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Abstract

The use of many moment conditions improves the asymptotic efficiency of the in-

strumental variables estimators. However, in finite samples, the inclusion of an exces-

sive number of moments increases the bias. To solve this problem, we propose regu-

larized versions of the limited information maximum likelihood (LIML) based on three

different regularizations: Tikhonov, Landweber Fridman, and principal components.

Our estimators are consistent and asymptotically normal under heteroskedastic error.

Moreover, they reach the semiparametric efficiency bound assuming homoskedastic er-

ror. We show that the regularized LIML estimators possess finite moments when the

sample size is large enough. The higher order expansion of the mean square error

(MSE) shows the dominance of regularized LIML over regularized two-staged least

squares estimators. We devise a data driven selection of the regularization parameter

based on the approximate MSE. A Monte Carlo study and two empirical applications

illustrate the relevance of our estimators.
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Non-technical summary

Identification and estimation of coefficients on endogenous variables in linear struc-

tural equations is the focus of many applied economics papers. Using many valid

instrumental variables, can improve the quality of the inference. A large number of in-

struments can be obtain by interacting different variables Angrist and Krueger (1991)

or using lagged dependent variables in panel data models Arellano and Bond (1991).

However, it has been observed that in finite samples, the inclusion of an excessive

number of moments may result in a large bias. This paper proposes a regularized ver-

sions of the limited information maximum likelihood (LIML) based on three different

regularizations: Tikhonov, Landweber Fridman, and principal components.

We show that the regularized LIML estimators are consistent and asymptotically

normal under heteroskedastic error. Moreover, in presence of homoskedastic error,

they reach the semiparametric efficiency bound. In addition to that, the regularized

LIML has finite first moments provided the sample size is large enough. This result

is in contrast with the fact that standard LIML does not possess any moments in

finite sample. A small Monte Carlo experiment shows that the regularized LIML is

better than the regularized 2SLS in almost every case. The LIML estimator based on

Tikhonov and Landweber-Fridman regularization often have smaller median bias and

smaller MSE than the LIML estimator based on principal components and than the

LIML estimator proposed by Donald and Newey (2001).

Two empirical applications illustrate the relevance of our estimators. The first

paper estimate the returns to schooling using Angrist and Krueger (1991). The co-

efficients we obtain by regularized LIML are slightly larger than those obtained by

regularized 2SLS suggesting that these methods provide an extra bias correction, as

observed in our Monte Carlo simulations. However, the bias reduction obtained by

regularized LIML compared to standard LIML comes at the cost of a larger standard

error. And the second estimates the elasticity of intertemporal substitution (EIS). The

point estimates obtained by Tikhonov and Landweber-Fridman regularized estimators,

with many instruments, are very close to each other and are close to those used for

macro calibrations (EIS equal to 0.71 in our estimations and 0.67 in Castro, Clementi,

and Macdonald (2009)).
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1 Introduction

The problem of many instruments is a growing part of the econometric literature.

This paper considers the efficient estimation of a finite dimensional parameter in a

linear model where the number of potential instruments is very large or infinite. Many

moment conditions can be obtained from nonlinear transformations of an exogenous

variable or from using interactions between various exogenous variables. One empirical

example of this kind often cited in econometrics is Angrist and Krueger (1991) who

estimated returns to schooling using many instruments, Dagenais and Dagenais (1997)

also estimate a model with errors in variables using instruments obtained from higher-

order moments of available variables. The use of many moment conditions improve

the asymptotic efficiency of the instrumental variables (IV) estimators. For example,

Hansen, Hausman, and Newey (2008) have recently found that in an application from

Angrist and Krueger (1991), using 180 instruments, rather than 3 shrinks correct con-

fidence intervals substantially toward those of Kleibergen (2002). It has been observed

that in finite samples, the inclusion of an excessive number of moments may result in

a large bias (Andersen and Sorensen (1996)).

To solve the problem of many instruments efficiently, Carrasco (2012) proposed an

original approach based on regularized two-stage least-squares (2SLS). However, such

a regularized version is not available for the limited information maximum likelihood

(LIML). Providing such an estimator is desirable, given LIML has better properties

than 2SLS (see e.g. Hahn and Inoue (2002), Hahn and Hausman (2003), and Hansen,

Hausman, and Newey (2008)). In this paper, we propose a regularized version of LIML

based on three regularization techniques borrowed from the statistic literature on linear

inverse problems (see Kress (1999) and Carrasco, Florens, and Renault (2007)). The

three regularization techniques were also used in Carrasco (2012) for 2SLS. The first

estimator is based on Tikhonov (ridge) regularization. The second estimator is based

on an iterative method called Landweber-Fridman. The third regularization technique,

called spectral cut-off or principal components, is based on the principal components

associated with the largest eigenvalues. In our paper, the number of instruments is not

restricted and may be smaller or larger than the sample size or even infinite. We also
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allow for a continuum of moment restrictions. We restrict our attention to the case

where the parameters are strongly identified and the estimators converge at the usual
√
n rate. However, a subset of instruments may be irrelevant.

We show that the regularized LIML estimators are consistent and asymptotically

normal under heteroskedastic error. Moreover, they reach the semiparametric efficiency

bound in presence of homoskedastic error. We show that the regularized LIML has

finite first moments provided the sample size is large enough. This result is in contrast

with the fact that standard LIML does not possess any moments in finite sample.

Following Nagar (1959), we derive the higher-order expansion of the mean-square

error (MSE) of our estimators and show that the regularized LIML estimators domi-

nate the regularized 2SLS in terms of the rate of convergence of the MSE. Our three

estimators involve a regularization or tuning parameter, which needs to be selected in

practice. The expansion of the MSE provides a tool for selecting the regularization

parameter. Following the same approach as in Donald and Newey (2001), Okui (2011),

and Carrasco (2012), we propose a data-driven method for selecting the regulariza-

tion parameter, α, based on a cross-validation approximation of the MSE. We show

that this selection method is optimal in the sense of Li (1986,1987), meaning that the

choice of α using the estimated MSE is asymptotically as good as if minimizing the

true unknown MSE.

The simulations show that the regularized LIML is better than the regularized 2SLS

in almost every case. Simulations show that the LIML estimator based on Tikhonov

and Landweber-Fridman regularization often have smaller median bias and smaller

MSE than the LIML estimator based on principal components and than the LIML

estimator proposed by Donald and Newey (2001).

There is a growing amount of articles on many instruments and LIML. The first pa-

pers focused on the case where the number of instruments, L, grow with the sample size,

n, but remains smaller than n. In this case, the 2SLS estimator is inconsistent while

LIML is consistent (see Bekker (1994), Chao and Swanson (2005), Hansen, Hausman,

and Newey (2008), among others). Hausman, Newey, Woutersen, Chao, and Swanson

(2012) and Chao, Swanson, Hausman, Newey, and Woutersen (2012) give modified

LIML estimators which are robust to heteroskedasticity in the presence of many weak
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instruments. Recently, some work has been done in the case where the number of

instruments exceed the sample size. Kuersteiner (2012) considers a kernel weighted

GMM estimator, Okui (2011) uses shrinkage. Bai and Ng (2010) and Kapetanios and

Marcellino (2010) assume that the endogenous regressors depend on a small number

of factors which are exogenous, they use estimated factors as instruments. Belloni,

Chen, Chernozhukov, and Hansen (2012a) assume the approximate sparsity of the first

stage equation and apply an instrument selection based on Lasso. Recently, Hansen

and Kozbur (2014) propose a ridge regularized jacknife instrumental variable estimator

in the presence of heteroskedasticity which does not require sparsity and provide tests

with good sizes. The paper which is the most closely related to ours is that by Donald

and Newey (2001) (DN henceforth) which select the number of instruments by mini-

mizing an approximate MSE. Our method assumes neither a strong factor structure,

nor a exactly sparse first stage equation. However, it assumes that the instruments

are sufficiently correlated among themselves so that the trace of the instruments co-

variance matrix is finite and hence the eigenvalues of the covariance matrix decrease

to zero sufficiently fast.

The paper is organized as follows. Section 2 presents the three regularized LIML

estimators and their asymptotic properties. Section 3 derives the higher order expan-

sion of the MSE of the three estimators. In Section 4, we give a data-driven selection of

the regularization parameter. Section 5 presents a Monte Carlo experiment. Empirical

applications are examined in Section 6. Section 7 concludes. The proofs are collected

in appendix.

2 Regularized version of LIML

This section presents the regularized LIML estimators and their properties. We show

that the regularized LIML estimators are consistent and asymptotically normal in

presence of heteroskedastic error and they reach the semiparametric efficiency bound

assuming homoskedasticity. Moreover, we establish that, under some conditions, they

have finite moments.
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2.1 Presentation of the estimators

The model is  yi = W ′iδ0 + εi

Wi = f (xi) + ui
(1)

i = 1, 2, ...., n. The main focus is the estimation of the p × 1 vector δ0. yi is a scalar

and xi is a vector of exogenous variables. Wi is correlated with εi so that the ordinary

least-squares estimator is not consistent. Some rows of Wi may be exogenous, with

the corresponding rows of ui being zero. A set of instruments, Zi, is available so that

E (Ziεi) = 0.The estimation of δ is based on the orthogonality condition:

E[(yi −W ′iδ)Zi] = 0.

Let f (xi) = E (Wi|xi) ≡ fi denote the p × 1 reduced form vector. The notation

f (xi) covers various cases. f (xi) may be a linear combination of a large dimensional

(possibly infinite dimensional) vector xi. Let Zi = xi, then f (xi) = β′Zi for some L×p

β. Some of the coefficients βj may be equal to zero, in which case the corresponding

instruments Zj are irrelevant. In that sense, f (xi) may be sparse as in Belloni, Chen,

Chernozhukov, and Hansen (2012b). The instruments have to be strong as a whole but

some of them may be irrelevant. We do not consider the case where the instruments are

weak (case where the correlation between Wi and Zi converges to zero at the
√
n rate)

and the parameter δ is not identified as in Staiger and Stock (1997). We do not allow

for many weak instruments (case where the correlation between Wi and Zi declines to

zero at a faster rate than
√
n and the number of instruments Zi grows with the sample

size) considered by Newey and Windmeijer (2009) among others.

The model allows for xi to be a few variables and Zi to approximate the reduced

form f (xi). For example, Zi could be a power series or splines (see Donald and Newey

(2001)).

As in Carrasco (2012), we use a general notation which allows us to deal with

a finite, countable infinite number of moments, or a continuum of moments. The

estimation is based on a set of instruments Zi = {Z(τ ;xi) : τ ∈ S} where S is an index

set. Examples of Zi are the following.
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- Assume Zi = xi where xi is a L- vector with a fixed L. Then Z(τ ;xi) denotes the

τth element of xi and S = {1, 2, ....L}.

- Z(τ ;xi) = (xi)
τ−1 with τ ∈ S = N, thus we have an infinite countable instruments.

- Z(τ ;xi) = exp(iτ ′xi) where τ ∈ S = Rdim(xi), thus we have a continuum of moments.

It is important to note that throughout the paper, the number of instruments, L,

of Zi is either fixed or infinite and L is always independent of T . We view L as the

number of instruments available to the econometrician and the econometrician uses all

these instruments to estimate the parameters. We need to define a space of reference

in which elements such that E (WiZ(τ ;xi)) are supposed to lie. We denote L2(π) the

Hilbert space of square integrable functions with respect to π where π is a positive

measure on S. π (τ) attaches a weight to each moments indexed by τ. π permits to

dampen the effect of some instruments. For instance, if Z(τ ;xi) = exp(iτ ′xi), it makes

sense to put more weight on low frequencies (τ close to 0) and less weight on high

frequencies (τ large). In that case, a π equal to the standard normal density works

well as shown in Carrasco, Chernov, Florens, and Ghysels (2007).

