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Abstract

We contrast and compare three ways of predicting e¢ ciency in a forced
contribution threshold public good game. The three alternatives are based on
ordinal potential, quantal response and impulse balance theory. We report an
experiment designed to test the respective predictions and �nd that impulse
balance gives the best predictions. A simple expression detailing when enforced
contributions result in high or low e¢ ciency is provided.
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Non-technical summary 

There are many important contexts where ‘success’ requires a critical amount of activity. 

Consider, for example, a political party deciding whether to adopt a policy which is socially 

efficient but, for some reason, unpopular with voters. The policy will be enacted if and only if 

enough party members are willing to back it. Individual members face a difficult choice: the 

policy is socially efficient and so they would want to back it, but to do so would risk the 

wrath of voters. Potentially we could end up with an inefficient outcome where members shy 

away from backing the policy. 

 The scenario we have just described above is, in the terminology of game theory, a 

binary threshold public good game. In the current paper we study a particular type of 

threshold public good game called a forced contribution game. In this game all group 

members are ‘forced’ to contribute if sufficiently many members ‘voluntarily’ contribute. In 

the context of our earlier example, this would be to say that all party members pay the cost of 

an unpopular policy if the party enacts the policy.  

 Our interest in the forced contribution game stems from prior evidence that enforcing 

contributions increases inefficiency. In particular, we know that in general, groups are 

relatively inefficient at providing threshold public goods. Some prior experimental studies, 

however, have shown that high efficiency is obtained in forced contribution games. Our 

objective in this paper is to explore in detail, both theoretically and experimentally, the 

conditions under which enforcing contributions works.  

In our theoretical analysis we contrast and compare three alternative models of 

behaviour: ordinal potential, quantal response and impulse balance. Ordinal potential says 

that group members will act to maximize aggregate payoff; this results in the ‘optimistic’ 

prediction of maximum efficiency. Quantal response is a model that allows for decision 

making ‘with mistakes’; it gives a ‘pessimistic’ prediction of low efficiency unless the return 

from the public good is very high. Finally, impulse balance theory assumes that people make 

decisions based on expected ex-post regret; here we get an intermediate prediction where 

efficiency depends on the return to the public good and size of the threshold.     

We complement the theory with an experimental study where the number of players 

and return to the public good are systematically varied in order to test the respective 

predictions of the three models detailed above. We find that impulse balance provides the 

best fit with the experimental data. This allows us to derive a simple expression predicting 

when enforced contributions result in high or low efficiency. Our predictions are consistent 

with the uniformly high efficiency observed in previous studies. We also find, however, that 

enforced contributions are not a guarantee of high efficiency. 



1 Introduction

A threshold public good is provided if and only if su¢ ciently many people contribute
towards its provision. The classic example would be a capital project such as a new
community school (Andreoni 1998). The notion of threshold public good is, however,
far more general than this classic example. Consider, for example, a charity that
requires su¢ cient funds to cover large �xed costs. Or, consider a political party
deciding whether to adopt a policy which is socially e¢ cient but, for some reason,
unpopular with voters; the policy will be enacted if and only if enough party members
are willing to back the policy (Goeree and Holt 2005).
In a threshold public good game the provision of the public good is consistent

with Nash equilibrium. There are, however, typically multiple equilibria (Palfrey and
Rosenthal 1984). This leads to a coordination problem that creates a natural un-
certainty about total contributions. The literature has decomposed this uncertainty
into a fear and greed motive for non contribution (Dawes et al. 1986, Rapoport 1987,
see also Coombs 1973). The fear motive recognizes that a person may decide not
to contribute because he is pessimistic that su¢ ciently many others will contribute.
The greed motive recognizes that a person may decide not to contribute in the hope
that others will fund the public good.
Dawes et al. (1986) noted that the fear motive can be alleviated by provid-

ing a refund (or money back guarantee) if contributions are short of the threshold.
Similarly, the greed motive can be alleviated by forcing everyone to contribute if
su¢ ciently many people volunteer to contribute. In three independent experimental
studies Dawes et al. (1986) observed signi�cantly higher e¢ ciency in a forced con-
tribution game. On this basis they concluded that ine¢ ciency was primarily caused
by the greed motive. Rapoport and Eshed-Levy (1989) challenged this conclusion by
showing that the fear motive can cause ine¢ ciency (see also Rapoport 1987). They
still, however, observed highest e¢ ciency in a forced contribution game.1

These experimental results suggest that enforcing contributions is an e¤ective
way to obtain high e¢ ciency. This is a potentially important �nding in designing
mechanisms for the provision of public goods. Existing evidence, however, is limited
to the two experimental studies mentioned above. Our objective in this paper is
to explore in detail, both theoretically and experimentally, the conditions under
which forced contributions leads to high e¢ ciency in binary threshold public good
games. We do so by applying three alternative models that are, respectively, based
on ordinal potential (Monderer and Shapley 1996), quantal response (McKelvey and

1For a general overview of the experimental literature on threshold public goods see Croson and
Marks (2000), Schram, O¤erman, and Sonnemans (2008), and Cadsby et al. (2008).
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Palfrey 1995), and impulse balance (Selten 2004). We show that the three models
give very di¤erent predictions on the e¢ ciency of enforcing contributions.
We complement the theory with an experimental study where the number of

players and return to the public good are systematically varied in order to test the
respective predictions of the three models. We �nd that impulse balance provides the
best �t with the experimental data. This allows us to derive a simple expression pre-
dicting when enforced contributions result in high or low e¢ ciency. Our predictions
are consistent with the uniformly high e¢ ciency observed in previous studies. We
also �nd, however, that enforced contributions are not a guarantee of high e¢ ciency.
The interpretation of this �nding will be discussed more in the conclusion.
At this stage a brief discussion on the interpretation of enforced contributions

