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Is there any relationship between the rates of interest
and profit in the U.S. economy?∗

Ivan Mendieta-Muñoz†

December 2014

Abstract

This paper studies the empirical relationship between the Federal funds effective rate and the
rate of profit or profit-to-capital ratio in the U.S. economy. The linkages between these two
variables are studied: 1) at business-cycle frequencies using various filters and employing
cross-correlation, regression and simulation analysis; and 2) using Vector Autoregressive
models that unveil the dynamic interactions between the variables. The different empirical
results reveal that positive shocks in the fed funds interest rate generate negative responses of
the rate of profit, thus corroborating previous findings that show that a tight monetary policy
is associated with lower aggregate profitability levels.

JEL Classification: E22,E40,E43
Keywords: Fed funds effective real rate, rate of profit, U.S. economy, aggregate profitability.

1 Introduction
A large amount of research has been devoted to the study of the effects of monetary policy shocks
on macroeconomic aggregates. However, the effects of monetary policy on different measures of
aggregate profitability in the economy have been less well studied since the existing literature has
only paid attention to the effects on the log levels of profits and on the share of profits (that is, the
profit-to-output ratio) (11, 12, 13, 14). In this sense, the literature has remained silent about the
effects of changes in monetary policy on the rate of profit or the rate of return on private
investment, i.e., the profit-to-capital ratio. As Feldstein and Summers (23) explain, the latter is a
measure of the “social rate of return” —the rate at which forgone current consumption can be
transformed into future consumption— on an additional unit of capital invested.1 This measure of
aggregate profitability is relevant since it is a central parameter in order to: 1) explain capital

∗I am grateful to Miguel León-Ledesma, Hans-Martin Krolzig, Jagjit Chadha, Robert Jump, Meghnad Desai and
Aydan Dogan for helpful discussions and valuable suggestions. Naturally, I am responsible for any remaining errors.

†School of Economics, University of Kent, Canterbury, United Kingdom, CT2 7NP. Email: iim3@kent.ac.uk
1Under special technological assumptions about the decay of capital productivity, the rate of profit is in principle

equal to the internal rate of return on a marginal investment. The social rate of return is thus equal to the internal rate
of return that reduces the present value of the output of the marginal investment to its initial cost (23).
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accumulation (22) because the welfare cost of policies that discourage the latter depends on
whether the prevailing rate of return is above or below the effective rate of growth of labour force,
according to the golden rule of accumulation (16, 43, 44)2; 2) study the cost-benefit analysis of
public projects that divert funds from private investment through either borrowing or taxation
(23); and 3) analyse the causes and consequences of income distribution and business cycle
fluctuations. Consequently, the study of the effects of monetary policy on the rate of profit is of
paramount importance in order to study the transmission mechanism, and, therefore, to provide
new results that can be used for macro-prudential purposes.

The current paper deals with the empirical relationship between the Fed funds effective rate
and the profit rate in the U.S. economy during the post-war period. Using data from 1955 (start
of Fed funds data) to 2011 (or 2013; depending on which measure of aggregate profitability is
used), the interactions between these two variables are studied: 1) at business-cycle frequencies
employing cross-correlation, regression and simulation analysis; and 2) using the results obtained
from Vector Autoregressive (VAR) models that try to unveil the dynamic interactions between the
variables. The different results show that a rise in the rate of interest reduces the rate of profit,
thus corroborating previous findings that show that a tight monetary policy hampers aggregate
profitability.

Besides this introduction, the rest of the paper is structured as follows. Section 2 reviews
some of the literature that has studied the interactions between monetary policy and other measures
of profitability; section 3 offers a brief description of the concepts and variables used; section 4
presents the empirical results obtained from the analysis at business-cycle frequencies (section 4.1)
and from the VAR models (section 4.2); and, finally, section 5 presents the main conclusions and
discusses possible avenues for future research.

2 Related literature
As highlighted in the previous section, the effects of monetary policy shocks on measures of the
profit-to-capital ratio have not been studied in the literature. However, there is substantial literature
that has studied the effects on different macroeconomic aggregates, including other measures of
aggregate profitability such as the log level of profits or the share of profits. In this section we
review the most important and recent findings for the U.S. economy with respect to the research
question proposed in this paper.

Bernanke and Gertler (8) have analysed the impact of monetary policy on interest payments,
profits, gross income and employee compensation of nonfinancial corporate business. Using a
quarterly VAR for the period of 1965-1994, they find that a positive innovation of one standard
deviation in the funds rate (a tightening of monetary policy) causes a decrease of the log levels
of corporate cash flows and profits, calculating that over 40% of the short-run decline in the latter
is the result of higher interest payments. They also find that corporate income tends to fall more
quickly than costs (such as employee compensation), which tend to be squeezed during a period of
monetary tightening. Finally, their results show that the cash squeeze appears to peak about six to

2If there is a golden age growth path on which the social net of return to investment equals the rate of growth, then
this golden age produces a path of consumption which is uniformly higher than the consumption path associated with
any other golden age (16, 43, 44).
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nine months after the monetary tightening, about the time that output, inventories and investment
begin to decline.3

Bernanke and Gertler (8) use the credit channel of monetary transmission in order to explain
their results. This mechanism explains that actions taken by the central bank have a direct effect
on the external finance premium in credit markets —the difference in cost between funds raised
externally (by using equity or debt) and funds generated internally (by retaining earnings)— via
the balance sheet and the bank lending channels. The former considers that shifts in Fed policy
affect the financial positions of borrowers because increases in interest rates: 1) reduce net cash
flows; 2) are typically associated with declining asset prices, which, amongst other things, shrink
the value of the borrowers’ collateral value; and 3) reduce the spending of customers, reduce the
firm’s revenue, and, ultimately, erode the firm’s net worth and creditworthiness over time. The
bank lending channel, in turn, points out the possible effect of monetary policy actions on the
supply of loans by depository institutions, particularly loans by commercial banks. Thus, if the
supply of bank loans is disrupted for some reason, bank-dependent borrowers may not be literally
shut off from credit, but they are virtually certain to incur costs associated with finding a new
lender, establishing a credit relationship. This means that a reduction in the supply of bank credit
(relative to other forms of credit) is likely to increase the external finance premium and to reduce
real activity.4

On the other hand, Christiano et al. (11; 13) have studied the effects of contractionary
monetary policy shocks (both orthogonalized shocks to the federal funds rate and orthogonalized
shocks to the log level of nonborrowed reserves) on different macroeconomic aggregates. Their
results show: 1) a delayed response of aggregate output, employment and unemployment; 2)
some evidence of an immediate reduction in the log levels of retail sales and corporate profits
(both in retail trade and in the nonfinancial sector); and 3) an immediate increment in
manufacturing inventories.

In the same vein, Christiano et al. (12) consider various measures of the share of profits in
output (real profits to nominal GNP) as well as before-tax profits in five sectors of the economy:
manufacturing, durables, nondurables, retail and transportation and utilities. With the exceptions of
nondurable goods and transportation and utilities, the evidence shows that a contractionary federal
funds policy shock leads to a sharp persistent drop in profits. They proceed to assess the ability of
sticky price and limited participation models (in which agents must determine how much money to
deposit with financial intermediaries in advance of observing the period’s shocks) with frictionless

3The effects of the corporate cash squeeze on economic behaviour (investment and spending decisions) depend
largely on firm’s ability to smooth the drop in cash flows by borrowing. The differential impact of a cash squeeze
on different types of firms has been studied by Gertler and Gilchrist (24; 25). In the same vein, movements in the
borrower balance sheets can amplify and propagate business cycle fluctuations, a phenomenon that has been referred
to as the “financial accelerator” (see Bernanke et al. (9)).