We define the covariance operator K of the instruments as

K : L2(π) → L2(π)

(Kg)(τ1) =

∫
E(Z(τ1;xi)Z(τ2;xi))g(τ2)π(τ2)dτ2

where Z(τ2;xi) denotes the complex conjugate of Z(τ2;xi). K is assumed to be a

nuclear (also called trace-class) operator which is satisfied if and only if its trace is

finite. This assumption and the role of π are discussed in details in Carrasco and

Florens (2014). This is trivially satisfied if the number of instruments is finite. How-

ever, when it is infinite, this condition requires that the eigenvalues of K decline to

zero sufficiently fast which implies some strong colinearity among the instruments. If

the instruments {Zij : j = 1, 2, ...,∞} are independent from each other then K is the

infinite dimensional identity matrix which is not nuclear. However, Section 2.3 of Car-

rasco and Florens (2012) shows that an appropriate choice of π makes such a matrix

nuclear. The weight π gives an extra degree of freedom to the econometrician to meet

some of our assumptions. We will see in Section 2.2 that the asymptotic distribution
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of our estimator does not depend on the choice of π. In the case where the vector of

instruments Zi has a finite dimension L (potentially very large), we can select π as the

uniform density on S = {1, 2, ....L}. In that case, K is the operator which associates

to vector v of RL, the vector Kv = E
(
ZiZ

′
i

)
v/L. The condition ”K nuclear” is met if

the trace of E
(
ZiZ

′
i

)
/L is finite. This is satisfied if the Zil, l = 1, 2, ..., L depend on

a few common factors (see for instance Bai and Ng (2002)). It may be satisfied also if

the eigenvalues continuously decline without having a factor structure.

Let λj and φj j = 1, 2, ... be respectively the eigenvalues (ordered in decreasing

order) and the orthogonal eigenfunctions of K. The operator K can be estimated by

Kn defined as:

Kn : L2(π) → L2(π)

(Kng)(τ1) =

∫
1

n

n∑
i=1

Z(τ1;xi)Z(τ2;xi)g(τ2)π(τ2)dτ2

If the number of moment conditions is infinite, inverting K is an ill-posed problem

in the sense that its inverse is not continuous, moreover its sample counterpart, Kn,

is singular. Consequently, the inverse of Kn needs to be stabilized via regularization.

By definition (see Kress, 1999, page 269), a regularized inverse of an operator K is

Rα : L2(π) → L2(π) such that lim
α→0

RαKϕ = ϕ, ∀ϕ ∈ L2(π).

As in Carrasco (2012), we consider three different types of regularization schemes:

Tikhonov (T), Landwerber Fridman (LF) and Spectral cut-off (SC). They are defined

as follows1:

1. Tikhonov(T)

This regularization inverse is defined as (Kα)−1 = (K2 +αI)−1K or equivalently

(Kα)−1r =

∞∑
j=1

λj
λ2
j + α

〈
r, φj

〉
φj

where α > 0 and I is the identity operator.

2. Landweber Fridman (LF)

This method of regularization is iterative. Let 0 < c < 1/‖K‖2 where ‖K‖ is the

largest eigenvalue of K (which can be estimated by the largest eigenvalue of Kn).

1
〈
., .
〉

represents the scalar product in L2(π) and in Rn (depending on the context).
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ϕ̂ = (Kα)−1r is computed using the following procedure:

 ϕ̂l = (1− cK2)ϕ̂l−1 + cKr, l=1,2,...,
1

α
− 1;

ϕ̂0 = cKr,

where
1

α
− 1 is some positive integer. Equivalently, we have

(Kα)−1r =

∞∑
j=1

[1− (1− cλ2
j )

1
α ]

λj

〈
r, φj

〉
φj .

3. Spectral cut-off (SC)

It consists in selecting the eigenfunctions associated with the eigenvalues greater

than some threshold.

(Kα)−1r =
∑
λ2j≥α

1

λj

〈
r, φj

〉
φj ,

for α > 0. As the φj are related to the principal components of Z, this method is

also called principal components (PC).

The regularized inverses of K can be rewritten using a common notation as:

(Kα)−1r =
∞∑
j=1

q(α, λ2
j )

λj

〈
r, φj

〉
φj

where for T q(α, λ2
j ) =

λ2
j

λ2
j + α

, for LF q(α, λ2
j ) = [1 − (1 − cλ2

j )
1/α], and for SC

q(α, λ2
j ) = I(λ2

j ≥ α).

In order to compute the inverse of Kn, we have to choose the regularization param-

eter α. Let (Kα
n )−1 be the regularized inverse of Kn and Pα a n× n matrix defined as

in Carrasco (2012) by Pα = T (Kα
n )−1T ∗ where T : L2(π) → Rn with

Tg =
(
〈Z1, g〉′ , 〈Z2, g〉′ , ..., 〈Zn, g〉′

)′
and T ∗ : Rn → L2(π) with

T ∗v =
1

n

n∑
j=1

Zivi
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such that Kn = T ∗T and TT ∗ is an n×n matrix with typical element

〈
Zi, Zj

〉
n

. Let φ̂j ,

λ̂1 ≥ λ̂2 ≥ ... > 0, j = 1, 2, ... be the orthonormalized eigenfunctions and eigenvalues of

Kn and ψj the eigenfunctions of TT ∗. We then have T φ̂j =
√
λjψj and T ∗ψj =

√
λjφ̂j .

Remark that for v ∈ Rn, Pαv =

∞∑
j=1

q(α, λ2
j )
〈
v, ψj

〉
ψj .

Let W =
(
W ′1, W

′
2, ..., W ′n

)′
n × p and y =

(
y′1, y

′
2, ..., y′n

)′
n × p. Let us define

k-class estimators as

δ̂ = (W ′ (Pα − νIn)W )−1W ′ (Pα − νIn) y.

where ν = 0 corresponds to the regularized 2SLS estimator studied in Carrasco (2012)

and

ν = να = min
δ

(y −Wδ)′Pα(y −Wδ)

(y −Wδ)′(y −Wδ)

corresponds to the regularized LIML estimator we will study here.

2.2 Asymptotic properties of the regularized LIML

First, we establish the asymptotic properties of the regularized LIML estimators when

the errors are heteroskedastic. Next, we will consider the special case where the er-

rors are homoskedastic and the reduced form f can be approached by a sequence of

instruments. We will focus on the case where the regularization parameter, α, goes to

zero. If α were bounded away from zero, our estimators would remain consistent and

asymptotically normal but would be less efficient.

One of the drawbacks of LIML in the many-instruments setting is that it fails to

even be consistent in presence of heteroskedasticity. We will show that the regularized

LIML estimators remain consistent and asymptotically normal. Here, we assume that(
εi, u

′
i

)
are iid but conditionally heteroskedastic. We define the covariance operator K̃

of the moments {εiZi} as

K̃ : L2(π) → L2(π)

(K̃g)(τ1) =

∫
E(ε2

iZ(τ1;xi)Z(τ2;xi))g(τ2)π(τ2)dτ2

where Z(τ2;xi) denotes the complex conjugate of Z(τ2;xi). K nuclear, together with
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the assumption E(ε2
i |xi) = σ2

i < C, implies that the operator K̃ is nuclear. This,

in turn, implies that a functional central limit theorem holds (see van der Vaart and

Wellner (1996), p.50), namely

n∑
i=1

Z(.;xi)εi/
√
n converges in L2 (π) to a mean zero

Gaussian process with covariance operator K̃. Let g denote E (Z(.;xi)Wi) and F =

K−1/2.

Proposition 1. (Case with heteroskedasticity)

Assume
(
yi,W

′
i , x
′
i

)
are iid, E(εi|xi) = E(ui|xi) = 0. V ar

((
εi, u

′
i|xi
))

depends on

i. E(ε2
i |xi) = σ2

i , where σ2
i is bounded, the operator K is nuclear, the p × p matrix〈

Fg, Fg′
〉

is nonsingular. The regularization parameter α goes to zero. Then, the T,

LF, and SC estimators of LIML satisfy:

1. Consistency: Assume that each element of g belongs to range of K1/2. Then

δ̂ → δ0 in probability as n and nα1/2 go to infinity.

2. Asymptotic normality: If moreover, each element of g belongs to the range of K,

then

√
n(δ̂ − δ0)

d→ N
(

0,
〈
Fg, Fg′

〉−1
〈
Fg,

(
FK̃F ∗

)
Fg
〉 〈
Fg, Fg′

〉−1
)

as n and α
√
n go to infinity.

The condition
〈
Fg, Fg′

〉
nonsingular is an identification assumption. It would be

interesting to compare this result with the asymptotic distribution of the regularized

2SLS estimator of Carrasco (2012). Using Theorem 2 of Carrasco and Florens (2000),

it can be shown that they have the same asymptotic distribution. Hence, both types

of estimators are robust to heteroskedasticity.

A consistent estimator of the asymptotic variance is given by

(
W ′PαW

)−1
(
W ′PαΩ̂PαW

) (
W ′PαW

)−1

where Ω̂ is n× n diagonal matrix with ε̂2
i on the diagonal with ε̂i = yi −W ′i δ̃ and δ̃ a

consistent estimator of δ. An alternative consistent estimator is given by

(
Ŵ ′W

)−1 (
Ŵ ′Ω̂Ŵ

)(
W ′Ŵ

)−1

where Ŵ = (Pα − νIn)W.
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Next, we turn to the homoskedastic case and establish that the regularized LIML

estimators asymptotically reach the semiparametric efficiency bound. Let fa(x) be the

ath element of f(x).

Proposition 2. (Case with homoskedasticity)

Assume
(
yi,W

′
i , x
′
i

)
are iid, E(ε2

i |xi) = σ2
ε , E(fif

′
i) exists and is nonsingular, K is

nuclear, α goes to zero. E
(
ε4
i |xi

)
< C and E

(
‖ui‖4 |xi

)
< C, for some constant C.

Moreover, fa(x) belongs to the closure of the linear span of {Z(.;x)} for a = 1,..., p.

Then, the T, LF, and SC estimators of LIML satisfy:

1. Consistency: δ̂ → δ0 in probability as n and nα1/2 go to infinity.

2. Asymptotic normality: If moreover, each element of g belongs to the range of K,

then

√
n(δ̂ − δ0)

d→ N
(
0, σ2

ε [E(fif
′
i)]
−1
)

as n and nα go to infinity.

Proof In Appendix.

For the asymptotic normality, we need nα go to infinity as in Carrasco (2012) for

2SLS. It means that α is allowed to go to zero faster than for the heteroskedastic case.

Indeed, in Proposition 1, the condition was α
√
n. This improved rate for α has a cost

which is the condition that the fourth moments of εi and ui are bounded. We did not

need this condition in Proposition 1 because a slightly different proof was used.

The assumption ”fa(x) belongs to the closure of the linear span of {Z(.;x)} for

a = 1, ..., p” is necessary for the efficiency but not for the asymptotic normality. We

notice that all regularized LIML have the same asymptotic properties and achieve the

asymptotic semiparametric efficiency bound, as for the regularized 2SLS of Carrasco

(2012). Therefore to distinguish among these different estimators, a higher-order ex-

pansion of the MSE is necessary.

2.3 Existence of moments

The LIML estimator was introduced to correct the bias problem of the 2SLS in the

presence of many instruments. It is thus recognized in the literature that LIML has
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better, small-sample, properties than 2SLS. However, this estimator has no finite mo-

ments. Guggenberger (2008) shows by simulations that LIML and GEL have large

standard deviations. Fuller (1977) proposes a modified estimator that has finite mo-

ments provided the sample size is large enough. Moreover, Anderson (2010) shows

that the lack of finite moments of LIML under conventional normalization is a feature

of the normalization, not of the LIML estimator itself. He provides a normalization

(natural normalization) under which the LIML has finite moments. In a recent pa-

per, Hausman, Lewis, Menzel, and Newey (2011) propose a regularized version of CUE

with two regularization parameters and prove the existence of moments assuming these

regularization parameters are fixed. However, to obtain efficiency these regularization

parameters need to go to zero. In the following proposition, we give some conditions

under which the regularized LIML estimators possess finite moments provided the

sample size is large enough. Let X = (x1, x2, ..., xn).

Proposition 3. (Moments of the regularized LIML)

Assume
{
yi,W

′
i , x
′
i

}
are iid, εi ∼ iidN (0, σ2

ε) and assume that the vector ui is inde-

pendent of X, independently normally distributed with mean zero and variance Σu.

Assume that the eigenvalues of K are strictly decreasing. Let α be a positive decreasing

function of n with nα → ∞ as n → ∞. Moreover, assume that the regularized LIML

estimators based on T, LF, and SC are consistent.

Then, the rth moments (r = 1, 2, ..) of the regularized LIML estimators are bounded

for all n greater than some n(r).

Proof In Appendix.

Proposition 3 assumes that the eigenvalues of K are strictly decreasing which rules

out the case where all the eigenvalues are equal2. In Proposition 2, we assumed that

K was nuclear. If the number of instruments is infinite, K nuclear implies that the

eigenvalues of K decline to zero fast. However, if the number of instruments is finite, K

is a finite dimensional matrix and it is automatically nuclear. To make the proposition

3 hold for both cases with finite and infinite number of moments, we have added the

requirement that the eigenvalues strictly decline. The case where the eigenvalues are

equal is not covered by our proposition. In this case, the moments of the regularized

2Recall that the eigenvalues are ranked in decreasing order by assumption.
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LIML may not be bounded. This is easy to see for spectral cut-off regularization.