may be useful. In particular, we want to clarify why forced contribution is not
inconsistent with the notion of voluntary provision of a public good. To illustrate,
we provide three examples of a forced contribution game.2 First, consider a �rm
trying to acquire an apartment block for redevelopment; rules stipulate that the
�rm can forcibly purchase the entire block if su¢ ciently many residents volunteer to
leave. Second, consider a �rm attempting a takeover of a publicly listed competitor;
rules stipulate that the �rm can forcibly purchase the competitor if su¢ ciently many
shareholders sell their shares. Finally, consider a political party deciding whether to
endorse a particular policy; if su¢ ciently many members back the policy then others
are forced to pay the cost of introducing the policy even if they initially opposed it.
In all of the three examples above it is endogenously determined whether the

public good is provided. If not enough people voluntarily �contribute�then the pub-
lic good is not provided and no one is forced to contribute. In this sense public good
provision is voluntary: it is voluntary at the level of the group. Another thing these
examples illustrate is that enforcing contributions is a practical possibility in numer-
ous situations. Our analysis will provide insight on when this possibility is worth
pursuing. In particular, enforcing contributions is likely to be costly to implement
and so it is crucial to know whether enforcement will lead to high e¢ ciency.
As a �nal preliminary we highlight that an important contribution of the current

paper is to apply impulse balance theory in a novel context. Impulse balance theory,
which builds on learning direction theory, says that players will tend to change their
behavior in a way that is consistent with ex-post rationality (Selten and Stoeker
1986, Selten 1998, Selten 2004, Ockenfels and Selten 2005, Selten and Chmura 2008,
see also Cason and Friedman 1997, 1999). In Alberti, Cartwright and Stepanova
(2013) we apply impulse balance to look at continuous threshold public good games.
Here we focus on the binary forced contribution game. As already previewed, we

2The �rst example is taken from Dawes et al. (1986).
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�nd that impulse balance successfully predicts observed e¢ ciency. This is clearly a
positive �nding in evaluating the merit of impulse balance theory.3

We proceed as follows: In section 2 we describe the forced contribution game. In
section 3 we provide some theoretical preliminaries, in section 4 we describe three
models to predict e¢ ciency and in section 5 we compare the three models predictions.
In section 6 we report our experimental results and in section 7 we conclude.

2 Forced contribution game

In this section we describe the forced contribution threshold public good game. There
is a set of players N = f1; :::; ng. Each player is endowed with E units of private
good. Simultaneously, and independently of each other, every player i 2 N chooses
whether to contribute 0 or to contribute E towards the provision of a public good.
Note that this is a binary, all or nothing, decision. For any i 2 N , let ai 2 f0; 1g
denote the action of player i, where ai = 0 indicates his choice to contribute 0 and
ai = 1 indicates his choice to contribute E. Action pro�le a = (a1; :::; an) details the
action of each player. Let A denote the set of action pro�les. Given action pro�le
a 2 A, let

c(a) =
nX
i=1

ai

denote the number of players who contribute E.
There is an exogenously given threshold level 1 < t < n.4 The payo¤ of player i

given action pro�le a is

ui (a) =

�
V if c(a) � t
E(1� ai) otherwise

;

where V > E is the value of the public good. So, if t or more players contribute then
the public good is provided and every player gets a return of V . In interpretation,
every player is forced to contribute E irrespective of whether they chose to contribute
0 or E. If less than t players contribute then the public good is not provided and
there is no refund for a player who chose to contribute E.

3Impulse balance theory and quantal response are compared by Selten and Chmura (2008) (see
also Chmura, Georg and Selten 2012), and Berninghaus, Neumann and Vogt (2014). No strong
di¤erence in predictive power is found between the two.

4If t = n then we have the weak link game. If t = 1 then we have a form of best shot game. For
simplicity we exclude these �special cases�from the analysis.
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For any player i 2 N the strategy of player i is given by �i 2 [0; 1] where �i is
the probability with which he chooses to contribute E (and 1� �i is the probability
with which he chooses to contribute 0). Let � = (�1; ::::; �n) be a strategy pro�le.
With a slight abuse of notation we use ui (�i; ��i) to denote the expected payo¤ of
player i given strategy pro�le �, where ��i lists the strategies of every player except
i.

3 Theoretical preliminaries

We say that a strategy pro�le � = (�1; ::::; �n) is symmetric if �i = �j for all i; j 2 N .
Given that choices are made simultaneously and independently, it is natural to im-
pose a homogeneity assumption on beliefs (Rapoport 1987, Rapoport and Eshed-
Levy 1989).5 This justi�es a focus on symmetric strategy pro�les. Symmetric strat-
egy pro�les �0 = (0; :::; 0) and �1 = (1; :::; 1) will prove particularly important in the
following. We shall refer to �0 as the zero contribution strategy pro�le and �1 as the
full contribution strategy pro�le.
Any symmetric strategy pro�le � = (�1; :::; �n) can be summarized by real number

p (�) 2 [0; 1] where p (�) = �i for all i 2 N . Where it shall cause no confusion we
simplify notation by writing p instead of p (�). Given symmetric strategy pro�le �,
the expected payo¤ of player i if he chooses, ceteris paribus, to contribute E is

ui (1; ��i) = V Pr (t� 1 or more other players contribute E)

= V
n�1X
y=t�1

�
n� 1
y

�
py (1� p)n�1�y :

If he chooses to contribute 0 his expected payo¤ is

ui (0; ��i) = E + (V � E) Pr (t or more contribute E)

= E + (V � E)
n�1X
y=t

�
n� 1
y

�
py (1� p)n�1�y :

Note that player i�s expected payo¤ from strategy pro�le � is

ui (�i; ��i) = p (�)ui (1; ��i) + (1� p (�))ui (0; ��i) :
5See O¤erman, Sonnemans and Schram (1996) for an alternative perspective.
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The following function will prove useful in the subsequent analysis,

�(p (�)) = ui (1; ��i)� ui (0; ��i) (1)

= V

�
n� 1
t� 1

�
pt�1 (1� p)n�t � E

t�1X
y=0

�
n� 1
y

�
py (1� p)n�1�y :

To illustrate, Figure 1 plots �(p) for p 2 [0; 1] when n = 5; t = 3; E = 6 and V = 13.
If �(p) < 0 then player i�s expected payo¤ is highest if he chooses to contribute
0. If �(p) = 0 then player i is indi¤erent between choosing to contribute 0 and
E. Finally, if �(p) > 0 then player i�s expected payo¤ is highest if he chooses to
contribute E.

