements obtained. In fact, as will be shown in section

3.1, this makes the UIC methodology naturally suited to model confidence set procedures.

The last and most important implication of the sequential nature of the methodology is

that when calculating the transition probabilities (7) with the node counters (as,o, bs,o), one

can simultaneously obtain a set of error bounds, enabling the correction of CTW inefficiency at

the observation level. One slight problem is that one cannot directly use the bounds (12), as

they measure the theoretical CTW inefficiency cost of compressing the training data in a single

pass. This is not appropriate here as the real and training data are different, and processed in

two stages. What is required instead is the inefficiency related to the specific real observation
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being compressed, ignoring the past training observations. This can be obtained from (12) by

calculating the marginal bound, i.e. the increase in overall inefficiency in the KT estimator (7)

incurred by adding an extra observation, in our case taken from the real data.

∆χ (as,o, bs,o)

∆as,o
=

∆χ (as,o, bs,o)

∆bs,o
=

1

2
log2

as,o + bs,o + 1

as,o + bs,o
(13)

Because the KT estimator only predicts the value of a single bit, the overall inefficiency for

a given data observation, identified by its context string s is calculated by summing (13) over

those internal counters of node s corresponding to the observation string o.

εi
(
X t|x t−1t−L

)
=

1

2

o∑
k=∅

log2
as,k + bs,k + 1

as,k + bs,k
(14)

Subtracting the observation-level error vector (14) from the raw score vector (4) results in an

error-corrected score λεci
(
X t|x t−1t−L

)
which accounts for the inefficiency cost of using the CTW

algorithm to learn the model probabilities in stage 1 and sums to the overall UIC.

UICi =
∑

t
λεci
(
X t|x t−1t−L

)
=
∑

t

[
λi
(
X t|x t−1t−L

)
− εi

(
X t|x t−1t−L

)]
(15)

2.3 Verification of the UIC’s theoretical efficiency

The UIC (15) aims provide a reliable and statistically testable measurement of the cross entropy

(2) between data and a model, for all models that are reducible to a Markov process. What

makes this proposition feasible are the desirable theoretical properties of the two algorithms

used to generate the UIC, i.e. the fact that the output length of the Elias (1975) algorithm

λi
(
x t1
)

relative to the true cross entropy over an entire sequence of data is tightly bounded by

(6) and that the marginal CTW bound (14) provides an effective correction for the efficiency cost

χ (as,o, bs,o) of learning the probabilities in the first stage. Because this theoretical performance

is central to the procedure, it is important to check, as a first step, that it is achieved in practice

by the implementation.

The testing strategy chosen is to run the UIC procedure on a stream of data with known

distribution, and therefore known entropy, and to compare the performance achieved in practice

to the one expected in theory. In order to provide a reliable test of performance, 1000 random
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Table 1: Algorithm performance on 1000 8-bit beta distributed data series

Shannon Elias, fixed Elias, CTW
benchmark probability probability

λ/N , mean 6.9839 6.9839 6.9828
λ/N , std. dev. 0.0013 0.0013 0.0460
λ/N , P2.5 6.9815 6.9815 6.8989
λ/N , P97.5 6.9864 6.9864 7.0711

∆λ/N , mean - 1.907 ×10−6 3.536 ×10−4

∆λ/N , std. dev. - 1.327 ×10−12 0.0015
∆λ/N , P2.5 - 1.907 ×10−6 -0.0026
∆λ/N , P97.5 - 1.907 ×10−6 0.0037

Theoretical bound - Elias (5) Marginal (14)
Value - 3.815 ×10−6 3.295 ×10−4

λ/N : Measured cross-entropy per observation.
∆λ/N : Measured cross-entropy per observation, relative to

Shannon benchmark.

data series of length N = 219 are generated from the following beta distribution.3

Xt ∼
iid

Beta (2, 7) (16)

The beta distribution is chosen for its [0, 1] support, which simplifies the process of discretis-

ing the observations, and for its asymmetry under the chosen parameters, in order to test the

CTW’s ability to identify asymmetric distribution shapes. Furthermore, the i.i.d. assumption

means that each data series is memoryless, ensuring that the best possible compression per-

formance per observation is simply the Shannon entropy of the overall distribution. For the

purpose of the analysis, the 1000 series are quantised to an 8-bit level, i.e. r = 8.

