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Abstract

This paper assesses the relationship between courses taken in high school and college

major choice. Using High School and Beyond survey data, I study the empirical rela-

tionship between college performance and different types of courses taken during high

school. I find that students sort into college majors according to subjects in which they

acquired more skills in high school. However, I find a U-shaped relationship between the

diversification of high school courses a student takes and their college performance. The

underlying relation linking high school to college is assessed by estimating a structural

model of high school human capital acquisition and college major choice. Policy experi-

ments suggest that taking an additional quantitative course in high school increases the

probability that a college student chooses a science, technology, engineering, or math

major by four percentage points.
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Non-technical summary

There has been an emphasis in policy aimed at encouraging enrollment in STEM

(Science, Technology, Engineering and Math) majors. In the U.K., for example, the

Royal Academy of Engineering reported that the nation will have to produce 100,000

STEM graduate every year until 2020. This paper is interested in understanding how

the composition of skills, acquired in high school, affects college field of study. I

The literature suggests that college major choice is associated with ability sorting.

This sorting is driven either by variations in the cost of successfully completing degree

requirements, or variations in expected returns to different majors by ability in these

majors. Arcidiacono (2004) finds that predetermined factors, such as preferences and

quantitative skills (preparation), play a larger role in the choice of major than the

economic returns. This finding implies that what happens before college could play an

important role on the type of major chosen. I therefore investigate the role of high school

education in developing quantitative skills and evaluate the potential effectiveness of

high school curriculum changes that promote enrollment and success in STEM majors.

Empirical evidence suggests that the types of courses taken in high school vary

significantly for each college major. Mathematics and engineering majors take more

quantitative courses in high school, while business and literature majors specialize in

humanities courses. However, students who specialize in a particular subject as well

as those who broadly diversify across subjects tend to have a higher college grade

point average (GPA) than those who slightly diversify. These results acknowledge the

importance of high school curriculum on college major choice and performance.

Given the relationship between high school and college, I estimate a structural

model of high school human capital acquisition and college major choice. The explicit

modeling of the educational decision-making process, helps both to disentangle the

heterogeneous effects of specialization and control for the self-selection inherent in ed-

ucational outcomes. Policy experiments suggest that taking an additional quantitative

course in high school increases the probability that a college student chooses a science,

technology, engineering or math major by four percentage points.

2



1 Introduction

This paper assess the relationship between courses taken in high school and college

major choice. In many countries, there has been an emphasis on encouraging science,

technology, engineering and math (STEM) majors. These fields are of critical impor-

tance to economic competitiveness in an increasingly global and highly competitive

economy. For example, in the U.S., the President’s Council of Advisors on Science

and Technology promotes the education of future STEM professionals through various

grants and programs. The council has stated that over the next decade, a million addi-

tional STEM graduates will be needed. In the U.K., the Royal Academy of Engineering

reported that the nation will need 100,000 new graduates with STEM majors annually

until 2020.

Several studies have shown the existence of ability sorting with respect to college

major. This sorting can be driven either by variations in the cost of successfully com-

pleting degree requirements, or variations in expected returns to different majors by

ability in different majors. Arcidiacono (2004) finds that predetermined factors, such

as preferences and quantitative skills, play a larger role in major choice than economic

returns. Based on these findings, this paper examines the role of high school education

in developing quantitative skills and evaluates the potential effectiveness of high school

curriculum changes that promote enrollment and success in STEM majors.

I use data from the U.S. High School and Beyond (HS&B) survey, which has detailed

information on high school and college students. The first observation is that the types

of courses taken in high school vary significantly for each college major. Mathematics

and engineering majors take more quantitative courses in high school, while business

and literature majors specialize in humanities courses. Natural sciences and health

majors take a mix of quantitative and humanities courses in high school.

I also find a U-shaped relationship between the diversity of courses taken in high

school and college performance: students who specialize in a particular subject as well

as those who broadly diversify across subjects tend to have a higher college grade point

average (GPA) in their corresponding major than those who specialize in a different

area. This result is the consequence of uncertainty about which majors students will

pursue in college. Moreover, it suggests that the high school curriculum plays a crucial
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role in a student’s choice of college major and their post-secondary performance.

Based on the link between high school and college, I propose and estimate a struc-

tural model of high school human capital acquisition and college major choice. By

explicitly modeling the educational decision-making process, I both disentangle the

heterogeneous effects of specialization and control for the self-selection inherent in ed-

ucational outcomes.

Students in the model differ in their abilities in different subjects, as well as their

preferences for these subjects. They are endowed with different initial abilities and

have two decision periods; in the first period, they choose which high school courses to

take, and in the second period, they choose their college major (or decide to not attend

college). Students choose high school courses that maximize their expected discounted

utility across college majors. Upon graduation from high school, in the second period,

they choose their major and observe their major-specific preferences.

Estimation results suggest that students who specialize in a particular area in high

school tend to prefer quantitative majors in college, even after controlling for selection.

Particular high school courses also play an important role in influencing a student’s

choice of college major. More quantitative courses in high school increase the like-

lihood of majoring in natural sciences, engineering, and math and physics, whereas

more humanities courses mean a student is more likely to pursue a major in social

sciences and humanities, or business and communications. These results suggest that

an appropriate high school quantitative curriculum can increase enrollment in STEM

majors.

I examine two different counterfactuals to confirm this intuition. First, I examine

what we would expect to happen if students were to take one more high school course in

a particular subject. Second, I examine the expected outcome if all students faced the

same high school curriculum, thus eliminating the possibility to specialize in a particular

subject area in high school. Both experiments substantially affect enrollment in STEM

majors.

Taking an additional quantitative course in high school increases enrollment in

STEM majors by four percentage points. Taking an additional humanities course in

high school also has a positive effect on enrollment in STEM majors. An additional

life sciences course in high school has the smallest effect on a student’s choice of college
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major. An additional life sciences course increases enrollment in natural science majors

by 0.015 percentage points and reduces enrollment in math, physics and engineering

majors by the same amount. Imposing a single curriculum on all high school students

also boosts enrollment in STEM majors. This suggests that high school specialization

plays a key role in influencing what majors students choose.

There is a very extensive literature on college major choice.1 Most of the theoretical

frameworks in this literature imply that college major choice is influenced by expecta-

tions of future earnings, preferences, ability, and preparation (see Altonji, Blom, and

Meghir (2012) for more detail). Turner and Bowen (1999) document the sorting that

occurs across majors by SAT math and verbal scores. Arcidiacono (2004) finds that

differences in monetary returns explain little of the ability sorting across majors, and

concludes that virtually all ability sorting is a result of preferences for particular majors

in college and the workplace, with the former being larger than the latter. I extend the

model in Arcidiacono (2004) to add college preparation in high school, where students

can choose which subjects to study.

A related strand of the literature studies the causal effect of high school curriculums

on labor-market outcomes (see Altonji (1995), Levine and Zimmerman (1995), and Rose

and Betts (2004)). More recently, Joensen and Nielsen (2009) and Goodman (2009)

use quasi-experiments to estimate the effect of math coursework on earnings. These

studies all aim to determine whether skills accumulated in high school matter for college

performance and labor-market outcomes.