Figure 1: Function �(p) for n = 5; t = 3; E = 6 and V = 13.

3.1 Nash equilibrium

Previous theoretical analysis of binary threshold public good games has largely fo-
cussed on Nash equilibria (see, in particular, Palfrey and Rosenthal 1984). The
forced contribution game has not, however, been explicitly studied and so we begin
the analysis by solving for the set of Nash equilibria. Strategy pro�le �� = (��1; :::; �

�
n)

is a Nash equilibrium if and only if ui
�
��i ; �

�
�i
�
� ui

�
s; ���i

�
for any s 2 [0; 1] and all

i 2 N . In the following we focus on symmetric Nash equilibria.6
6There are many assymetric Nash equilibria. For example, it is a Nash equlibrium for t players

to contribute E (with probability 1) and n � t players to contribute 0 (with probability 1). If
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The set of symmetric Nash equilibria is easily discernible from the function �(p).
To illustrate, consider again Figure 1. In this example there are three Nash equilibria.
The zero contribution strategy pro�le �0 is a Nash equilibrium because �(0) <
0. The �mixed�strategy pro�le �m where p (�m) = 0:43, and the full contribution
strategy pro�le �1 are also Nash equilibria because �(0:43) = �(1) = 0.
Our �rst result shows that Figure 1 is representative of the general case (see also

Rapoport 1987).

Proposition 1: For any value of V > E and n > t > 1 there are three symmetric
Nash equilibria: (i) the zero contribution strategy pro�le �0, (ii) a mixed strategy
pro�le �m where p (�mi ) 2 (0; 1), (iii) the full contribution strategy pro�le �1.

Proof : For p = 0 it is simple to show that �(p) = �E. This proves part (i) of the
proposition. For p = 1 it is simple to show that �(p) = 0. This proves part (iii)
of the proposition. In order to prove part (ii) consider separately the two terms in
�(p) by writing �(p) = V �(p) � E�(p). Term �(p) is the probability that exactly
t � 1 out of n � 1 players contribute E and so it takes a bell shape. Formally,
�(0) = 0; �(1) = 0 and

d

dp
� (p) =

�
n� 1
t� 1

�
pt�2 (1� p)n�t�1 (t� 1� p(n� 1))

implying d
dp
� (p) ? 0 for p 7 t�1

n�1 . Term �(p) is the probability t� 1 or less of n� 1
players contributeE and so is a decreasing function of p. Formally, �(0) = 1; �(1) = 0
and

d

dp
� (p) = � (n� 1) (1� p)n�2 �

t�1X
y=1

�
n� 1
y

��
py�1 (1� p)n�2�y

�
(n� y � 1) < 0:

For p < 1 it is clear that � (p) < � (p). As p! 1 we know � (p)� � (p)! 0. Given
that V > E this means there exists some p 2 (0; 1) such that �(p) > 0. This proves
part (ii) of the theorem. Note that we have also done enough to show that there
exists a unique value p� 2 (0; 1) where �(p�) = 0.�

Proposition 1 shows that there are multiple symmetric Nash equilibria. We shall
now consider and contrast possible approaches to select one of these equilibria.

players have some form of pre-play communication such equilibria have been seen to arise in related
games (van de Kragt, Orbell and Dawes 1983). If, however, players choose simultanesouly and
independently it is di¢ cult to see how players could coordinate on such equilibria.
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Before doing that let us brie�y comment on the experimental evidence concerning
�(p). Rapoport (1987) and Rapoport and Eshed-Levy (1989) proposed the rela-
tively weak hypothesis (their monotonicity hypothesis) that a player is more likely
to contribute the higher is �(p). Rapoport and Eshed-Levy (1989) experimentally
elicit subjects beliefs in order to test this hypothesis and �nd only weak support for
it. O¤erman, Sonnemans and Schram (2001) obtain similar results. The challenge,
therefore, is to develop a model that can not only select an equilibrium but also
capture the forces behind individual choice.

4 Three models of equilibrium selection

In this section we introduce three di¤erent ways of selecting a Nash equilibrium.
We shall then suggest that these three alternatives allow us to make predictions on
whether the zero contribution or full contribution strategy pro�le is more likely to
be observed.

4.1 Ordinal potential

One method to re�ne the set of Nash equilibria, if a game is an ordinal potential
game, is to �nd the Nash equilibria that maximize potential (Monderer and Shapley
1996). Function W : A! R is an ordinal potential of the forced contribution game
if for every i 2 N and a 2 A7

ui (ai; a�i) > ui (1� ai; a�i) if and only if W (ai; a�i) > W (1� ai; a�i) :

A game is an ordinal potential game if it admits an ordinal potential. Our next result
shows that the forced contribution game admits an ordinal potential. Moreover,
the full contribution strategy pro�le maximizes potential. In this sense the full
contribution Nash equilibrium is �selected�.

Proposition 2: The forced contribution game is an ordinal potential game and the
ordinal potential is maximized at the full contribution strategy pro�le �1.