4With respect to the balance sheet channel, Bernanke and Gertler (8) provide evidence that links monetary policy
to the financial positions of the borrowers using the inverse of the “coverage ratio” (the inverse of the ratio of the sum
of interest payments and profits to interest payments by nonfinancial corporations), which is a useful summary measure
of a firm’s financial condition. They find that increases in the funds rate translate almost immediately into increases
in the inverse of the coverage ratio and, ultimately, into weaker balance sheet positions. The literature inaugurated
by Christiano et al. (11) has studied in a more detailed way the effects of monetary policy shocks on the borrowing
and lending activities of different sectors of the economy using the flow of funds data (see Bonci (10) for a survey
on this literature). Finally, regarding the traditional bank lending channel, Bernanke and Gertler (8) point out that its
importance has most likely diminished over time because of financial deregulation and innovation.
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labour markets to account for these effects, finding that the key failing of the sticky price model is
precisely its implication that profits rise after a monetary contraction. This happens because, in this
model, a monetary contraction leads to a substantial decline in the resources used by intermediate
good producers which, in the absence of labour market frictions or an extremely high elasticity of
labour supply, leads to a substantial fall in wages and marginal costs (along with a sharp rise in the
mark-up). Thereby, although revenues fall, cost considerations dominate and profits rise.

By contrast, the limited participation model of Christiano et al. (12) can account for the
fall in profits but only if one is willing to assume a high labour supply elasticity (around 2%)
and a reasonably high mark-up (around 40%). Thereby, Christiano et al. (12) conclude that it
is important to embed labour market frictions (which increase the effective elasticity of labour
supply) and endogenous capacity utilization since general equilibrium models that allow for only
one type of friction (sticky prices or frictions in financial markets) cannot convincingly account for
all the facts about how the economy responds to an unanticipated monetary policy shock.

Alexopoulos (1) provides a different version of the standard limited participation model that
includes imperfectly observed effort. Her model accounts for the presence of involuntary
unemployment, nominal wage rigidity, and the observed responses to monetary policy shocks
without appealing to high labour supply elasticities or high mark-ups. The key element in his
model is that intermediate good firms detect shirking workers only a fraction of the time and
punish them by withholding an increase in their compensation; therefore, the wage that firms
need to offer workers to induce the optimal effort level may result in equilibrium unemployment.
Compared with standard participation models, unexpected monetary policy shocks have much
larger effects on employment and output in the shirking model because the interaction between
the frictions in the shirking model (limited participation and imperfectly observed effort) results
in optimal nominal wage rigidity.

Both Christiano et al. (12) and Alexopoulos (1) argue that the quantitative response of profits
to shocks depends on the way profits are measured. In particular, the ith intermediate good firm’s
nominal period t profits can be measured as (1):

Π
∗
it = PitYit− (ωRt +1−ω)hlWitNit−PtΘtKit (1)

Πit = PitYit−RthlWitNit (2)

where in the equations above Pit is the price of the ith intermediate goods; Yit represents the input
from the ith intermediate firm; ω is the portion of the wage bill borrowed at the beginning of the
period by the intermediate goods firms5; Rt is the gross nominal interest rate paid to the financial
intermediary on the bank loan; hl is the fixed number of hours worked per employee; Wit , Nit , and
Kit respectively are the nominal wage paid per worker, the number workers hired, and the amount

of capital rented by the intermediate good firm i; Pt =
[∫ 1

0 P1/1−ϖ

it

]1−ϖ

is the price of the final
good, where γ∈ [0,∞) is a measure of the substitutability between inputs; and Θt is the real rate of
return on capital.

Thus, Π∗it and Πit respectively represent nominal economic profits and an empirical measure
of nominal profits. Intuitively, in these models a contractionary monetary policy shock leaves

5When ω = 1, as in the standard limited participation model, the entire wage bill is borrowed at the beginning of
the period. However, when ω∈ (0,1), only the portion of wages paid to workers at the beginning of the period need
be borrowed from the banks (1).

4



nominal wages unchanged and decreases the amount of nominal loans to firms. This causes
employment to decrease. Although the fall in unemployment cuts the firms’ total nominal costs,
individuals have less income to spend on goods, so revenue falls. Nominal profits decrease
because nominal revenue falls more than nominal costs, and real profits (that is, both Π∗it/Pt and
Πit/Pt) fall because of the decrease in nominal profits and the increase in prices.

Christiano et al. (14) provide a dynamic general equilibrium model that incorporates
staggered wage and price contracts. Specifically, the model has two key features: 1) it embeds
Calvo-style nominal prices and wage contracts; and 2) the real side of the model incorporates four
departures from the standard textbook one-sector dynamic growth model: habit formation in
preferences for consumption, adjustment costs in investment, variable capital utilization, and
assumes that firms must borrow working capital to finance their wage bill. Their model
reproduces the dynamic response of inflation and output, and can also account for the
hump-shaped response in consumption, investment, profits, and productivity and the weak
response of the real wage. They find that: 1) the crucial friction in the model is wage contracts,
not price contracts (a version of the model with only nominal wage rigidities does almost as well
as the estimated model, and the model with only nominal price rigidities performs very poorly);
and 2) it is crucial to allow for variable capital utilization if one wants to generate inertia in
inflation and persistence in output.

If we take as given the inertial behaviour of prices and wages, it is useful to focus on the money
market-clearing condition (equation (3)) and the household’s first-order condition for cash balances
(equation (4)) in order to explain the contemporaneous effect of an expansionary monetary policy
shock on profits (14):

WtLt = µtMt−Qt (3)

υ
′(qt)+ψt = ψtRt (4)

where, in addition to the previously defined variables, Wt is the aggregate wage rate; Lt is the
aggregate labour input; µt is the monetary policy given by: µt = µ +θ0εt +θ1εt−1 +θ2εt−2 + ...,
where µ is the mean growth rate of money and θ j is the response of Et µt+ j to a t monetary policy
shock; Mt is the household’s beginning of period t stock of money; Qt denotes nominal cash
balances; qt = Qt/Pt denotes real balances6; and ψt = υtPt is the marginal utility of Pt units of
currency, where υt is the Lagrange multiplier on the household’s budget constraint.

In this model, firms do not wish to absorb any part of a cash infusion because neither Wt nor
Lt respond to a policy shock (Wt and Lt are predetermined because Wit , consumption, investment,
and capital utilization are predetermined by assumption); so that a period t money injection must
be accompanied by an equal increase in Qt . Under the assumption that ψt is constant and since Pt
is predetermined, the rise in Qt corresponds to a rise in real balances. According to (4), Rt must fall
to induce households to increase qt .7 Finally, since Rt falls and the firm’s wage bill and revenues
are unaffected by the shock, profits must rise.

The conclusion arising from the literature review is that a contractionary (expansionary)
monetary policy is accompanied by a decrease (rise) in different measures of profitability. The
following sections present empirical evidence of the effects of the interest rate on the rate of profit
or the profit-to-capital ratio.

6Pt in this model corresponds to Pt =
[∫ 1

0 P1/1−ςi
it di

]1−ςi
(14).

