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1 Introduction
The present paper deals with the pricing of defaultable bonds. That is, bonds which are

contingent on some defaultable claims. In order to achieve our goal we model the short rate
model as an affine process, which is standard in the literature, and the defaultable part as a
controlled Ito process. The latter assumption is useful since it will allow us to price defaultable
bonds assuming a portion of its debtors will default at some future time s.

In order to achieve our goal we link functionals of controlled Ito processes with the proba-
bility of first hitting densities of Brownian motion. In particular, in this work, the controlled
diffusion is the so-called 3-D Bessel bridge and the short rate is of Vasicek type. However
within the document we provide very general results regarding the probabilistic properties of
controlled processes which may allow in the future for a wider span of possibilities in the pric-
ing of defaultable bonds.

The main result, developed in Section 2, represents the price of defaultable bonds as a product
of a standard zero coupon bond, times a functional of a 3-D Bessel bridge. In turn, the latter
can be computed by solving numerically a Volterra integral equation. That is, the price can be
computed to any desired degree of accuracy.

From the technical point of view the mainl results presented are: we derive the densities of
the first time that the aforementioned Ito processes reach moving boundaries. Furthermore we
assume that the moving boundaries are real valued and twice continuously differentiable. That
is, the boundaries may be time varying. To this end we distinguish two cases: (a) the case
in which the process has unbounded state space before absorption, and (b) the case in which
the process has bounded state space before absorption. An example of the second case is the
density of the first time that a 3-D Bessel bridge started at y > 0, and absorbed at zero at time
s, hits a fixed level a, where y < a. That is, the 3-D Bessel bridge lives on (0,a) before being
absorbed at either level a, or at level 0 at time s, see for instance Hernandez-del-Valle (2012).
In particular, as an example of the usefulness of the techniques derived within this document
and in particular of the 3-D Bessel bridge we will model and price credit default swaps.

From a mathematical standpoint the main contribution of this work is to advance in producing
a general technique to derive hitting time densities using classical tools, such as Doob’s h-
transform, and the optional sampling theorem, in a rather straightforward way. From a financial
perspective the techniques described within may allow for a broader scope of possibilities in
the pricing of defaultable bonds.

The paper is organized as follows: In Section 2 we present and price defaultable bonds. The
remainder of the paper develops the necessary technical tools. In Section 3 an h-transform
and general notation are introduced. Namely we use an h-transform together with Girsanov’s
theorem to relate a class of diffusions with standard Brownian motion. Next, in Section 4, the
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unbounded state space case is discussed. That is, we study the case of processes whose state
space is not a closed set. Section 5, deals with problems where the processes live on a bounded
interval, i.e. the state space is a closed subset of R. Next, in Section 6, we define and describe
the relationship between classes B1 and B2. In Section 2 we present an application in finance
which uses some of the ideas described within this paper. We conclude in Section 7 with some
final comments and remarks.

2 Defaultable bonds via 3-D Bessel bridges.
In this section we price a defautable bond. To this end we model the short rate as a Va-

sicek process plus a defaultable term, which in this paper turns out to be a 3-D Bessel bridge.
Provided the previous assumptions, the pricing depends upon finding the expected value of a
functional of the 3-D Bessel bridge process. This choice is due to the fact that a 3-D Bessel
bridge describes the evolution of a process whose trajectories remain strictly postive until ab-
sorption at time s, which is in accordance with the assumptions of a defaultable asset.

As it turns out, we will show that the valuation problem can be transformed into finding the
first hitting time density of Brownian motion for some specific exponential boundary. Thus, the
bond can be expressed in terms of a Volterra integral equation, see Peskir (2001), which can be
solved numerically.

Before we proceed we should highlight that the the Vasicek process could be, in principle,
interchanged for any other affine process used in the bond-pricing literature, see Björk (2009).
Furthermore the defaultable term could be modeled in terms of some of the controlled diffusions
studied in detail in the remainder of the paper.

It is known that the short rate model r, [see pp. 374–381 in Björk (2009)], specifies the
zero-coupon bond price at time t and expiration date s as

p(t,s) = E
[
e−

∫ s
t r(u)du|Ft

]
, for 0≤ t < s < ∞,(1)

where F is the filtration generated by r. In particular, suppose that r is modelled as an Ornstein-
Uhlenbeck diffusion plus a “credit-index process” X conditioned to default at time s [see Pisto-
rius and Davis (2010)]. That is, r has the following dynamics

dr = (b− cr)dt +σdW +dX ,(2)

where b > 0 describes the long term mean level, c > 0 the speed of reversion, σ the volatility
of the process, and where W is a standard Brownian motion and X is modelled as a positive
process with continuous paths, and which reaches zero for the first time at expiration date s,
hence as a 3-D Bessel bridge.
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It follows, from (2), that the integral form representation of r is

r(s) = e−csr(0)+
∫ s

0
e−c(s−u)bdu+

∫ s

0
σe−c(s−u)dWu +

∫ s

0
e−c(s−u)dXu.