Proof : The aggregate payo¤, given action pro�le a = (a1; :::; an), is

W (a) =

�
nV if c(a) � t
E(n� c (a)) otherwise

:

7See equation (2.1) of Monderer and Shapley (1996).
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If W is an ordinal potential then the potential is maximized for c(a) � t. In order
to verify that W is an ordinal potential there are �ve cases to consider:
(i) If c (a) > t or c(a) = t and ai = 0 then c (1� ai; a�i) � t implying ui (ai; a�i) =

ui (1� ai; a�i) = V and W (ai; a�i) =W (1� ai; a�i) = nV .
(ii) If c (a) = t and ai = 1 then c (1� ai; a�i) = t� 1 implying ui (ai; a�i) = V >

ui (1� ai; a�i) = E and W (ai; a�i) = nV > W (1� ai; a�i) = E (n� t+ 1).
(iii) If c (a) = t� 1 and ai = 0 then c (1� ai; ai) = t implying ui (ai; a�i) = E <

ui (1� ai; a�i) = V and W (ai; a�i) = E (n� t+ 1) < W (1� ai; a�i) = nV .
(iv) If c (a) � t � 1 and ai = 1 then ui (ai; a�i) = 0 < ui (1� ai; a�i) = E and

W (ai; a�i) = E (n� c(a)) < W (1� ai; a�i) = E (n� c (a) + 1).
(v) If c (a) < t � 1 and ai = 0 then ui (ai; a�i) = E > ui (1� ai; a�i) = 0 and

W (ai; a�i) = E (n� c(a)) > W (1� ai; a�i) = E (n� c (a)� 1).�

With a slight abuse of terminology we shall interpret Proposition 2 as saying
ordinal potential predicts perfect e¢ ciency in the forced contribution game. Inter-
estingly, this prediction is consistent with the prior experimental evidence (Dawes et
al. 1986, Rapoport and Eshed-Levy 1989). However, while Monderer and Shapley
(1996) show that ordinal potential can be used to re�ne the set of Nash equilib-
ria they also openly admit that they have no explanation for why ordinal potential
would be maximized. So, to paraphrase Monderer and Shapley (p. 136), �it may
be just a coincidence�that ordinal potential is consistent with the prior evidence.
The conjecture, therefore, that ordinal potential can predict behavior in the forced
contribution game needs a more rigorous empirical test.

4.2 Logit equilibrium

Quantal response provides a way to model behavior that allows for �noisy�decision
making (McKelvey and Palfrey 1995). O¤erman, Schram and Sonnemans (1998)
apply a quantal response model to a no refund threshold public good game (see also
Goeree and Holt 2005).8 Here we apply the approach to a forced contribution game.
Speci�cally, we consider the logit equilibrium (McKelvey and Palfrey 1995).
Symmetric contribution pro�le � is a logit equilibrium if

p (�) =
e
ui(1;��i)

e
ui(1;��i) + e
ui(0;��i)
=

1

1 + e�
�(p(�))

for any player i 2 N where 
 � 0 is a parameter. In interpretation, 
 is inversely
related to the level of error, where error can be thought of as resulting from random

8They also consider a naive Bayesian quantal response model.
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mistakes in calculating expected payo¤.9 Figure 2 plots the logit equilibria for the
example n = 5; t = 3; E = 6 and V = 13. We see that there is a unique equilibrium
for small 
 (i.e. a high level of error) and three equilibria for large 
. Clearly the set
of logit equilibria may di¤er from the set of Nash equilibria.

Figure 2: Logit equilibria when n = 5; t = 3; E = 6 and V = 13.

McKelvey and Palfrey (1995) demonstrate that a graph of the logit equilibrium
can be used to select a Nash equilibrium. Speci�cally, the graph of logit equilibria
contains a unique branch starting at 0:5 and converging to a Nash equilibrium as

 !1. This is called the limiting logit equilibrium. In the example of Figure 2 the
limiting logit equilibrium is the full contribution Nash equilibrium �1. For di¤erent
parameter values the limiting logit equilibrium can be the zero contribution Nash
equilibrium �0. To illustrate, Figure 3 plots the logit equilibria when n = 7; t =
5; E = 6 and V = 13.
The proceeding examples demonstrate that the limiting logit equilibrium can be

�0 or �1 depending on the parameters of the game. We shall pick up on this point
further in Section 5. For now we note that there exists a critical value eV such that
�0 is the limiting logit equilibrium for V < eV and �1 is the limiting logit equilibrium
for V > eV . With a further abuse of terminology we shall say that quantal response
predicts zero e¢ ciency if V < eV and perfect e¢ ciency if V > eV .

9Conventionally � is used rather than 
. We use 
 to avoid confusion with a � term used in
impulse balance theory.
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Figure 3: Logit equilibria when n = 7; t = 5; E = 6 and V = 13.

4.3 Impulse Balance Theory

A key contribution of the current paper is to apply impulse balance theory. Impulse
balance theory provides a quantitative prediction on outcomes based on ex-post
rationality (Ockenfels and Selten 2005, Selten and Chmura 2008, Chmura, Georg
and Selten 2012). To apply the theory we need to determine the direction and
strength of impulse of each player for any action pro�le (Selten 1998). In order to
do this we distinguish the four experience conditions de�ned below.
Take as given an action pro�le (a1; :::; an) and a player i 2 N . Let ui = ui (ai; a�i)

denote the realized payo¤ of player i and let gui = ui (1� ai; a�i) denote the payo¤
player i would have got from choosing the opposite action.

Zero no: Player i faces the zero no experience condition if c(a) < t � 1 and ai = 0.
In this case ui = gui = E and so we say player i has no impulse. Equivalently, the
strength of impulse is 0.

Wasted contribution: Player i faces the wasted contribution experience condition if
c(a) � t� 1 and ai = 1. In this case ui = 0 while eui = E > 0. We say that player i
has a downward impulse of strength gui � ui = E.

11



Lost opportunity: Player i faces the lost opportunity experience condition if c(a) =
t� 1 and ai = 0. In this case ui = E while gui = V > E. We say that player i has
an upward impulse of strength gui � ui = V � E.

Spot on: Player i faces the spot on experience condition if c(a) � t. In this case
ui = gui = V and so we say player i has no impulse.

The direction and size of impulse for each of the experience conditions are summa-
rized in Table 1.