7In practice, (14) find that ψt falls by only a relative small amount.
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3 Data and preliminary analysis
We have employed two different estimates of the profit-to-capital ratio (henceforth pt). In the first
place, we use the computation of pt provided by Duménil and Lévy (18): pA

t = (NDP−wL)/KN;
where NDP represents Net Domestic Product (extracted from the U.S. National Income and
Product Accounts (NIPA)); w = NTOTW/NWEMPL is a measure of the annual compensation
per employee, where NTOTW and NWEMPL respectively represent the compensation of
employees and the full-time equivalent employees in private industries (both series were retrieved
from the NIPA tables); L = NWEMPL + NSELF denotes total private employment, where
NSELF denotes self-employed persons (also obtained from the BEA)8; and KN denotes the
private net fixed capital stocks, which has been restricted to equipment and structures (obtained
from the BEA capital stock tables). This measure of pt is available until 2011.9

In second place, we have used an estimate of the pretax net rate of return on additional
private corporate investment (22, 23, 46).10 For this measure we have only considered considered
corporate profits —that is, without interest payments— to the value of the capital stock in the
nonfinancial corporate sector. We have done so in order to use a different measure of pA

t since, by
definition, the latter includes interest payments. Thereby, for this rate of profit we have:
pB

t = CP/KN(−1); where CP denotes corporate profits with IVA and CCAdj (Table 1.14 from
NIPA, line 27) and KN is the current-cost net stock of private fixed assets of the nonfinancial
corporate business sector (Table 6.1 from NIPA, line 4). In this case, we employed the
current-cost nonfinancial corporate capital stock of the previous year (KN(−1)) since the NIPA
lists the capital stock at the end of the year, and we have calculated pB

t until 2013.
Both pA

t and pB
t are similar to the ones used by Feldstein and Summers (23) and Poterba (46)

for the nonfinancial corporate sector in the U.S. economy. For the period 1948-1976, Feldstein and
Summers (23) calculate that the net pt (computed as the ratio of profits plus interest payments to
the value of real capital including fixed capital, inventories, and land) is 10.6%; whereas Poterba
(46) considers the rate of return to corporate tangible assets in the U.S. economy for the period
1959-1996 (he calculates CP as profits before tax with IVA and CCAdj plus net interest payments
plus property taxes) and estimates that the average pretax rate of return over the period 1959-1996
is approximately 8.5%.11

Regarding the interest rate, we use the fed funds effective rate. Both pA
t and pB

t represent
real measures since both the numerator —a current-dollar profit flow— and the denominator —

8Therefore, wL represents the total remuneration to labour including a correction for the wage-equivalent of self-
employed persons.

9This measure of pt was also employed by Duménil et al. (17) with a few minor alterations. The full data set can
be found at: http://www.jourdan.ens.fr/levy/uslt4x.txt.

10As Feldstein and Summers (23) explain, the pretax rate of return is an appropriate concept regarding the analysis
in the return that the nation earns on private investment. To understand the saving and portfolio behaviour of individual
investors it would be necessary to examine the after-tax rate of return.

11On the other hand, using calibration procedures for the U.S economy, Greenwood et al. (29) find a pre-tax real
return of 20.5%; whereas Gomme and Rupert (26) compute a profit rate of 13.2% per annum and an after-tax real
return of 7.5%. In a very recent article, Gomme and Rupert (27) construct a quarterly measure of real net after-tax
rate of return to business capital for the U.S. using the NIPA. They find that: 1) the mean of this measure is 5.16% for
the period of 1954-2008; and 2) the Standard and Poor 500 return is roughly six times more volatile than this measure.
They point out that, since the returns to capital and equity are identical in the neoclassical growth model, a theory of
the stock market that breaks the equivalence between the returns to equity and capital is needed.
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a current-cost capital stock— reflect the same set of prices. This means that, in order to study
the effects of the interest rate on the rate of profit, the relevant comparison between the variables
needs to take into account the real rate of interest (henceforth rt). The latter has been calculated as
follows: rt =

[
1+It

1+inft
−1
]

100; where It is the nominal Federal Funds effective rate (extracted from
the Federal Reserve System electronic database), and inft is the inflation rate measured by the US
GDP implicit price deflator (2009=100; extracted from the BEA database).12

Finally, we have employed annual data for the empirical analysis since the series for pA
t and

for KN (needed to construct pB
t ) are only available at annual frequencies. Figure 1 plots pA

t , pB
t ,

and rt , covering the macro history of the US over the last five decades: 1955-2013. On inspection,
it is possible to observe that both pA

t and pB
t have been systematically above rt , so that it is possible

to assert that pt can be considered as an upper limit to rt during the period of study. The statistical
summary of both variables presented in Table 1 reveals that both series present similar standard
deviations and that the null hypothesis of normality of the Jarque-Bera test is not rejected for the
series at the 5% level.

[INSERT FIGURE 1 ABOUT HERE]
[INSERT TABLE 1 ABOUT HERE]

4 Empirical results
The following sections present the empirical evidence of the relationship between the fed funds
interest rate and the two measures of the rate of profit.

We first examine the rt-pt relationship at business-cycle frequencies using cross-correlation,
regression and simulation analysis. The cyclical component (henceforth ct) of the series has been
computed using different filters in order to test the robustness of the results: Hodrick-Prescott
(HP) (32), Baxter-King (BK) (7), Christiano-Fitzgerald (CF) (15), and a digital Butterworth (Bw)
(28, 45) filter. We also report the results obtained using a first-difference (FD) filter.

In the second part of this section we analyse the relationship between rt and pt using VAR
models. We first carried out four linear unit root tests on the rt and pt series in order to determine
its order of integration; and then we estimate the VAR models and present the main descriptive
statistics together with the structural inference analysis.

4.1 Business-cycle frequencies analysis
4.1.1 Filters employed

This section offers a succinct description of the different filters employed, paying special attention
to the Bw filter since the latter has received less attention in applied research. If yt is the finite
series of interest (that is, either rt or pt in our case), then its respective ct is:

ct =
n2

∑
j=−n1

b̂ jyt− j (5)

12As Taylor (53) explains, the distinction between real interest rates and nominal interest rates is crucial when
studying the monetary transmission mechanism. We work under the assumption that the Fed has leverage over the
short-term real rate because prices are sticky (8).
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where b̂ j are the coefficients of the finite impulse-response sequence of the filter. This sequence is
the inverse Fourier transform of either a square wave (if the filter is a band-pass, such as the BK
and CF) or step function (if the filter is a high-pass, such as the HP and Bw).

In the frequency domain, it is possible to establish the following relationship between the
finite estimates of ct (ĉ(w)) and the frequency transfer function of the filter B̂ (B̂(w)):

ĉ(w) = B̂(w)y(w) (6)

where w denotes the frequencies.
The frequency transfer function for B̂(w) can be expressed in polar form as:

B̂(w) = |B(w)|exp{ιθ(w)} (7)

where ι is the imaginary number ι =
√
−1, and |B(w)| and θ(w) respectively represent the filter’s

gain function (which determines if the amplitude of the stochastic cycle is increased or decreased at
a particular frequency) and the filter’s phase function (which determines how a cycle at a particular
frequency is shifted forward or backward in time).

The band-pass filters employed in this paper (BK and CF) use a square wave as the transfer

function, so that: B(w) =
{

1, if |w|∈ [wl,wh]
0, if |w|6∈ [wl,wh]

, where wl and wh respectively denote the

lowest and highest frequencies employed. In turn, the high-pass filters employed (HP and Bw)

use a step function, so that: B(w) =
{

1, if |w|≥ wh
0, if |w|< wh

.