For each of the 1000 data series, the 8-bit theoretical entropy is calculated by collecting the

N observations into a 256 bin histogram on the [0, 1] support, which when normalised by N

provides an empirical frequency vector f from which the Shannon entropy S = −
∑256

i=1 fi log2 fi

can be calculated. This provides the theoretical lower bound for compression and serves as the

performance benchmark, the descriptive statistics of which are presented in the first column of

table 1.

The bound on the Elias algorithm (5) is tested by compressing each data series using its

corresponding frequency vector f , and comparing the result against the theoretical benchmark.

The result, displayed the second column of table 1, confirms that the difference in performance

3Because of the binary nature of the data and algorithm, the data lengths used in the analysis are powers of
two as this simplifies calculations requiring the binary logarithm log2.
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Figure 1: Effective vs. theoretical performance of CTW algorithm

between arithmetic encoding using the fixed probabilities f and the theoretical benchmark is

vanishingly small (on the order of 1/N) and remains below the Elias bound (5) of 2/N . One can

conclude from this result that the Elias algorithm, as implemented in the UIC toolbox, provides

extremely reliable measures of cross-entropy (2).

A second test evaluates the learning cost of the CTW algorithm by training it with an

additional, independent, stream of beta distributed data (16) and using the resulting CTW

probabilities to compress the 1000 Monte Carlo data series. In order to provide an illustration

of the literal learning curve of the CTW algorithm, the Monte Carlo analysis is run for varying

amounts of training data, from from T = 1 to T = 219 = N , and the result is illustrated in

figure 1.

Along with the third column of table 1, figure 1(a) provides two key conclusions. The first

is that, as expected, there is a learning curve: the performance of the algorithm is poor at very

low levels of training but quickly starts converging to the benchmark as the amount of training

data is increased. The second important element is that the theoretical learning cost (14) tracks

the mean inefficiency very closely. The result, as shown in figure 1(b), is that even at low levels

of training the expected difference between the UIC score with CTW probabilities and the score
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for fixed probability f is near zero. A final confirmation of the CTW algorithms good learning

properties is brought by 1(c), which shows that probability distribution learnt by the algorithm

closely follows the beta distributed probability mass function (16).

This exercise suggests that the numerical implementations of both algorithms behaves in

line with the theoretical properties presented in section 2.2, and provides confidence that the

suggested methodology is reliable from a numerical point of view.

3 Monte Carlo validation on ARMA-ARCH models

Having established the theoretical properties of the UIC implementation, its usefulness as a

practical information criterion is tested by running the methodology on a series of ARMA-

ARCH models, and evaluating its ability to identify the true model as well as rank the alternative

models. This will also illustrate the UIC’s performance on subsets of data, by attempting to

identify portions of the data where the relative explanatory power of two models switches over.

3.1 The ARMA-ARCH model specification and Monte Carlo analysis

Because the UIC aims to generalise the AIC to all FSMX models, the analysis uses a set of

ARMA models with ARCH errors, as it is possible to obtain the AIC for each of the the models

and use this as a basis for comparing the rankings produced by the UIC. The general structure

for the set of models, presented in equation (17), allows for two autoregressive lags, two moving

average lags and two ARCH lags.

 Xt = a0 + a1Xt−1 + a2Xt−2 + b1σt−1εt−1 + b2σt−2εt−2 + σtεt

σ2t = c0 + c1ε
2
t−1 + c2ε

2
t−2

(17)

The various specifications used in the analysis only differ in their parameters, shown in Ta-

ble 2. Only the parameters for the true model M0 are chosen ex-ante with an aim to generate

persistence in the auto-regressive components. The parameters for the alternate models M1-M6

are estimated using the following procedure. Firstly, a training data series with T = 219 obser-

vations is generated using the parameters for the the true model and random draws εt ∼
iid

N (0, 1).