Table 1: The conditions on ai and c(a), the direction and size of impulse for each
experience condition

Experience condition Properties of a Impulse
ai c(a) Direction Size

Zero no 0 < t� 1 � 0
Wasted contribution 1 � t� 1 # E
Lost Opportunity 0 t� 1 " V � E
Spot on 0 or 1 � t � 0

We can now de�ne expected upward and downward impulse. In doing this we
retain a focus on symmetric strategy pro�les. The upward impulse of player i 2 N
comes from the lost opportunity experience condition. So, given a symmetric strategy
pro�le � the expected upward impulse is

I+(p (�)) = (V � E) Pr(i chooses to contribute 0) Pr(t� 1 others contribute E)

= (V � E)
�
n� 1
t� 1

�
pt�1 (1� p)n�t+1 :

We note at this point that

dI+(p)

dp
= (V � E)

�
n� 1
t� 1

�
(1� p)n�t pt�2 (t� 1� pn) (2)

implying that
dI+(p)

dp
? 0 as p 7 t� 1

n
:

Thus, the upward impulse is an inverse U shaped function of p (on interval [0; 1]).
To illustrate, Figure 4 plots I+(p) (and I�(p) to be de�ned shortly) for the example
n = 5; t = 3; E = 6 and V = 13.
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Figure 4: Upward and downward impulse as a function of p when n = 5; t = 3; E = 6
and V = 13.

The expected downward impulse of player i comes from the wasted contribution
experience condition. It is given by

I�(p (�)) = E Pr(i contributes E) Pr(t� 2 or less others contribute E)

= E
t�2X
y=0

�
n� 1
y

�
py+1 (1� p)n�1�y :

Note that
dI�(p)

dp
= E

t�2X
y=0

�
n� 1
y

�
py (1� p)n�2�y (y + 1� np) (3)

and so the downward impulse is also an inverse U shaped function of p. Moreover,

dI�(p)

dp
< 0 if p >

t� 1
n

implying that the maximum downward impulse occurs for a lower value of p than
the maximum upward impulse. This is readily apparent in Figure 4.
Symmetric strategy pro�le �� is a weighted impulse balance equilibrium if I+(p (��)) =

�I�(p (��)), where � is an exogenously given weight on the downward impulse. We
shall say that an impulse balance equilibrium �� is stable if I+(p) > �I� (p) for
p 2 (p (��) � "; p (��)) and I+(p) < �I� (p) for p 2 (p (��) ; p (��) + ") for some
" > 0.10 Otherwise we say the equilibrium is unstable. Intuitively, an equilibrium

10If p� = 0 or p� = 1 the de�nition is amended as appropriate.
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is stable if a small deviation from the equilibrium does not result in impulses that
drive strategies further away from the equilibrium.
In Figure 4, where � = 1, there are two stable impulse balance equilibria: (i) the

zero strategy pro�le �0, and (ii) full contribution strategy pro�le �1. There is also
(iii) an unstable mixed strategy equilibrium �m where p (�m) = 0:25. Note that this
mixed strategy impulse balance equilibrium is di¤erent to the mixed strategy Nash
equilibrium.
We are now in a position to state our main theoretical result.

Proposition 3: (a) If V � V (�) where

V (�) =
E (n� (t� 1) (1� �))

n� t+ 1

then there are two impulse balance equilibria: the zero strategy pro�le �0 is a stable
equilibrium, and the full contribution strategy pro�le �1 is an unstable equilibrium.
(b) If V > V (�) and t � 3 there are three impulse balance equilibria: the zero
strategy pro�le �0 is a stable equilibrium, the full contribution strategy pro�le �1 is
a stable equilibrium, and there is an unstable mixed strategy equilibrium �m where
p (�m) 2 (0; 1).
(c) If V > V (�) and t = 2 there are two impulse balance equilibria: the zero strategy
pro�le �0 is an unstable equilibrium, and the full contribution strategy pro�le �1 is
a stable equilibrium.

Proof : Let C�k =
�
�
k

�
and let

DI (p) = I+ (p)� �I� (p)

denote the di¤erence between upward and downward impulse. We have

DI (p) = Cn�1t�1 p
t�1 (1� p)n�t+1 (V � E)� �E

t�2X
y=0

Cn�1y py+1 (1� p)n�1�y :

Symmetric strategy pro�le � is an impulse balance equilibrium if and only ifDI (p (�)) =
0. If p = 0 then DI (p) = 0 implying the zero strategy pro�le is an impulse balance
equilibrium. If p = 1 then DI (p) = 0 implying the full contribution strategy pro�le
is also an impulse balance equilibrium.
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Suppose for now that t � 3. Then
DI (p) = pt�1 (1� p)n�t+1

�
Cn�1t�1 (V � E)� �ECn�1t�2

�
��E

t�3X
y=0

Cn�1y py+1 (1� p)n�1�y

= pt�1 (1� p)n�t+1Cn�1t�1
�
V � V

�
� �E

t�3X
y=0

Cn�1y py+1 (1� p)n�1�y

= p (1� p)n�t+1
 
pt�2Cn�1t�1

�
V � V

�
� �E

t�3X
y=0

Cn�1y py (1� p)t�2�y
!
:

If V � V then DI (p) < 0 for all p 2 (0; 1). This implies that there is no mixed
strategy impulse balance equilibrium. It also implies that the zero strategy pro�le is
stable and the full contribution strategy pro�le is unstable.
If V > V we need look in more detail at

G (p) = pt�2Cn�1t�1
�
V � V

�
� �E

t�3X
y=0

Cn�1y py (1� p)t�2�y :

It is simple to see that G(0) < 0 and G(1) > 0. Continuity of G(p) implies at
least one value p� 2 (0; 1) such that G (p�) = 0. At p� we obtain an impulse balance
equilibrium. Moreover, we obtain stable equilibria corresponding to p = 0 and p = 1.
It remains to consider the case t = 2. Now