Unlike these papers, I investigate the effect of the composition of skills acquired in

high school on college performance. This study therefore contributes to existing studies

by introducing multi-dimensional endowments of skills and by studying the tension be-

tween specialization and diversity. In this sense, this paper is closer to Malamud (2010),

Smith (2010), and Malamud (2012), who examine the trade-off between specialized and

diversified human capital portfolios in college and their effect on labor-market out-

comes. Silos and Smith (2013) study how diversification and specialization strategies

in college influence income dynamics. They find that diversification generates higher

incomes for individuals who switch occupations, whereas specialization benefits those

1See Montmarquette, Cannings, and Mahseredjian (2002), Zafar (2009), Stinebrickner and Stinebrickner

(2011), Arcidiacono (2005), and Arcidiacono, Aucejo, and Hotz (2013).
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who stick with one type of job. This paper considers the effect of diversification earlier

in the educational process, by investigating how specialization in high school affects

college major choice and performance.

The paper proceeds as follows. Section 2 provides a brief overview of the U.S. high

school system and explains why the U.S. system offers a unique opportunity to investi-

gate the effect of high school course choice on college outcomes. Section 3 describes the

data and the sample used for empirical analysis. It also discuss some data irregularities

and provides a reduced-form analysis of the relationship between diversification in high

school and college performance. The dynamic model of college and major choice as well

as the econometric techniques used to estimate the model are described in Section 4.

Section 5 provides the empirical and simulation results. Section 6 concludes.

2 Background: High school course choice in the

U.S.

The U.S. high school education system provides a particularly appropriate setting to

examine almost all aspects of the effect of high school preparation on college. In the

U.S., high school students have significant control over their education, and are allowed

to choose their core classes. This allows us to understand not only how success in each

high school subject affects college outcomes, but also how the choice of courses affects

college outcomes. The degree of control given to students varies from state to state2

and from school to school. This leads to a substantial variation in students’ academic

experiences, both between schools in the same state and across states (Lee, Croninger,

and Smith (1997), Allensworth, Nomi, Montgomery, and Lee (2009)). Despite the

wide variations in curriculums, many schools require that courses in the “core” areas of

English, science, social studies, and math be taken every year. However, some schools

set the required number of credits and allow students to choose when the courses will

be taken.

The menu of courses available to students depends on a particular school’s financial

2See for example Goodman (2009), Figure 2, for differences in math requirements by state. Graduation

requirements also differ by state (see Bruce Daniel (2007)).
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and staffing situation. Thus, the available choices are a direct function of the preferences

of teachers, which are usually idiosyncratic. Furthermore, inducements for students to

take a particular set of classes may differ between schools, as certain teachers are hired

or school administrators decide to place greater emphasis on these subject areas. Thus,

there is a substantial element of exogenous variation in course choice across schools due

to the idiosyncrasies of teachers, school administrators and states. I take advantage of

these exogenous variations to identify how the composition of courses taken (specialized

or diversified) in high school affects college performance.

3 Data and descriptive statistics

3.1 Data

To investigate the empirical relationship between courses completed in high school and

post-secondary education outcomes, I use data from the 1980 HS&B survey. This panel

data set tracks students from high school to post-secondary, and contains detailed in-

formation on courses taken in high school as well as post-secondary outcomes. The

HS&B survey was conducted by the National Center for Education Statistics. A na-

tionally representative sample of high school sophomores from 1980 were interviewed

once every two years from 1980 to 1986, and again in 1992. These interviews recorded

detailed information about the high school courses students took and their grades. This

high-quality data provides my measures of human capital and high school preparation.3

My data on students’ college performance comes from the Post-Secondary Education

Data System (PEDS), which contains institutional transcripts from all post-secondary

institutions attended for a sub-sample of students present in the HS&B survey. My

estimations are performed using data from the 1980, 1982, 1984 and 1986 surveys.

The HS&B survey contains 14,825 students. A sub-sample of 5,533 students have

transcripts encoded for both high school and college. Dropping those who do not have

SAT data reduces the sample to 2,064 individuals. Eliminating observations that are

missing other control variables reduces the sample to 1,265. Cleaning the data yields a

3High school usually runs from either grade 9 or 10 to grade 12. I restrict my analysis to grades 10 to 12,

since this data is available for all students in the sample.
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final sample of 1,112 students for estimation of my structural model.

Table 2 shows the average characteristics for the unrestricted and restricted samples.

In almost all cases, there is no significant difference in mean values between the two

samples. This suggests that sample selection issues are not a concern.

3.2 Empirical structure and descriptive statistics

This subsection provides empirical findings that show a possible relationship between

high school preparation and college major choice and performance. I group subjects

studied in high school into different categories (which could be interpreted as types

of human capital). Each student has a human capital portfolio based solely on the

courses that the student takes in high school. The portfolio contains seven categories of

study.4 High school courses are grouped into the following categories: (i) quantitative

(mathematics and physics), (ii) reading and writing, (iii) social sciences and humanities,

(iv) life sciences, (v) business and communications, (vi) arts, and (vii) other.5

Given courses taken in each field (or type of human capital) k = 1, ...K, the weights

in the human capital portfolio of an individual i are:

ωi,k =
coursei,k∑K
j=1 coursei,j

,

where K = 7 and coursei,k is the proportion of courses taken in subject k.6 Table 2

displays these portfolio weights by major across the population. For each major, the

table displays the mean, across individuals, of the weights in each of the seven subject

areas.

The proportion of quantitative subjects in high school varies from 0.165 for education

majors in college to 0.227 for engineering majors. It is not surprising that college

students majoring in humanities took a greater proportion of humanities classes in high

4The Appendix provides a step-by-step description of the construction of human capital portfolios, as well

as college major aggregation.
5My results are not sensitive to the structure of these categories; I considered other potential categories

and obtained similar results.
6I focus on the distribution of courses by examining the share of total courses in a given subject, rather

than the number of courses taken. I also consider other diversification measures, such as the Gini index. The

results obtained are qualitatively the same.
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school (0.258) than other college majors. Likewise, business and communications majors

took a greater proportion of business and communications courses in high school (0.095)

than did other college students. Although the difference in mean in some subjects

appears small, the last two rows of Table 2 shows that these differences are statistically

significant.

Each student i has a vector of human capital weights, ωi,k, which measure the

weight of skill type k in the overall portfolio. A skewed or balanced portfolio does not

necessarily imply specialization or diversification of human capital investments. Some

students may choose a uniform allocation of courses across fields to self-insure against

shocks or because a particular major explicitly rewards balanced skills. To evaluate

the level of specialization, I follow Silos and Smith (2012); I assess how well tailored

an individual’s acquired skill set is for a particular college field by comparing human

capital investments to a benchmark for that field.7

Let us define the measure of diversification as

ρi,m =

√√√√ K∑
k=1

(ωi,k − ω̄k,m)2

where ω̄k,m denotes the average portfolio for major m observed in Table 2. I assume

that a portfolio is chosen for a given major if that portfolio is “close” to the average

portfolio of that major. Self-insurance against shocks is simply the distance between

the portfolio weights and the typical portfolio of the college major. Thus, students can

specialize in major-related subjects, or hedge with respect to a major by diversifying

their portfolios. Small values of ρ thus mean a student has specialized, and large values

indicate a student has diversified.

3.2.1 Estimation results

Table 3 presents regression estimates linking college GPAs and the portfolio distance

measure, ρ. This helps us investigate the data beyond raw mean difference.

I estimate the following reduced-form equation:

Gi = α0 + α1ρim + α2ρ
2
im + α3Xi + αm + αh + εih

7This measure is related to the diversification index in trade from Krugman (1992), which uses an absolute

distance instead of a square root. Additionally, see Palan (2010) for a review of the specialization index in

trade.
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where αm and αh are fixed effects for major and high school, respectively. Gi is the

college GPA of individual i in major m from high school h. X represents control

variables such as SAT scores, socioeconomic status (SES) and gender.