Assume that K is the identity matrix and hence the λj are all equal to 1. For n large

enough, the estimated λ̂j will also be close to 1. For α small, the qj = I
(
λ̂j > α

)
will

be all equal to 1, hence the Pα is the projection matrix on all the instruments and

the regularized LIML is nothing but the usual LIML estimator which is known to have

no moments. Of course, in practice, with a relatively small sample, the λ̂j may be

far from being equal to each other but we may still retain a large number of principal

components yielding large moments. This is well illustrated by the simulations of Model

1 in Section 5. The spectral cut-off regularized estimator seems to be more affected

than the estimators obtained by T and LF regularizations.

3 Mean square error for regularized LIML

Now, we analyze the second-order expansion of the MSE of regularized LIML estima-

tors. First, we impose some regularity conditions. Let ‖A‖ be the Euclidean norm of

a matrix A. f is the n × p matrix, f = (f(x1), f(x2), ..., f(xn))′. Let H̄ be the p × p

matrix H̄ = f ′f/n and X = (x1, ..., xn).

Assumption 1: (i) H = E(fif
′
i) exists and is nonsingular,

(ii) there is a β ≥ 1/2 such that

∞∑
j=1

〈
E(Z(., xi)fa(xi)), φj

〉2

λ2β+1
j

<∞

where fa is the ath element of f for a = 1, 2, ..., p

Assumption 2: {Wi, yi, xi} iid, E(ε2
i |X) = σ2

ε > 0 and E(‖ui‖5|X), E(|εi|5|X)

are bounded.

Assumption 3: (i) E[(εi, u
′
i)
′(εi, u

′
i)] is bounded, (ii) K is a nuclear operator with

nonzero eigenvalues, (iii) f(xi) is bounded.

These assumptions are similar to those of Carrasco (2012). Assumption 1(ii) is

used to derive the rate of convergence of the MSE. More precisely, it guarantees that

‖ f − Pαf ‖= Op(α
β) for LF and SC and ‖ f − Pαf ‖= Op(α

min(2,β)) for T. The
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value of β measures how well the instruments approximate the reduced form, f . The

larger β, the better the approximation is. The notion of asymptotic MSE employed

here is similar to the Nagar-type asymptotic expansion (Nagar (1959)), this Nagar-

type approximation is popular in IV estimation literature. We have several reasons to

investigate the Nagar asymptotic MSE. First, this approach makes comparison with

DN (2001) and Carrasco (2012) easier since they also use the Nagar expansion. Second,

a finite sample parametric approach may not be so convincing as it would rely on a

distributional assumption. Finally, the Nagar approximation provides the tools to

derive a simple way for selecting the regularization parameter in practice.

Proposition 4. Let σuε = E(uiεi|xi), Σu = E(uiu
′
i|xi) and Σv = E(viv

′
i|xi) with

vi = ui − εi
σuε
σ2
ε

. If Assumptions 1 to 3 hold , Σv 6= 0, E(ε2
i vi) = 0 and nα → ∞ for

LF, SC, T regularized LIML, we have

n(δ̂ − δ0)(δ̂ − δ0)′ = Q̂(α) + r̂(α),

E(Q̂(α)|X) = σ2
εH̄
−1 + S(α) + T (α),

[r̂(α) + T (α)]/tr(S(α)) = op(1),

S(α) = σ2
εH̄
−1

[
Σv

[tr((Pα)2)]

n
+
f ′ (1− Pα)2 f

n

]
H̄−1.

For LF, SC, S(α) = Op(1/αn+ αβ) and for T, S(α) = Op(1/αn+ αmin(β,2)).

The MSE dominant term, S(α), is composed of two variance terms, one which

increases when α goes to zero and the other term which decreases when α goes to

zero corresponding to a better approximation of the reduced form by the instruments.

Remark that for β ≤ 2, LF, SC, and T give the same rate of convergence of the MSE.

However, for β > 2, T is not as good as the other two regularization schemes. This

is the same result found for the regularized 2SLS of Carrasco (2012). For instance,

if f were a finite linear combination of the instruments, β would be infinite, and the

performance of T would be far worse than that of SC or LF.

The MSE formulae can be used to compare our estimators with those in Carrasco

(2012). As in DN, the comparison between regularized 2SLS and LIML depends on
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the size of σuε. For σuε = 0 where there is no endogeneity, 2SLS has smaller MSE than

LIML for all regularization schemes, but in this case OLS dominates 2SLS. In order

to do this comparison, we need to be precise about the size of the leading term of our

MSE approximation:

SLIML(α) = σ2
εH̄
−1

[
Σv

[tr((Pα)2)]

n
+
f ′ (I − Pα)2 f

n

]
H̄−1 (2)

for LIML and

S2SLS(α) = H̄−1

[
σuεσ

′
uε

[tr(Pα)]2

n
+ σ2

ε

f ′ (I − Pα)2 f

n

]
H̄−1

for 2SLS (see Carrasco (2012)). We know that

SLIML(α) ∼ 1

nα
+ αβ,

S2SLS(α) ∼ 1

nα2
+ αβ

for LF, PC and if β < 2 in the Tikhonov regularization. For β ≥ 2 the leading term of

the Tikhonov regularization is

SLIML(α) ∼ 1

nα
+ α2,

S2SLS(α) ∼ 1

nα2
+ α2.

The MSE of regularized LIML is of smaller order in α than that of the regularized

2SLS because the bias terms for LIML does not depend on α. This is similar to a

result found in DN, namely that the bias of LIML does not depend on the number of

instruments. For comparison purpose, we minimize the equivalents with respect to α

and compare different estimators at the minimized point. We find that T, LF and SC

LIML are better than T, LF and SC 2SLS in the sense of having smaller minimized

value of the MSE, for large n. Indeed, the rate of convergence to zero of S(α) is n
− β
β+1

for LIML and n
− β
β+2 for 2SLS. The Monte Carlo study presented in Section 5 reveals

that almost everywhere regularized LIML performs better than regularized 2SLS.
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4 Data driven selection of the regularization pa-

rameter

4.1 Estimation of the MSE

In this section, we show how to select the regularization parameter α. The aim is to

find the α that minimizes the conditional MSE of γ′δ̂ for some arbitrary p × 1 vector

γ. This conditional MSE is:

MSE = E[γ′(δ̂ − δ0)(δ̂ − δ0)′γ|X]

∼ γ′S(α)γ

≡ Sγ(α).

Sγ(α) involves the function f which is unknown. We will need to replace Sγ by an

estimate. Stacking the observations, the reduced form equation can be rewritten as

W = f + u.

This expression involves n × p matrices. We can reduce the dimension by post-

multiplying by H̄−1γ:

WH̄−1γ = fH̄−1γ + uH̄−1γ ⇔Wγ = fγ + uγ (3)

where uγi = u′iH̄
−1γ is a scalar. Then, we are back to a univariate equation. Let

vγ = vH̄−1γ and denote

σ2
vγ = γ′H̄−1ΣvH̄

−1γ.

Using (2), Sγ(α) can be rewritten as

σ2
ε

[
σ2
vγ

[tr((Pα)2)]

n
+
f ′γ (I − Pα)2 fγ

n

]
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We see that Sγ depends on fγ which is unknown. The term involving fγ is the same

as the one that appears when computing the prediction error of fγ in (3).

The prediction error
1

n
E
[
(fγ − f̂αγ )′(fγ − f̂αγ )

]
equals

R(α) = σ2
uγ

tr((Pα)2)

n
+
f ′γ (I − Pα)2 fγ

n

As in Carrasco (2012), the results of Li (1986) and Li (1987) can be applied. Let δ̃ be a

preliminary estimator (obtained for instance from a finite number of instruments) and

ε̃ = y−Wδ̃. Let H̃ be an estimator of f ′f/n, possibly W ′P α̃W/n where α̃ is obtained

from a first stage cross-validation criterion based on one single endogenous variable, for

instance the first one (so that we get a univariate regression W (1) = f (1) + u(1) where

(1) refers to the first column).

Let ũ = (I − P α̃)W , ûγ = ũH̃−1γ,

σ̂2
ε = ε̃′ε̃/n, σ̂2

uγ = û′γ ûγ/n, σ̂uvε = û′γ ε̃/n.

We consider the following goodness-of-fit criteria:

Mallows Cp (Mallows (1973))

R̂m(α) =
û′γ ûγ

n
+ 2σ̂2

uγ

tr(Pα)

n
.

Generalized cross-validation (Craven and Wahba (1979))

R̂cv(α) =
1

n

û′γ ûγ(
1− tr(Pα)

n

)2 .

Leave-one-out cross-validation (Stone (1974))

R̂lcv(α) =
1

n

n∑
i=1

(W̃γi − f̂αγ−i)
2,

where W̃γ = WH̃−1γ, W̃γi is the ith element of W̃γ and f̂αγ−i = Pα−iW̃γ−i . The n×(n−1)
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matrix Pα−i is such that Pα−i = T (Kα
n−i)T

∗
−i are obtained by suppressing ith observation

from the sample. W̃γ−i is the (n − 1) × 1 vector constructed by suppressing the ith

observation of W̃γ .

Noting that σ2
vγ − σ

2
uγ = −σ2

uγε/σ
2
ε where σuγε = E (uγiεi). The approximate MSE

of γ′δ̂ is given by:

Ŝγ(α) = σ̂2
ε

[
R̂(α)−

σ̂2
uγε

σ̂2
ε

tr((Pα)2)

n

]

where R̂(α) denotes either R̂m(α), R̂cv(α), or R̂lcv(α).

Since σ̂2
ε does not depend on α, the regularization parameter is selected as

α̂ = arg min
α∈Mn

[
R̂(α)−

σ̂2
uγε

σ̂2
ε

tr((Pα)2)

n

]
(4)

where Mn is the index set of α. Mn is a compact subset of [0, 1] for T, Mn is such that

1/α ∈ {1, 2, ..., n} for SC, and Mn is such that 1/α is a positive integer no larger than

some finite multiple of n.

Remark 1. This selection is cumbersome because it depends on a first step esti-

mator of α, α̃. Moreover, the quality of the selection of the regularization parameter α̂

may be affected by the estimation of H̄. A solution to avoid the estimation of H̄ is to

select γ such that H̄−1γ equals a deterministic vector chosen by the econometrician,

for instance the unit vector e or any other vector denoted µ. Given the choice of µ is

arbitrary and for each µ corresponds a γ, we believe the resulting criterion is a valid

way for selecting α. In this case, Wγ = Wµ, fγ = fµ, uγ = uµ and σ̂2
uγε can be

estimated by u′γ ε̃/n. As a result, the criterion (4) can be computed without relying on

any first step estimate of α (except when Mallows Cp is used).

4.2 Optimality

In this section, we will restrict ourselves to the case described in Remark 1 where γ is

such that H̄−1γ = µ and µ is an arbitrary vector chosen by the econometrician.

We wish to establish the optimality of the regularization parameter selection criteria

in the following sense
Sγ(α̂)

infα∈Mn Sγ(α)

P→ 1 (5)
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as n and nα→∞ where α̂ is the regularization parameter defined in (4). The result (5)

does not imply that α̂ converges to a true α in some sense. Instead, it establishes that

using α̂ in the criterion Sγ(α) delivers the same rate of convergence as if minimizing

Sγ(α) directly. For each estimator, the selection criteria provide a means to obtain

higher order asymptotically optimal choices for the regularized parameter. It also

means that the choice of α using the estimated MSE is asymptotically as good as if

the true reduced form were known.

Assumption 4:

(i) E[((uie)
8)] is bounded. (i’) ui iid N (0,Σu).

(ii) σ̂2
uγ

P→ σ2
uγ , σ̂2

uγε
P→ σ2

uγε, σ̂
2
ε
P→ σ2

ε ,

(iii) lim
n→∞

sup
α∈Mn

λ(Pα−i) <∞ where λ(Pα−i) is largest eigenvalue of Pα−i,

(iv)
∑
α

(nR̃(α))−2 P→ 0 as n→∞ with R̃ is defined as R with Pα replaced by Pα−i

(v) R̃(α)/R(α)
P→ 1 if either R̃(α)

P→ 0 or R(α)
P→ 0.

