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risk of countries and companies.  In this work we develop  a closed form procedure to value a CDS in
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disponibles, los CDS son utilizados para monitorear el riesgo crediticio de países y compañías. En este
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1 Introduction
Credit default swaps were first introduced by Blythe Masters in 1994, with the purpose of

incorporating the probability of default of a given creditor in the valuation of financial contracts.
In turn, a common way to model the time of default is using the first passage time probability of
Brownian motion below some barrier. This approach, used to value CDS’s, goes back at least
as far as [4] and has subsequently been studied in [9, 5, 22, 8, 11] to mention just a few.

This work is two-folded. On the one-hand, we develop a new procedure to value a CDS by
modeling the so-called credit rate index of any given creditor as a δ -dimensional Bessel bridge.
By doing this, we ensure that default happens exactly at time τ , and not before. This contrasts,
with the standard model of a Brownian bridge were default could happen at any time between
0 and τ . On the other hand, we derive a closed form expression for a defaultable zero-coupon
bond. Once again, the Bessel bridge plays a fundamental role in our derivation. In particular,
these processes seem to capture the nature of a defaultable asset in the sense that they remain
stricly postive before default [3].1

The paper is organized as follows. We start, in Section 2, with a general description of a
CDS as well as by describing the probability of default of the so-called credit-index process.
In particular, the probability of default of the credit-index process will be studied in detail in
the subsequent sections. In Section 3 we recall what a Bessel bridge is and give the necessary
results to characterize it using stochastic differential equations up to the time it hits zero. This
is important from a financial stand point, since default can be interpreted as the first time that
a price process (or equity process) hits zero. In Section 4 we use an h-transform in a class of
diffusions in order to study the hitting–time problem, and we apply the results to the Bessel
bridge. That is, we derive the density of the first time in which a creditor defaults. In Sections
5 we additionally carry out particular space transformations to take a new point of view of the
original problem, which helps to adapt the ideas of Section 4 to another class of diffusions. In
fact, these results shed light into a previously unknown correspondence between the CIR and

1When δ is a positive integer, recall that the Bessel process describes the dynamics of the Euclidean norm of
a δ–dimensional Brownian motion (BM). On the other hand, a Bessel bridge is described as a Bessel process
conditioned to reach a specific point at some time T > 0. In this we work, we first describe a technique for
calculating the density of the first time that a δ–dimensional Bessel bridge hits a given level b ∈ R. Next, we
identify a class of diffusion processes for which first hitting–time densities can be calculated in a similar fashion
as for the Bessel bridges.
The problem of finding the first hitting–time density of diffusions may be traced back at least to Schrödinger [38].
Exact densities of hitting times for Brownian motion have been found in the case of reaching a linear boundary
[13, 14], a square root boundary [7, 10, 37, 12, 39], and a parabolic boundary [17, 35, 23]. Consult also [31, 28] to
see integral equations coming from the first passage time problem. In this context, one very well studied diffusion
is the Bessel process [6, 18, 26, 27, 36, 19]; in particular, for Bessel bridges see [15, 20]. An application in
financial mathematics of Bessel bridges can be found in [11].
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Vasicek processes. In Section 6 we develop explicitly the valuation procedure of a defaultable
bond. We end up in Section 7 with some comments and conclusions.

2 Credit default swaps
A credit default swap is an insurance scheme where the buyer of this protection pays a flow

of settlements (or a continuous spread c), until the time of maturity s, as long as default does
not occur. In the case in which default takes place, the buyer delivers a bond on the underlying
defaulting asset in exchange of its face value. Without loss of generality, it is standard to
normalize the notional value of the bond to 1. Thus, the protection seller’s contingent payment
is generally expressed as 1−R, where R is the so-called recovery rate, for R ∈ (0,1).

In order to find the price of a CDS, let us first introduce the following concepts: Given that
X is the credit-index process (or in general any defaultable asset), time of default Tα is the time
at which X reaches a critical level α for the first time:

Tα := inf{t ≥ 0|Xt = α} .

Thus, the probability that asset X defaults before time t, is

H(t) := P(Tα ≤ t).

Hence for a CDS contract written on an underlying X , assuming that premium payments are
made at times ti and the available maturities are Tj = tk( j), j = 1, . . . ,n. We have that for
contract j there is an upfront premium π0

j and a running premium rate π1
j (with accrual factors

δi). Denote by p(0, t j) the price at time zero of a zero cupon risk-free bond with maturity t j.
Assuming the risk-less bond price to be independent of credit-worthiness of the underlying, the
‘fair-premium’ (π0

j ,π
1
j ) satisfies

π
0
j +π

1
j

k

∑
i=0

δi p(0, ti)H(ti) = (1−R)
k

∑
i=0

p(0, ti) [H(ti−1)−H(ti)] .