Table 3 shows that the relationship between GPA and the measure of diversification

ρ is quadratic, large and significant. The results are robust to controlling for gender,

race, SES, parents’ education, ability (measured by SAT-Math and SAT-Verbal scores)

and the number of courses taken in each high school subject. It is also robust to regional

disparities by including a dummy variable for living in the southern U.S. The major-

specific effect is controlled for by including a dummy variable for each major. It is worth

noting that the inclusion of more control variables increases the effect of specialization

on college performance. This suggests that the effect of specialization on performance

may be larger than the estimates reported here.

3.2.2 U-shaped relationship between high school diversification and

college performance

The results from Table 3 show a U-shaped relationship between college GPA and diver-

sification of high school courses. This suggests a trade-off between specialization and

diversification. This trade-off is driven by two opposing forces implied by the diversifi-

cation strategy. On the one hand, diversification reduces human capital in the targeted

college major, but on the other hand, it increases knowledge in other subjects. When

the diversification starts, the negative effect is stronger. As level of diversification in-

creases, more knowledge in other subjects is accumulated. At a turning point, other

skills acquired compensate the losses through complementarity, and diversification’s

positives outweigh its negatives.

The tension between specialization and diversification is not new in economics. Usu-

ally, in modern labor markets, workers specialize in specific occupations. Likewise, be-

fore entering college, individuals may acquire particular skills in high school. Every

field of study requires a specific set of skills. Conversely, many skills are useful, to

different degrees, in a wide variety of fields. Psychology, law and biology students all

require some reading, writing and arithmetic ability, albeit in different amounts. More-

over, some fields appear to more heavily emphasize a small subset of particular skills,

whereas other majors more or less weigh skills evenly.
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In high school, individuals are uncertain about their future college major. As a

result, a high school graduate may study science courses and end up majoring in an

unrelated field. Faced with uncertainty, a high school student may want to balance their

efforts in case their intended major does not pan out. However, if students specialize

in a particular skill, they may be more productive in a related field — this is why we

first observe a positive effect of specialization. But if they diversify, they will acquire

skills that have some use, even if they are rarely used. As such, there is a certain point

at which diversification has a positive effect on performance.

To formally test for the presence of a U-shaped relationship between diversification

and performance, I use the procedure proposed by Lind and Mehlum (2010). The

results, in Table 4, show that there is indeed a U-shape relationship. I also perform a

non-parametric robustness check. I run a regression on all control variables used in the

best regression in Table 3. I perform a non-parametric regression of the residual on ρ.

The predicted values of the residual of the non-parametric regression show a U-shaped

relationship between diversification and performance. The results are shown in Figure

1.

These empirical findings show the importance of high school preparation in deter-

mining students’ college majors and performance. However, mean statistics and pa-

rameter estimates may be subject to a selection bias due to the presence of unobserved

characteristics. I therefore propose and estimate a structural model of high school hu-

man capital acquisition and college major choice. This enables me to not only to control

for potential selection bias on unobserved variables, but also to conduct counterfactual

experiments to study the potential effects of various curriculum policies in high schools.

4 Structural model of high school human capital

choice

This section proposes and estimates a model of high school human capital acquisition

and college major choice. In the model, individuals differ in both their innate ability

to learn and in their preferences for different college majors. High school course choices

are based on these differences.
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I assume that students know their ability to acquire imperfectly substitutable skills.

They choose their high school courses to maximize their expected utility across college

majors. Upon graduation, students choose to pursue a particular college major, or do

not enroll in college.

A student’s initial ability and their preferred college major provide an incentive for

the student to specialize by acquiring skills that reflect their personal circumstances.

In contrast, the risk of low utility draws in each college major provides an incentive to

acquire a more widely applicable portfolio of human capital skills.

I suppose that individuals with discount factor β ∈ (0, 1) live for a finite number of

discrete periods, t = 0, 1, 2, ...T . Individuals choose their human capital investments,

i.e. a set of high school courses, in the initial period (t = 0) to optimize expected

discounted utility.

There are three types of skills that are useful for all majors. High school skills are

useful in college, but their importance differs from one major to another.8 I denote an

individual’s portfolio of human capital by s = (sQ, sH , sNS), where sQ is quantitative

human capital, sH is humanities human capital and sNS is natural sciences human

capital.9 Individuals can choose their portfolio composition by selecting more high

school courses in a particular skill area.10

Before choosing s, individuals draw abilities τ = (τQ, τH , τNS) from distribution

H(τ), where τNS represents the ability to accumulate natural sciences human capital.

The cost of accumulating s with ability τ is ch(s, τ), with ch convex and twice

differentiable. Individuals know how useful each type of human capital is for each

college major. However, individuals are unsure about an idiosyncratic component of

their college preferences.

Once an individual has acquired a skill set s, they decide whether or not to enter

8In the empirical framework, I use seven different fields. Here, I focus on three skills, both for computa-

tional ease, as well as to focus on the most important skills.
9Quantitative human capital is measured by the number of high school courses taken in math and physics.

Humanities human capital is measured by high school courses taken in reading and writing, humanities,

and business and communication. Natural sciences human capital is the number of high school life sciences

courses.
10Students could also change their portfolio by doing more homework or tutoring in a particular skill area,

though this behavior is not observed in the data.
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college in period t = 1. Individuals who choose to enter college also select a major.

Although individuals have a general idea before they invest in their portfolio of skills

of how well they are likely to fit into a given major, it is only after they complete high

school and enter college that their true fit in a major becomes known; actual experience

in a major reveals an individual’s true preference for that major.11

The timing of the model is as follows:

• In period 1: Individuals draw abilities τ from distribution H(τ). Then, they

choose the number of course to take in each subject.

• In period 2: Individuals choose a major. They receive new information about

their abilities and preferences in that major and accumulate human capital (GPA).

4.1 High school and college stages

I assume that college GPA (G) is a function of individual abilities, as well as XG, which

represents other demographic characteristics, such as gender and SES.12 Specifically,

performance in college takes the following form:

G = η0 + η1ρ+ η2ρ
2 + η′3s+ η′4XG + εm + ε1

The model also contains a major-specific fixed effect, εm, as well idiosyncratic shocks

(the ε1’s), which are drawn from distribution N (0;σ2G).

The utility of choosing a college major m is given by

ucm = ϑ′0cs+ ϑ′1cXcm − cm(s,G) + vm + εm

where εm is a generalized extreme value (GEV) distribution. The fixed intercept (vm)

represents the combined effect of all omitted major-specific covariates that cause some

students to be more predisposed to a particular major.

11For simplicity, I assume that students make a one-time decision about their college major; I ignore the

possibility that students may do post-graduate work or drop out of college.
12Due to data limitations, I do not include wages in the model. Given that GPA has a positive effect on

future earnings (see Arcidiacono (2004)), I use it as proxy for future wages. Moreover, several recent studies

suggest that monetary factors are not the main driver of college major choice (see Beffy, Fougère, and Maurel

(2012), Carneiro, Hansen, and Heckman (2003), and Delavande and Zafar (2014))
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The utility from being in high school is given by

uh = −ch(τ, s) + ε

where ε is normally distributed. High school and college cost functions are cm(s,G)

and ch(τ, s), respectively.