On the other hand, the digital Bw filter is a two-parameter high-pass filter. One parameter
determines the cutoff period and sets the location where the gain function starts to filter out the
high-period (low-frequency) stochastic cycles; whereas the other parameter determines the order
of the filter (henceforth m) and sets the slope of the gain function for a given cutoff period.13

Pollock (45) has shown that the gain of the Bw filter (ξ (w)) is given by:

ξ (w) =

1+

{
tan
(wc

2

)
tan
(w

2

) }2m
−1

(8)

where wc =
2π

ϕh
is the cutoff frequency, and ϕh is the maximum period of cycles filtered out.

The model that corresponds to the Bw filter represents yt in terms of zero mean, covariance
stationary, and independent and identically distributed shocks vt and dt :

yt =
(1+L)m

(1−L)m vt +dt (9)

where L is the lag operator.

13For a given cutoff period, the slope of the gain function at the cutoff period increases with m; whereas for a given
m, the slope of the gain function at the cutoff period increases with the cutoff period. The existence of two parameters
provides additional flexibility in order to compute the ct of the series compared with the HP filter (28, 45). Indeed, the
HP filter is a one-parameter high-pass filter since it possesses only a single adjustable parameter which sets both the
location of the cutoff frequency and the slope of the gain function.
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From this model, Pollock (45) shows that the optimal estimate for the cyclical component (c)
is:

c = λQ(ΩL +λΩH)
−1Q′y (10)

where Var{Q′(y− c)} = σ2
v ΩL and Var{Q′c} = σ2

ε ΩH ; ΩL and ΩH are symmetric Toeplitz
matrices with 2m+ 1 nonzero diagonal bands and generating functions (1+ z)m(1+ z−1)m and
(1− z)m(1− z−1)m, respectively; the matrix Q′ is a function of the coefficients in the polynomial
(1−L)d = 1+ δ1L+ ...+ δdLd (see Stata (52)); and the parameter λ is a function of ϕh and m
such that:

λ =

{
tan
(

π

ϕh

)}−2m

(11)

Finally, it can be shown that ΩH = Q′Q and ΩL = |ΩH |, which simplifies the final calculation
of the ct of the series to:

c∗ = λQ
{
|Q′Q|+λ (Q′Q)

}−1 Q′y (12)

The different cts of the series were extracted as follows. With respect to the HP filter, we
followed the suggestion proposed by Ravn and Uhlig (48) for annual data, so that the smoothing
parameter was selected to be 6.25. We employed three years of data in order to construct the BK
filter, using 2 and 8 years as the minimum and maximum periodicities to be included in the filtered
series, as suggested by Baxter and King (7). Regarding the Bw filter, we employed a second order
version of the filter, filtering out stochastic cycles at periods larger than 8. Finally, for the full
sample asymmetric CF filter we used the same minimum and maximum periodicities employed
for the BK filter, considering pt as an I(1) unit root process and rt as an I(0) covariance stationary
process.14

4.1.2 Cross-correlation analysis

We now present the results of the cross-correlation analysis used to explore the co-movements
between rt and pt . It is possible to say that the cyclical component of the rate of interest
(henceforth cr

t ) is leading by κ-years, is synchronous, or is lagging by κ-years the cyclical
component of the rate of profit (henceforth cp

t ), if the correlation coefficients Corr(cp
t ,cr

t−κ),
Corr(cp

t ,cr
t ), Corr(cp

t ,cr
t+κ), respectively, adopt the largest value at that year. In the same vein, a

positive (negative) and significant value indicates that cr
t and cp

t move in the same (opposite)
direction, and a number close to zero indicates that both cyclical components are uncorrelated.

These results are presented in Table 2. The first part of the Table shows the results obtained
using pA

t for the period 1955-2011; whereas the second part shows the results obtained using pB
t

for the period 1955-2013. In the first place, it is possible to observe that the highest statistically
significant correlation value is Corr(cp

t ,cr
t−1), so that cr

t leads cp
t by one year. The highest

correlation value is given by the BK filter, whereas the lowest correlation value appears when the
FD filter was employed. In general, the correlation values do not seem to be high, particularly
when pB

t was considered.
In second place, we find that the value of Corr(cp

t ,cr
t−1) shows that the relationship between

cp
t and cr

t is negative, considering both pA
t and pB

t .
14As shown in section 4.2.1, the different unit root tests show that pt ∼ I(1) and rt ∼ I(0). Moreover, if rt is assumed

to be an I(1) process, then the cyclical component obtained via the CF filter is very similar to the one here presented
(series available on request).
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[INSERT TABLE 2 ABOUT HERE]

4.1.3 Regression analysis, parameter stability and Granger non-causality tests

Having established that cr
t leads cp

t , we proceed to analyse the link between these two variables in
the context of a simple backward-looking regression model in order to evaluate the rate of interest
as a predictor variable, using both in-sample and out-of-sample Granger non-causality tests:

cp
t = α +βcp

t−1 + γcr
t−1 +ηt (13)

where ηt is the error term.
The estimation results of equation (13) using both pA

t and pB
t with the different filters are

reported in Table 3. From the latter it is possible to see that the standard diagnostic tests are satisfied
in all cases at the 10% level of significance; and that the parameter γ is statistically significant at
the 1% level. We find that γ< 0 in all cases, so that we conclude that the results obtained via the
cross-correlation analysis corroborate the ones presented in the previous section: an increase in rt
above its trend generates a decrease in pt below its respective trend.

[INSERT TABLE 3 ABOUT HERE]

However, one possible problem with the estimation of equation (13) may be that the
parameters are not stable over time, which is particularly relevant given the Lucas (35) critique
and the backward-looking nature of the model. Thus, we have used a battery of endogenous
structural break tests in order to take into account this possibility: the Supremum or Maximum F
(SupF) test, the Average F (AvgF) test, and the exponential F (ExpF) test (2, 3); one multiple
break test (4, 5); the parameter constancy test of Hansen (30); and the Elliot-Muller test (21). An
exposition of the different tests is presented in appendix A, and El-Shagi and Giesen (19) provide
a comparison of the power and size properties of various of the structural stability tests employed.

The first three tests (SupF, AvgF and ExpF) were computed over all possible break dates
within 15% trimmed data (that is, in the central 85% of the sample), so that we test the null
hypothesis of no breakpoints within 15% trimmed data. We have used the generalization of the
Quandt-Andrews (2)’s test for the Bai and Perron (4; 5), which was carried out setting the
maximum number of breaks equal to 5 and the trimming percentage to 15% in all cases. For the
latter we only report the equal-weighted version of the test (UDMax) in Table 4, which chooses
the alternative that maximizes the statistic across the number of breakpoints.15

The results of the different stability tests of equation (13) are presented in Table 4 below. The
null hypothesis of the tests (joint parameter stability) is not rejected at the 1% level of significance
in most cases (the only exceptions are the qLL test for the case of the BK filter estimation when pB

t
was used and Hansen (30)’s test since in both cases the null hypothesis is not rejected only at the
10% level). Therefore, we can conclude that the great majority of results show that the regression
coefficients obtained from the estimation of equation (13) are stable over the sample.

[INSERT TABLE 4 ABOUT HERE]
15The weighted approach of the test (WDMax) (which applies weights to the individual statistics, so that the implied

marginal probabilities are equal prior to taking the maximum) yields fairly similar results. These results are also
available on request.