Proposition 5. Optimality of SC and LF

Under Assumptions 1-3 and Assumption 4 (i-ii), the Mallows Cp and Generalized cross-

validation criteria are asymptotically optimal in the sense of (5) for SC and LF. Under

Assumptions 1-3 and Assumption 4 (i-v), the leave-one out cross validation is asymp-

totically optimal in the sense of (5) for SC and LF.

Optimality of T

Under Assumptions 1-3 and Assumption 4 (i’) and (ii), the Mallows Cp is asymptoti-

cally optimal in the sense of (5) for Tikhonov regularization.

Proof In Appendix.

In the proof of the optimality, we distinguish two cases: the case where the index

set of the regularization parameter is discrete and the case where it is continuous.

Using as regularization parameter 1/α instead of α, SC and LF regularizations have

a discrete index set, whereas T has a continuous index set. We use Li (1987) to

establish the optimality of Mallows Cp, generalized cross-validation and leave-one-out

cross-validation for SC and LF. We use Li (1986) to establish the optimality of Mallows

Cp for T. The proofs for generalized cross-validation and leave-one-out cross-validation

for T regularization could be obtained using the same tools but are beyond the scope
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of this paper.

Note that our optimality results hold for a vector of endogenous regressors Wi

whereas DN deals only with the case where Wi is scalar.

5 Simulation study

In this section we present a Monte Carlo study. Our aim is to illustrate the quality of

our estimators and compare them to regularized 2SLS estimators of Carrasco (2012),

DN estimators, and LIML estimator with all the instruments and using the many

instrument standard error proposed by Hansen, Hausman, and Newey (2008) (denoted

HHN in the sequel). In all simulations, we set π = 1.

Consider  yi = W ′iδ + εi

Wi = f(xi) + ui

for i = 1, 2, ..., n , δ = 0.1 and (εi, ui) ∼ N (0,Σ) with

Σ =

 1 0.5

0.5 1

 .

In all simulations, we consider large samples of size n = 500 and use 1000 replications.

For the purpose of comparison, we are going to consider two models.

Model 1 (Linear model).

In this model, f is linear as in DN. f(xi) = x′iπ with xi ∼ iidN (0, IL), L = 15, 30, 50.

As shown in Hahn and Hausman (2003), the specification implies a theoretical first

stage R-squared that is of the form R2
f = π′π/(1 + π′π).

The xi are used as instruments so that Zi = xi. We can notice that the instruments

are independent from each other, this example corresponds to the worse case scenario

for our regularized estimators. Indeed, here all the eigenvalues of K are equal to 1, so

there is no information contained in the spectral decomposition of K. Moreover, if L

were infinite, K would not be nuclear, hence our method would not apply.

We set πl =

√√√√ R2
f

1−R2
f

, l = 1, 2, ..., L with R2
f = 0.1. As all the instruments have

the same weight, there is no reason to prefer an instrument over another instrument .
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Model 2 (Factor model).

Wi = fi1 + fi2 + fi3 + ui

where fi = (fi1, fi2, fi3)′ ∼ iidN (0, I3), xi is a L× 1 vector of instruments constructed

from fi through

xi = Mfi + νi

where νi ∼ N (0, σ2
νI3) with σν = 0.3, and M is a L × 3 matrix which elements are

independently drawn in a U[-1, 1].

We report summary statistics for each of the following estimators: Carrasco’s (2012)

regularized two-stage least squares, T2SLS (Tikhonov), L2SLS (Landweber Fridman),

P2SLS (Principal component), Donald and Newey’s (2001) 2SLS (D2SLS), the un-

feasible instrumental variable regression (IV), regularized LIML, TLIML (Tikhonov),

LLIML (Landweber Fridman), PLIML (Principal component or spectral cut-off), Don-

ald and Newey’s (2001) LIML (DLIML), and finally the usual LIML with all instru-

ments and HHN standard errors. When L exceeds n, LIML is computed using a Moore

Penrose generalized inverse for the inverse of Z ′Z. For each regularized and DN esti-

mator, the optimal tuning parameter is selected using generalized cross-validation. For

all the regularized LIML estimators, the starting values for the minimization needed in

the estimation of ν are the 2SLS using all the instruments when L ≤ 50 or the corre-

sponding regularized 2SLS for L > 50. For standard LIML, the starting value is again

the 2SLS using all the instruments when L ≤ 50 or 1 for L = 400 and 520. We report

the median bias (Med.bias), the median of the absolute deviations of the estimator

from the true value (Med.abs), the difference between the 0.1 and 0.9 quantiles (dis)

of the distribution of each estimator, the mean square error (MSE) and the coverage

rate (Cov.) of a nominal 95% confidence interval. To construct the confidence intervals

to compute the coverage probabilities, we used the following estimate of asymptotic

variance:

V̂ (δ̂) =
(y −Wδ̂)′(y −Wδ̂)

n
(Ŵ ′W )−1Ŵ ′Ŵ (W ′Ŵ )−1

where Ŵ = PαW for 2SLS and Ŵ = (Pα − νIn)W for LIML.

Tables 2 and 4 contain summary statistics for the value of the regularization pa-
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rameter which minimizes the approximate MSE. This regularization parameter is the

number of instruments in DN, α for T, the number of iterations for LF, and the num-

ber of principal components for PC3. We report the mean, standard error (std), mode,

first, second and third quartile of the distribution of the regularization parameter.

Results on Model 1 are summarized in Tables 1 and 2. In Model 1, the regularized

LIML strongly dominates the regularized 2SLS. The LF and T LIML dominate the DN

LIML with respect to all the criteria. We can then conclude that in presence of many

instruments and in absence of a reliable information on the relative importance of the

instruments, the regularized LIML approach should be preferred to DN approach. We

can also notice that when the number of instruments increases from L = 15 to L = 50,

the MSE of regularized LIML becomes smaller than those of regularized 2SLS. We

observe that the MSE of regularized LIML, DLIML and standard LIML tend to be

very large for L = 400 and 520. However, the median bias and dispersions of these

remain relatively small suggesting that the large values of the MSE are due to a few

outliers. The large MSE of the regularized estimators can be explained by the fact

that all eigenvalues of K (in the population) are equal to each other and consequently

the assumptions of Proposition 3 are not satisfied. For PC, the cross-validation tends

to select either very few or a large number of principal components (see Table 2). In

that latter case, the PC LIML is close to the standard LIML estimator which is known

for not having any moments. It is important to note that the MSE is sensitive to the

starting values used for computing ν. For some starting values, explosive behaviors will

appear more frequently yielding larger MSE. However, the other statistics reported in

the table are not very sensitive to the starting values. We see that HHN standard

errors for LIML give an excellent coverage for moderately large values of L (L ≤ 50)

but this coverage deteriorates as L grows much larger.

Now, we turn to Model 2 which is a factor model. From Table 3, we see that

there is no clear dominance among the regularized LIML as they all perform very well.

Standard LIML is also very good. From Table 4, we can observe that PC selects three

3The optimal α for Tikhonov is searched over the interval [0.01,0.5] with 0.01 increment for Models 1 and
the set {0, 0.000000001, 0.00000001, 0.0000001, 0.0000001, 0.000001, 0.00001, 0.01, 0.1, 0.2} for Model 2.
The range of values for the number of iterations for LF is from 1 to 10 times the number of instruments and
for the number of principal components is from 1 to the number of instruments.
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Table 1: Simulation results of Model 1 with R2
f = 0.1, n = 500.

T2SL L2LS P2LS D2LS IV TLIML LLIML PLIML DLIML LIML
L=15 Med.bias 0.099 0.096 0.112 0.128 -0.006 -0.001 -0.001 0.015 0.011 -0.002

Med.abs 0.109 0.115 0.141 0.146 0.087 0.103 0.102 0.103 0.101 0.104
Disp 0.290 0.297 0.372 0.346 0.347 0.390 0.386 0.378 0.380 0.385
MSE 0.023 0.023 0.059 0.042 0.019 0.024 0.025 0.023 0.023 0.024
Cov 0.840 0.843 0.837 0.805 0.946 0.953 0.953 0.928 0.929 0.950

L=30 Med.bias 0.172 0.165 0.174 0.219 0.006 0.010 0.011 0.040 0.050 0.010
Med.abs 0.173 0.165 0.202 0.237 0.091 0.107 0.110 0.110 0.115 0.108

Disp 0.264 0.277 0.453 0.457 0.355 0.412 0.421 0.409 0.409 0.413
MSE 0.039 0.038 3.682 907.31 0.020 0.030 0.033 0.031 0.032 0.029
Cov 0.594 0.643 0.725 0.673 0.952 0.955 0.950 0.892 0.899 0.951

L=50 Med.bias 0.237 0.226 0.214 0.257 -0.004 -0.004 0.000 0.079 0.105 0.001
Med.abs 0.237 0.226 0.252 0.285 0.089 0.124 0.126 0.136 0.152 0.123

Disp 0.235 0.259 0.581 0.590 0.353 0.470 0.489 0.477 0.515 0.492
MSE 0.061 0.058 1.794 4.946 0.020 0.039 0.045 0.050 0.427 0.040
Cov 0.300 0.406 0.688 0.639 0.951 0.960 0.955 0.866 0.849 0.957

L=400 Med.bias 0.411 0.380 0.314 0.373 0.006 0.030 0.018 0.287 0.382 0.212
Med.abs 0.411 0.380 0.449 0.594 0.092 0.249 0.264 0.370 0.486 0.428

Disp 0.128 0.177 2.291 3.116 0.342 1.110 1.231 1.198 1.719 4.373
MSE 0.171 0.150 763.56 224.83 0.021 6.9e+20 3.1e+23 1.0e+30 Inf 8.7e+27
Cov 0.000 0.001 0.752 0.795 0.961 0.927 0.948 0.798 0.792 0.838

L=520 Med.bias 0.426 0.418 0.353 0.449 -0.007 0.080 0.106 0.347 0.450 0.594
Med.abs 0.426 0.418 0.494 0.608 0.098 0.287 0.267 0.431 0.526 0.954

Disp 0.114 0.123 2.361 2.951 0.365 1.247 1.053 1.357 1.526 54.807
MSE 0.184 0.178 34.68 639.34 0.021 6.115 4.5e+21 3.1e+29 Inf 6.9e+29
Cov 0.000 0.000 0.743 0.740 0.961 0.912 0.895 0.803 0.778 0.435

NB: We report Median Bias (Med.Bias), Median Absolute deviation (Med.abs), the difference between the 0.1

and 0.9 quantiles (Disp) of the distribution of each estimator, the mean square error (MSE) and the coverage

rate (Cov) of a nominal 95% confidence interval. We report results for regularized 2SLS: T2SLS (Tikhonov),

L2SLS (Landweber Fridman), P2SLS (Principal component), the unfeasible instrumental variable regression

(IV), regularized LIML: TLIML (Tikhonov), LLIML (Landweber Fridman), PLIML (Principal component),

Donald and Newey’s (2001) LIML (DLIML), and finally the LIML with HHN standard errors.

principal components in average corresponding to the three factors.

We conclude this section by summarizing the Monte Carlo results. LIML based

estimators have smaller bias than 2SLS based methods. Selection methods as DN

are recommended when the rank ordering of the strength of the instruments is clear,

otherwise regularized methods are preferable. Among the three regularizations, LLIML

and TLIML have smaller bias and better coverage than PLIML in absence of factor

structure. Overall, TLIML performs the best across the different values of L. It seems

to be the most reliable method.