Notice that if W and X are independent, one can find the density of r at the time of default s, by
simulation.

Next, in order to price the zero-coupon bond p, we use the integration by parts formula to
show that it will be the product of the Vasicek affine term structure PV [see p. 382 in Bjork
(2009)]

PV (t,s) := A(t,s)e−B(t,s)r(t), where

B(t,s) :=
∫ s

t
e−c(u−t)du, and

A(t,s) := exp
[(

b
c
− σ2

2c2

)
(B(t,s)− s+ t)− σ2

4c
B2(t,s)

]
.

multiplied by

E
[
e−ce−cs−

∫ s
0 ce−c(s−u)Xudu

]
.(3)

That is

p(0,s) = PV (0,s) ·E
[
e−ce−cs−

∫ s
0 ce−c(s−u)Xudu

]
.(4)

In summary, in our model, the pricing of a defaultable bond turns out to be the product of a
standard zero-coupon bond multiplied by a functional of the defaultable credit-index process
X . Hence pricing can be achieved by simulation, however throughout the following lines we
provide an explicit representation of (3) in terms of a solution to a Volterra integral equation.
The latter is accomplished by linking (3) to a first hitting problem of standard Brownian motion.

Next we present the main result of this paper [for a more detailed derivation of the following
result see Hernandez-del-Valle (2013)] :

Lemma 2.1. Given that

h(t,x) =
x√

2πt3
exp
{
−x2

2t

}
(5)

W̃t = Wt−
∫ t

0
e−c(s−u)du(6)

f ′(t) = e−c(s−t)
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and

Ts := inf
{

t ≥ 0
∣∣∣∣Bt = a+

1
c

e−c(s−t)
}
, t,s,c > 0

= inf
{

t ≥ 0
∣∣∣∣Bt = a+

e−cs

c
+
∫ t

0
e−c(s−u)du

}
= inf

{
t ≥ 0

∣∣∣∣Bt−
∫ t

0
e−c(s−u)du = a+

e−cs

c

}
= inf

{
t ≥ 0

∣∣∣∣B̃t = a+
e−cs

c

}
,(7)

it follows that the price of the defaultable bond p(0,s) defined in (4), equals PV (0,s) times:

Ẽ[e−
∫

τ

0 f ′′(u)X̃udu] =
e− f ′(0)a0−1/2

∫
τ

0 ( f ′(u))2duh(τ,a0)

P(Ts ∈ dτ)/dτ
,(8)

where P stands for probability.

Proof. If we let W̃ be as in (6) and

f ′(t) = e−c(s−t)

f ′′(t) = ce−c(s−t).

It follows by Girsanov’s theorem

Z̃τ = exp
{
−
∫

τ

0
f ′(u)dB̃u−

1
2

∫
τ

0
( f ′(u))2du

}
.

The latter together with a0 = f (0), and Ts as in (7) yields

P(Ts < t) = Ẽ[Z̃τI(T<t)]

=
∫ t

0
e− f ′(τ)a0−1/2

∫
τ

0 ( f ′(u))2duẼ[e
∫

τ

0 f ′′(u)B̃udu|T = τ]h(τ,a0)dτ

=
∫ t

0
e− f ′(0)a0−1/2

∫
τ

0 ( f ′(u))2duẼ[e−
∫

τ

0 f ′′(u)X̃udu]h(τ,a0)dτ

where h is as in (5) and X̃ is a 3-D Bessel bridge.
From the previous identity we are now ready to identify (3) by taking derivative in the previ-

ous expression. This yields

P(Ts ∈ dτ)/dτ = e− f ′(0)a0−1/2
∫

τ

0 ( f ′(u))2duẼ[e−
∫

τ

0 f ′′(u)X̃udu]h(τ,a0)

which in turn leads to (8) as claimed. �

Remark 2.2. Identity (8) allows one to link functionals of 3-D Bessel bridges with first hit-
ting densities of Brownian motion. In particular, under mild assumptions, these densities can
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be expressed in terms of solutions to Volterra integral equations which in turn can be solved
numerically.