10



Having corroborated the parameter stability of the estimates, we now analyse if the rate of
interest can be considered as a predictor variable of the profit rate. Hence, we use both in-sample
and out-of-sample Granger causality F-tests in order to test the null hypothesis that γ = 0.
Regarding the out-of-sample Granger causality test, we have employed the test proposed by
McCracken (37). The latter consists in comparing the predictive ability of equation (13) (that is,
the equation that includes cr

t−1) with the predictive ability of its restricted version (that is, the
equation that excludes cr

t−1). The Mean Squared Prediction Error (MSPE) has been used as a
measure of prediction performance.16 Thus, the general representation of the McCracken F-test
of forecast accuracy (MSPEF) is the following:

MSPEF = S

S−1
∑

n
t=T

(
û2

1,t+1− û2
2,t+1

)
S−1 ∑

n
t=T û2

2,t+1

= P
(

MSPE1−MSPE2

MSPE2

)
(14)

where S is the number of forecasts, T is the number of observations included in the forecast,
û1,t+1 and û2,t+1 are respectively the 1-step ahead forecast errors from the restricted model (model
without cr

t−1) and from the unrestricted model (model with cr
t−1), so that ∑

n
t=T û2

1,t+1 = MSPE1 and
∑

n
t=T û2

2,t+1 = MSPE2.
If the MSPE2 is significantly lower than MSPE1, then this would imply that the rate of interest

causes the rate of profit. For the out-of-sample tests using pA
t (pB

t ) we have split the sample at 2006
(2002) and evaluated the forecast accuracy of the models over the period 2007-2011 (2003-2007).17

The results of both in-sample and out-of-sample tests are reported in Table 5. The former
shows that the null hypothesis (cr

t−1 does not Granger cause cp
t ) is strongly rejected in all cases.

On the other hand, the out-of-sample tests shows that MSPE2 is smaller than MSPE1 in all cases.
The estimated McCracken F-tests are higher than the critical values at all significance levels, which
means that the null hypothesis of the out-of-sample test is also strongly rejected (the only exception
being the results obtained from the Bw filter using pA

t since the null hypothesis is rejected only at
the 10% level). Therefore, we can conclude that, at business cycle frequencies, the rate of interest
Granger causes the rate of profit according to both in-sample and out-of-sample causality tests.

[INSERT TABLE 5 ABOUT HERE]

4.2 VAR analysis
4.2.1 Unit root tests

We now proceed to analyse the relationship between the rates of interest and profit using VAR
models. We first employ four different unit root tests in order to determine the order of integration
of the series: Augmented Dickey-Fuller (ADF; Said and Dickey (50)); Dickey–Fuller Generalized
Least Squares (DF-GLS; Elliott at al. (20)); modified Phillips-Perron (PP) tests (40); and KPSS
stationarity test (33).

16We did not apply a recursive regression approach to forecasting since, as shown before, equation (13) does not
exhibit parameter instability.

17We decided to separate the samples at different periods in order to test the robustness of the results. For the
forecasts using pB

t we decided not to consider the recent period of economic crisis (2008-2013).
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The highest lag order (lmax) selected in order to carry out the tests was determined from the
sample size according to the method proposed by Schwert (51), so that lmax = 10; whereas the
optimal lag order (l∗) was selected according to the Modified Akaike Information Criterion (MAIC)
proposed by Ng and Perron (40) since this criterion reduces size distortions substantially.18 We
have employed OLS-detrended data as the AR spectral estimation method for the Ng-Perron tests
since the latter can be considered a solution to the drawback that, for non-local alternatives, the
power of the Ng and Perron (40) tests can be very small (41); whereas the estimate of the long-run
variance in the KPSS tests was computed using GLS-detrended data.

In Table 6 we report the different unit root tests that best capture the actual behaviour of the
series in order to avoid misspecification. Thereby, the tests were carried out including a constant
and a trend as exogenous regressors for the case of the pt series; whereas we only included a
constant for the case of the rt series.19 With respect to the pt series, it is possible to observe that
none of the ADF, DF-GLS, and Ng-Perron tests is able to reject the null of a unit root; and that
the null hypothesis of the KPSS tests (pt is a stationary process) is strongly rejected. On the other
hand, the unit root tests reject both the null hypothesis of a unit root for the case of the rt series
(with the exception of the ADF test) and the null hypothesis of the KPSS test (rt is a stationary
process).

Given that the DF-GLS and the Ng-Perron tests can have substantially higher power than
the traditional unit root tests (54), we conclude that the pt series can be characterized as an I(1)
process: pA

t , pB
t ∼ I(1); whereas rt can be characterized as an I(0) process: rt ∼ I(0).20

[INSERT TABLE 6 ABOUT HERE]

4.2.2 VAR models

We have included both ∆pt and rt in order to work with 2 variable VAR models in which the
variables have the same order of integration:

Yt = A+B(L)Yt +ϒt (15)

where Yt = (∆pt ,rt)
′, A is a 2X1 vector of constant terms, B(L) is a 2X2 matrix polynomial of

unrestricted constant coefficients in the lag operator L, and ϒt is a 2X1 vector of white noise error
terms with covariance matrix ∑ϒ.

We estimate two different VAR models, one including ∆pA
t and another one including ∆pB

t
over the periods of 1955-2011 and 1955-2013, respectively. In both cases the different
information criteria (Akaike, Schwarz, Hannan-Quinn, and the sequential modified LR test
statistic) indicate that the optimal lag length for the VAR models is two. These VAR models: 1)
are stable since all roots have modulus less than 1 and lie inside the unit circle; 2) do not present
problems of autocorrelation, heteroskedasticity or normality according to the individual and joint
misspecification tests (see Tables B1 and B2 in the appendix); and 3) do not show parameter

18The results obtained following the general-to-specific approach proposed by Ng and Perron (39) are fairly similar
to the ones here presented.

19Different specifications did not change the main conclusions (results available on request)
20The latter corroborates recent empirical evidence that finds that different rt do not contain a unit root, but exhibit

substantial persistence —shown by extended periods when real interest rates are substantially above or below the
sample mean— instead (see Lee and Tsong (34), Neely and Rapach (38), Rapach and Wohar (47)).
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instability according to the joint parameter stability tests employed in the previous section (see
Table B3 in the appendix).21

Tables 7 and 8 respectively present the Granger non-causality tests and the forecast error
variance decompositions of the VAR models. In the first place, the former shows that the lagged
values of rt help to predict movements of both ∆pA

t and ∆pB
t at the 1% level of significance since

the null hypothesis of no Granger causality is strongly rejected in this case. ∆pA
t also seems to

contain information that helps to predict movements in rt at the 10% level of significance; whereas
it is not possible to reject the null hypothesis of no Granger causality when ∆pB

t was employed.

[INSERT TABLE 7 ABOUT HERE]

In second place, from Table 8 it is possible to observe that, as the forecast horizon approaches
6 lags, higher portions of the variation of both ∆pA

t and ∆pB
t can be explained by shocks from rt .

22

[INSERT TABLE 8 ABOUT HERE]

In Figures 2 and 3 we present the impulse response functions (IRFs) together with its
respective 0.68 error bands obtained via Monte Carlo simulations (2000 replications in all cases),
as suggested by Sims and Zha (49). Figure 2 presents the IRFs of the VAR including ∆pA

t ;
whereas Figure 3 shows the IRFs of the VAR including ∆pB

t . The IRFs were obtained: 1) by
identifying the shock structure using Choleski factorization of the variance of ϒt following the
ordering listed in Yt (this means that this orthogonalization of innovations employs the
assumption that there is no contemporaneous effect of the innovation in rt on ∆pt); and 2) via the
procedure described by Pesaran and Shin (42), so that these represent the generalized impulse
response functions (GIRFs) that do not require the orthogonalization of shocks and are invariant
to the ordering of the variables in the VAR.