24



Table 2: Properties of the distribution of the regularization parameters Model 1
T2SL L2LS P2LS D2LS TLIML LLIML PLIML DLIML

L=15 Mean 0.437 18.118 8.909 10.021 0.233 32.909 13.053 14.223
sd 0.115 12.273 3.916 3.995 0.085 9.925 2.463 1.460
q1 0.410 11.000 6.000 7.000 0.170 26.000 12.000 14.000
q2 0.500 15.000 9.000 11.000 0.210 31.000 14.000 15.000
q3 0.500 21.000 12.000 14.000 0.270 37.000 15.000 15.000

L=30 Mean 0.486 11.963 10.431 11.310 0.421 26.584 22.636 25.283
sd 0.060 11.019 7.660 8.634 0.091 9.299 7.160 6.303
q1 0.500 6.000 4.000 4.000 0.360 20.000 18.000 24.000
q2 0.500 9.000 9.000 9.000 0.460 25.000 25.000 28.000
q3 0.500 14.000 15.000 17.000 0.500 31.000 29.000 30.000

L=50 Mean 0.493 10.127 11.911 13.508 0.492 20.146 26.210 29.362
sd 0.044 13.632 11.605 13.943 0.031 7.537 14.197 16.864
q1 0.500 4.000 4.000 3.000 0.500 15.000 15.000 13.000
q2 0.500 7.000 8.000 8.000 0.500 19.000 26.000 33.000
q3 0.500 11.000 16.000 19.000 0.500 24.000 38.000 46.000

L=400 Mean 0.500 8.581 9.412 6.580 0.500 5.091 15.633 13.063
sd 0.000 10.174 20.114 15.373 0.000 3.071 26.556 25.520
q1 0.500 1.000 1.000 1.000 0.500 3.000 1.000 1.000
q2 0.500 4.000 2.000 1.000 0.500 5.000 4.000 3.000
q3 0.500 13.000 7.000 4.000 0.500 7.000 14.000 10.000

L=520 Mean 0.326 747.443 22.783 23.297 0.326 736.191 31.248 30.903
sd 0.197 1385.074 87.568 92.740 0.197 1368.495 95.671 99.198
q1 0.110 73.000 1.000 1.000 0.110 73.000 1.000 1.000
q2 0.430 153.500 1.000 1.000 0.430 152.000 3.000 3.000
q3 0.500 522.500 7.000 5.000 0.500 513.500 14.000 10.000
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Table 3: Simulations results of Model 2, n = 500
T2SL L2LS P2LS D2LS IV TLIML LLIML PLIML DLIML LIML

L=15 Med.bias 0.001 0.001 0.001 0.003 0.001 0.000 0.000 0.000 0.000 -0.000
Med.abs 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.019 0.018

Disp 0.068 0.068 0.068 0.068 0.067 0.068 0.068 0.068 0.068 0.069
MSE 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
Cov 0.951 0.951 0.951 0.943 0.952 0.951 0.951 0.951 0.953 0.946

L=30 Med.bias 0.001 0.001 0.001 0.006 0.001 0.000 0.001 0.001 0.002 0.000
Med.abs 0.017 0.017 0.017 0.018 0.017 0.017 0.017 0.017 0.018 0.018

Disp 0.067 0.067 0.067 0.066 0.067 0.067 0.067 0.067 0.067 0.066
MSE 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
Cov 0.963 0.961 0.964 0.949 0.958 0.962 0.964 0.965 0.962 0.958

L=50 Med.bias 0.000 0.000 0.000 0.004 0.001 -0.000 -0.001 -0.001 0.001 -0.001
Med.abs 0.017 0.017 0.017 0.018 0.017 0.017 0.017 0.017 0.018 0.017

Disp 0.065 0.065 0.065 0.066 0.065 0.065 0.065 0.065 0.066 0.067
MSE 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
Cov 0.955 0.954 0.954 0.945 0.950 0.954 0.953 0.953 0.957 0.952

NB: We report Median Bias (Med.Bias), Median Absolute deviation (Med.abs), the difference

between the 0.1 and 0.9 quantiles (Disp) of the distribution of each estimator, the mean square

error (MSE) and the coverage rate (Cov) of a nominal 95% confidence interval. We report results for

regularized 2SLS: T2SLS (Tikhonov), L2SLS (Landweber Fridman), P2SLS (Principal component),

the unfeasible instrumental variable regression (IV), regularized LIML: TLIML (Tikhonov), LLIML

(Landweber Fridman), PLIML (Principal component), Donald and Newey’s (2001) LIML (DLIML)

and finally the LIML with HHN standard errors.

Table 4: Properties of the distribution of the regularization parameters Model 2
T2SL L2LS P2LS D2LS TLIML LLIML PLIML DLIML

L=15 Mean 0.330 149.673 3.012 9.936 0.157 149.853 3.012 13.076
sd 0.085 2.608 0.109 1.203 0.114 1.861 0.109 1.985
q1 0.290 150.000 3.000 9.000 0.030 150.000 3.000 11.000
q2 0.345 150.000 3.000 10.000 0.170 150.000 3.000 14.000
q3 0.390 150.000 3.000 11.000 0.260 150.000 3.000 15.000

L=30 Mean 0.493 299.992 3.011 13.881 0.257 300.000 3.011 24.046
sd 0.036 0.253 0.114 2.105 0.192 0.000 0.114 4.092
q1 0.500 300.000 3.000 12.000 0.040 300.000 3.000 22.000
q2 0.500 300.000 3.000 12.000 0.290 300.000 3.000 23.000
q3 0.500 300.000 3.000 16.000 0.450 300.000 3.000 28.000

L=50 Mean 0.499 448.503 3.010 13.931 0.305 483.828 3.010 26.343
sd 0.014 54.664 0.100 0.908 0.204 35.748 0.100 7.897
q1 0.500 411.000 3.000 14.000 0.070 496.000 3.000 22.000
q2 0.500 463.000 3.000 14.000 0.410 500.000 3.000 23.000
q3 0.500 500.000 3.000 14.000 0.500 500.000 3.000 29.000
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6 Empirical applications

6.1 Returns to Schooling

A motivating empirical example is provided by the influential paper of Angrist and

Krueger (1991). This study has become a benchmark for testing methodologies con-

cerning IV estimation in the presence of many (possibly weak) instrumental variables.

The sample drawn from the 1980 U.S. Census consists of 329,509 men born between

1930-1939. Angrist and Krueger (1991) estimate an equation where the dependent

variable is the log of the weekly wage, and the explanatory variable of interest is the

number of years of schooling. It is obvious that OLS estimate might be biased because

of the endogeneity of education. Angrist and Krueger (1991) propose to use the quar-

ters of birth as instruments. Because of the compulsory age of schooling, the quarter

of birth is correlated with the number of years of education, while being exogenous.

The relative performance of LIML on 2SLS, in presence of many instruments, has been

well documented in the literature (DN, Anderson, Kunitomo, and Matsushita (2010),

and Hansen, Hausman, and Newey (2008)). We are going to compute the regularized

version of LIML and compare it to the regularized 2SLS in order to show the empirical

relevance of our method.

We use the model of Angrist and Krueger (1991):

logw = α+ δeducation+ β′1Y + β′2S + ε

where logw = log of weekly wage, education = year of education, Y = year of

birth dummy (9), S = state of birth dummy (50). The vector of instruments Z =

(1, Y, S,Q,Q ∗ Y,Q ∗ S) includes 240 variables.

Table 5 reports schooling coefficients generated by different estimators applied to

the Angrist and Krueger data along with their standard errors4 in parentheses. Table

5 shows that all regularized 2SLS and LIML estimators based on the same type of

regularization give close results. The coefficients we obtain by regularized LIML are

slightly larger than those obtained by regularized 2SLS suggesting that these methods

4Our standard errors are not robust to heteroskedasticity.
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Table 5: Estimates of the returns to education
OLS 2SLS T2SLS L2SLS P2SLS

0.0683 (0.0003) 0.0816 (0.0106) 0.1237 (0.0482) 0.1295 (0.0309) 0.1000 (0.0411)
α= 0.00001 Nb of iterations 700 Nb of eigenfunctions 81

LIML TLIML LLIML PLIML
0.0918 (0.021) 0.1237 (0.0480) 0.1350 (0.0312) 0.107 (0.0184)

α= 0.00001 Nb of iterations 700 Nb of eigenfunctions 239

NB: Standard errors are in parentheses. For LIML, HHN standard errors are given in parentheses. The

concentration parameter is equal to 208.61.

provide an extra bias correction, as observed in our Monte Carlo simulations. Note

that the bias reduction obtained by regularized LIML compared to standard LIML

comes at the cost of a larger standard error. Among the regularizations, PC gives

estimators which are quite a bit smaller than T and LF. However, we are suspicious of

PC because there is no factor structure here.

6.2 Elasticity of Intertemporal Substitution

In macroeconomics and finance, the elasticity of intertemporal substitution (EIS) in

consumption is a parameter of central importance. It has important implications for

the relative magnitudes of income and substitution effects in the intertemporal con-

sumption decision of an investor facing time varying expected returns. Campbell and

Viceira (1999) show that when the EIS is less (greater) than 1, the investor’s optimal

consumption-wealth ratio is increasing (decreasing) in expected returns.

Yogo (2004) analyzes the problem of EIS using the linearized Euler equation. He

explains how weak instruments have been the source for an empirical puzzle namely

that, using conventional IV methods, the estimated EIS is significantly less than 1

but its reciprocal is not different from 1. In this subsection, we follow one of the

specifications in Yogo (2004) using quarterly data from 1947.3 to 1998.4 for the United

States and compare all the estimators considered in the present paper. The estimated

models are given by the following equation:

∆ct+1 = τ + ψrf,t+1 + ξt+1
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and the ”reverse regression”:

rf,t+1 = µ+
1

ψ
∆ct+1 + ηt+1

where ψ is the EIS, ∆ct+1 is the consumption growth at time t + 1, rf,t+1 is the real

return on a risk free asset, τ and µ are constants, and ξt+1 and ηt+1 are the innovations

to consumption growth and asset return, respectively.

Yogo (2004) use four instruments: the twice lagged, nominal interest rate (r),

inflation (i), consumption growth (c) and log dividend-price ratio (p). This set of

instruments is denoted Z = [r, i, c, p]. Yogo (2004) argues that the source for the

empirical puzzle mentioned earlier is weak instruments. To strengthen the instruments,

we increase the number of instruments from 4 to 18 by including interactions and power

functions. The 18 instruments used in our regression are derived from Z and are given

by5 II = [Z,Z.2, Z.3, Z(:, 1)∗Z(:, 2), Z(:, 1)∗Z(:, 3), Z(:, 1)∗Z(:, 4), Z(:, 2)∗Z(:, 3), Z(:

, 2) ∗Z(:, 4), Z(:, 3) ∗Z(:, 4)]. As a result, the concentration parameters increase in the

following way:

Table 6: Concentration parameter µ2
n for the reduce form equation.

L = 4 L = 18
1/ψ 9.66 33.54
ψ 11.05 68.77

According to Hansen, Hausman, and Newey (2008), p. 403, the concentration

parameter is a better indication of the potential weak instrument problem than the

F−statistic. They argue on p. 404 that ”the use of LIML or FULL with the CSE and

the asymptotically normal approximation should be adequate in situations where the

concentration parameter is around 32 or greater”. Since the increase of the number of

instruments improves efficiency and regularized 2SLS and LIML correct for the bias

due to the many instrument problem, we expect to obtain reliable point estimates.

Interestingly, the point estimates obtained by T and LF regularized estimators are very

close to each other and are close to those used for macro calibrations (EIS equal to 0.71

in our estimations and 0.67 in Castro, Clementi, and Macdonald (2009)). Moreover,

5Z.k = [Zkij ] , Z(:, k) is the kth column of Z and Z(:, k)∗Z(:, l) is a vector of interactions between columns
k and l.

29



the results of the two equations are consistent with each other since we obtain the same

value for ψ in both equations. PC seems to take too many factors, and did not perform

well, this is possibly due to the absence of factor structure.

Table 7: Estimates of the EIS
2SLS (4 instr) 2SLS (18 instr) T2SLS L2SLS P2SLS

ψ 0.0597 0.1884 0.71041 0.71063 0.1696
(0.0876) (0.0748) (0.423) ( 0.423) (0.084)

α = 0.01 Nb of iterations 1000 Nb of PC 11
1/ψ 0.6833 0.8241 1.406 1.407 0.7890

(0.4825) (0.263) (0.839) (0.839) (0.357)
α = 0.01 Nb of iterations 1000 Nb of PC 17

LIML (4 instr) LIML (18 instr) TLIML LLIML PLIML
ψ 0.0293 0.2225 0.71041 0.71063 0.1509

(0.0994) ( 0.156) (0.424) ( 0.423) (0.111)
α = 0.01 Nb of iterations 1000 Nb of PC 8

1/ψ 34.1128 4.4952 1.407 1.4072 3.8478
(112.7122) (4.421) (0.839) (0.839) (3.138)

α = 0.01 Nb of iterations 1000 Nb of PC 17

NB: For LIML with 18 instruments, HHN standard errors are given in parentheses. For the regularized

estimators, we provide the heteroskedasticity robust standard errors in parentheses.

7 Conclusion

In this paper, we propose a new estimator which is a regularized version of LIML es-

timator. We allow for a finite and infinite number of moment conditions. We show

theoretically that regularized LIML improves upon regularized 2SLS in terms of smaller

leading terms of the MSE. All the regularization methods involve a tuning parameter

which needs to be selected. We propose a data-driven method for selecting this pa-

rameter and show that this selection procedure is optimal. Moreover, we prove that

the regularized LIML estimators have finite moments. Our simulations show that the

leading regularized estimators (LF and T of LIML) are nearly median unbiased and

dominate regularized 2SLS and standard LIML in terms of MSE.