I assume that marginal cost of acquiring human capital k is:

Mchk(τ, s) = ϑ4hksk + ϑ5hkτ

Mcmk(s,G) = ϑ4mk + ϑ5mkG

where Mchk is the marginal cost of acquiring skill k in high school. Mcmk is the marginal

cost of acquiring skill k in major m. ϑ4mk and ϑ5mk are the cost elasticity contribution of

producing grade in major m of human capital type k. ϑ.mk is observed with error; that

is why I control for major-specific fixed effects, vm. Integrating on different dimensions

of human capital will give the effort cost function. This cost of effort may imply that

even if an individual were allowed to enroll in any major, the individual may not choose

to attend the highest-paying major because of the effort required.

Individuals also have the option not to attend college. In this scenario, the individual

receives a utility uo, where the o subscript indicates that the individual chooses an

outside option.

College students choose the major with the highest ucm, i.e. the major that yields

the highest utility. I assume that εm follows a GEV distribution. Special cases of the

GEV distribution require the use of a multinomial logit or nested logit model. I use a

nested logit model; this GEV distribution, as set out in McFadden (1978), allows for

errors to be correlated across multiple nests while still being consistent with random

utility maximization.13

13The framework from McFadden (1978) is as follows. Let r = 1...R be an index of all possible choices.

Define a function G(y1, ..., yR) on yr for all r. If G is non0negative, homogeneous of degree 1, approaches

+∞ as one of its arguments approaches +∞, has non-negative nth cross-partial derivatives for odd values of

n, and non-positive cross-partial derivatives for even values of n, then McFadden (1978) shows that

F (ε1, ..., εR) = exp{−G(e−ε1 , ..., e−εR)}

is the cumulative distribution function for a multivariate extreme value distribution. Furthermore, the prob-

ability of choosing the rth alternative conditional on the observed characteristics of the individual is given
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I assume that majors are grouped into four nests:

• Nest 1: Quantitative majors (math, physics and engineering)

• Nest 2: Business & communications, humanities, education and military majors

• Nest 3: Health and natural sciences majors

• Nest 4: No college

Let uc
′
m be the net present value of the indirect utility for completing major m.

F
(
eu

c′
)

=
∑
m

(∑
N

exp

(
uc

′
mn

η

))η
+ exp (uo)

The error terms are known to the individual, but they are not observed by the econome-

trician. Therefore, from the econometrician’s perspective, the probability of choosing a

major m is given by

Pr(m) =

exp

(
uc

′
mn
η

)(∑
N exp

(
uc

′
mn
η

))η−1
F
(
euc

′
)

Before choosing a major, individuals first choose their high school human capital ac-

quisition. The net utility from the outside option, which is not going to college, is

normalized to zero.

4.2 Choice of high school human capital

After deciding on a college major, there are no decisions left. Let uc1 indicate an

individual’s optimal choice of college major. Individuals need to choose how much of

the different types of human capital to accumulate in high school. They choose the s

that yields the highest utility V0(s, τ):

V0(s, τ) = uh + βE0(u
c
1|τ)

by

P (r) =
yrGr(y1, ..., yR)

G(y1, ..., yR)

where Gr is the partial derivative of G with respect to the rth argument. This is the same as in Arcidiacono

(2005).
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For each type of human capital, s∗k is the optimal value of sk that solves the Euler

equation

Mck = β1E0(u
c
1k|τ).

If I apply the envelope theorem on uc1, I get E0(u
c
1m|τ) = βϑ0ck−βE0(MCk(s,G))) and

ϑ4hksk + ϑ5hkτk = βϑ0ck − β(MCk(s,G))

Thus,

s∗k = θ0m̂k + θ1m̂kτk + θ2m̂kG

Let s̃∗j be a latent variable with

s̃∗k = s∗k + εk = θ0m̂k + θ1kτ + θ2m̂kG+ εk

where εk is the normal forecast error.

The observed chosen basket of high school courses, sk, is

sk =

 s̃∗k if s̃∗k > C

0 if s∗k ≤ C

The forecast error, εk, is independent of τ , G and m. I estimate the coefficients of the

model with a Tobit model.

4.3 Identification and estimation strategy

In this section, I discuss how several key parameters of the model are identified.

4.3.1 Identification without unobservables

All individual characteristics are exogenous, including test scores and GPA in college,

high school courses and 10th-grade standardized test score. One of the main advantage

of HS&B data is that for all individuals in the sample, there are base-year test scores

in different subjects. These scores are in math, science, civics, reading and writing

and are my main exogenous variables. I assume that there is no correlation across the

various stages of the model. Therefore, selection into majors is controlled for by these

exogenous characteristics.
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4.3.2 Identification with unobservables

It is unreasonable to assume that preference parameters are uncorrelated over time (that

is, if one has a strong preference for high school initially, he is just as likely as someone

who has a weak preference for high school to choose any major in college). This is likely

not the case. Furthermore, it is unreasonable to assume that there is no unobserved (to

the econometrician) ability that is known to the individual. Some variables can be used

to identify types: initial ability (here measured by base-year standardized test scores),

the level of human capital and college major choice.

4.3.3 Estimation method

I first estimate a model with independent errors across grades and choice processes.

The log-likelihood function is the sum of three pieces:

• L1(η) – the log-likelihood contribution of grade point averages,

• L2(ϑc, η) – the log-likelihood contribution of major decisions, and

• L3(ϑh, ϑc, η) – the log-likelihood contribution of high school human capital deci-

sions.

The total log-likelihood function is then L = L1 + L2 + L3.

Consistent estimates of η can be found by maximizing L1 separately. Then, the η

are replaced by consistent estimates of L2. A consistent estimate of ϑc can then be

obtained by maximizing L2. I estimate ϑh using L3 and all other estimates.

Following Arcidiacono (2004, 2005), I assume that there are R = 2 types of people.14

To account for unobservable characteristics affecting students’ choice of majors, I use a

mixture distribution that allows errors to be correlated across the various stages.

Types remain the same throughout all stages, and individuals know their type.

Preferences and abilities may vary across types.

The log-likelihood function for a data set with N observations is then given by

L(η, ϑ) =

N∑
i=1

ln(

R∑
r=1

πrLir1Lir2Lir3)

14Type 1 individuals make up 33% of the population, while Type 2s make up 67%.
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where πr is the proportion of type r in the data and Lir. refers to the likelihood (as

opposed to the log likelihood L).

The log-likelihood function is no longer additively separable. I use the expectation-

maximization (EM) algorithm to solve the problem. The EM algorithm has two steps:

• First, calculate the expected log-likelihood function given the conditional proba-

bilities at the current parameter estimates, and

• Second, maximize the expected likelihood function holding the conditional prob-

abilities fixed.

These steps are repeated until there is convergence.

The expected log-likelihood function is:

L(η, ϑ) =

N∑
i=1

R∑
r=1

Pi(r|Xi, α, η, ϑ)[Lir1(η) + Lir2(η, ϑc) + Lir3(η, ϑc,h)]

with Pi(r|Xi, η, ϑ) =
πrLir1Lir2Lir3∑R
r=1 πrLir1Lir2Lir3

Using the EM algorithm helps to recover the additivity of the log-likelihood function.

Parameters can also be estimated at each step, as in the case without unobservable

heterogeneity. Note that all pieces of the likelihood function are still linked through

the conditional probabilities, where the conditional probabilities are updated at each

iteration of the EM algorithm. Arcidiacono and Jones (2003) show that it is possible to

estimate parameters sequentially during each maximization step. Using this sequential

estimator generates large computational savings with little loss of efficiency.