[INSERT FIGURE 2 ABOUT HERE]
[INSERT FIGURE 3 ABOUT HERE]

The results show very similar dynamic patterns of interaction amongst both variables in all
cases. If we assume that disturbances to the funds-rate equation in the VAR are shocks to monetary
policy then it is possible to interpret the responses of ∆pt to a funds-rate shock as the structural
responses of this variable to an unanticipated change in monetary policy. The lower-left graphs
show the IRFs of an innovation in rt on ∆pt , indicating that a positive shock to the former causes a
negative effect on the latter that turns insignificant after 1 year in both cases.23

Finally, Figures 4 and 5 show the accumulated responses of ∆pA
t and ∆pB

t to its own
innovations and to innovations in rt . The results reveal similar shapes of these functions, showing

21In Table B3 we only report the Lc statistic of Hansen (30) and the qll statistic of Elliott and Müller (21) in order
to present the most robust results. With the exception of the Bai-Perron’s UDMax test (which shows mixed results),
the conclusions obtained using the other parameter stability tests employed in the previous section (SupF, AvgF, ExpF)
are fairly similar (these results are available upon request).

22The forecast error variance decomposition results obtained using the other possible VAR ordering (that is, rt →
∆pt ) yield similar conclusions (results are available upon request).

23The IRFs obtained by identifying the shock structure using the inverse Cholesky factorization (rt → ∆pt ) are also
fairly similar. These are shown in Figures C1 and C2 in the appendix.
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that the accumulated responses obtained via the GIRFs are slightly larger than the
Cholesky-based accumulated responses. It is possible to observe that the accumulated response of
∆pB

t to an innovation in rt is more persistent than the one associated with ∆pA
t .

[INSERT FIGURE 4 ABOUT HERE]
[INSERT FIGURE 5 ABOUT HERE]

4.2.3 Long-run structural inference

We finally study the interaction between these two variables in the long-run. The bivariate moving
average representation of both series is the following:

∆pt =
∞

∑
l=0

c11(l)εp,t−l +
∞

∑
l=0

c12(l)εr,t−l (16)

rt =
∞

∑
l=0

c21(l)εp,t−l +
∞

∑
l=0

c22(l)εr,t−l (17)

So that the matrix representation is the following:

Yt = C(L)εt (18)

where C(L) =
[
C11(L) C12(L)
C21(L) C22(L)

]
, and εt = (εp,t ,εr,t)

′. Thereby, Ci j(L) are polynomials in L with

individual coefficients denoted by ci j(l), εt is the vector of white noise innovations with covariance
matrix ∑ε , and εp,t and εr,t respectively denote the exogenous shocks to pt and rt .

We assume that the interaction between both variables is null in the long-run; therefore, we
have used two different long-run structural identification assumptions in order to test the robustness
of the results:

C21(L) =
∞

∑
l=0

c21(l) = 0 (19)

C12(L) =
∞

∑
l=0

c12(l) = 0 (20)

Equations (19) and (20) respectively depict the cases where the cumulative effect of an εp,t shock
on rt must equal to zero and where the cumulative effect of an εr,t shock on ∆pt must equal to zero.

The impulse responses of the VARs using ∆pA
t and ∆pB

t are respectively presented in Figures 6
and 7, together with its respective 68% confidence intervals. In the same vein, Figures 8 and 9
show the accumulated responses of ∆pA

t and ∆pB
t using the identification assumptions depicted

in equations (19) and (20). It is possible to observe that the results obtained are very similar
between them; and also fairly similar to the IRFs and to the cumulative IRFs shown in Figures 2
to 5. Hence, the results obtained are robust to the short-run and long-run identifying assumptions
employed, and it is possible to conclude that a positive innovation in the rate of interest generates
a negative response of the rate of profit.

[INSERT FIGURE 6 ABOUT HERE]
[INSERT FIGURE 7 ABOUT HERE]
[INSERT FIGURE 8 ABOUT HERE]
[INSERT FIGURE 9 ABOUT HERE]
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5 Conclusions and future research
The present paper has studied the effects of a monetary policy shock, measured by a rise in the
Federal Funds effective rate, on the profit rate or the profit-to-capital ratio in the postwar economy
of the United States. In the first place, the analysis was carried out at business cycle frequencies
using various filters. The results indicate that the cyclical component of the rate of interest leads
the cyclical component of the rate of profit by one year and that the relationship between both
variables is negative. The real rate of interest-rate of profit link is stable according to a battery of
different endogenous structural break tests; and both in-sample and out-of-sample Granger non-
causality tests show that the cyclical component of the rate of interest can be considered as a
predictor variable of the cyclical component of the rate of profit.

In second place, using bivariate VAR models we find that there is evidence of interaction
between the fed funds rate of interest and the profit rate according to the main descriptive statistics
of these models (Granger non-causality tests and forecast error variance decomposition analysis).
In the same vein, the different impulse response functions show that a positive shock in the rate
of interest generates a negative response of the rate of profit that turns statistically non-significant
approximately after one year. This result is robust to different ways in which the innovations are
orthogonalized both in the short and long-run.

Therefore, the conclusion arising from the different tests is that a tight monetary policy
generates lower levels of the profit-to-capital ratio and, thereby, lower levels of aggregate
profitability. There are, however, different ways in which it is possible to extend the current
research in order to provide more detailed facts about the quantitative and qualitative effects of
monetary policy on aggregate profitability levels. One possible extension is to enlarge the system
to include other relevant variables, such as the 10-year government bond yield, investment or
exchange rates. Another possibility is to study the effects of other measures of monetary policy
on the rate of profit, such as nonborrowed reserves or the rate of money growth (for example, the
M2 monetary aggregate), which may incorporate the effects of possible changes in
reserve-market structure and in the Fed’s operating procedures. In this sense, it is also necessary
to develop further theoretical models that take into account the effects of monetary policy on the
profit rate. We leave all these topics for future research.
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[18] Duménil, G. and Lévy, D. (1994) “The U.S. economy since the civil war: sources and
construction of the series” CEPREMAP.

[19] El-Shagi, M. and Giesen, S. (2013) “Testing for structural breaks at unknown time: a
steeplechase” Computational Economics 41(1): 101-123.

[20] Elliott, G., Rothemberg, T. and Stock, J. (1996) “Efficient tests for an autoregressive unit
root” Econometrica 64(4): 813-836.

16



[21] Elliott, G. and Müller, U. (2006) “Efficient tests for general persistent time variation in
regression coefficients” Review of Economic Studies 73(4): 907-940.

[22] Feldstein, M. (1977) “Does the United States save too little?” American Economic Review
67(1): 116-121.

[23] Feldstein, M. and Summers, L. (1977) “Is the rate of profit falling?” Brookings Papers on
Economic Activity 1: 211-228.

[24] Gertler, M. and Gilchrist, S. (1993) “The role of credit market imperfections in the
transmission of monetary policy: arguments and evidence” Scandinavian Journal of
Economics 95(1): 43-64.

[25] Gertler, M. and Gilchrist, S. (1994) “Monetary policy, business cycles, and the behavior of
small manufacturing firms” Quarterly Journal of Economics 109(2): 309-340.

[26] Gomme, P. and Rupert, P. (2007) “Theory, measurement and calibration of macroeconomic
models” Journal of Monetary Economics 54(2): 460-197.