We restrict our work in this paper to the estimation and asymptotic properties of

regularized LIML with many strong instruments. One possible topic for future research

would be to extend these results to the case of weak instruments as in Hansen, Haus-

man, and Newey (2008). Another interesting topic is the use of our regularized LIML
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or 2SLS for inference when facing many instruments or a continuum of instruments.

This would enable us to compare our inference results with those of Hansen, Hausman,

and Newey (2008) and Newey and Windmeijer (2009).
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A Proofs

Proof of Proposition 1

To prove this proposition, we first need the following lemmas.

Lemma 1 (Lemma A.4 of DN)

If Â
P→ A and B̂

P→ B. A is positive semi definite and B is positive definite, τ0 =

argminτ1=1
τ ′Aτ

τ ′Bτ
exists and is unique (with τ = (τ1, τ

′
2)′ and τ1 ∈ R) then

τ̂ = argminτ1=1
τ ′Âτ

τ ′B̂τ
→ τ0.

Lemma 2. Under the assumptions of Proposition 1, we have

ε′Pαε = Op(1/α).

Proof of Lemma 2.

Let Ω be the n× n diagonal matrix with ith diagonal element σ2
i and λmax (Ω) be

the largest eigenvalue of Ω (which is equal to the largest σ2
i )

E
(
ε′Pαε|X

)
= tr

(
PαE

(
εε′|X

))
= tr (PαΩ)

≤ λmax (Ω) tr (Pα)

≤ C
∑
j

qj .

Hence by Markov’s inequality, ε′Pαε = Op

∑
j

qj

 = Op (1/α) . This completes the

proof of Lemma 2.

Pα is a symmetric idempotent matrix for SC but not idempotent for T and LF.

We want to show that δ̂ → δ as n and nα
1
2 go to infinity.
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We know that

δ̂ = argminδ
(y −Wδ)′Pα(y −Wδ)

(y −Wδ)′(y −Wδ)

= argminδ
(1,−δ′)Â(1,−δ′)′

(1,−δ′)B̂(1,−δ′)′

where Â = W̄ ′PαW̄/n, B̂ =
W̄ ′W̄

n
and W̄ = [y,W ] = WD0 + εe, where D0 = [δ0 , I],

δ0 is the true value of the parameter and e is the first unit vector.

In fact

Â = W̄ ′PαW̄/n

=
D′0W

′PαWD0

n
+
D′0W

′Pαεe

n
+
e′ε′PαWD0

n
+
e′ε′Pαεe

n
.

Let us define gn =
1

n

n∑
i=1

Z(.;xi)Wi, g = EZ(.;xi)Wi and
〈
g, g′

〉
K

is a p×p matrix with

(a, b) element equal to
〈
K−

1
2E(Z(., xi)Wia),K

− 1
2E(Z(., xi)Wib)

〉
where Wia is the ath

element of the Wi vector.

D′0W
′PαWD0

n
= D′0

〈
(Kα

n )−
1
2 gn, (K

α
n )−

1
2 g′n
〉
D0

= D′0
〈
Fg, Fg′

〉
D0 + op(1)

P→ D′0
〈
Fg, Fg′

〉
D0

as n and nα
1
2 go to infinity and α → 0, see the proof of Proposition 1 of Carrasco

(2012).

We also have by Lemma 3 of Carrasco (2012):

D′0W
′Pαεe

n
= D′0

〈
(Kα

n )−
1
2 gn, (K

α
n )−

1
2

1

n

n∑
i=1

Z(.;xi)εi
〉
e = op(1),

e′ε′PαWD0

n
= e′

〈
(Kα

n )−
1
2

1

n

n∑
i=1

Z(.;xi)εi, (K
α
n )−

1
2 g′n
〉
D0 = op(1),

e′ε′Pαεe

n
= e′

〈
(Kα

n )−
1
2

1

n

n∑
i=1

Z(.;xi)εi, (K
α
n )−

1
2

1

n

n∑
i=1

Z(.;xi)ε
′
i

〉
e = op(1).

We can then conclude that Â
P→ A = D′0

〈
Fg, Fg′

〉
D0 as n and nα

1
2 go to infinity

and α→ 0 and
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B̂
P→ B = E(W̄iW̄

′
i )

by the law of large numbers with W̄i = [yi W
′
i ]
′.

The LIML estimator is given by

δ̂ = argminδ
(1,−δ′)Â(1,−δ′)′

(1,−δ′)B̂(1,−δ′)′
,

so that it suffices to verify the hypotheses of Lemma 1.

For τ = (1,−δ′)

τ ′Aτ = τ ′D′0
〈
Fg, Fg′

〉
D0τ

= (δ0 − δ)
〈
Fg, Fg′

〉
(δ0 − δ)′

Because
〈
Fg, Fg′

〉
is positive definite, we have τ ′Aτ ≥ 0, with equality if and only if

δ = δ0. Also, for any τ = (τ1, τ
′
2)′ 6= 0 partitioned conformably with (1, δ′), we have

τ ′Bτ = E[(τ1yi +W ′iτ2)2]

= E[(τ1εi + (fi + ui)
′(τ1δ0 + τ2))2]

= E[(τ1εi + u′i(τ1δ0 + τ2))2] + (τ1δ0 + τ2)′H(τ1δ0 + τ2)

Then byH = E
(
fif
′
i

)
nonsingular τ ′Bτ > 0 for any τ with τ1δ0+τ2 6= 0. If τ1δ0+τ2 = 0

then τ1 6= 0 and hence τ ′Bτ = τ2
1σ

2 > 0. Therefore B is positive definite. It follows

that δ = δ0 is the unique minimum of
τ ′Aτ

τ ′Bτ
.

Now by Lemma 1, we can conclude that δ̂
P→ δ0 as n and nα

1
2 go to infinity.

Proof of asymptotic normality:

Let A(δ) = (y−Wδ)′Pα(y−Wδ)/n , B(δ) = (y−Wδ)′(y−Wδ)/n and Λ(δ) =
A(δ)

B(δ)
.

We know that the LIML is δ̂ = argminΛ(δ).

The gradient and Hessian are given by

Λδ(δ) = B(δ)−1[Aδ(δ)− Λ(δ)Bδ(δ)],

Λδδ(δ) = B(δ)−1[Aδδ(δ)− Λ(δ)Bδδ(δ)]−B(δ)−1[Bδ(δ)Λ
′
δ(δ)− Λδ(δ)B

′
δ(δ)].

Then by a standard mean-value expansion of the first-order conditions Λδ(δ̂) = 0,
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we have
√
n(δ̂ − δ0) = −Λ−1

δδ (δ̃)
√
nΛδ(δ0)

where δ̃ is the mean-value. Because δ̂ is consistent, δ̃
P→ δ0.

It then follows that B(δ̃)
P→ σ2

ε , Bδ(δ̃)
P→ −2σuε, Λ(δ̃)

p→ 0, Λδ(δ̃)
P→ 0 where σuε =

E(uiεi) and Bδδ(δ̃) = 2W ′W/n
P→ 2E(WiW

′
i ), Aδδ(δ̃) = 2W ′PαW/n

P→ 2
〈
Fg, Fg′

〉
.

So that σ̃2Λδδ(δ̃)/2
P→
〈
Fg, Fg′

〉
with σ̃2 = ε′ε/n.

By Lemma 2, we have ε′Pαε/
√
n = Op(1/(α

√
n)) = op(1).

−
√
nσ̃2Λδ(δ0)/2 =

W ′Pαε√
n
− ε′Pαε√

n

W ′ε

ε′ε

=
W ′Pαε√

n
+ op(1)

d→ N
(

0,
〈
Fg,

(
FK̃F ∗

)
Fg′
〉)

.

To obtain the asymptotic normality, note that

W ′Pαε√
n

=

〈
(Kα

n )−1 gn,

∑n
i=1 Zi (., xi) εi√

n

〉
=

〈
K−1g,

∑n
i=1 Zi (., xi) εi√

n

〉
+

〈
(Kα

n )−1 gn −K−1g,

∑n
i=1 Zi (., xi) εi√

n

〉
(6)

Moreover, {Zi (., xi) εi} is iid with E ‖Zi (., xi) εi‖2 <∞ (because E
(
ε2
i |xi

)
is bounded

and K is nuclear). It follows from van der Vaart and Wellner (1996), p.50 that
n∑
i=1

Z(.;xi)εi/
√
n converges in L2 (π) to a mean zero Gaussian process with covari-

ance operator K̃. Hence,

〈
K−1g,

∑n
i=1 Zi (., xi) εi√

n

〉
d→ N

(
0,
〈
K−1g, K̃K−1g

〉)
.

As g belongs to the range ofK, Lemma 3 of Carrasco (2012) implies that
∥∥∥(Kα

n )−1 gn −K−1g
∥∥∥ P→

0 and hence the second term of the r.h.s. of (6) is op (1). This concludes the proof of

Proposition 1.
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Proof of Proposition 2

Lemma 3. Let v = u− εφ′. Under the assumptions of Proposition 2, we have

v′Pαε = Op

(
1√
α

)
.

Proof of Lemma 3. Using the spectral decomposition of Pα, we have v′Pαε =
1

n

∑
j

qj
(
v′ψj

) (
ε′ψj

)

(v′Pαε)2 =
1

n2

∑
j,l

qjql(v
′ψj)(ε

′ψj)(v
′ψl)(ε

′ψl)

=
1

n2

∑
j,l

qjql

(∑
i

viψji

)(∑
b

vbψlb

)

×

(∑
c

εcψjc

)(∑
d

εdψld

)
.

Using the fact that E (εi) = E (vi) = E (εivi) = 0 and that the eigenvectors are

orthonormal, i.e.
∑
i

ψliψji/n = 1 if l = j and 0 otherwise, we have

E
[
(v′Pαε)2

]
=

1

n2

∑
j,l

qjql
∑
i

E
(
v2
i ε

2
i

)
ψ2
jiψ

2
li +

∑
j

q2
jE
(
v2
i

)
E
(
ε2
i

)(∑i ψ
2
ji

n

)2

. (7)

As ψ2
li is summable, it is bounded, hence

∑
i

E
(
v2
i ε

2
i

)
ψ2
jiψ

2
li/n < C and the first term

on the r.h.s of (7) is negligible with respect to the second. By Markov inequality,

v′Pαε = Op


∑

j

q2
j

1/2
 = Op

(
1/
√
α
)
.

This completes the proof of Lemma 3.

The proof of the consistency is the same as that of Proposition 1.

Now
〈
Fg, Fg′

〉
= H = E

(
fif
′
i

)
because by assumption ga = E(Z(., xi)fia) belongs

to the range of K. Let L2(Z) be the closure of the space spanned by {Z(x, τ), τ ∈ I}

and g1 be an element of this space. If fi ∈ L2(Z) we can compute the inner product and

show that
〈
ga, gb

〉
K

= E(fiafib) by applying Theorem 6.4 of Carrasco, Florens, and
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Renault (2007). For the asymptotic normality, the beginning of the proof is the same.

Let φ̂ =
W ′ε

ε′ε
, φ =

σuε
σ2
ε

and v = u − εφ′. We have v′Pαε/
√
n = Op(1/

√
nα) = op(1)

by Lemma 3. Moreover, φ̂ − φ = Op(1/
√
n) by the Central limit theorem and delta

method so that (φ̂− φ)ε′Pαε/
√
n = Op(1/nα) = op(1) by Lemma 2.

Furthermore, f ′ (I − Pα) ε/
√
n = Op(∆

2
α) = op(1) by Lemma 5(ii) of Carrasco

(2012) with ∆α = tr(f ′ (I − Pα)2 f/n).

−
√
nσ2

εΛδ(δ0)/2 = (W ′Pαε− ε′PαεW
′ε

ε′ε
)/
√
n

= (f ′ε− f ′ (I − Pα) ε+ v′Pαε− (φ̂− φ)ε′Pαε)/
√
n

= f ′ε/
√
n+ op(1)

d→ N (0, σ2
εH).

The conclusion follows from Slutzky’s theorem. Note that because v′Pαε/
√
n =

Op(1/
√
nα), we get a faster rate for α in the homoskedastic case than in the het-

eroskedastic case. The proof in the heteroskedastic case relies on ε′Pαε/
√
n = Op(1/α

√
n).

Proof of Proposition 3

We want to prove that the regularized LIML estimators have finite moments. These

estimators are defined as follow 6:

δ̂ = (W ′ (Pα − ναIn)W )−1W ′ (Pα − ναIn) y

where να = min
δ

(y −Wδ)′Pα(y −Wδ)

(y −Wδ)′(y −Wδ)
and Pα = T (Kα

n )−1T ∗.