Remark 2.3. In order to verify numerically that our solution is correct it is useful to remember
the following inequalities

exp
{
−
∫

τ

0
f ′′(u)Ẽ0,a0 [X̃u]du

}
≤ Ẽ0,a0

[
e−

∫
τ

0 f ′′(u)X̃udu
]
≤ 1.

which are a direct consequence of Jensen’s inequality.

We are now ready to use (8) to value a defaultable bond (1). In order to do so we will have
to make some assumptions:

Example 2.4. For simplicity let the parameters of the Vasicek process be a = c = 1. Thus
a0 = 1+ e−s and by Jensen’s inequality

exp
{
−es

∫ s

0
euE0,a0[Xu]du

}
≤ Ẽ0,a0

[
e−e−s ∫ s

0 euX̃udu
]
≤ 1.

Furthermore,

Ẽ0,a0

[
e−

∫ s
0 e−(s−u))X̃udu

]
=

P(Ts ∈ ds)/ds · ee−s(1+e−s)+1/4(1+e−2s)

h(s,1+ e−s)

where P(Ts ∈ ds)/ds can be found by solving a Volterra integral equation. In Figure 1 the
rate, defined in (8), appears as a hard line. It is be interpreted as the rate at which a standard
zero-coupon is rescaled due to the effect of the defaultable part. Alternatively, the lower bound
obtained in Remark 2.2 through Jensen’s inequality, appears in the dotted line.

3 Preliminaries
In this section we present the notation and necessary tools used throughout the paper. Namely,

a special case of Doob’s h-transform [see Doob (1984)] and Girsanov’s theorem. The first is
used to relate the dynamics of SDEs whose local drift is a solution to Burgers equation with
standard Brownian motion. On the other hand, the second is used to relate the hitting times of
the latter with moving boundaries f .

Remark on notation 3.1. As in the analysis of diffusion processes, PDEs with derivatives with
respect to variables (t,x) are called backward equations, whereas PDEs with derivatives in
(s,y) are called forward equations.

Furthermore, throughout this work (i) B = {Bt ,Ft}t≥0 stands for one-dimensional standard
Brownian motion. (ii) For a given function, say w, partial differentiation with respect to a given
variable, say x, will be denoted as wx.
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FIGURE 1. The dotted line is the lower bound obtained from Jensen’s inequality. The
hard line represents the true value of the defaultable portion (3) of the bond, with a =
c = 1.

Remark 3.2 (Optimal Control). The processes described within this document can be consid-
ered as controlled diffusion processes with dynamics

dXt = µ(t)dt +
√

DdWt 0≤ t ≤ s(9)

where µ is the control variable. In fact, if we define a Lagrangian function in the form

LD(µ) =−
1

2D
µ

2.
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One can show, using dynamic programming, that an optimal control µ∗ which minimizes the
cost functional

J(t,x,µ) := Et,x

∫
τ

t
LD(µ(s))ds+ψ(τ,X(τ)),

leads to a solution of Burgers equation. See Hongler (2004).

Theorem 3.3. Let h be of class C1,2(R+×R) as well as a solution to the backward heat equa-
tion

−ht =
1
2

Dhxx.(10)

Furthermore, consider processes X, and Y which respectively satisfy (at least in the weak
sense), the following equations (each under their corresponding measures P, and Q),

(P) dXt = D
hx(t,Xt)

h(t,Xt)
dt +
√

DdBt(11)

(Q) dYt =
√

DdBt .(12)

Moreover, suppose that f is real valued and integrable. Then the following identity holds

EP
t,x[ f (Xτ)] = EQ

t,x

[
h(τ,Yτ)

h(t,x)
f (Yτ)

]
.(13)

Proof. For the proof, see Theorem 2.10 in Hernandez-del-Valle (2011). �

We recall Girsanov’s theorem (Ito’s lemma) in the case in which the drift is a deterministic
function of time.

Lemma 3.4. Let f (·) be a real-valued differentiable function, h a solution of the one-dimensional
backward heat equation, and processes Z and S have the following dynamics

dZt = f ′(t)dt +dBt

dSt = − f ′(t)StdBt

for 0≤ t < ∞, under some meaure Q. Then

S· ·h(·,Z·)

is a Q-martingale.