The parameters for the alternate models are then obtained by using this data series to estimate
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Table 2: ARMA-ARCH model structures, parameter estimates and AIC rankings

M0 M1 M2 M3 M4 M5 M6

True No AR No AR-2 No MA No MA-2 No ARCH No ARCH-2

a0 0 -0.048 0 0 0 0 0
a1 0.7 - 0.957 0.874 0.299 0.694 0.690
a2 0.25 - - 0.087 0.642 0.254 0.256
b1 0.2 0.916 -0.038 - 0.534 0.205 0.212
b2 0.2 0.544 0.211 - - 0.215 0.219
c0 0.25 0.643 0.252 0.265 0.258 1.234 0.405
c1 0.5 0.275 0.492 0.470 0.486 - 0.665
c2 0.3 0.552 0.307 0.332 0.315 - -

E (∆AICi,0) - 9510.25 38.32 424.95 245.40 4608.41 875.53
std (∆AICi,0) - 447.90 12.62 40.60 56.65 1438.50 160.10
AIC rank ρ∗i 1 7 2 4 3 6 5

the ARMA-ARCH equation (17) with the corresponding lag(s) omitted. 4

Once the parameters are obtained, the various data series required for the Monte Carlo

analysis of the UIC can be generated using equation (17) parameterised with the relevant column

from Table 2 and further random draws εt ∼
iid

N (0, 1). T -length training series of are generated

for each of the six alternate specifications, and used in stage 1 to train the CTW algorithm.

Similarly, 1000 ‘real’ data series with N = 213 = 8192 observations are generated using the

parameters for M0. These are used in a Monte Carlo analysis of the UIC’s ability to correctly

rank the set of models.

The test benchmark is obtained by estimating the set of models using the 1000 N -length data

series and calculating the respective AIC for each model and estimation. The descriptive AIC

statistics are shown at the bottom of Table 2 and, as expected, the true model is consistently

ranked first. An important point to keep in mind for the following section is that because the

two AR parameters for M0 are chosen so as to approach a unit-root behaviour, the AR(1) model

M2 is ranked an extremely close second. In fact, given the average ∆AIC2,0 = 38.32, normalising

by the number of observations N gives a mean AIC gap per observation of 4.7× 10−3, making

those models difficult to distinguish in practice.

Finally, for the purpose of illustrating the local version of the UIC explored in section 3.3,

two additional sets of 1000 N -length data series are generated using model switching. In the first

4This was done in STATA using the ‘arch’ routine. As a robustness check, the true data series was also
re-estimated, and the chosen parameters for the true model all fall within the 95% confidence interval for the
estimates.
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Table 3: UIC performance on ARMA models, T = 222

r = 7 M0 M1 M2 M3 M4 M5 M6

d = 21 TRUE No AR No AR-2 No MA No MA-2 No ARCH No ARCH-2

UICi, mean 24104.57 30723.17 24106.96 24248.67 24191.26 26362.64 24358.57
P(ρi = ρ∗i ) 0.561 1 0.560 0.989 0.992 1 0.995

∆UICi,0, mean - 6618.60 2.39 144.10 86.69 2258.08 254.00
P(∆UICi,0 > 0) - 1 0.561 1 0.999 1 1

P(Mi ∈ M̂0.95) 0.980 0 0.969 0.004 0.085 0 0

P(Mi ∈ M̂0.9) 0.965 0 0.942 0.002 0.043 0 0

P(ρi = ρ∗i ): Monte Carlo probabilities of UIC rank ρ being equal to AIC rank ρ∗.
∆UICi,0: Mean UIC difference betweenMi and the true modelM0, with Monte Carlo probability

of being positive
P(Mi ∈ M̂1−α): Monte Carlo probability of Mi being included in the Model Confidence Set at α%

confidence.

case, the data generating process uses M0 for the first half of the observations before switching

to M2. In the second case, the data generating process starts with M5 for half the observations

before switching to M0 for N/4 observations and then switching back to M5 for the remainder

of the series.