DI (p) = (n� 1) p (1� p)n�1 (V � E)� �Ep (1� p)n�1

= p (1� p)n�1 (n� 1)
�
V � V

�
:

As before, if V � V then DI (p) < 0 for all p 2 (0; 1). In this case there are two
equilibria, the zero strategy pro�le is stable and the full contribution strategy pro�le
is unstable. If V > V then DI (p) > 0 for all p 2 (0; 1). In this case there are still
only two equilibria but the zero strategy pro�le is unstable and the full contribution
strategy pro�le is stable.�

Proposition 3 shows that if V � V (�) impulse balance theory gives a sharp
prediction - the zero strategy pro�le is the unique stable impulse balance equilibrium.
If V > V (�) then, with the exception of the extreme case t = 2, we obtain a less
sharp prediction - both the zero and full contribution equilibria are stable. In this
case we shall hypothesize that play converges to the Pareto optimal, full contribution
equilibrium. Thus, we say that impulse balance predicts zero e¢ ciency if V � V (�)
and perfect e¢ ciency if V > V (�).
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5 Comparing model predictions

Having introduced three alternative ways for predicting outcomes in the forced con-
tribution game we will now demonstrate that they can give very di¤erent predictions.
To do so we begin by analyzing the four games detailed in Table 2. This will serve
to illustrate the stark di¤erences between model predictions. Our focus is on games
with n = 5 or 7 players where we vary V keeping E = 6 and n� t = 2 �xed. When
comparing models we shall analyze predicted e¢ ciency measured by the probability
of the public good being provided.11

Table 2: Parameters in the four games

Name n t V E
Few-small 5 3 7 6
Few-large 5 3 13 6
Many-small 7 5 7 6
Many-large 7 5 13 6

Ordinal potential (see Proposition 1) predicts perfect e¢ ciency for all four games.
Consider next quantal response. For n = 5 and t = 3 one can show numerically that
the full contribution strategy pro�le is the limiting logit equilibrium if and only if
V > eV where eV � 11. Otherwise, the zero strategy pro�le is the limiting logit
equilibrium. For n = 7 and t = 5 the analogous cut-o¤ point is eV � 22:8. Only in
the few-large game, therefore, e¢ ciency is predicted to be high. This prediction does
not change signi�cantly if we consider (non-limiting) logit equilibria. To illustrate,
Table 3 details predicted e¢ ciency for a range of values of 
. There is clearly a
stark contrast between the predictions obtained using ordinal potential and quantal
response.

Table 3: Predicted e¢ ciency with logit equilibrium.

Game 
 = 0:2 
 = 0:5 
 = 1 
 = 4 
 =1
Few-small 0:24 0:001 0 0 0
Few-large 0:61 0:79 0:90 0:98 1
Many-small 0:01 0 0 0 0
Many-large 0:01 0 0 0 0

11The logit equilibrium and impulse balance equilibrium give a value for p, the probability of a
player chooing to contribute E. From this one can obtain the probability of the public good being
provided.
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Consider next impulse balance and the case n = 5 and t = 3. From Proposition
3 we know that the full contribution strategy pro�le �1 is a stable impulse balance
equilibrium if and only if

� <
3

2

�
V

E
� 1
�
:

So, if V = 7 (recalling E = 6) the equilibrium �1 is stable if and only if � < 0:25. If
V = 13 the equilibrium �1 is stable if and only if � < 7

4
. When n = 7 and t = 5 we

obtain analogous condition

� <
3

4

�
V

E
� 1
�
:

So, if V = 7 the equilibrium �1 is stable if and only if � < 1
8
and if V = 13 it is

stable if and only if � < 7
8
.

Prior estimates of � are in the range of 0:2 to 1 (Ockenfels and Selten 2005,
Alberti, Cartwright and Stepanova 2014). Recall, that we predict play will converge
to the full contribution equilibrium if and only if it is stable. Table 4 summarizes
predicted e¢ ciency for �ve di¤erent values of �. E¢ ciency is predicted to be high
in the few-large game and low in the many-small game. In the few-small and many-
large game predictions depend on �. Comparing Tables 3 and 4 we see that predicted
e¢ ciency with impulse balance lies somewhere in-between the extremes obtained with
ordinal potential and quantal response.

Table 4: Predicted e¢ ciency with impulse balance.

Game � = 0:2 � = 0:4 � = 0:6 � = 0:8 � = 1:0
Few-small 1 0 0 0 0
Few-large 1 1 1 1 1
Many-small 0 0 0 0 0
Many-large 1 1 1 1 0

Having looked at the four games above as illustrative examples let us now turn
to the general setting. We have already shown (Proposition 2) that ordinal potential
gives the �optimistic�prediction of perfect e¢ ciency. We have also shown (Proposition
3) that impulse balance gives a less optimistic prediction of zero e¢ ciency if V <
V (�). While a general prediction for quantal response is not possible, one can show
numerically that it gives the least optimistic prediction. In particular, the critical
value above which �1 is the limiting logit equilibrium is greater than the critical value
above which �1 is a stable impulse balance equilibrium, eV > V (�) for � � 1. This
is clear in the examples, and illustrated more generally in Figure 5.
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Figure 5 plots the critical values V (�) =E and eV =E above which the full contri-
bution equilibrium �1 is a stable impulse balance equilibrium (for � = 0:2 and 1)
or a limiting logit equilibrium. We consider 6 possible values of n and all relevant
values of t. As one would expect, the higher is the threshold t the higher has to
be the return on the public good V in order to predict e¢ ciency. The main thing
we wish to highlight is that eV > V (1) across the entire range of n and t. In other
words, there are always values of V where impulse balance predicts high e¢ ciency
and quantal response predicts ine¢ ciency. This gap widens the higher is t.

Figure 5: The critical value eV =E for the limiting logit equilibrium (LLE) and of
V (1) =E and V (0:2) =E for the impulse balance equilibrium IBE(1) and IBE(0.2)
for di¤erent combinations of n and t.