Proof. From Ito’s lemma

dh(t,Zt) = ht(t,Zt)dt +hz(t,Zt) f ′(t)dt

+hz(t,Zt)dYt +
1
2

hzz(t,Zt)dt

= hz(t,Zt) f ′(t)dt +hz(t,Zt)dYt .
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Hence,

d [St ·h(t,Zt)] = f (t,Zt)dSt +Stdh(t,Zt)

+dh(t,Zt) ·dSt

= h(t,Zt)
[
− f ′(t)StdYt

]
+Sthz(t,Zt) f ′(t)dt +Sthz(t,Zt)dYt

−hz(t,Zt)St f ′(t)dt

=
[
Sthz(t,Zt)− f ′(t)Xth(t,Zt)

]
dYt .

�

4 Unbounded state space
In this section, we specialize to the case in which the process X , with dynamics as in (14),

has unbounded state space before absorption. That is, the state space is not a closed set of R. In
particular we find the density of the first time that X hits a real-valued and twice continuously
differentiable function f .

This will be achieved by a consecutive and direct application of Doob’s h-transform, Gir-
sanov’s theorem and the optional sampling theorem. However, one should take into the account
the possibility that the state space of the process is a half open set of R. Examples of such
processes are the 3-D Bessel and 3-D Bessel bridge respectively.

Remark 4.1. Henceforth let h be a solution to the one-dimensional backward heat equation
(10). Let process X have the following dynamics

dXt =
hx(t,Xt)

h(t,Xt)
dt +dBt , X0 = y ∈

{
R or
R+

,(14)

for 0≤ t < ∞. And assume the drift hx/h satisfies the Ito conditions.

We will use as well the following:

Definition 4.2. Given a constant a ∈ R and a real-valued, twice continuously differentiable
function f (·)—which we refer to as a “moving boundary”—B is a standard Brownian motion,
and X is a solution to (14) we define the following stopping times

T := inf
{

t ≥ 0|Xt = a+
∫ t

0
f ′(u)du

}
y 6= a(15)

T B := inf
{

t ≥ 0|Bt = a+
∫ t

0
f ′(u)du

}
.
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Furthermore, let pB
f (·) be the density of T B, that is, the density of the first time that a one-

dimensional Wiener process reaches a deterministic moving boundary f . For a detailed histor-
ical and technical account of the problem of finding pB

f (·) as a solution of an integral equation
see Peskir (2001).

The main result of this section is the following:

Theorem 4.3. Suppose that X has dynamics as in (14), T is as in (15), and a 6= y. Then

Py(T ∈ du) =
h(u,a+

∫ u
0 f ′(v)dv)

h(0,y)
pB

f (u)du,

for u≥ 0.

Proof. For T as in (15), it follows from Theorem 3.3 that

Py(T < t) = Ey
[
I(T<t)

]
= EQ

y

[
h(t,Yt)

h(0,Y0)
I(T<t)

]
.

From Girsanov’s theorem, and given that Ỹ is a Q̃-Wiener process we have

= EQ̃
y

[
e−

∫ t
0 f ′(u)dỸu− 1

2
∫ u

0 ( f ′(u))2du h(t,Ỹt +
∫ t

0 f ′(u)du)
h(0,y)

I(T<t)

]
.

Finally, from Lemma 3.4 and the optional sampling theorem

= EQ
y

[
e−

∫ T
0 f ′(u)dỸu− 1

2
∫ T

0 ( f ′(u))2du h(T,a+
∫ T

0 f ′(u)du)
h(0,y)

I(T<t)

]

=
∫ t

0

h(u,a+
∫ u

0 f ′(v)dv)
h(0,y)

pB
f (u)du.

�

Examples of processes which satisfy equation (14) and that have unbounded domain before
hitting the boundary f are:

Examples 4.4. (i) Standard Brownian motion, where h(t,x) = c.
(ii) Brownian motion with linear drift, where

h(t,x) = e±λx+ 1
2 λ (s−t), (t,x) ∈ R+×R.

(iii) Brownian bridge, where

h(t,x) =
1√

2π(s− t)
e−

x2
2(s−t) , (t,x) ∈ [0,s]×R.

(iv) 3D Bessel process, where h(t,x) = x.
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(v) 3D Bessel bridge, where

h(t,x) =
x√

2π(s− t)3
e−

x
2(s−t) , (t,x) ∈ [0,s]×R+.

Remark 4.5. (On numerical procedure) Throughout the remainder of the paper the simulations
used are as follows: (1) We first discretize the corresponding SDE, (2) The Gaussian random
noise is generated with the pre established library in R.