3.2 UIC performance on ARMA-ARCH models

The Monte Carlo analysis carried out on the ARMA-ARCH models follows the protocol outlined

appendix A. As a preliminary step, the data and training series are all discretised to a resolution

r = 7. In stage 1, the CTW algorithm was run on varying lengths of training series with a chosen

tree depth of d = 21 bits, which corresponds to 3 observation lags L if one accounts for the 7-bit

resolution. Finally, in stage two, the trees are used to compress the 1000 data series, providing

a UIC value for each of the models on each of the series.

Table 3 summarises the three main tests that were carried out to evaluate the UIC perfor-

mance.5 The first section examines whether the ranking assigned by the UIC to each model,

ρi, matches the AIC ranking ρ∗i in table 2. This is a relatively strict test because the ranking

for a given model i is affected by the performance of the UIC on all the other models, making

this a global test of performance on the full model comparison set. Nevertheless, at training

lengths T = 222 the probability P(ρi = ρ∗i ) of correctly obtaining replicating the AIC relative

ranking is high for most models, except for M0 and M2, where the UIC does little better than

random chance. The second test is less strict, as it instead looks at the probability of correctly

5More detailed tables, which present the results for the UIC (15) at several values of the training length T and
including upper/lower tail critical values for 95% significance levels, are available in appendix B.
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selecting the best model in a simple head-to-head competition against the true model M0. The

P(∆UICi,0 > 0) values reveal that the UIC performs as expected, with a high probability of

identifying the true model M0, in all cases except M2, where again the UIC does little better

than a coin flip.

Both these tests rely on frequencies obtained through the Monte Carlo analysis to evaluate

the UIC’s ability to rank models. While this provides a useful illustration, it is not sufficient as

real-life applications will have to rely on a single real data set with N observations rather than

the 1000 series available here. This is where the availability of an N -length observation-level

score λεci
(
X t|x t−1t−L

)
which sums to the UIC proves useful, as it allows for statistical testing of

the overall UIC measurement. As stated previously, availability of this score means that the

most natural and rigourous testing approach for the UIC is the reality check proposed White

(2000) or the MCS of Hansen et al. (2011). The last part of table 3 reveals the percentage

of series for which the ith model is included in the model confidence set M̂1−α at the 5% and

10% confidence levels. The MCS procedure relies on 1000 iterations of the Politis and Romano

(1994) stationary bootstrap for each of the Monte Carlo series, the block length for the bootstrap

being determined using the optimal block length procedure of Politis and White (2004). Even

accounting for the conservative nature of the MCS test, the procedure is able to effectively

narrow down the confidence set to the subset of models that have the lowest UIC ranking. The

MCS procedure also confirms the UIC’s inability to distinguish M0 and M2, as they are almost

always included in the confidence set M̂1−α.

Table 4: Performance of the rule of thumb on head-to-head comparisons

|∆UICi,j | > |τi,j | < |τi,j |
No correct selections 20046 503

α = No incorrect selections 122 329

0.05 P(incorrect| |∆UICi,j | > |τi,j |) 0.006 -
P(incorrect| |∆UICi,j | < |τi,j |) - 0.395

No correct selections 20226 323
α = No incorrect selections 209 242

0.1 P(incorrect| |∆UICi,j | > |τi,j |) 0.010 -
P(incorrect| |∆UICi,j | < |τi,j |) - 0.428

Because the MCS procedure can be cumbersome to carry out and conservative in its results,

we also suggest a faster rule of thumb to test the reliability of a head-to-head comparison

between two models, ∆UICi,j . This is done though a one-tailed test, aiming to establish whether
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|∆UICi,j | is above a certain reliability threshold. This threshold τi,j depends on the sign of

∆UICi,j and for a given level of significance α is given by:


τi,j = Pα

(
∆λεci,j

(
X t|x t−1t−L

))√
N if ∆UICi,j < 0

τi,j = P1−α

(
∆λεci,j

(
X t|x t−1t−L

))√
N if ∆UICi,j > 0

(18)