[27] Gomme, P. and Rupert, P. (2011) “The return to capital and the business cycle” Review of
Economic Dynamics 14(2): 262-278.
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Figure 1. Rates of profit: pA=Duménil and Lévy (18) (1955-2011) and pB=nonfinancial corporate sector
(1955-2013); and real rate of interest (r, 1955-2013)

Table 1. Descriptive statistics

pA
t pB

t rt
(1955-2011) (1955-2013) (1955-2013)

Mean 18.17 8.77 1.87
Median 18.19 8.24 1.84
Maximum 23.59 15.21 6.45
Minimum 12.32 4.73 -3.15
Standard deviation 2.15 2.61 2.17
Skeweness 0.17 0.80 0.09
Kurtosis 3.72 2.92 2.42
Normality testa 0.47 0.05 0.64
Notes: aP-values associated with the Jarque-Bera test.

20



Table 2. Cross correlations of rate of profit cycles (cp
t ) with real rate of interest cycles (cr

t ) at various leads and
lagsa

Corr(cp
t ,cr

t−2) Corr(cp
t ,cr

t−1) Corr(cp
t ,cr

t ) Corr(cp
t ,cr

t+1) Corr(cp
t ,cr

t+2)

Using pA
t (1955-2011)

FD filter -0.120 -0.503 0.139 0.298 -0.142
MSLb 0.39 0 0.32 0.03 0.31
HP filter -0.299 -0.564 0.101 0.376 0.001
MSLb 0.03 0 0.47 0.01 0.99
BK filter -0.224 -0.596 0.108 0.442 -0.071
MSLb 0.12 0 0.46 0 0.63
Bw filter -0.236 -0.569 0.196 0.435 -0.099
MSLb 0.08 0 0.15 0 0.47
CF filter -0.236 -0.531 0.179 0.432 -0.050
MSLb 0.08 0 0.19 0 0.72
Using pB

t (1955-2013)
FD filter -0.254 -0.393 0.240 0.289 -0.002
MSLb 0.06 0 0.07 0.03 0.99
HP filter -0.423 -0.456 0.230 0.418 0.114
MSLb 0 0 0.09 0 0.40
BK filter -0.421 -0.480 0.272 0.420 0.035
MSLb 0 0 0.05 0 0.81
Bw filter -0.372 -0.475 0.293 0.424 -0.003
MSLb 0 0 0.03 0 0.98
CF filter -0.350 -0.446 0.311 0.410 -0.055
MSLb 0 0 0.02 0 0.68
Notes: aThe entries are the values of the correlation coefficients. The highest values are boldly marked;
bMarginal Significance Levels (MSL) of each filter refer to a two-tailed test.
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Table 3. Estimated rate of profit equations

FD filter HP filter BK filter Bw filter CF filter

Using pA
t (1955-2011)

α 0.003 -0.019 0.026 -0.015 -0.016
β 0.182 0.251** 0.207* 0.168 0.228**
γ -0.396*** -0.454*** -0.443*** -0.447*** -0.460***
Adj. R2 0.26 0.36 0.38 0.33 0.31
Diagnostic testsa A=0.55; A=0.87; A=0.74; A=0.42; A=0.86;

H=0.37; H=0.99; H=0.58; H=0.56; H=0.63;
N=0.93; N=0.45; N=0.89; N=0.51; N=0.22;
R=0.04; R=0.10; R=0.01; R=0.11; R=0.93;

Using pB
t (1955-2013)

α -0.046 -0.018 0.025 -0.011 -0.005
β 0.318** 0.429*** 0.374*** 0.287** 0.293**
γ -0.397*** -0.470*** -0.462*** -0.442*** -0.446***
Adj. R2 0.25 0.38 0.37 0.27 0.25
Diagnostic testsa A=0.26; A=0.49; A=0.37; A=0.01; A=0.43;

H=0.78; H=0.38; H=0.98; H=0.51; H=0.14;
N=0.66; N=0.30; N=0.52; N=0.15; N=0.25;
R=0.26; R=0.51; R=0.08; R=0.25; R=0.76;

Notes: aThe diagnostic test employed were the following: A=Autocorrelation
(Breusch-Godfrey Serial Correlation LM Test); H=Heteroskedasticity (ARCH test);
N=Normality (Jarque-Bera); R=Ramsey RESET test. We only report the p-values
associated with each test.
*, ** and *** respectively denote statistical significance at the 10%, 5%, and 1%
confidence levels.

22



Table 4. Stability tests of the rate of profit equations

SupFa AvgFa ExpFa Bai-Perronb Hansen’s Lc
a Elliott-Müller’s qLLc

Using pA
t (1955-2011)

FD filter 0.46 0.79 0.75 10.14 0.04** -8.21
HP filter 0.86 0.96 0.94 8.09 0.01** -8.03
BK filter 0.83 0.92 0.90 7.61 0.02** -7.39
Bw filter 0.86 0.96 0.95 7.45 0.01** -7.33
CF filter 0.97 0.99 0.99 5.05 0.01** -8.24
Using pB

t (1955-2013)
FD filter 0.83 0.94 0.94 4.86 0.01** -7.14
HP filter 0.99 0.93 0.89 3.00 0.01** -11.09
BK filter 0.71 0.76 0.69 5.68 0.01** -14.95**
Bw filter 0.95 0.97 0.95 3.58 0.01** -9.95
CF filter 0.97 0.99 0.99 3.40 0.01** -10.29
Notes: aOnly p-values are shown. For the SupF, AvgF and ExpF tests we show the probabilities
associated with the Likelihood Ratio F-statistic calculated using Hansen (31)’s method; bUDMax test.
Critical value: 14.23 (6); cLong-run variance computed with 1 lag. Critical values at 1%, 5% and 10%:
-17.57, -14.32, -12.80 (21).
*, ** and *** respectively denote rejection of the null hypothesis at the 10%, 5%, and 1% confidence
levels.

Table 5. Granger non-causality tests of equation (13)

In-sample test Out-of-sample test

F-statistic p-value MSPE1
a MSPE2

b McCracken’s F-statisticc

Using pA
t (1955-2011)

FD filter 19.67 0*** 1.319 1.007 F1,0.1=1.55***
HP filter 30.57 0*** 0.632 0.416 F1,0.1=2.59***
BK filter 30.53 0*** 0.454 0.176 F1,0.1=7.91***
Bw filter 29.02 0*** 0.479 0.415 F1,0.1=0.78*
CF filter 25.22 0*** 0.615 0.420 F1,0.1=2.32***
Using pB

t (1955-2007)
FD filter 15.09 0*** 1.481 0.600 F1,0.1=7.34***
HP filter 25.50 0*** 0.891 0.353 F1,0.1=7.63***
BK filter 25.08 0*** 0.558 0.232 F1,0.1=7.02***
Bw filter 22.04 0*** 0.476 0.269 F1,0.1=3.85***
CF filter 19.85 0*** 0.360 0.186 F1,0.1=4.69***
Notes: aMean Squared Prediction Error of the equation without cr

t−1; bMean Squared Prediction
Error of the equation that includes cr

t−1; cCalculated using S = 5 and T = 46 in most cases; so
that F1,0.1, where 1 denotes the excess parameter (cr

t−1), and 0.1≈ 5/46. Critical values of F1,0.1
at 1%, 5%, and 10% are respectively 1.480, 0.784, and 0.514 (see Table 6 in McCracken (37))
*, **, and *** respectively denote rejection of the null hypothesis at the 10%, 5%, and 1%
confidence levels.
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Table 6. Linear unit root tests

ADFa,b,c DF-GLSa,b,c Ng-Perrona,b,c KPSSa,b,c

pA
t -2.11 -2.06 -7.40 1.95***

∆pA
t -6.80*** -5.35*** -19.73** 0.05

pB
t -1.52 -1.61 -8.04 2.35***

∆pB
t -6.09*** -5.76*** -25.00** 0.04

rt
d -2.38 -2.20** -8.49** 1.81***

∆rt -7.26*** -e -e 0.09
Notes: aStatistics reported: ADF and DF-GLS=t-statistic;
Ng-Perron=MZa-statistic; KPSS=LM-statistic; bCritical
values used: ADF=MacKinnon (36) one-sided p-values;
DF-GLS=Table 1 of Elliott at al. (20); Ng-Perron=Table
1 of Ng and Perron (40); KPSS=Table 1 of Kwiatkowski
et al. (33); c∆ denotes first differences of the series;
dPeriod: 1955-2013. The unit root tests over the period
1955-2011 yield fairly similar results; eNot carried out since
rt was found to be stationary in levels at the 5% level of
significance.
*, **, and *** respectively denote rejection of the null
hypothesis at the 10%, 5%, and 1% confidence levels.