Example 4.6. In Figures 2 and 3 the theoretical density and distribution of the first time that a
Brownian bridge started at y = 1, absorbed at time s = 3 at level c = 0 hits the linear barrier

f (t) = 2− t, t ≥ 0

is compared with n = 5500 simulations. See Durbin and Williams (1992).

Example 4.7. In Figures 4 and 5, the theoretical densities and distributions of the first time that
a 3-D Bessel process started at y = 3 and absorbed at time s = 4, reaches level a = 1. For a
general overview of the 3D Bessel bridge, see Revuz and Yor (2005). The case in which a level
is reached from below is in general studied in Pitman and Yor (1999) or Hernandez-del-Valle
(2012).

5 Bounded domain
In this section, we specialize to the case in which the process X , with dynamics as in (14),

has bounded state space before absorption. The main technical difference with the problem
discussed in the previous section, is that one has to take into account the fact that the process X
lives within a bounded set. In order to deal with this fact, let us first recall the following facts:

Given that B is a one-dimensional Wiener process started at y and

T B
0 := inf{t ≥ 0|Bt = 0}(16)

T B
a := inf{t ≥ 0|Bt = a} , 0 < y < a.(17)
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The following identities hold

Py(T B
a ∧T B

0 ∈ dt) :=
1√

2πt3

∞

∑
n=−∞

[
(2na+ y)exp

{
−(2na+ y)2

2t

}

+(2na+a− y)exp
{
−(2na+a− y)2

2t

}]
dt,

Pt,y(T B
a ∈ s,T B

0 > s) :=
1√

2π(s− t)3

∞

∑
n=−∞

[
(2na+a− y)

×exp
{
−(2na+a− y)2

2(s− t)

}]
,

Py(T B
0 ∈ dt) :=

y√
2πt3

exp
{
−y2

2t

}
dt.

See for instance Chapter 2, Section 8 in Karatzas and Shreve (1991).

The main result of this section is the following:

Theorem 5.1. Given that X has dynamics as in (14), T B
0 is as in (16), T B

a is as in (17), and T is
as in (15). We have for 0≤ t ≤ s and 0 < y≤ a that

Py(T ∈ du) =
h(u,a)
h(0,y)

[
Py(T B

a ∧T B
0 ∈ du)−Py(T B

0 ∈ du)
]
,

where 0≤ u≤ s.

Proof. We follow the proof of Theorem 4.3. However, we must take into account the fact that
the Q-Wiener process Y is absorbed at zero. Given that T is as in (15)

Py(T < t) = Ey
[
I(T<t)I(T0>t)

]
= EQ

y

[
h(t,Yt)

h(0,Y0)
I(T<t,T0>t)

]
= EQ

y

[
h(T,a)
h(0,Y0)

I(T<t,T0>t)

]
,

where the last line follows from the optional sampling theorem. Finally recall the identity

Py(T < t,T0 > t) = Py(T0 > t)−Py(T > t,T0 > t)

= Py(T0 > t)−Py(T ∧T0 > t)

= Py(T ∧T0 < t)−Py(T0 < t).

�
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Some examples of processes which fall within this category are for instance:

Examples 5.2. Some examples are: (i) 3D Bessel process (reaching a fixed level from below)
(ii) 3D Bessel bridge (reaching a fixed level from below), see Hernandez-del-Valle (2012). Re-
garding the first hitting probabilities of general Bessel processes see Wendel (1980), or Betz
and Gzyl (1994a, 1994b).

Example 5.3. In Figure 6 the theoretical distribution of the first time that a 3D Bessel process
reaches a = 1.5 from below, is compared with a simulation n = 5500 (see hard line).

Example 5.4. If we set

ha(s− t,x) := Pt,x(T ∈ s,T0 > s),

and define a process Ỹ to be as in

dỸt =
ha

y(s− t,Ỹt)

ha(s− t,Ỹt)
dt +dBt , 0 < t < s

Ỹs = a.

One can show that this process has state space (0,a) for t ∈ [0,s) [see Hernandez-del-Valle
(2011)]. In Figure 7 the density and distribution of the Wiener process, started at x = 1/2,
absorbed at zero and that reaches level a = 2 for the first time at s = 2 is plotted at t = 1 and
t = 7/8.

6 Heat polynomials and Burgers equation
In this section we provide a characterization of the results described in Sections 4 and 5.

In particular we show that the only linear combination of two solutions to Burgers equation,
which are themselves solutions to Burgers equation is given in terms of the first derivative with
respect to the state space x of the fundamental solution to the heat equation (10). The previous
statement, in our context, links the density of the 3-D Bessel bridge, with both the densities of
the 3-D Bessel process and Brownian bridge respectively.