Recall, see the introduction, that forced contributions have been suggested as a
means to promote e¢ ciency in public good games. This conjecture is consistent with
the predictions of ordinal potential but not of impulse balance or quantal response.
It is natural, therefore, to want to test which model is more powerful at predicting
e¢ ciency, and to explore whether e¢ ciency can be low despite forced contributions.
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That motivates the experiments that we shall discuss shortly. Before doing that we
brie�y comment on experimental results from the previous literature.
Table 5 summarizes the forced contribution experiments reported by Dawes et

al. (1986) and Rapoport and Eshed-Levy (1989).12 For the game in experiment 1
of Dawes et al. and that of Rapoport and Eshed-Levy all three models predict high
e¢ ciency and this is essentially what was observed. Experiment 2 of Dawes et al. is
more interesting in that quantal response predicts ine¢ ciency while impulse balance
predicts ine¢ ciency (� = 1) or high e¢ ciency (� = 0:2) depending on the value of �.
The observed high e¢ ciency appears inconsistent with the former prediction. It is
di¢ cult, however, to infer much from this one experiment. We shall now introduce
our experiments, which provide a more detailed test of the three models.

Table 5. Parameters, observed e¢ ciency and critical values of V for games considered
in the literature.

n t E V V (0:2) V (1) eV Observed
e¢ ciency

Dawes et al. experiment 1 7 3 5 10 5:4 7:0 7:3 1:00
Dawes et al. experiment 2 7 5 5 10 6:4 11:7 19:0 0:93
Rapoport & Eshed-Levy 5 3 2 5 2:3 3:3 3:7 0:72

6 Experiment design and results

Our experiment was designed to test the predictions of the three models discussed
above. In order to do this we used a between subject design in which the four games
introduced in Table 2 were compared. This gives four treatments corresponding to
the four games.
Subjects were randomly assigned to a group and interacted anonymously via

computer. We used z-Tree (Fischbacher 2007). The instructions given to subjects
were game speci�c, in detailing n; t and V , and so subjects could not have known that
these di¤ered across groups. In order to observe dynamic e¤ects subjects played the
game for 30 periods in �xed groups. The instructions given to subjects are available
in the appendix. As detailed in Table 6, we observed a total of 27 groups and 155
subjects. A typical session lasted 30 to 40 minutes and the average payo¤ was £ 9.

12Dawes et al. (1986) report the results of 3 experiments. We have combined their experiments
2 and 3 because they are identical for our purposes.
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Table 6: Treatments and the number of observations per treatment

Treatment Subjects Groups
Few-small 45 9
Few-large 40 8
Many-small 35 5
Many-large 35 5

155 27

6.1 Observed e¢ ciency

Table 7 summarizes average e¢ ciency (measured by the proportion of periods the
public good was provided) in the four treatments. In the few-large treatment e¢ -
ciency was very high. This is as predicted by all three models. In the many-small
treatment e¢ ciency was very low (and signi�cantly lower than in all other treat-
ments, p � 0:04, Mann-Whitney). This matches the prediction of impulse balance
and quantal response but not that of ordinal potential. That e¢ ciency was so low
in the many-small treatment is clear evidence that enforcing contributions does not
guarantee high e¢ ciency.
In the few-small and many-large treatments e¢ ciency was not as high as that

in the few-large treatment but the di¤erences are statistically insigni�cant (p >
0:15, Mann-Whitney). The success rate in the many-large treatment did decline
over the 30 periods (p = 0:02, LR test). Even if we focus on periods 11 to 30,
however, the di¤erences between the many-large, few-small and few-large treatments
are insigni�cant (p > 0:21, Mann-Whitney). The relatively high level of e¢ ciency in
the few-small and many-large treatments matches the predictions of ordinal potential
and impulse balance (provided the weight on the downward impulse is low, � < 0:25),
but not that of quantal response.

Table 7: Average e¢ ciency in the four treatments where e¢ ciency is measured as
the proportion of periods the public good is provided.

Treatment Observed e¢ ciency
Overall Periods 1-10 Periods 11-20 Periods 21-30

Few-small 0:71 0:68 0:71 0:73
Few-large 0:90 0:89 0:93 0:88
Many-small 0:04 0:12 0:00 0:00
Many-large 0:69 0:84 0:66 0:58
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We see that the only model consistent with observed e¢ ciency in all four games is
impulse balance. Ordinal potential does not capture the low e¢ ciency in the many-
small treatment and quantal response does not capture the high e¢ ciency in the
few-small and many-small treatments. The predictive power of impulse balance is,
however, dependent on � and so we shall now look at this in more detail.

6.2 Impulse and behavior

Both impulse balance and quantal response have one degree of freedom, the weight
on downward impulse � and the inverse error rate 
, respectively. Table 8 provides
estimates of � and 
 obtained from �tting the probability with which subjects con-
tributed to the public good. In terms of � we get consistent estimates of 0:2 to 0:25
across three treatments.13 Such estimates are similar to those obtained by Ockenfels
and Selten (2005) for a �rst price auction. By contrast, it is di¢ cult to �nd any
consistency in the estimates of 
. Impulse balance appears, therefore, to provide
relatively robust predictions.

Table 8: Estimates of � for impulse balance and 
 for quantal response given observed
contributions.