5 Structural model estimation results

This section presents and discusses the results from estimating the parameters of the

performance equations, the structural parameters of the utility function and high school

course choice equations. Results of the model with unobserved heterogeneity are pre-

sented in the estimation of each equation separately.
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5.1 College performance regressions

Estimates of the performance equation for the college period are given in Table 5.

The first column displays the coefficient estimates without unobserved heterogeneity,

while the second presents estimates with unobserved heterogeneity approximated by

two types of students.

There is a U-shaped relationship between college performance and diversification

in high school. The size of the coefficients are the same with or without unobserved

heterogeneity. Females earn higher grades than their males counterparts. All of the

ability coefficients are positive, with smaller coefficients for SAT-Verbal scores. Without

unobserved heterogeneity, ability in math is particularly useful. Once the mixture

distribution is added, the differences in ability coefficients dissipate. The results with

unobserved heterogeneity show that type 2s receive substantially higher grades.

5.2 Estimate of the utility function parameters

I use the estimates of performance to obtain the second-stage maximum likelihood

estimates of the utility function parameters. Table 6 displays the maximum likelihood

estimates for the parameters of the utility function.

The first three sections of Table 6 display the preferences for the three types of high

school courses, depending on a college student’s major. More quantitative courses are

attractive for college majors in natural sciences, engineering, and math and physics,

while more humanities courses are preferred for social science and humanities majors,

as well as business and communications majors.15

The level of diversification in high school also affects a student’s choice of college

major. Being more diversified (i.e. having a large diversification index) is better for

business and communications majors than for math and physics majors.16 Diversifi-

cation has larger negative effects for quantitative majors (engineering and math and

physics) than for other majors. This suggests that specialization in high school is

particularly useful for potential STEM majors.

Females are more likely to enroll in education or health majors, and less likely to

15Controlling for unobserved heterogeneity does not change these results.
16This effect is the same after controlling for unobserved heterogeneity.
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enroll in quantitative majors.17 There is a sizeable literature on college major choice

and the gender gap,18 which has documented differences in males’ and females’ college

major choices that are in line with my findings. However, the investigation of the effect

of high school choices on the college gender gap is beyond the scope of this paper.

Types 1s are more likely to enroll in quantitative majors in the model with the

mixture distribution. Ability measures (SAT-Math and SAT-Verbal scores), GPA, and

GPA×HScourses interact with major, along with major-specific constants that were

included. Consistent with Arcidiacono (2004), I also find that students’ comparative

advantages in their abilities for different majors play a very important role in the choice

of a major.

The nesting parameters are both relatively small for all models. The estimates that

are less than one suggest that preferences for different majors are correlated. Indeed,

these nesting parameters measure the cross-school component of the variance. In par-

ticular, had these coefficients been estimated to be one, then a multinomial logit would

have resulted.

5.3 Course choice equations regressions

Estimates of the course equations Tobit model are in Tables 8, 9 and 10.

As with performance results, adding controls for unobserved heterogeneity does not

significantly affect other parameter estimates. Those who have high math and science

scores from the grade 10 standardized test tend to accumulate more skills in quantitative

and life sciences subjects. Those with high scores in civics and writing are more likely to

accumulate humanities skills. Type 1s tend to take more life sciences and quantitative

courses than humanities courses in high school.

5.4 Model fit

In order to see how the model matches some key features and trends of the data, Table

11 compares actual data with the predictions of the model. I show two sets of parameter

estimates from the model: one with unobserved heterogeneity, and one without.

17Taking unobserved heterogeneity into account does not change this result.
18See Zafar (2009) for more information.
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For each of the three groups of high school courses (quantitative, humanities and life

sciences), I show the average number of these courses that different college majors took

while in high school. The actual number of quantitative courses chosen in high school is

very close to what is predicted by the model. The models with and without unobserved

heterogeneity predict the trends in the data extremely well. The predictions with the

mixture model are better than those without.

5.5 Simulations

Since the model matches the data reasonably well, I can use the model to simulate

how decisions about majors would vary in different environments. The purpose of the

simulations is to compare policies that may increase enrollment in STEM majors.

The first policy I examine is an increase in high school quantitative course require-

ments (which implies more specialization in math and sciences). The second experiment

is an increase in high school humanities course requirements, while the third simulation

increases high school life sciences course requirements. The last simulation assumes

that there is no specialization in high school.

Increasing the enrollment in STEM majors is of considerable interest for many coun-

tries, given that the economy is increasingly driven by complex knowledge and advanced

cognitive skills. Thus, STEM workers are a key component to ensuring competitive-

ness in a global economy. The shortage of STEM majors occurs despite STEM majors

earning substantially more than other college graduates, with the potential exception of

business graduates (see Arcidiacono (2004), Pavan and Kinsler (2012), andArcidiacono,

Aucejo, and Hotz (2013)).

The first, second and third simulations assume that students each take one more

quantitative course, one more humanities course and one more life sciences course,

respectively, in high school. These simulations are designed to show the extent to

which the choice to pursue a STEM major is a result of high school course choice.

The last simulation eliminates specialization in high school. The results of the

simulation show how much specialization in high school affects enrollment in STEM

majors.

Note that these simulations do not account for general equilibrium effects; the sim-
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ulations are only designed to illustrate how much of the current major choice is due to

high school courses or specialization.

Table 12 shows that quantitative courses and specializations affect choices about

pursuing STEM majors. When students take one more high school quantitative course,

the share of people in STEM and natural sciences majors increases (see simulation 1).

One more high school quantitative course increases enrollment in STEM majors by four

percentage points, but it also decreases overall college enrollment. It is interesting to

note that when I use the model without unobserved heterogeneity, one more high school

quantitative course increases enrollment in STEM majors by five percentage points. In

the model with unobserved heterogeneity, the enrolment in STEM majors only increases

by four percentage points, which suggests a correction of the unobserved ability bias.

An increase in one high school humanities course does not heavily decrease enrollment

in STEM majors. One more life sciences course in high school increases enrollment in

natural sciences majors by 0.015 percentage points and reduces enrollment in STEM

majors by about the same amount.

Forcing every student to take the same courses (see simulation 4) also boosts enroll-

ment. The share of students choosing STEM majors moves up by 18 to 20 percentage

points. This suggests that high school specialization plays a key role in major choice.

These results suggest that increasing high school quantitative course requirements

would improve enrollment in STEM majors. Imposing a uniform curriculum in high

school can also lead to a major increase in STEM enrollment, but this policy is less

feasible in practice, since there is likely a significant demand for a certain amount

of choice by students and educators. Requiring high school students to take more

quantitative courses is, therefore, the most appealing policy for increasing enrollment

in STEM majors.

6 Conclusion

This paper investigates how the high school curriculum influences future college major

choices and performance.

I establish panel data evidence linking an individual’s high school skill sets with

their choice of college major. I find that students usually choose a major in which they
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acquired more related skills in high school, suggesting that specialization occurs in high

school. However, I find a U-shaped relationship between the diversity of courses taken

in high school and college performance.

This result suggests that there is a trade-off between specialization and diversifi-

cation. The link between high school and college is assessed through a model of high

school human capital acquisition and college major choice. In the model, individuals

with different initial abilities and preferences, who are uncertain about their preferences

for particular college majors, choose a set of high school courses and a college major.

Estimation of the structural parameters of the model suggests that quantitative majors

are preferred by specialized students. I also find that high school course selection plays

an important role in determining college major choice.

More quantitative high school courses makes natural sciences, engineering and math

and physics majors more attractive, while more humanities courses are preferred by

social sciences, humanities and business and communications majors. Moreover, the

estimated model remarkably matches some central tendencies in the data.