To this end let us first introduce the following classification of SDEs.

Definition 6.1. We will say that process X, which satisfies the following equation

dXt = µ(t,Xt)dt +dBt ,

is of class Bn, n = 1,2, . . . , if its local drift µ can be expressed as

µ(t,x) =
n

∑
j=1

h j
x(t,x)

h j(t,x)
.(18)

Where each h j is a solution to the backward heat equation (10).
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Making use of this classification it follows that:

Remark 6.2. Processes X1, X2, and X3 which respectively satisfy the following equations
(P1) dX1(t) = 1

X1(t)
dt +dBt

(P2) dX2(t) =−X2(t)
s−t dt +dBt

(P3) dX3(t) =
[

1
X3(t)
− X3(t)

s−t

]
dt +dBt

(19)

are of class B1. That is, the 3-D Bessel process X1, the Brownian bridge X2, and the 3-D Bessel
bridge have a local drift which is a solution to Burgers equation. This statement is verified by
using the following solutions to the heat equation correspondingly k(t,x) = x, g(t,x) = 1√

2π(s−t)
exp
{
− x2

2(s−t)

}
h(t,x) = x√

2π(s−t)3
exp
{
− x2

2(s−t)

}
,

(20)

together with the Cole-Hopf transform which relates Burgers equation with the heat equation.

Examples of processes which are not B1 are the following.

Example 6.3. The Bessel process of odd order 2n+1, n = 1,2, . . . is of class Bn.
Recall that the Bessel process of order m ∈ N is the solution to

dXt =
m−1
2Xt

dt +dBt ,

if m = 2n+1

dXt =
(2n+1)−1

2Xt
dt +dBt

=
n
Xt

dt +dBt

=

[
kx(t,Xt)

k(t,Xt)
+ · · ·+ kx(t,Xt)

k(t,Xt)

]
dt +dBt ,

where k is as in (20).

However there exists a least one important process which is both B1 and B2.

Proposition 6.4. The 3-D Bessel bridge process X3, which solves (19.P3) is B1 and B2.

Proof. it follows by verifying that for k, g, and h as in (20) the following identity holds

hx

h
=

kx

k
+

gx

g
.

�
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In turn, this feature of process X3 [i.e. a process that is both B1 and B2], leads to some
interesting properties. [See Hernandez-del-Valle (2011).] The next natural question to ask is if
there are more processes with such property.

In this direction we will show that process X3 is the only element of both B1 and B2 in the
case in which the generating functions w, of class B1, are heat polynomials. [That is if w is a
solution to the heat equation and wx/w models the local drift of a process X]

Definition 6.5. (Heat polynomials) [Widder and Rosenbloom (1959)]. A heat polynomial
v j(x, t) of degree j is defined as the coefficient of zn/n! in the power series expansion

exz+ 1
2 z2t =

∞

∑
n=0

vn(x, t)
zn

n!
.(21)

An associated function wn(x, t) is defined as

wn(x, t) = g(t,x)vn (x,−t)(t/2)−n,(22)

where g, as in (20), is the fundamental solution to the heat equation.

Remark 6.6. Observe that if processes X1, X2, and X3 are as in (19) then their local drifts can
be described in terms of heat polynomials, Definition 6.5. In the case of X1 its corresponding
polynomial is v1. Alternatively for X2 and X3 their corresponding polynomials are w1 and w2

respectively.

The main result of this section is the following.

Theorem 6.7. If process X ∈B1. [That is X is a solution to

dXt =
hx(t,Xt)

h(t,Xt)
dt +dBt

and h solves the backward heat equation −ht =
1
2hxx.] And h is either a heat (21) or derived

heat (22) polynomial. Then the only process which is also B2 is the 3-D Bessel bridge X3,
which has dynamics as in (19.P3).

Proof. Given that vn and wn are as in (21) and (22) respectively; and letting w′ stand for differ-
entiation with respect to the first variable we have that

w′0(x, t)
w0(x, t)

= −x
t

and
v′1(x, t)
v1(x, t)

=
1
x
.