In this work we find closed form expressions for the function H in the case in which in the
credit-worthiness process is modelled as a δ -dimensional Bessel bridge. One of the main rea-
sons that justifies the use of Bessel bridges to model process X is that is will remain strictly
positive until default, as opposed to (for instance) a Brownian bridge. A more detailed descrip-
tion of the so-called Bessel bridges will be provided throughout the remainder of this work.

3 Preliminaries
• In this paper we consider a probability space over Ω :=C([0,∞)) endowed with a filtration
{Ft}t≥0, that satisfies the usual hypotheses, and that supports a Brownian motion W . As done
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in Definition 3 in [16], we define the squared Bessel process Z with dimension δ ∈ R and
starting at Z0 := a ∈ R as the unique strong solution of

dZt = δdt +2
√
|Zt |dWt , Z0 = a.

Now, let us define the δ ∈ R-dimensional Bessel process by

Yt := sgn(Zt)
√
|Zt |, where sgn(x) =


−1 x > 0
0 x = 0
1 x > 0

starting at Y0 = sgn(a)
√
|a|. It is also said that Y has index ν := δ

2 −1.

• If δ > 0 one can deduce from the Apendix A.1 in [16] that Y satisfies the following stochastic
differential equation (SDE) up to time τ0 := inf{s > 0 : Ys = 0}:

(1) dYt =
δ −1

2
1
Yt

dt +dWt , Y0 := a > 0, t ∈ [0,τ0).

It is known that for δ ≥ 2, τ0 = ∞ almost surely. Moreover, from Section 3 in [16], it turns out
that when δ < 0 and a > 0, the Bessel process Y is solution of

(2) dYt =
−δ −1

2
1
Yt

dt +dWt , Y0 := a > 0,

whenever t ∈ [0,τ0), see also Remark 5.1 below. And for δ ∈ R and a < 0, the square Bessel
process can be seen as the negative of a square Bessel process starting at −a > 0 with the same
dimension δ . Thus, in this case, the Bessel process Y is such that −Y is solution of (1) starting
at −a. All these considerations allow us to use equation (1) to analyze Y for general δ ,a ∈ R,
at least up to the time it hits zero.

• Let T > 0. The process X := {Xs, s∈ [0,T ]}will denote the δ -Bessel bridge with X0 := a∈R
and XT = c ∈ R. Loosely speaking, X is the process Y conditioned to take the value c at time
T . Following [32, p.463], let us rigorously define the process X . Let P denotes the probability
measure on Ω that defines the Bessel process. For u ∈ R and measurable subsets A ⊂ Ω, it is
known (see [25]) that there exists a probability kernel u×A 7→ ηu(A) such that

(3) P(A) =
∫
R

ηu(A)µ(du),

where µ is the distribution of YT . The following expression is an intuitive idea of what ηu is,

ηu(A) = P(A|YT = u).

With u = c, the probability measure ηc on Ω, denoted Q, defines a stochastic process called the
Bessel bridge X of dimension δ starting at a and such that it finishes at c at time T .
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To introduce our first result, Theorem 3.2, we recall the following facts.

Remark 3.1. The density of the Bessel process with index ν := δ/2−1≥−1 and initial state
x > 0 [32, p.446] is given by

(4) pt(x,y) :=
1
t

yν+1

xν
e−

x2+y2
2t Iν

(xy
t

)
, t > 0,

where Iν(x) is the modified Bessel function (with index ν) of the first kind defined as

(5) Iν(x) :=
∞

∑
k=1

(x/2)2k+ν

k!Γ(ν + x+1)
.

In the next theorem, we apply Itô’s formula to Bessel processes Y of dimension δ > 0. For
δ ∈ (0,1), Y is not semimartingale, except before the first time it reaches zero. The following
result characterizes the Bessel bridge with dimension δ > 0; in the literature, this is usually
done only for δ ≥ 2 (see e.g. [32, p.468]). Moreover, from the discussion above, using the next
theorem we can derive SDE to work with Bessel bridge with δ < 0.

Theorem 3.2. i) Fix δ > 0, a > 0, and c = 0, and let Zt := h(t,Yt)/h(0,a), where

(6) h(t,x) :=
T δ/2

(T − t)δ/2 e−
x2

2(T−t) .

Then for t < T and A ∈Ft

Q(A) =
∫

A
ZtdP.

ii) The process X satisfies the following SDE when t ∈ [0,τ0),

(7) dXt =

(
δ −1
2Xt

− Xt

T − t

)
dt +dWt , X0 = a > 0,

where τ0 := inf{s > 0 : Xs = 0}

To prove Theorem 3.2, we need the following lemma.