I then exploit the model to evaluate and quantify the impact of education policies

on enrollment in STEM majors. Policy experiments suggest that requiring students to

take an additional high school quantitative course would boost enrollment in STEM

majors by four percentage points.

In this paper, I restrict my attention to the role played by high school specialization

on college major choice and performance. Possible future research could investigate the

effect of high school specialization on labor-market outcomes (e.g. unemployment and

income). It would also be interesting to compare systems with forced specialization in

high school (European-style systems) with more flexible systems (U.S.-style systems).
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A Appendix

A.1 Data

This appendix section describes the data used for estimations. First, I describe the

sample selection. Second, I show how different high school courses are aggregated into

human capital portfolios. Finally, I describe how I aggregate college majors.

Data used for estimations are obtained by merging the PEDS, Sophomores in 1980

- HS&B and high school transcript data sets. This first aggregation reduces the initial

sample of 11,391 to 5,533 students who have both high school and college transcripts.

Dropping students for whom there is no SAT data reduces the sample to 2,064 indi-

viduals, which includes students who did no enroll in college. Eliminating observations

that are missing other control variables reduces the sample to 1,265 individual that are

used in the reduced-form analysis. To estimate the structural model, I reduce the sam-

ple to 1,112 to eliminate observations that are missing other variables used in certain

estimations.

To construct high school course portfolios, courses are classified into seven broad

areas of knowledge using the National Center for Education Statistics’ Classification of

Secondary School Courses (CSSC). The measure of human capital in each of these areas

is the sum of courses taken in all subjects belonging to the same group of knowledge.19

- Quantitative (math and physics): 04, 11, 15, 14, 27, 40,41

- Reading and writing:16, 23

- Social sciences and humanities: 05, 13, 19, 24, 37, 38, 39, 42, 43, 44, 45

- Natural and life sciences: 02,17, 18, 26, 34

- Business and communications: 01, 06, 22, 07, 08, 09,10

- Art: 21, 50

- Other: 03, 12, 20, 25, 28, 29, 30, 31, 32, 33, 35, 36, 46, 47, 48, 49, 54, 51, 55, 56

I also aggregate college majors into seven categories: math and physics, engineering,

business and communications, social sciences and humanities, natural sciences, educa-

19The number for each field corresponds to CSSC codes.
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tion, and health. The criteria for aggregation is the degree of similarity in field topics.

Here is a list of majors by category:

- Math and physics: Physics, science technologies, mathematics, Calculus, commu-

nication technologies, computer and information sciences, and computer program-

ming.

- Engineering: Engineering, civil engineering, electrical and communications engi-

neering, mechanical engineering, and architecture and environmental design.

- Business and communications: Construction trades, business and management,

accounting, banking and finance, business and office, secretarial and related pro-

grams, marketing and distribution, communications, journalism, precision pro-

duction, and transportation and material moving.

- Natural and life sciences: Geology, life sciences, geography, and renewable natural

resources, biology, chemistry.

- Social sciences and humanities: Area and ethnic studies, foreign languages, home

economics, vocational home economics, law, letters, composition, American liter-

ature, English literature, philosophy and religion, theology, psychology, protective

services, public affairs, social work, social sciences, anthropology, economics, ge-

ography, history, political science & government, sociology, visual and performing

Arts, dance, fine arts, music, and liberal/general studies.

- Education: Education, adult and continuing education, elementary education,

junior high education, pre-elementary education, secondary education.

- Health: Allied health, practical nursing, health sciences, nursing.
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Figure 1: U-shaped relationship between GPA residual and ρ using non-parametric regression.

Figure 2: U-shaped relationship between GPA and ρ with quadratic fit.
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Table 1: Summary statistics
Unrestricted sample Restricted sample

Mean SD SD in HS Frac in HS Obs. Mean SD SD in HS Frac. in HS Obs.

Female 0.541 0.498 0.211 0.821 5072 0.530 0.499 0.266 0.716 1265

Black 0.125 0.331 0.210 0.597 5072 0.089 0.284 0.151 0.717 1265

SAT-Math 477.747 115.141 47.416 0.830 2064 483.075 110.838 43.172 0.848 1265

SAT-Verbal 440.612 107.143 43.714 0.834 2042 447.249 103.189 40.650 0.845 1265

College GPA 2.316 0.803 0.211 0.931 4686 2.453 0.689 0.190 0.924 1265

SES 0.224 0.738 0.412 0.688 4912 0.403 0.687 0.398 0.664 1265

HS Share of Courses 5072

Reading and writing 0.232 0.066 0.045 0.530 5072 0.246 0.062 0.046 0.455 1265

Math 0.122 0.041 0.023 0.686 5072 0.132 0.037 0.022 0.640 1265

Life sciences 0.168 0.067 0.055 0.325 5072 0.168 0.066 0.059 0.221 1265

Physics 0.054 0.041 0.021 0.746 5072 0.065 0.041 0.022 0.718 1265

Humanities 0.186 0.074 0.065 0.235 5072 0.200 0.079 0.071 0.195 1265

Business and communications 0.074 0.065 0.031 0.768 5072 0.060 0.054 0.027 0.744 1265

Art 0.070 0.071 0.036 0.747 5072 0.059 0.066 0.035 0.709 1265

Other 0.050 0.058 0.044 0.422 5072 0.042 0.054 0.047 0.260 1265

NB: This table provides the mean and standard deviation of some variables in the full sample and in the restricted one.

There is not a large difference between the two samples, suggesting that sample selection may not be an issue.

Table 2: High school human capital portfolios by college major
College Major \ Share HS courses Quant. R. and W. Life sci. Hum. Bus./Com. Arts Others

Bus. & comms. 0.169 0.236 0.167 0.190 0.095 0.063 0.081

Natural sciences 0.219 0.251 0.186 0.178 0.040 0.065 0.061

Math and physics 0.225 0.245 0.167 0.187 0.056 0.056 0.064

Education 0.165 0.232 0.169 0.180 0.075 0.092 0.088

Engineering 0.227 0.227 0.171 0.172 0.050 0.063 0.089

Social sci./hum. 0.185 0.258 0.163 0.198 0.056 0.066 0.074

Health 0.172 0.232 0.181 0.188 0.075 0.073 0.078

Other 0.169 0.228 0.170 0.176 0.066 0.093 0.098

F 50.218 12.651 3.385 5.174 37.233 9.784 6.410

P-value 0.000 0.000 0.001 0.000 0.000 0.000 0.000

NB: This table shows the mean share of high school subjects by college major. The last two rows show the F statistics and

p-values for the test of significance for the difference in means. For all the subjects, the null hypothesis of mean equality is

rejected at 1%.
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Table 3: Estimation results for college performance (GPA as the dependent variable)

(1) (2) (3) (4) (5) (6) (7)

ρ -6.834*** -5.222*** -5.824*** -5.766*** -5.861*** -5.923*** -7.154***

(2.08) (1.98) (1.90) (1.90) (1.89) (1.96) (2.59)

ρ
2

17.477*** 14.707*** 16.128*** 15.985*** 16.195*** 16.740*** 21.376***

(5.49) (5.25) (5.05) (5.05) (5.03) (5.34) (6.87)

Female 0.127*** 0.179*** 0.179*** 0.178*** 0.164*** 0.072

(0.04) (0.04) (0.04) (0.04) (0.04) (0.05)