Like the MCS procedure used above, this rule of thumb takes advantage of the availability

of the observation-level score λεci
(
X t|x t−1t−L

)
, meaning that the ∆UICi,j is treated as the sum of

N random variables with mean ∆UICi,j/N . The thresholds (18) use the α and 1−α percentiles

of the relative observation level score ∆λεci,j
(
X t|x t−1t−L

)
rather than the standard deviation over

the series, which would lead to the more traditional thresholds based on σ
√
N . What makes

this more of a rule of thumb than a fully-fledged test is that the
√
N terms in (18) implicity rely

on a central limit argument to ensure convergence, and this is not explicitly checked for.

Whenever |∆UICi,j | > |τi,j | one can consider the comparison to be reliable and choose the

model with the lowest UIC value. If the reverse is true and |∆UICi,j | < |τi,j |, then the UIC

measurement must be considered unreliable. Table 4 provides an illustration of the effectiveness

of this rule for the 5% and 10% significance levels on the 21000 distinct bilateral comparisons

available with the 7 models and 1000 data series of the Monte Carlo analysis. As for the MCS

analysis, this is carried out on the bound-corrected criterion with training length T = 222. Table

4 suggests that as long as the rule of thumb is followed, the probability of incorrectly selecting the

worse of the two models is very low. Conversely, were one to rely on the ∆UICi,j measurement

to identify the best model when it fails the rule of thumb, the probability of an incorrect choice

increases greatly and tends towards the worst possible performance where ∆UICi,j is positive or

negative with probability 0.5 making ∆UICi,j uninformative with respect to either model. Such

a case is illustrated by the M2,M0 comparison in table 3 and is the reason the rule of thumb is

designed to test the reliability of the measurement.

3.3 Localised UIC performance on ARMA-ARCH models

The availability of the observation-level score λεci
(
X t|x t−1t−L

)
also enables the calculation of a

local version of the UIC, allowing models to be compared over subsets of the data. This is

illustrated by running the procedure on the two sets of 1000 model-switching series mentioned

in section 3.1 using the CTW trees obtained for T = 222 training observations in the previous
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Figure 2: Localised UIC performance
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section. The results, which are presented in figure 2, have been smoothed using a 200 observation-

wide moving average window. In order to also illustrate the small-sample properties of the UIC,

the MCS procedure is run on the resulting 200-observation averages. These are shown in figures

2(c) and 2(d), where the dark gray areas indicate observations for which the confidence set M̂0.95

only includes M0, and the lighter gray cases where the procedure is unable to separate M0 from

the alternate model (M2 or M5 depending on the case) and both remain in the confidence set

M̂0.95. The areas in white implicitly identify those data points where the confidence set M̂0.95

is reduced to the alternate model.

In the first case, the localised version of the algorithm is unable to detect the transition from

M0 to M2, for both the individual data series and the Monte Carlo average. This is not surprising

given that the UIC is unable to reliably distinguish between M0 and M2 at the aggregate level

in table 3. In the second case, however, the temporary switch from M5 to M0 is clearly visible

in the Monte Carlo average and is detected by the MCS procedure on the individual data series.

This localised version of the UIC may prove to be as useful for comparing model performance

as the aggregate version presented above. It is indeed reasonable to expect that in practical

situations one model may outperform others on aggregate yet may be beaten on some specific

features of the data, as is the case in figure 2.