Treatment � 

Overall Periods 11-30 Overall Periods 11-30

Few-small 0:21 0:21 0 0
Few-large 0:24 0:24 2:55 2:84
Many-small 0:09 0:06 0:31 0:42
Many-large 0:22 0:22 1:44 1

It remains to question why the weight on the downward impulse is relatively
low. To get some insight on this we shall look at how subjects changed contribution
from one period to the next. Recall that impulse balance theory assumes players
will change contribution based on ex-post rationality. We want to check whether
subjects behaved consistent with this assumption. A relatively low weight on the
downward impulse would imply that subjects are less likely to act on a downward
impulse than an upward impulse. Figure 6 details the proportion of players who

13The low e¢ ciency in the many-small treatment makes it di¢ cult to estimate � and so a value of
� near 0 is to be expected. This is essentially because the equilibrium condition I+ = �I� becomes
0 = �� 0.
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changed contribution aggregating across all four treatments. We distinguish three
cases. Recall that c(a) denotes the number of players who contributed E.
(i) If c(a) < t � 1 then any player who contributed E has a downward impulse

(faces the wasted contribution experience condition) and any player who contributed
0 has no impulse (zero no). Consistent with this we see, in Figure 6, a strong tendency
for those who contributed E to reduce their contribution and a weak tendency for
those who contributed 0 to increase their contribution.
(ii) If c(a) = t � 1 then any player who contributed E has a downward impulse

(wasted contribution) and any player who contributed 0 has an upward impulse (lost
opportunity). Consistent with this we see a strong tendency for both those who
contributed E and those who contributed 0 to change their contribution. Impor-
tantly, those who contributed 0 are more likely to increase contribution than those
who contributed E are to decrease contribution. This is consistent with a low weight
on the downward impulse and pushes the group towards successful provision of the
public good in the next period.

Figure 6: The proportion of subjects who changed contribution from one period
to the next distinguishing by initial contribution and the number of players who
contributed E. The number of observations is given in brackets [�].

(iii) If c(a) � t then no player has an impulse (spot on). What we observe is a
relatively strong tendency for those who contributed 0 to increase their contribution,
particularly when c(a) = t. This could be interpreted as a reaction to the �near-miss�
of the lost opportunity experience condition (Kahneman and Miller 1986, De Cremer
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and van Dijk 2011). The e¤ect is to push the group towards sustained provision of
the public good.
In all the three cases discussed above we observe that subjects change contribution

consistent with ex-post rationality. Of particular note is that for c(a) � t� 1 we see
a stronger tendency to increase than decrease contributions. This explains why we
�nd that the weight on the downward impulse is relatively low. Not only, therefore,
does impulse balance theory predict aggregate success rates it is also consistent with
individual behavior.

7 Conclusion

In this paper we contrast three methods of predicting e¢ ciency in a forced contribu-
tion threshold public good game. The three methods are based on ordinal potential,
quantal response and impulse balance theory. We also report an experiment to test
the respective predictions. We found that impulse balance theory provides the best
predictions.
To put our results in context we highlight that impulse balance theory allows us

to derive a simple expression with which we can predict when forced contributions
result in high or low e¢ ciency. This prediction depends on the number of players
n, threshold t, relative return to the public good V=E and weight on the downward
impulse �. From our experiments we estimated � around 0:2 to 0:25. Setting � = 0:25
we get a prediction of high or low e¢ ciency as

V

E
?
n� 3

4
(t� 1)

n� (t� 1) :

We see that a ceteris paribus increase in the number of players lowers the critical
value of the return to the public good. In other words, an increase in the number of
players is predicted to enhance e¢ ciency. Conversely, a ceteris paribus increase in
the threshold is predicted to lower e¢ ciency.
Consider next what happens if we �x the ratio between t and n at t = �n. Figure

7 plots the critical value of the return to the public good as a function of �. One
can also derive that high e¢ ciency is predicted if

V

E
�
1� 3

4
�

1� � :

High e¢ ciency is predicted, therefore, provided t is not �too large� a proportion
of n. For example, if the relative return to the public good is 2 then we need
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� � 0:8. This prediction is consistent with the high e¢ ciency observed in previous
forced contribution experiments (Dawes et al. 1986, Rapoport and Eshed-Levy 1989).
It also shows, however, that enforcing contributions does not always lead to high
e¢ ciency. This is clearly demonstrated in our many-small treatment where � =
5=7 � 0:71, V=E = 7=6 � 1:17 and e¢ ciency is near zero.

Figure 7: The value of V=E above which high e¢ ciency is predicted, where � = t=n.

8 Appendix - Experiment instructions

In this experiment you will be asked to make a series of decisions. Depending on the
choices that you make you will accumulate �tokens�that will subsequently be con-
verted into money. Each token will be converted into £ 0.02. You will be individually
paid in cash at the end of the experiment.
At the start of the experiment you will be randomly assigned to a group of 5

people. You will remain with the same group throughout the experiment.
The experiment will last 30 rounds.
At the beginning of each round you will be allocated 6 tokens. You must decide

whether to contribute these six tokens towards a group project. This is a yes or
no decision, i.e. you either contribute all 6 tokens towards the group project or
contribute none.
Everybody in the group faces the same choice as you do. And all group members

will be asked to make their choice at the same time. Everybody, therefore, makes
their choice without knowing what others in the group have chosen to do.
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Your payo¤ will be determined by your choice whether or not to contribute to-
wards the group project and the choices of others in the group as explained on the
next page.

If the group project goes ahead successfully
If three or more group members contribute towards the group project then it

goes ahead successfully. As a consequence, everyone in the group who initially opted
(earlier in the round) not to contribute towards the project will now be required to
contribute. And, everyone in the group will receive a return from the group project
worth 7 tokens. Thus, everyone in the group will get a payo¤ of 7 tokens irrespective
of whether they initially opted to contribute or not.
If three of more contribute towards the group project:
Your payo¤ = 7 tokens

If the group project does not go ahead successfully
If less than three group members contribute towards the group project then it

does not go ahead successfully. Those who opted to contribute towards the project
will get a payo¤ of 0 tokens. Those who opted not to contribute towards the project
will get a payo¤ of 6 tokens.
If less than three contribute towards the group project:

"Your payo¤" =
�
0 tokens if you chose to contribute E
6 tokens if you chose not to contribute

.

At the end of the round you will be told the number of people that initially opted
to contribute towards the group project, whether or not the project went ahead
successfully, and your payo¤ for the round.
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