Black -0.281*** -0.141** -0.136** -0.141** -0.114* -0.047

(0.06) (0.06) (0.06) (0.06) (0.06) (0.09)

SES 0.039 -0.057** -0.050 -0.054 -0.045 -0.051

(0.03) (0.03) (0.05) (0.05) (0.05) (0.06)

SAT-Math 0.109*** 0.109*** 0.111*** 0.126*** 0.096***

(0.02) (0.02) (0.02) (0.03) (0.03)

SAT-Verbal 0.127*** 0.126*** 0.126*** 0.126*** 0.144***

(0.02) (0.02) (0.02) (0.02) (0.03)

Father’s education 0.002 0.002 -0.000 -0.005

(0.01) (0.01) (0.01) (0.01)

Mother’s education -0.006 -0.005 -0.006 0.007

(0.01) (0.01) (0.01) (0.01)

Plan college Dad 0.034 0.034 0.093

(0.08) (0.08) (0.08)

Plan college Mom -0.037 -0.036 0.009

(0.08) (0.08) (0.09)

Dummy for south 0.047 0.071

(0.04) (0.04)

Plan HS Dad -0.018 -0.001

(0.07) (0.07)

Plan HS Mom -0.134 -0.096

(0.10) (0.10)

Majors Yes Yes Yes Yes Yes Yes

High school courses Yes Yes

Constant 3.067*** 2.591*** 1.604*** 1.612*** 1.607*** 1.646*** 1.864***

(0.19) (0.18) (0.20) (0.21) (0.22) (0.24) (0.37)

Observations 1265 1265 1265 1265 1265 1265 1265

R
2

0.01 0.11 0.20 0.20 0.20 0.21 0.19

Number of groups 389

R
2

overall 0.16

NB: *** denotes significance at the 1% level, ** denotes significance at the 5% level, and * denotes significance at the 10% level.

Heteroskedasticity-robust standard errors are clustered by high school in parentheses for column 1 to 6. Column 7 estimates ordi-

nary least squares with a high school fixed effect. Background characteristics include parents’ education and parents’ participation

in the college enrollment decision. High school courses are formal courses taken in high school and gathered from high school

transcripts.

Table 4: Lind and Mehlum (2010) test for U-shape

Specification: f(x) = x
2

Extreme Point: 0.1699134

H1: U-shape vs. H0: Monotone or inverse U-shape

Lower bound Upper bound

Interval .04625 .6006787

Slope -4.066305 14.16445

t-value -2.559242 3.20296

P>|t| .0054755 .0007488

Overall test for presence of a U-shape:

t-value=2.56

P>|t|=0.0054
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Table 5: Performance regressions
One type Two types

Coefficient Stand. Error Coefficient Stand. Error

ρ -7.6077 2.2671 -8.3000 2.0323

ρ
2

22.2215 6.0855 27.6217 5.4638

Female 0.1563 0.0483 0.1418 0.0433

Dummy South -0.0105 0.0159 0.0014 0.0143

SAT-Math 0.1192 0.0279 0.1110 0.0250

SAT-Verbal 0.0859 0.0283 0.0929 0.0254

SES -0.0326 0.0333 -0.0688 0.0300

Black -0.0814 0.0748 -0.0604 0.0671

Type 1 -0.7128 0.0430

Const. 2.1672 0.3110 1.9749 0.2790

Variance 0.7225 0.0153 0.6476 0.0137

NB:Major-specific constant terms are included along with courses taken in high school.
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Table 6: Utility parameter estimates

One type Two types

Coefficient Stand. Error Coefficient Stand. Error

Life sciences courses

Business and communications 0.1041 0.0979 0.1204 0.0665

Natural sciences 0.2068 0.1301 0.1694 0.0996

Math and physics 0.0511 0.1247 -0.0242 0.0813

Education 0.1038 0.1316 0.1256 0.0705

Engineering 0.0658 0.1217 -0.0147 0.0812

Humanities 0.0648 0.0994 0.0764 0.0687

Health 0.1603 0.1199 0.1600 0.0917

Quantitative courses

Business and communications 4.8964 1.0766 -0.0443 0.0879

Natural sciences 5.0620 1.0837 0.0421 0.1277

Math and physics 5.2565 1.0777 0.2146 0.1057

Education 4.8938 1.0670 -0.0359 0.0945

Engineering 5.2959 1.0805 0.2558 0.1058

Humanities 4.8925 1.0742 -0.0770 0.0907

Health 5.0410 1.0862 0.0662 0.1180

Humanities courses

Business and communications 0.1223 0.0763 0.1031 0.0369

Natural science 0.0548 0.1064 -0.0086 0.0717

Math and Physics 0.0597 0.1026 -0.0464 0.0499

Education 0.0657 0.1123 0.0764 0.0417

Engineering 0.0538 0.0984 -0.0413 0.0496

Humanities 0.0793 0.0777 0.0600 0.0391

Health 0.0385 0.0965 0.0118 0.0613

GPA

Business and communications 1.5436 0.9165 0.9756 0.3705

Natural sciences 0.8338 1.1941 -0.4789 0.8508

Math and physics 2.0673 1.1337 0.7189 0.4828

Education 1.7819 1.2066 1.1058 0.3971

Engineering 2.0723 1.1096 0.7165 0.4878

Humanities 1.1457 0.9292 0.5134 0.4223

Health 0.9436 1.1081 0.1823 0.6781

ρ

Business and communications -12.9912 2.6876 -4.2077 2.8318

Natural science -17.4797 3.7017 -4.6484 3.5321

Math and physics -21.0977 3.3094 -14.1069 3.3499

Education -14.8482 3.1440 -4.5911 2.9716

Engineering -20.5266 3.2969 -13.5531 3.3480

Humanities -13.4522 2.7094 -4.4163 2.8372

Health -11.8757 3.3616 -1.4088 3.4043
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Table 7: Utility parameter estimates (cont.)

One type Two types

Coefficient Stand. Error Coefficient Stand. Error

GPA × high school courses

Business and communications -0.0279 0.0353 -0.0147 0.0147

Natural sciences -0.0145 0.0451 0.0274 0.0328

Math and physics -0.0487 0.0436 -0.0041 0.0192

Education -0.0305 0.0472 -0.0162 0.0163

Engineering -0.0561 0.0427 -0.0097 0.0194

Humanities -0.0162 0.0359 0.0018 0.0169

Health -0.0100 0.0421 0.0132 0.0273

SAT-Math

Business and communications 0.2981 0.1769 0.2984 0.1721

Natural sciences 0.5880 0.2189 0.5464 0.2084

Math and physics 0.7487 0.1986 0.7520 0.1914

Education 0.1307 0.2003 0.2090 0.1798

Engineering 0.6788 0.1981 0.7199 0.1916

Humanities 0.1598 0.1771 0.2223 0.1719

Health 0.1296 0.2111 0.2267 0.2015

SAT-Verbal

Business and communications 0.4005 0.1723 0.4078 0.1660

Natural sciences 0.5737 0.2123 0.4268 0.1988

Math and physics 0.1994 0.1945 0.1636 0.1848

Education 0.3943 0.1949 0.4086 0.1734

Engineering 0.2815 0.1937 0.1999 0.1845

Humanities 0.6591 0.1729 0.5390 0.1659

Health 0.3215 0.2049 0.3063 0.1963

Female

Business and communications 0.3113 0.2789 0.4923 0.2721

Natural sciences 0.4354 0.3483 0.7970 0.3313

Math and physics -0.0143 0.3175 -0.0038 0.3067

Education 1.0980 0.3605 0.9397 0.3023

Engineering -0.6547 0.3223 -0.3526 0.3075

Humanities 0.4578 0.2800 0.5848 0.2726

Health 1.3096 0.3554 1.2890 0.3391

Type 1

Business and communications -0.4613 0.3148

Natural sciences -0.8189 0.3875

Math and physics -0.2081 0.3527

Education -0.4716 0.3296

Engineering -0.3901 0.3543

Humanities -0.4986 0.3154

Health -0.2955 0.3712

Nesting Parameter 0.4834 0.0111 0.2653 0.0088
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Table 8: High school course choice estimations
Humanities courses