4 Discussion and conclusion

This paper develops a methodology which follows the MDL principle and aims provide an in-

formation criterion with practically no formal requirement on model structure, other that it be

able to generate a simulated data series. While the MDL-inspired algorithms might be unfa-

miliar, it is important to emphasise that this methodology nevertheless follows the same logic

as the AIC, which is that one can measure the cross entropy between some data and a model

without knowing the true conditional probability distributions for the events observed. Because

these measurements contain an unobservable constant (the true information entropy of the data

generating process), one then has to take differences across models to obtain the difference in

Kullback-Leibler distance, which is the desired indicator of relative model accuracy. The differ-

ence between the AIC and the methodology suggested here rests simply in the choice of method

used to measure the cross entropy.
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It is important to spell out what can be gained by relying on data compression as the

estimation method for cross entropy and by specifically choosing the CTW and Elias algorithms

as the means of achieving that data compression. Indeed, the protocol outlined in appendix

A requires three distinct steps, each of them unfamiliar, and there seems little purpose to this

added complexity if all one wishes to do is calculate the AIC on a regression model, as is

done here. The main benefit of the methodology is that it compares models on the basis of

the predictive data they produce, by estimating the transition tables of the underlying finite

state machines corresponding to the candidate models. This mapping of models to a general

class of finite state machines explains why there is no requirement that the candidate models

have a specific functional form or estimation methodology, only that they be able to generate a

predicted data series. It is this specific aspect which, while unfamiliar, enables the information

criterion to claim universality across classes of models, from regression to simulation.

As explained in the introduction, this is similar in spirit to indirect inference therefore some

clarification of the relation between the two is required. The UIC is a primarily a fitness criterion,

not an estimation methodology. The candidate models compared by the UIC must be already

calibrated or fitted in order to produce the required training data. One could of course use the

UIC as part of a calibration exercise, where a given model is evaluated with different parameter

values, with the best performing parameter configuration being the one which produces the

lowest UIC value. While this might seem at first to replicate indirect inference, it would have

to rely on a brute-force method, for example an exhaustive grid search, as there is no updating

function able to guide the search in the parameter space, as is the case with indirect inference.

On the other hand, while indirect inference may be used to compare different models on a

given dataset, it is primarily an estimation methodology. Indeed, several features of indirect

inference, notably relating to the specification of the auxiliary model, complicate the problem

of comparing across models. As pointed out by Gouriéroux and Monfort (1996), for instance,

identification considerations mean the parameter dimension in the auxiliary model is determined

by the parameter dimension in the initial model, so comparing two very different initial models

requires a careful choice of auxiliary model. This is not a problem for the UIC, as the criterion

calculated in the second stage uses probabilities extracted from standardised transition tables

produced in the first stage. The result of this is that while UIC and indirect inference clearly

share the same philosophy, one is designed for estimation and the other for model comparison
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and should therefore be considered to be more complements than substitutes.

The Monte Carlo analyses in sections 2.3 and 3 provide several validations of the methodology

by demonstrating that given enough training data the UIC procedure provides model ranking

information that is comparable to the AIC, and also illustrates a bound correction procedure that

can be used to increase the reliability of the UIC. One additional feature of interest illustrated

by the Monte Carlo analysis is the possibility of using a local version of the UIC which can

compare model performance on subsets of the data, thus detecting data locations where the

relative performance of models switches over.

One of the limits of the procedure is that some inefficiency is incurred by the CTW algorithm

having to learn the transition table of a model from the training data. A large part of this can

be corrected using the known theoretical bounds of the CTW algorithm, however the residual

variation creates a “blind spot” which somewhat limits the UIC’s ability to distinguish similar

models. The Monte Carlo analysis shows that this blind spot is quite narrow, only confusing

models that have extremely similar performance, and its size can be established reliably, pro-

viding both a rule-of-thumb warning on the reliability of a measurement as well as a rigourous

statistical test using the MCS approach.

This paper only provides a proof-of-concept, however, and it is important to point how one

might extend this methodology to more common settings. Indeed, the work presented here

focuses on a univariate time-series specification, where the candidate models attempt to predict

the value of a single random outcome conditional on its past realisations, i.e. P
(
Xt|xt−1t−L

)
.

While this is reasonable as a starting point for establishing that the methodology works on

small-scale problems, it is important to outline how it can be scaled up to larger settings.