Next, since [see p. 225 in Rosenbloom and Widder (1959)]

w′n−1(x, t) =−
1
2

wn(x, t)
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it follows that
w′n(x, t)
wn(x, t)

= −x
t
+

2n
t

wn−1(x, t)
wn(x, t)

= −x
t
− n

t

[
wn−1(x, t)
w′n−1(x, t)

]
=

w′0(x, t)
w0(x, t)

− n
t

[
wn−1(x, t)
w′n−1(x, t)

]
.(23)

Alternatively from (22)

wn−1

w′n−1
=

g(x, t)vn−1(x,−t)(t/2)−n+1

−1
2wn(x, t)

=
g(x, t)vn−1(x,−t)(t/2)−n+1

−1
2g(x, t)vn(x,−t)(t/2)−n

= −tvn−1(x,−t)
vn(x,−t)

.

This implies, from (23), that

w′n(x, t)
wn(x, t)

=
w′0(x, t)
w0(x, t)

− n
t

[
wn−1(x, t)
w′n−1(x, t)

]
=

w′0(x, t)
w0(x, t)

− n
t

[
−tvn−1(x,−t)

vn(x,−t)

]
=

w′0(x, t)
w0(x, t)

+n
vn−1(x,−t)
vn(x,−t)

.(24)

However, since

v′n(x, t) = nvn−1(x, t)

[see equation (1.9) in Widder and Rosenbloom (1959)] we have, from (24), that

w′n(x, t)
wn(x, t)

=
w′0(x, t)
w0(x, t)

+
nvn−1(x,−t)

vn(x,−t)

=
w′0(x, t)
w0(x, t)

+
v′n(x,−t)
vn(x,−t)

.

In general, since vn(x, t) is a solution to the backward heat equation, then vn(x,−t) is a solution
to the forward equation. This is true as long as n > 1. However if n = 1, v1(x,−t) is also a
solution to the backward equation becuase it does not depend on t. In this case we have that

w′1(x, t)
w1(x, t)

=
x
t
+

1
x
,

as claimed. �
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7 Concluding remarks
The main objective of this document is to price defaultable bonds, in order to achieve our

goal we make use of standard affine pricing models and controlled diffusions. In particular we
obtain an expression in terms of the Vasicek and 3-D Bessel bridge processes. A generalization
of this result as well as further applications is work in progress.

From a technical point of view we study processes X , which have local drift modeled in
terms of solutions to Burgers equation. In particular, we find the density of the first time that
such processes hit a moving boundary. Next, we propose a classification of SDEs in terms of
solutions of Burgers equation. We say that process X is of class B j if its local drift can be
expressed as a sum of j solutions to Burgers equation.

We note that the 3-D Bessel process, the 3-D Bessel bridge, and the Brownian bridge are all
B1. However we show that the 3-D Bessel bridge is of class B2 as well . Furthermore, we
show, that the 3-D Bessel bridge is the only process which satisfies this property if the solutions
of Burgers equation is constructed by use of heat polynomials. A more detailed study of this
classification is work in progress.

References
[1] Alili, L. and P. Patie (2010) Boundary–crossing identities for diffusions having the time–inversion property.

J. Theor. Probab., 23, No. 1, pp. 65–84.
[2] Andel J. (1967) Local asymptotic power and efficiency of tests of Kolmogorov-Smirnov type, Ann. Math.

Stat., 38 No. 6, pp. 1705–1725.
[3] Betz, C. and H. Gzyl (1994a) Hitting spheres from the exterior. Ann. Probab., 22, pp. 177–179.
[4] Betz, C. and H. Gzyl (1994b) Hitting spheres with Brownian motion and Sommerfeld’s radiation condition.

J. Math. Anal. Appl., 182, pp. 301–308.
[5] Björk (2009). Arbitrage Theory in Continuous Time, Oxford.
[6] Carr, P. and M. Schröeder (2004) Bessel processes, the integral of geometric Brownian motion, and Asian

options. Theory Proab. Appl., 48 (3), pp. 400–425.
[7] Davis, M. H. A. and M. R. Pistorius (2010) Quantification of counterparty risk via Bessel bridges. Available

at SSRN: http://ssrn.com/abstract=1722604.
[8] Durbin, J. and D. Williams (1992) The first-passage density of the Brownian motion process to a curved

boundary. J. Appl. Probab. 29 No. 2 pp. 291–304.
[9] Fleming, W. H. and H. M. Soner (2006) Controlled Markov Processes and Viscosity Solutions, Springer-

Verlag, Second edition, Berlin.
[10] Gikhman, I. I. (1957) On a nonparametric criterion of homogeneity for k samples. Theory Probab. Appl., 2,

pp. 369–373.
[11] Hamana, Y. and H. Matsumoto (2013). The probability distribution of the first hitting time of Bessel pro-

cesses. Trans. Amer. Math. Soc. 365, pp. 5237–5257.