The following lemma will be useful in the remaining of the proof.

Lemma 4. Under the assumptions of Proposition 3, we have

να = Op

(
1

nα

)
.

Proof of Lemma 4.

να =
(y −Wδ̂)′Pα(y −Wδ̂)

(y −Wδ̂)′(y −Wδ̂)
.

6Let g and h be two p vectors of functions of L2(π). By a slight abuse of notation,
〈
g, h′

〉
denotes the

matrix with elements
〈
ga, hb

〉
, a, b = 1, ..., p
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Using y −Wδ̂ = ε−W
(
δ̂ − δ0

)
and the consistency of δ̂, we have

(y −Wδ̂)′(y −Wδ̂)

n
=
ε′ε

n
+ op (1) = Op (1) .

Moreover, by Lemma 2, ε′Pαε = Op (1/α). It follows that

(y −Wδ̂)′Pα(y −Wδ̂)

= ε′Pαε+
(
δ̂ − δ0

)′
W ′PαW

(
δ̂ − δ0

)
+ 2

(
δ̂ − δ0

)′
W ′Pαε

= ε′Pαε+Op

(
1

n

)
= Op (1/α)

where the second equality follows from the proof of Proposition 1 in Carrasco (2012).

The result of Lemma 4 follows.

Let us define Ĥ = W ′ (Pα − ναIn)W and N̂ = W ′ (Pα − ναIn) y thus

δ̂ = Ĥ−1N̂ .

If we denote W v = (W1v,W2v, ...,Wnv)
′, Ĥ is a p× p matrix with a typical element

Ĥvl =
∑
j

(qj − να)
〈
W v, ψ̂j

〉〈
W l, ψ̂j

〉

and N̂ is a p× 1 vector with a typical element

Nl =
∑
j

(qj − να)
〈
y, ψ̂j

〉〈
W l, ψ̂j

〉
.

By the Cauchy-Schwarz inequality and because |να| ≤ 1, |qj | ≤ 1, we can prove that

|Ĥvl| ≤ 2‖W l‖‖W v‖ and |Nl| ≤ 2‖y‖‖W l‖.

Under our assumptions, all the moments (conditional on X) of W and y are finite, we

can conclude that all elements of Ĥ and N̂ have finite moments.
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The ith element of δ̂ is given by:

δ̂i =

p∑
j=1

|Ĥ|−1cof(Ĥij)Nj

where cof(Ĥij) is the signed cofactor of Ĥij , Nj is the jth element of N̂ and | . | denotes

the determinant.

| δ̂i |r≤ |Ĥ|−r|
p∑
j=1

cof(Ĥij)Nj |r

Let α1 > α2 be two regularization parameters. It turns out that Pα1 −Pα2 is semi

definite negative and hence 0 ≤ να1 ≤ να2 . This will be used in the proof. 7

We want to prove that |Ĥ| ≥ |S| where S is a positive definite p × p matrix to be

specified later on. The first step consists in showing that Pα−να
2
In is positive definite.

Let us consider x ∈ Rn. We have

x′
(
Pα − να

2
In

)
x =

∑
j

(qj − να
2
) 〈x, ψj〉′ 〈x, ψj〉

=
∑
j

(qj − να
2
) ‖ 〈x, ψj〉 ‖2

=
∑

j,qj>να
2

(qj − να
2
) ‖ 〈x, ψj〉 ‖2 (1)

+
∑

j,qj≤να
2

(qj − να
2
) ‖ 〈x, ψj〉 ‖2 . (2)

For a given α, qj is a decreasing function of j because λj is decreasing in j. Hence,

there exists j∗α such that qj ≥ να
2

for j ≤ j∗α and qj < να
2

for j > j∗α and

x′
(
Pα − να

2
In

)
x =

∑
j≤j∗α

(qj − να
2
) ‖ 〈x, ψj〉 ‖2 (1)

+
∑
j>j∗α

(qj − να
2
) ‖ 〈x, ψj〉 ‖2 . (2)

The term (1) is positive and the term (2) is negative. As n increases, α decreases and

qj increases for any given j. On the other hand, when n increases and nα → ∞, να
2

7Note that if the number of instruments is smaller than n we can compare ν obtained with Pα replaced
by P , the projection matrix on the instruments, and να. It turns out that Pα − P is definite negative for
fixed α and hence 0 ≤ να ≤ ν as in Fuller (1977).
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decreases by Lemma 3. It follows that j∗α increases when n goes to infinity.

Consequently, the term (2) goes to zero as n goes to infinity. Indeed, when j∗α goes

to infinity, we have∣∣∣∣∣∣
∑
j>j∗α,

(qj − να
2
) ‖ 〈x, ψj〉 ‖2

∣∣∣∣∣∣ ≤
∑
j>j∗α

‖ 〈x, ψj〉 ‖2= op(1).

We can conclude that for n sufficiently large, j∗α is sufficiently large for (2) to be smaller

in absolute value than (1) and hence x′
(
Pα − να

2
In

)
x > 0.

Denote S = (να
2
− να)W ′W we have

Ĥ = W ′ (Pα − ναIn)W

= W ′
(
Pα − να

2
In

)
W + (να

2
− να)W ′W

= W ′
(
Pα − να

2
In

)
W + S.

Hence,

|Ĥ| = |W ′
(
Pα − να

2
In

)
W + S|

= |S||Ip + S−1/2W ′
(
Pα − να

2
In

)
WS−1/2|

≥ |S|.

For n large but finite, να
2
−να > 0 and |S| > 0. As in Fuller (1977) using James (1954),

we can show that the expectation of the inverse 2rth power of the determinant of S

exists and is bounded for n greater than some number n(r), since S is expressible as a

product of multivariate normal r.v.. Thus, we can apply Lemma B of Fuller (1977) and

conclude that the regularized LIML has finite rth moments for n sufficiently large but

finite. At the limit when n is infinite, the moments exist by the asymptotic normality

of the estimators established in Proposition 2.

Proof of Proposition 4

To prove this proposition, we need some preliminary result. To simplify, we omit

the hats on λj and φj and we denote Pα and q(α, λj) by P and qj in the sequel.

Lemma 5: Let Λ̃ = ε′Pε/(nσ2
ε) and Λ̂ = Λ(δ̂) with Λ(δ) =

(y −Wδ)′P (y −Wδ)

(y −Wδ)′(y −Wδ)
.
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If the assumptions of Proposition 4 are satisfied, then

Λ̂ = Λ̃− (σ̂2
ε/σ

2
ε − 1)Λ̃− ε′f(f ′f)−1f ′ε/2nσ2

ε + R̂Λ

= Λ̃ + op(1/nα),

√
nR̂Λ = op(ρα,n),

where ρα,n = trace(S(α)).

Proof of Lemma 5: It can be shown similarly to the calculations in Proposition 1

that Λ(δ) is three times continuously differentiable with derivatives that are bounded

in probability uniformly in a neighborhood of δ0. For any δ̃ between δ0 and δ̂, Λδδ(δ̃) =

Λδδ(δ0) +Op(1/
√
n). It implies that

δ̂ = δ0 + [Λδδ(δ0)]−1Λδ(δ0) +Op(1/n).

Then expanding Λ(δ̂) around δ0 gives

Λ̂ = Λ(δ0)− (δ̂ − δ0)′Λδδ(δ0)(δ̂ − δ0)/2 +Op(1/n
3/2)

= Λ(δ0)− Λδ(δ0)′[Λδδ(δ0)]−1Λδ(δ0)/2 +Op(1/n
3/2).

As in proof of Proposition 1 and in Lemma A.7 of DN

−
√
nσ̂2

εΛδ(δ0)/2 = h+Op(∆
1/2
α +

√
1/nα) with h = f ′ε/n. Moreover,

σ̂2
εΛδδ(δ0)/2 = H̄ +Op(∆

1/2
α +

√
1/nα).

And by combining these two equalities, we obtain

Λδ(δ0)′[Λδδ(δ0)]−1Λδ(δ0) = h′H̄−1h/(nσ2
ε) +Op(∆

1/2
α /n+

√
1/(n3α)).

Note also that

Λ(δ0) = (σ2
ε/σ̂

2
ε)Λ̃ = Λ̃− (σ̂2

ε/σ
2
ε − 1)Λ̃ + Λ̃(σ̂2

ε − σ2
ε)

2/(σ̂2
εσ

2
ε)

= Λ̃− (σ̂2
ε/σ

2
ε − 1)Λ̃ +Op(

√
1/n3α).
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ραn = tr(S(α))

= tr

(
σ2
εH̄
−1

[
Σv
tr(P 2)

n
+
f ′(I − P )2f

n

]
H̄−1

)
= tr

(
σ2
εH̄
−1[Σv

tr(P 2)

n
]H̄−1

)
+ tr

(
σ2
εH̄
−1

[
f ′(I − P )2f

n

]
H̄−1

)
= Op(1/nα) + ∆α.

We then have that
√
n
√

1/(n3α) = o(ραn) and
√
n∆1/2

α /n = o(ραn). Using this and

combining equations give

Λ̂ = Λ̃− (σ̂2
ε/σ

2
ε − 1)Λ̃− ε′f(f ′f)−1f ′ε/2nσ2

ε + R̂Λ

and
√
nR̂Λ = op(ρα,n).

By using Λ̃ = Op(1/nα), it is easy to prove that Λ̂ = Λ̃ + op(1/nα) .

Lemma 6: If the assumptions of Proposition 4 are satisfied, then

i) u′Pu− Λ̃Σu = op(1/nα),

ii) E(hΛ̃ε′v/
√
n|X) = (tr(P )/n)

∑
i

fiE(ε2
i v
′
i|xi)/n+O(1/(n2α)),

iii) E(hh′H̄−1h/
√
n|X) = O(1/n).

Proof of Lemma 6: For the proof of i), note that E(Λ̃|X) = tr(PE(ε′ε))/nσ2
ε =

tr(P )/n. Similarly, we have E(u′Pu|X) = tr(P )Σu and by Lemma 5 (iv) of Carrasco

(2012) using ε in place of u we have

E[(Λ̃− tr(P )/n)2|X] = [σ4
ε tr(P )2 + o(tr(P )2)]/(n2σ4

ε)− (tr(P )/n)2 = o((tr(P )/n)2).

Thus, (Λ̃−tr(P )/n)Σu = op(tr(P )/n) = op(1/nα) by Markov’s inequality. And u′Pu−
tr(P )

n
Σu = op(1/nα) such that u′Pu− Λ̃Σu = op(1/(nα)).
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To show ii) we can notice that

E(hΛ̃ε′v/
√
n|X) = E(hε′Pεε′v/(nσ2

ε

√
n)|X)

=
∑
i,j,k,l

E(fiεiεjPjkεkεlv
′2
l σ

2
ε)|X)

=
∑
i

fiPiiE(ε4
i v
′
i|xi)/n2σ2

ε + 2
∑
i 6=j

fiPijE(ε2
jv
′
j |xj)/n2

+
∑
i 6=j

fiPjjE(ε2
i vi|xi)/n2

= O(1/n) + (tr(P )/n)
∑
i

fiE(ε2
i v
′
i|xi)/n.

This is true because E(ε4
i v
′
i|xi) and E(ε2

i v
′
i|xi) are bounded by Assumption 2 hence

f ′Pµ/n is bounded for µi = E(ε4
i v
′
i|xi) and µi = E(ε2

i v
′
i|xi).

For iii)

E(hh′H̄−1h/
√
n|X) =

∑
i,j,k

E(fiεiεjf
′
jH̄
−1fkεk|X)/n2

=
∑
i

E(ε3
i |xi)fif ′iH̄−1fi/n

2

= O(1/n).

Now we turn to the proof of Proposition 4.

Proof of Proposition 4

Our proof strategy will be very close to those of Carrasco (2012) and DN. To obtain

the LIML, we solve the following first order condition

W ′P (y −Wδ̂)− Λ̂W ′(y −Wδ̂) = 0

with Λ̂ = Λ(δ̂).

Let us consider
√
n(δ̂ − δ) = Ĥ−1ĥ with Ĥ = W ′PW/n− Λ̂W ′W/n and

ĥ = W ′Pε/
√
n− Λ̂W ′ε/

√
n.

As in Carrasco (2012), we are going to apply Lemma A.1 of DN8.