First of all, extending the approach to multivariate models poses no conceptual problem, as

the current state of a FSM does not have to be restricted to a single variable. Supposing that

Xt represents instead a state vector made up of several variables {At, Bt, Ct, . . . }, one could use

the preliminary step of the protocol in appendix A to discretise each variable at its required

resolution r (a) , r (b) , r (c) , . . . . The binary string for an observation x t is then simply the

concatenation of the individual observations a t, b t, c t, and its resolution r is the sum of the

individual variable resolutions, i.e. Σir (i).

Secondly, in the time-series setting presented here, the observations in xt1 are used both

as the outcome to be predicted (in the case of the current observation) and the conditioning
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information for the prediction (for past observations). However, there no reason why the steams

of outcome and conditioning data could not be separated. Keeping xt1 as the conditioning data,

the methodology can also generate predictions about the state of a separate outcome variable

or vector Yt, i.e. probability distributions of the type P
(
Yt|xtt−L

)
, which can be used to extend

the UIC approach beyond time-series analysis.

While both these extensions are conceptually feasible, they create implementation challenges.

The main one is that the larger resolution Σir (i) of a multivariate setting implies a correspond-

ingly larger depth d of the binary context tree for any given number of time lags L, which creates

a larger memory requirement for storing the tree nodes. Ongoing work on the implementation of

the CTW algorithm is specifically directed at improving the memory efficiency of the algorithm

in order to address this last point and turn the proposed methodology into a practical tool.
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A Outline of the UIC protocol

Only two inputs are required in order to run the protocol. The first is a N × 1 data series that

provides the empirical benchmark for model comparison. The second input is a set of training

series produced from the various fitted, calibrated or simulated models in the comparison set

{M1,M2, ...,Mm}, etc., which should be T >> N observations in length. The sequence of stages

is as follows:

1. In stage 0, the data and training series are discretised and converted into binary strings.

This process is controlled by the choice of a resolution parameter r, which determines

the number of bits used to describe an observation, as well as the the number states an

observation can occupy, Ω = 2r. Several tests are available and should be run at this stage

to verify that the chosen resolution parameter r is sufficient to capture the variation in

the data.

2. Stage 1 builds a set of transition probabilities PMi

(
X t|x t−1t−L

)
from the training series of

each of the models {M1,M2, ...,Mm} that can used to compress the data in the following

stage. The CTW algorithm stores these transition probabilities within a set of binary trees,

where each leaf corresponds to the transition probability following a given history. While

this is not done in practice, the full transition matrix can in principle be reconstructed

from the information in the tree.

3. In stage 2 the N×1 data series is compressed using the transition probabilities obtained in

stage 1. For each model Mi, the algorithm provides three outputs. The first is the binary

code string produced by the Elias (1975) encoder, the length of which directly measures

the UIC for each model. The second output is a N × 1 vector, λi
(
X t|x t−1t−L

)
, containing

the number of bits required to encode each observation and sums to the UIC, and the third

is N × 1 vector, εi
(
X t|x t−1t−L

)
, containing the CTW error for each observation, which can

be used to correct the UIC measure for the inefficiency of having to learn the transition

probabilities from a training series in stage 1.

4. Stage 3 is optional, and involves running the code string obtained in stage 2 back through

the Elias (1975) algorithm and verifying that the original data can be recovered. This last

step is not directly useful in comparing the models, however because the UIC is given by
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the length of the compressed string, any error in the encoding process could potentially

invalidate the use of this measure and would furthermore be difficult to detect directly.

When doing development work in particular, it can be useful to check that no such error

has occurred during stage 2.
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B Extended Monte Carlo results

Table 5: Monte Carlo analysis of UIC performance on ARMA models

r = 7 M0 M1 M2 M3 M4 M5 M6

d = 21 TRUE No AR No AR-2 No MA No MA-2 No ARCH No ARCH-2

UICi, mean 24532.95 30744.29 24547.17 24638.04 24610.50 26484.86 24685.19
P(ρi = ρ∗i ) 0.683 1 0.662 0.764 0.812 1 0.909
P(ρi > ρ∗i ) 0.317 - 0.023 0.084 0.162 0 0
P(ρi < ρ∗i ) - 0 0.315 0.152 0.026 0 0.091