17

[12] Hernandez-del-Valle, G. (2011) On changes of measure and representations of the first hitting time of a
Bessel process. Comm. Stoch. Anal. 5 No. 4, pp. 701–719.

[13] Hernandez-del-Valle, G. (2012) On the first time that a 3-D Bessel bridge hits a boundary. Stoch. Models, 28
No.4. pp. 649–662.

[14] Hernandez-del-Valle, G. (2013) On hitting times, Bessel bridges, and Schrödinger’s equation. Bernoulli, 19
(5A), pp. 1559–1575.

[15] Hongler, M.-O., Soner, H. M. and L. Streit (2004) Stochastic control for a class of random evolution models.
Appl. Math. Optim., 49, pp. 113–121.

[16] Jackson, L. E., Kliesen, K. L. and M. T. Owyang (2015) A measure of price presures. Federal Reserve Bank
of St. Louis REVIEW, 97, No. 1, pp. 25–52.

[17] Karatzas, I. and S. Shreve (1991) Brownian Motion and Stochastic Calculus, Springer-Verlag, New York.
[18] Kiefer, J. (1959) K-sample analogues of the Kolmogorov-Smirnov and Cramér-von Mises tests. Ann. Math.

Stat., 30, pp. 420–447.
[19] Kolmogorov, A. (1933) Sulla determinazione empirica di una legge di distribuzione. G. Inst. Ita. Attuari, 4,

p. 83.
[20] Peskir, G. (2001) On integral equations arising in the first-passage problem for Brownian motion. J. Integral

Equations Appl., 14, pp. 397–423.
[21] Pitman, J. and M. Yor (1999) The law of the maximum of a Bessel bridge. Electron. J. Probab., 4, pp. 1–35.
[22] Revuz, D. and M. Yor (2005) Continuous Martingales and Brownian Motion, Springer-Verlag, New York.
[23] Rosenbloom, P. D. and D. V. Widder (1959). Expansions in terms of heat polynomials and associated func-

tions, Transactions of the American Mathematical Society, 92, pp. 220–266.
[24] Smirnov, N. V. (1948) Tables for estimating the goodness of fit of empirical distributions. Ann. Math. Stat.,

19, p. 279.
[25] Salminen, P. and M. Yor (2011) On hitting times of affine boundaries by reflecting Brownian motion and

Bessel processes. Periodica Math. Hungar., 62, No. 1, pp. 75–101.



18

Histogram of 5500 sim.

store

F
re

q
u

e
n

cy

0 500 1000 1500 2000 2500 3000

0
2

0
0

4
0

0
6

0
0

8
0

0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
.0

0
.2

0
.4

0
.6

0
.8

Theoretical density

time

0.0 0.5 1.0 1.5 2.0 2.5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Simulations n=5500

time

P
ro

b
.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Theoretical prob.

time

P
ro

b
.

FIGURE 2. (Example 4.6). The graph is plotted in R. The upper left graph is the
histogram of the (simulated) first time that a Brownian bridge started at y = 1,
and absorbed at c = 0 at time s = 3, reaches the linear boundary f (t) = 2− t.
In the upper right frame we have its theoretical density. In the lower left we
have the simulated distribution, and finally on its right we have its theoretical
counterpart.
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FIGURE 3. (Example 4.6). The graph is plotted in R. The dotted line is the
theoretical probability. The hard line is a simulation with n = 5500.
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FIGURE 4. (Example 4.7). The graph is plotted in R. The upper left graph is the
histogram of the (simulated) first time that a 3-D Bessel bridge started at y = 3,
and absorbed at s = 4, reaches level a = 1. In the upper right frame we have the
its theoretical density. In the lower left we have the simulated distribution, and
finally on its right we have its theoretical counterpart.
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FIGURE 5. (Example 4.7). The graph is plotted in R. The dotted line is the
theoretical probability. The hard line is a simulation with n = 4500.
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FIGURE 6. (Example 4.7). The graph is plotted in R. The dotted line is the
theoretical probability with a= 1.5. The hard line is a simulation with n= 5500.
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FIGURE 7. (Example 5.3). The graphs are plotted in R. The upper left graph
is the density of a Wiener process (started at x = 1/2), absorbed at zero and
that reaches a = 2 for the first time at s = 2; evaluated at t = 1. Th upper right
graph is the corresponding distribution at t = 1. In the lower left figure we have
the density at time t = 7/4. Finally, the lower right panel is its corresponding
distribution.