Lemma 3.3. Fix δ > 0 and c > 0. Let Y be the δ -Bessel process with measure P, and X the
Bessel bridge defined by measure Q in Theorem 3.2. Then, for 0 < t < T ,

(8)
dQ
dP
|Ft =

T
T − t

exp
{
− Y 2

t +c2

2(T−t)

}
exp
{
−a2+c2

2t

} aν

Y ν
t

Iν

( cYt
T−t

)
Iν

(ac
T

) ,

with Iν as in Remark 3.1.

Proof. Let {I(n)k }
n
k=1, for n= 1,2, . . ., be a sequence of disjoint partitions of R such that limn→∞ I(n)k

is a single point in R for each k. Then, appealing to equation (3), we can write∫
R

ηu(A)µ(du) = P(A) =
n

∑
k=1

P(A, YT ∈ I(n)k ).
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Since this is valid for each n = 1,2, . . ., we have that∫
R

ηu(A)µ(du) = lim
n→∞

n

∑
k=1

P(A|YT ∈ I(n)k )P(YT ∈ I(n)k ).

We can then conclude that
ηu(A) = lim

n→∞
P(A|YT ∈ I(n)k ).

Having this, we can now proceed as follows. Let A ∈Ft , with t < T . Let In be a sequence
of intervals such that c ∈ In and limn→∞ In = {c}. Appealing to the theory of derivatives of
measures (see Chapter 7 of [34]) and using the Markov property we have

Q(A) = lim
n→∞

P(A|YT ∈ In) = lim
n→∞

P(A, YT ∈ In)

P(YT ∈ In)

= lim
n→∞

E[P(A,YT ∈ In|Yt)]

P(YT ∈ In)

= lim
n→∞

∫
A

P(YT ∈ In|Yt)

P(YT ∈ In)
dP.

But

lim
n→∞

P(YT ∈ In|Yt)

P(YT ∈ In)
=

pT−t(Yt ,c)
pT (a,c)

,

with pt(x,y) as in (4). Therefore, after appealling to theorem of bounded convergence, we can
confirm that the above limit is precisely (8). �

Proof. (of Theorem 3.2)
From Lemma 3.3, letting c→ 0 in (8), we obtain i). This is indeed true because, by (5),

lim
c→0

aν

xν

Iν(xc/(T − t))
Iν(ac/T )

=

(
T

T − t

)ν

.

To prove ii), define Z as in i). It is known that Y is a semimartingale for δ ≥ 1. And for
δ ∈ (0,1), as pointed out in [24], process Y is a semimartingale up to the time it hits zero. This
allows us to apply Itô’s formula to process Z, which gives rise to the SDE

dZt =−Zt
Yt

T − t
dWt , Z0 = 1, t < τ0.

Finally, an application of Girsanov’s theorem, see for instance Section 3.3.5 in [21], yields the
desired result. �

At this point, since in the literature there is available statistical knowledge on the stopping
time inf{s > 0 : Ys = b}, one might use Theorem 3.2 to find information about inf{s > 0 : Xs =

b}, which is precisely what we are going to do below. However, we want to take a more general
perspective in order to cover a larger class of diffusion processes.
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It should be remembered that the hitting time is in direct connection with the so-called run-
ning maximum of the stochastic process. Thus, one could see that when dealing with the
distributions of the former we are also dealing with the distributions of the latter. Refer to [29]
to see distributions of running maximum of Bessel bridges.

4 First hitting time of Bessel bridges I
The function h in (6) is a solution of a specific partial differential equation (PDE). In fact one

can see that h is the so-called Doob’s h-transform to go from the process Y to the process X
(see [33] for an introduction to h-transforms).

The idea now is to work with a class of processes satisfying certain SDEs. It is known
that harmonic functions with respect to some Markov process might be used to construct an
h-transform of the process. We do so in the following result.

Theorem 4.1. Let S⊂R be an interval and let α : S→R be a function such that the following
SDE has a unique strong solution, see [21],

(9) dYt = α(Yt)dt +dWt , Y0 = a ∈ S, t ∈ [0,τ0),

where τ0 ≤ ∞ is a stopping time with respect to Y , and which can take any value in [0,∞) with
positive probability. Also, let T > 0 be fixed, and assume that there exists a positive solution
h : [0,T ]×S→ R of the PDE

−ht(s,y) =
1
2

hxx(s,y)+α(y)hx(s,y), y ∈ S, s ∈ [0,T ].

Then, if Zt := h(t,Yt)/h(0,a) with t < τ0, the following defines a probability measure

(10) Q(A) := E[ZtIA] for all A ∈Fτ0.

And under Q the process Y is solution of the SDE

(11) dXt =

[
α(Xt)+

hx(t,Xt)

h(t,Xt)

]
dt +dWt , X0 = a, t ∈ [0,τ0).

To be more explicit, under Q in (10), the process Y is denoted X . We will write EP or EQ

to emphasize under which measure one is calculating an expectation. Below we will give an
example that fits into this theorem.