T = ∆UICi,0, mean - 6211.34 14.23 105.10 77.55 1951.91 152.25
219 ∆UICi,0, P2.5 - 5624.20 -40.77 42.09 17.99 1547.03 83.94

∆UICi,0, P97.5 - 6781.65 67.70 170.09 136.76 2566.08 221.48
P(∆UICi,0 > 0) - 1 0.683 1 0.996 1 1

P(Mi ∈ M̂0.95) 0.992 0 0.938 0.137 0.375 0 0.024

P(Mi ∈ M̂0.9) 0.985 0 0.87 0.085 0.252 0 0.012

UICi, mean 24352.74 30779.62 24361.00 24485.07 24439.73 26412.56 24541.52
P(ρi = ρ∗i ) 0.624 1 0.622 0.892 0.956 1 0.931
P(ρi > ρ∗i ) 0.376 0 0.003 0.069 0.039 0 0
P(ρi < ρ∗i ) - 0 0.375 0.039 0.005 0 0.069

T = ∆UICi,0, mean - 6426.88 8.27 132.33 86.99 2059.83 188.78
220 ∆UICi,0, P2.5 - 5825.29 -39.54 70.68 28.10 1651.70 119.88

∆UICi,0, P97.5 - 7042.44 56.33 192.40 146.45 2701.07 258.16
P(∆UICi,0 > 0) - 1 0.624 1 0.998 1 1

P(Mi ∈ M̂0.95) 0.991 0 0.957 0.014 0.189 0 0

P(Mi ∈ M̂0.9) 0.975 0 0.912 0.007 0.117 0 0

UICi, mean 24210.90 30733.95 24220.41 24350.40 24301.29 26366.04 24436.91
P(ρi = ρ∗i ) 0.670 1 0.669 0.973 0.984 1 0.988
P(ρi > ρ∗i ) 0.330 0 0.001 0.012 0.015 0 0
P(ρi < ρ∗i ) 0 0 0.33 0.015 0.001 0 0.012

T = ∆UICi,0, mean - 6523.05 9.51 139.50 90.40 2155.14 226.02
221 ∆UICi,0, P2.5 - 5934.88 -34.98 82.81 36.88 1730.65 159.77

∆UICi,0, P97.5 - 7155.49 55.39 200.28 141.80 2842.82 295.35
P(∆UICi,0 > 0) - 1 0.67 1 1 1 1

P(Mi ∈ M̂0.95) 0.991 0 0.933 0.006 0.103 0 0

P(Mi ∈ M̂0.9) 0.980 0 0.881 0.003 0.056 0 0

UICi, mean 24104.57 30723.17 24106.96 24248.67 24191.26 26362.64 24358.57
P(ρi = ρ∗i ) 0.561 1 0.56 0.989 0.992 1 0.995
P(ρi > ρ∗i ) 0.439 0 0.001 0.005 0.006 0 0
P(ρi < ρ∗i ) 0 0 0.439 0.006 0.002 0 0.005

T = ∆UICi,0, mean - 6618.60 2.39 144.10 86.69 2258.08 254.00
222 ∆UICi,0, P2.5 - 6004.30 -36.90 89.39 38.85 1787.03 183.50

∆UICi,0, P97.5 - 7258.09 40.49 199.07 137.31 3010.67 332.12
P(∆UICi,0 > 0) - 1 0.561 1 0.999 1 1

P(Mi ∈ M̂0.95) 0.980 0 0.969 0.004 0.085 0 0

P(Mi ∈ M̂0.9) 0.965 0 0.942 0.002 0.043 0 0

P(ρi S ρ∗i ): Monte Carlo probabilities of UIC rank ρ being equal to, greater or smaller than AIC rank ρ∗.
∆UICi,0: Mean UIC difference between Mi and the true model M0, with 2.5% and 97.5% percentiles.
P(Mi ∈ M̂1−α): Monte Carlo probability of Mi being included in the Model Confidence Set at α% confidence.
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