8The expression of Th5 , Zh and ZH below correct some sign errors in DN.
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ĥ = h+

5∑
j=1

T hj + Zh with h = f ′ε/
√
n,

T h1 = −f ′(I − P )ε/
√
n = Op(∆

1/2
α )

T h2 = v′Pε/
√
n = Op(

√
1/nα), T h3 = −Λ̃h′ = O(1/nα), T h4 = −Λ̃v′ε/

√
n = Op(1/nα),

T h5 = h′H̄−1hσuε/2
√
nσ2

ε = Op(1/
√
n),

Zh = −R̂ΛW
′ε/
√
n− (Λ̂− Λ̃− R̂Λ)

√
n(W ′ε/n−σ′uε) where R̂Λ is defined in Lemma 4.

By using the central limit theorem on
√
n(W ′ε/n − σ′uε) and Lemma 4, Zh = O(ρnα).

The results on the order of T hj hold by Lemma 5 of Carrasco (2012).

We also have

Ĥ = H̄ +
3∑
j=1

THj + ZH ,

TH1 = −f ′(I − P )f/n = Op(∆α), TH2 = (u′f + f ′u)/n = Op(1/
√
n),

TH3 = −Λ̃H̄ = Op(1/nα),

ZH = u′Pu/n− Λ̃Σu − Λ̂W ′W/n+ Λ̃(H̄ + Σu)− u′(I − P )f/n− f ′(I − P )u/n.

By Lemma 5, u′Pu/n− Λ̃Σv = op(1/nα). Lemma 5 (ii) of Carrasco (2012) implies

u′(I − P )f/n = O(∆1/2
α /
√
n) = op(ρnα). By the central limit theorem, W ′W/n =

H̄ + Σu +Op(1/
√
n). Moreover,

Λ̂W ′W/n− Λ̃(H̄ + Σu) = (Λ̂− Λ̃)W ′W/n+ Λ̃(W ′W/n− H̄ − Σu)

= op(1/nα) +Op(1/nα)Op(1/
√
n) = op(ρnα)

thus, ZH = o(ρnα).

We apply Lemma A.1 of DN with T h =
5∑
j=1

T hj , TH =
3∑
j=1

THj ,

ZA = (
5∑
j=3

T hj )(
5∑
j=3

T hj )′ + (
5∑
j=3

T hj )(T h1 + T h2 )′ + (T h1 + T h1 )(
5∑
j=3

T hj )′,

and

Â(α) = hh′+

5∑
j=1

hT h
′

j +

5∑
j=1

T hj h
′+(T h1 +T h2 )(T h1 +T h2 )′−hh′H̄−1

3∑
j=1

TH
′

j −
3∑
j=1

THj H̄
−1hh′.

Note that hT h
′

3 −hh′H̄−1TH
′

3 = 0. Also we have E(hh′H̄−1(TH1 +TH2 )|X) = −σ2
εef (α)+

O(1/n), E(T h1 h
′) = E(hT h

′
1 ) = −σ2

εef (α), E(T h1 T
h′
1 ) = σ2

εe2f (α) where ef (α) =
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f ′(I − P )f

n
and e2f (α) =

f ′(I − P )2f

n
. By Lemma 3 (ii)E(hT h

′
4 |X) =

tr(P )

n

∑
i

fiE(ε2
i v
′
i|xi)/n+

O

(
1

n2α

)
.

By Lemma 5 (iv) of Carrasco (2012), with v in place of u and noting that σvε = 0,

we have

E(T h2 T
h′
2 |X) = σ2

εΣv
tr(P 2)

n
,

E(hT h
′

2 |X) =
∑
i

PiifiE(ε2
i v
′
i|xi)/n.

By Lemma 5 (iii), E(hT h
′

5 ) = Op(1/n).

For ξ̂ =
∑
i

PiifiE(ε2
i v
′
i|xi)/n−

tr(P )

n

∑
i

fiE(ε2
i v
′
i|xi)/n−

∑
i

Pii(1−Pii)fiE(ε2
i v
′
i|xi)/n,

Â(α) satisfies

E(Â(α)|X) = σ2
εH̄ + σ2

εΣv
tr(P 2)

n
+ σ2

εe2f + ξ̂ + ξ̂′ +O(1/n).

We can also show that ‖T h1 ‖‖T hj ‖ = op(ρnα), ‖T h2 ‖‖THj ‖ = op(ρnα) for each j and

‖T hk ‖‖THj ‖ = op(ρnα) for each j and k > 2. Furthermore ‖THj ‖2 = op(ρnα) for each

j. It follows that ZA = op(ρnα). Therefore, all conditions of Lemma A.1 of DN are

satisfied and the result follows by observing that E(ε2
i v
′
i|xi) = 0. This ends the proof

of Proposition 4.

To prove Proposition 5, we need to establish the following result.

Lemma 7 (Lemma A.9 of DN): If sup
α∈Mn

(|Ŝγ(α) − Sγ(α)|/Sγ(α))
P→ 0, then

Sγ(α̂)/ inf
α∈Mn

Sγ(α)
P→ 1 as n and nα→∞.

Proof of Lemma 7: We have that inf
α∈Mn

Sγ(α) = Sγ(α∗) for some α∗ in Mn

by the finiteness of the index set for 1/α for SC and LF and by the compactness of

the index set for T. Then, the proof of Lemma 7 follows from that of Lemma A.9 of DN.

Proof of Proposition 5

We proceed by verifying the assumption of Lemma 7.

Let R(α) =
f ′γ (I − P )2 fγ

n
+ σ2

uγ

tr(P 2)

n
be the risk approximated by R̂m(α), R̂cv(α),
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or R̂lcv(α), and Sγ(α) = σ2
ε

[
f ′γ (I − P )2 fγ

n
+ σ2

vγ

tr(P 2)

n

]
. For notational convenience,

we henceforth drop the γ subscript on S and R. For Mallows Cp, generalized cross-

validation and leave one out cross-validation criteria, we have to prove that

sup
α∈Mn

(
|R̂(α)−R(α)|/R(α)

)
→ 0 (8)

in probability as n and nα→∞.

To establish this result, we need to verify the assumptions of Li’s (1986, 1987)

theorems. We treat separately the regularizations with a discrete index set and that

with a continuous index set.

Discrete index set:

SC and LF have a discrete index set in terms of 1/α.

We recall the assumptions of Li (1987) (A.1) to (A.3’) for m = 2.

(A.1) lim
n→∞

sup
α∈Mn

λ(P ) <∞ where λ(P ) is the largest eigenvalue of P ;

(A.2) E((uie)
8) <∞;

(A.3’) inf
α∈Mn

nR(α)→∞.

(A.1) is satisfied because for every α ∈ Mn, all eigenvalues {qj} of P are less than

or equal to 1.

(A.2) holds by our assumption 4 (i).

For (A.3’), note that nR(α) = f ′γ (I − P )2 fγ + σ2
uγ tr(P

2) = Op

(
nαβ +

1

α

)
.

Minimizing w.r. to α gives

α =

(
1

nβ

) 1
1+β

.

Hence, inf
α∈Mn

nR(α) ≈ nαβ →∞, therefore the condition (A.3’) is satisfied for SC and

LF (and T also).

Note that Theorem 2.1 of Li (1987) use assumption (A.3) instead of (A.3’). How-

ever, Corollary 2.1 of Li (1987) justifies using (A.3’) when P is idempotent which is

the case for SC. For LF, P is not idempotent, however the proof provided by Li (1987)

still applies. Given tr(P 2) = Op

(
1

α

)
for LF, we can argue that for n large enough,

there exists a constant C such that

tr(P 2) ≥ C

n
,
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hence Equation 2.6 of Li (1987) holds and Assumption (A.3) can be replaced by (A.3’).

The justification for replacing σ2
uγε, σ

2
uγ and σ2

ε by their estimates in the criteria is the

same as in the proof of Corollary 2.2 in Li (1987).

For the generalized cross-validation, we need to verify the assumptions of Li’s (1987)

Theorem 3.2. that are recalled below.

(A.4) inf
α∈Mn

n−1 ‖fγ − PWγ‖ → 0;

(A5) For any sequence {αn ∈Mn} such that

1

n
tr(P 2)→ 0,

we have
(
n−1tr(P )

)2
/(n−1tr(P 2))→ 0;

(A.6) sup
α∈Mn

n−1tr(P ) ≤ γ1 for some 0 < γ1 < 1;

(A.7) sup
α∈Mn

(
n−1tr(P )

)2
/(n−1tr(P 2)) ≤ γ2, for some 0 < γ2 < 1.

Assumption (A.4) holds for SC and LF from R(α) = En−1 ‖fγ − PWγ‖ → 0 as n

and nα go to infinity.

Note that tr (P ) = O
(
α−1

)
and tr

(
P 2
)

= O
(
α−1

)
. So that n−1tr(P 2)→ 0 if and

only if nα → ∞. Moreover
1

n
(tr(P ))2/tr(P 2) = O(1/nα) → 0 as nα → ∞. This

proves Assumption (A.5) for SC and LF.

Now we turn our attention to Assumptions (A.6) and (A.7). By Lemma 4 of Car-

rasco (2012), we know that tr(P ) ≤ C1/α and tr(P 2) ≤ C2/α. To establish Assump-

tions (A.6) and (A.7), we restrict the setMn to the setMn =
{
α : α > C/n with C > max(C1, C

2
1/C2)

}
.

This is not very restrictive since α has to satisfy nα→∞. It follows that

sup
α∈Mn

tr(P )/n = sup
α>C/n

tr(P )/n ≤ C1

C
< 1,

sup
α∈Mn

1

n
(tr(P ))2/tr(P 2) = sup

α>C/n

1

n
(tr(P ))2/tr(P 2) ≤ C2

1

CC2
< 1.

Thus, Assumptions (A.6) and (A.7) hold.

In the case of leave-one-out cross-validation criterion, we need to verify the as-

sumptions of Theorem 5.1 of Li (1987). Assumption (A.1) to (A.4) still hold as before.

Assumptions (A.8), (A.9), and (A.10) hold by Assumption 4 (iii) to (v) of this paper,

respectively. This ends the proof of (8) for SC and LF.
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Continuous index set

The T regularization is a case where the index set is continuous. We apply Li’s

(1986) results on the optimality of Mallows Cp in the ridge regression. We need to check

the Assumption (A.1) of Theorem 1 in Li (1986). (A.1) inf
α∈Mn

nR(α)→∞ holds using

the same proof as for SC and LF. It follows that (8) holds for T under Assumption 4

(i’).

We have proved that (8) holds for the various regularizations. We proceed to check

the condition of Lemma 7. First note that, given σ2
ε 6= 0, R(α) ≤ CSγ(α)/σ2

ε . To see

this, replace R(α) and Sγ(α) by their expressions in function of
f ′γ (I − P )2 fγ

n
and use

the fact that σ2
uγ > σ2

vγ and take C = σ2
uγ/σ

2
vγ . Now we have

|Ŝγ(α)− Sγ(α)| = σ2
ε

∣∣∣∣∣
(
R̂(α)−

σ̂2
uγε

σ̂2
ε

tr(P 2)

n

)
−

(
σ2
vγ

tr(P 2)

n
+
f ′γ (I − P )2 fγ

n

)∣∣∣∣∣
= σ2

ε

∣∣∣∣∣R̂(α)−
f ′γ (I − P )2 fγ

n
−

(
σ2
vγ +

σ̂2
uγε

σ̂2
ε

)
tr(P 2)

n

∣∣∣∣∣
= σ2

ε

∣∣∣∣∣R̂(α)−R(α) + σ2
uγ

tr(P 2)

n
−

(
σ2
vγ +

σ̂2
uγε

σ̂2
ε

)
tr(P 2)

n

∣∣∣∣∣
≤ σ2

ε

∣∣∣R̂(α)−R(α)
∣∣∣+ σ2

ε

∣∣∣∣∣
(
σ̂2
uγε

σ̂2
ε

−
σ2
uγε

σ2
ε

)
tr(P 2)

n

∣∣∣∣∣ .
Using Sγ(α) ≥ σ2

εσ
2
vγ

tr(P 2)

n
and R(α) ≤ CSγ(α)/σ2

ε , we have

|Ŝγ(α)− Sγ(α)|
Sγ(α)

≤ C |R̂(α)−R(α)|
R(α)

+
|
σ̂2
uγε

σ̂2
ε
−

σ2
uγε

σ2
ε
|

σ2
vγ

.

It follows from (8) and Assumption 4(ii) that sup
α∈Mn

|Ŝγ(α) − Sγ(α)|/Sγ(α) → 0. The

optimality of the selection criteria follows from Lemma 7. This ends the proof of

Proposition 5.
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