Table 7. Granger non-causality tests of the VAR
models

Null hypothesis χ2 statistic p-value
Using pA

t (1955-2011)
rt ; ∆pA

t 19.42 0***
∆pA

t ; rt 5.09 0.08*
Using pB

t (1955-2013)
rt ; ∆pB

t 15.23 0***
∆pB

t ; rt 3.20 0.20
*, **, and *** respectively denote rejection of
the null hypothesis at the 10%, 5%, and 1%
confidence levels.
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Table 8. Variance decompositions from the ∆pt → rt recursive VARsa

Forecast Horizon Variance decomposition of ∆pt Variance decomposition of rt

F.S.E.b ∆pt rt F.S.E.b ∆pt rt
Using pA

t (1955-2011)
1 0.96 100 0 1.36 2.75 97.25
2 1.12 74.74 25.26 1.93 9.70 90.30
3 1.12 74.59 25.41 2.10 10.65 89.35
6 1.14 73.11 26.89 2.30 10.65 89.35
Using pB

t (1955-2013)
1 1.05 100 0 1.37 2.69 97.31
2 1.21 77.13 22.87 1.89 8.66 91.34
3 1.23 75.19 24.81 2.09 11.04 88.96
6 1.23 75.16 24.84 2.28 12.37 87.64
Notes: aPercentage points are shown; bForecast Standard Error.
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A Stability tests employed
The SupF, AvgF and ExpF tests are build on the traditional exogenous structural break tests, but
are constructed for unknown break points (τb) and allow to determine the most likely position of
τb:

SupF = max
τ1≤τb≤τ2

F(τb) (A.1)

AvgF =
1

k+1

τ2

∑
τb=τ1

F(τb) (A.2)

ExpF = ln

(
1

k+1

τ2

∑
τb=τ1

exp(
1
2

F(τb))

)
(A.3)

where τb denotes the date of the structural change which lies between τ1 and τ2; and k is the
number of regressors in the equation.

Bai and Perron (4) describe global optimization procedures for identifying the multiple breaks
which minimize the sums-of-squared residuals in a regression model. Regarding equation (13), we
have the following:

cp
t = X′tβj +ηt

t = Tj−1 +1, ...,Tj

j = 1, ...,v+1
(A.4)

where Xt is the vector of covariates with coefficients β ; and we specify Tj periods with v potential
breaks that produce v+ 1 regimes. Both the break dates (T1, ...,Tv) and the unknown regression
coefficients (β1, ...,βv) are explicitly treated as unknown and are simultaneously estimated; and the
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least squares estimates of β and v are obtained by minimizing the sum of squared residuals issued
from the estimation of the v regressions (St(T1, ...,Tv)):

argmin
T1,...,Tv

St(T1, ...,Tv) =
v+1

∑
j=1

Tj

∑
t=Tj−1+1

(
cp

t −X′tβj
)2 (A.5)

The global v-break optimizers are the set of breakpoints and corresponding coefficient
estimates that minimize sum-of-squares across all possible sets of v-break partitions. These global
breakpoint estimates can be used as the basis for several breakpoint tests, and we employed an
F-statistic in order to test for equality of the βj coefficients across multiple regimes.

Hansen (30)’s Lc test statistic is essentially an average of the squared cumulative sums of first
order conditions, in which the null hypothesis of stability is rejected for large values of Lc. The
joint stability test statistic is:

Lc =
1
n

n

∑
t=1

R′tV
−1Rt (A.6)

where in this case: t = 1,2, ...,n; V=ftf′t; ft = ( f1t , ..., fk+1,t), where:

fit =

{
xit η̂t , i = 1, ...,k
η̂t

2− σ̂2, i = k+1
, and the different xit are the elements that compose the vector

Xt; and Rt = (R1t , ...,Rk+1,t), where Rin = ∑
n
t=1 fit .

Finally, Elliott and Müller (21)’s quasi-local level (qLL) test is asymptotically point-optimal
for a broad set of breaking processes, so that it is not necessary to make specific assumptions
about the particular process governing the time variation of coefficients. It also has a number of
advantages: 1) it does not require computations for each possible combination of break dates; 2)
it requires no trimming of the data; and 3) it has superior size control in small samples than other
popular tests (particularly when the disturbances are heteroskedastic). The null hypothesis of joint
parameter stability is rejected if the test statistic is smaller (more negative) than the critical values
shown in Elliott and Müller (21).
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B Individual and joint diagnostic tests of the VAR models

Table B1. Individual and joint misspecification tests over the VAR(2) model using ∆pA
t

Autocorrelation Heteroskedasticity Normality

Individual testsa

Equation F-statistic p-value F-statistic p-value Statistic p-value

∆pA
t 1.00 0.37 1.58 0.21 0.14 0.93

rt 0.74 0.48 0.42 0.52 0.18 0.91
Joint testsb

Statistic p-value χ2 statistic p-value Statistic p-value

2.79 0.59 53.18 0.12 0.50 0.97
Notes: aTests employed: Serial correlation=Breusch-Godfrey LM;
Heteroskecasticity=ARCH; Normality=Jarque-Bera; bTests employed:
Serial correlation=LM; Heteroskedasticity=White (including cross terms);
Normality=Cholesky of covariance (Lutkepohl).

Table B2. Individual and joint misspecification tests over the VAR(2) model using ∆pB
t

Autocorrelation Heteroskedasticity Normality

Individual testsa

Equation F-statistic p-value F-statistic p-value Statistic p-value

∆pB
t 1.39 0.26 1.13 0.29 0.40 0.82

rt 0.41 0.67 0.93 0.34 0.51 0.78
Joint testsb

Statistic p-value χ2 statistic p-value Statistic p-value

3.02 0.56 55.99 0.07 0.52 0.97
Notes: aTests employed: Serial correlation=Breusch-Godfrey LM;
Heteroskecasticity=ARCH; Normality=Jarque-Bera; bTests employed:
Serial correlation=LM; Heteroskedasticity=White (including cross terms);
Normality=Cholesky of covariance (Lutkepohl).
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Table B3. Stability tests over the VAR(2) model

Equation Hansen’s Lc Elliott-Müller’s qLL statistica

Lc statistic p-value

Using ∆pA
t

∆pA
t 0.98 0.04** -18.89

rt 2.37 0.01** -21.25
Using ∆pB

t
∆pB

t 1.83 0.01** -18.34
rt 2.45 0.01** -22.34
Notes: aLong-run variance computed with 1 lags. Critical values
at 1%, 5% and 10%: -29.18, -25.28, -23.37 (21)
*, **, and *** respectively denote rejection of the null hypothesis
at the 10%, 5%, and 1% confidence levels.

C Impulse response functions from the VAR models following
the opposite order
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