One type Two types

Coefficient Stand. Error Coefficient Stand. Error

Base-year test score

Vocabulary 0.0610 0.0172 0.0568 0.0175

Reading 0.0104 0.0166 -0.0005 0.0168

Math 0.0031 0.0194 -0.0377 0.0193

Science -0.0357 0.0171 -0.0402 0.0173

Writing 0.0587 0.0184 0.0410 0.0184

Civics 0.0137 0.0142 0.0193 0.0143

Expected GPA 2.8965 0.5722 4.4575 0.4860

Expected GPA interacted with major:

Business and communications -6.9553 0.8609 -4.3865 0.6309

Natural sciences -13.1673 2.0744 -8.5054 1.5168

Math and physics -9.1344 2.4134 -3.0334 0.9578

Education -4.6856 1.4340 -5.5758 1.4804

Engineering -6.4705 1.3250 -5.0364 0.9241

Humanities -6.9276 0.9197 -5.7341 0.6865

Health -8.4818 1.9966 -4.2283 1.0902

Major:

Business and communications 17.7216 2.1358 11.1098 1.5040

Natural sciences 32.4560 5.1415 21.3923 3.7467

Math and physics 20.9101 5.7522 6.6542 2.5020

Education 11.1049 3.7968 12.6932 3.5860

Engineering 14.7227 3.2620 11.5303 2.2438

Humanities 17.5508 2.2610 14.6686 1.6314

Health 20.3698 4.7245 10.3561 2.5678

Type 1 0.6906 0.3993

Variance 3.3723 0.0712 3.4201 0.0723
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Table 9: High school course choice estimations
Life sciences courses

One type Two types

Coefficient Stand. Error Coefficient Stand. Error

Base-year test score

Vocabulary -0.0311 0.0107 -0.0318 0.0108

Reading -0.0124 0.0103 -0.0077 0.0104

Math -0.0337 0.0121 -0.0247 0.0119

Science 0.0142 0.0107 0.0166 0.0107

Writing -0.0223 0.0115 -0.0179 0.0114

Civics 0.0119 0.0089 0.0160 0.0088

Expected GPA 3.7839 0.3567 2.8776 0.2998

Expected GPA interacted with major:

Business and communications -0.3033 0.5366 -0.2213 0.3892

Natural sciences 0.6705 1.2927 -1.0865 0.9356

Math and physics 3.0931 1.5043 0.1327 0.5908

Education -1.3200 0.8938 1.3837 0.9131

Engineering -1.2856 0.8259 -0.4680 0.5700

Humanities -0.9882 0.5733 -1.1866 0.4235

Health -0.2333 1.2446 -2.3845 0.6725

Major:

Business and communications 0.4262 1.3312 0.7125 0.9277

Natural sciences -0.5294 3.2042 4.1990 2.3111

Math and physics -7.0656 3.5854 -0.6851 1.5433

Education 2.7386 2.3666 -2.7487 2.2120

Engineering 3.1075 2.0332 1.4399 1.3841

Humanities 2.2836 1.4094 3.2095 1.0063

Health 1.2013 2.9451 6.5287 1.5839

Type 1 1.4862 0.2463

Variance 2.1020 0.0445 2.1096 0.0447
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Table 10: High school course choice estimations
Quantitative courses

One type Two types

Coefficient Stand. Error Coefficient Stand. Error

Base-year test score

Vocabulary -0.0055 0.0084 -0.0031 0.0083

Reading 0.0112 0.0081 0.0068 0.0080

Math 0.0531 0.0095 0.0451 0.0092

Science 0.0289 0.0084 0.0263 0.0082

Writing -0.0162 0.0090 -0.0208 0.0087

Civics -0.0046 0.0070 -0.0051 0.0068

Expected GPA 0.8426 0.2795 0.9916 0.2301

Expected GPA interacted with major:

Business and communications -0.1068 0.4205 0.8343 0.2987

Natural sciences 1.3458 1.0131 0.9615 0.7181

Math and physics -2.3925 1.1788 -0.2132 0.4534

Education -1.0858 0.7004 -1.6626 0.7008

Engineering 1.2274 0.6471 0.6087 0.4375

Humanities -0.0793 0.4492 0.6151 0.3250

Health -0.3827 0.9752 1.0640 0.5161

Major:

Business and communications -0.1636 1.0431 -2.3126 0.7120

Natural sciences -2.9809 2.5111 -1.6040 1.7737

Math and physics 5.2358 2.8096 1.2428 1.1844

Education 3.3402 1.8545 3.8587 1.6976

Engineering -2.1985 1.5932 -0.3277 1.0622

Humanities -0.0869 1.1043 -1.5347 0.7723

Health 0.9063 2.3076 -2.3652 1.2156

Type 1 1.1915 0.1890

Variance 1.6471 0.0349 1.6191 0.0343
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Table 11: Comparing model predictions of high school course selection with the data
Data One type Two types

Quantitative

Business and communications 5.5044 5.5068 5.4890

Natural sciences 6.7018 6.7304 6.6787

Education 6.7570 6.7757 6.7561

Math and physics 5.1628 5.1810 5.1848

Engineering 7.1130 7.1161 7.1001

Humanities 5.6754 5.6703 5.6627

Health 5.6582 5.6384 5.6624

Humanities

Business and communications 13.7609 13.9761 13.8079

Natural sciences 13.7368 13.5100 13.5951

Education 12.8505 12.8022 12.7235

Math and physics 12.5349 12.6713 12.5517

Engineering 12.3826 12.4544 12.4572

Humanities 14.0623 13.8463 13.9706

Health 13.4177 13.3346 13.4069

Life sciences

Business and communications 5.0612 5.0585 5.0410

Natural sciences 5.9298 5.9030 6.0344

Education 4.8879 4.9064 4.9184

Math and physics 5.0465 5.0528 5.0619

Engineering 4.8261 4.8231 4.7790

Humanities 4.9377 4.9399 4.9283

Health 5.5063 5.5292 5.4045

The data column contains the actual mean from the data. One type refers

to estimates using one type of individual, and two types refers to estimates

using two types of individuals.

Table 12: Simulations of the change in major choice distribution
Simulations

(1) (2) (3) (4)

One type Math, phys. & eng. majors 0.036 -0.014 -0.015 0.186

Natural sciences 0.011 0.000 0.015 0.000

Humanities -0.05 0.015 0.002 -0.127

No college 0.003 0.001 -0.002 -0.059

Two types Math, phys. & eng. 0.027 -0.017 -0.021 0.231

Natural sciences 0.012 0.009 0.033 -0.039

Humanities -0.05 0.009 -0.01 -0.168

No college 0.01 -0.001 0.0019 -0.023

Simulation (1): One additional quantitative course in high school. Simulation (2): One additional life sciences

course in high school. Simulation (3): One additional humanities course in high school. Simulation (4): The

same curriculum imposed to all high school students.
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