7

Proof. By Itô’s formula and the hypotheses (the constant h(0,a) can be dismissed for a moment)

dZt = hx(t,Yt)dYt +ht(t,Yt)dt +
1
2

hxx(t,Yt)(dYt)
2

= hx(t,Yt)α(Yt)dt +hx(t,Yt)dWt +ht(t,Yt)dt +
1
2

hxx(t,Yt)dt

= Zt
hx(t,Yt)

h(t,Yt)
dWt ,

with t ∈ [0,τ0) and Z0 = 1. This means that Z is a positive martingale for t < τ0 and with Z0 = 1.
Thus, Q is well defined and (10) holds. Furthermore, Z satisfies the SDE Zt = 1+

∫ t
0 ZsdMs for

t < τ0, and where

Mt :=
∫ t

0

hx(s,Ys)

h(s,Ys)
dWs.

So, Z is the Doléans-Dade exponential

exp
{∫ t

0

hx(s,Ys)

h(s,Ys)
dWs−

1
2

∫ t

0

h2
x(s,Ys)

h2(s,Ys)
ds
}
.

Hence the new dynamics (11) comes from a change of measures (see e.g. [33] or [30]). �

Example 4.2. We can corroborate that the Bessel bridge fits into the context of Theorem 4.1.
Indeed if

α(x) :=
δ −1

2x
,

then the function

h(t,x) :=
T

(T − t)δ/2 exp
{
− x2

2(T − t)

}
(12)

is the desired solution to the parabolic PDE

−ht(t,x) =
1
2

hxx(t,x)+α(x)hx(t,x), x ∈ [0,∞), t ∈ [0,T ].

Moreover, one can check that the Bessel bridge X is recovered from the Bessel process Y ; in
symbols:

(P) dYt = α (Yt)dt +dWt ,

(Q) dXt =
(

α (Xt)+
hx(t,Xt)
h(t,Xt)

)
dt +dWt ,

Q = h(t,Yt)
h(0,a)P on Ft .

In this case hx/h simplifies considerably.

As a consequence of Theorem 4.1, we may find the distribution of inf{s > 0 : Xs = b} by
knowing the distribution of inf{s > 0 : Ys = b}.
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Corollary 4.3. Under the conditions of Theorem 4.1, for any a ∈ S, let τ be a stopping time
with respect to X such that τ ≤ τ0 almost surely. Then

(13) Q(τ < t) = EP
[
ZtI{τ<t}

]
, t < T.

Proof. One can see that {τ < t} ∈Fτ0 . �

We can now continue with our program of finding the distribution of τ := inf{s > 0 : Xs = b}.
There are expressions for the distribution of τ under P, that is for the distribution of inf{s > 0 :
Ys = b}; we wish to use those expressions to find Q(τ < t).

Theorem 4.4. Under the conditions of Theorem 4.1. Define τ := inf{s > 0 : Xs = b} and
suppose that this is such that the condition of Corollary 4.3 holds. Then

(14) Q(τ < t) =
∫ t

0

h(s,b)
h(0,a)

P(τ ∈ ds), t < T.

Proof. Using Corollary 4.3, we have that

Q(τ < t) = EQ
[
I{τ<t}

]
= EP

[
h(t,Yt)

h(0,a)
I{τ<t}

]
=

∫
∞

0
EP

[
h(t,Yt)

h(0,a)
I{τ<t}|τ = s

]
P(τ ∈ ds)

(applying the optional sampling theorem)

=
∫ t

0

h(s,b)
h(0,a)

P(τ ∈ ds),

where we have used the fact that τ = u implies Yu = b. �

Example 4.5. We can now join pieces to find the first hitting–time density. Let X be the δ -Bessel
bridge with δ ∈ {1,3}, and such that X0 = a > 0 and XT = 0. If 0 < b < a, using formula (14)
above and (15) below, we have for τ := inf{s > 0 : Xs = b} that

Q(τ ∈ dt) =
h(t,b)
h(0,a)

(
b
a

)ν+|ν | a−b√
2πt3

e−
(a−b)2

2t , t ≤ T,

where h is given in (12) and ν := δ/2−1.

Remark 4.6. According to Theorem 2.2 of [18] , for δ = 1 or δ = 3, and if 0 < b < a, the
distribution of the first time that a δ -Bessel process Y starting at a hits b is given by

(15) P(τ ≤ t) =
(

b
a

)ν+|ν | ∫ t

0

a−b√
2πs3

e−
(a−b)2

2s ds.
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Also, if ν−1/2 is an integer but |ν | 6= 1/2 and again 0 < b < a, then

P(τ ≤ t) =

(
b
a

)ν+|ν | ∫ t

0

a−b√
2πs3

e−
(a−b)2

2s ds

−
(

b
a

)ν Nν

∑
j=1

Kν(az j/b)
z jKν+1(z j)

∫ t

0

a−b√
2πs3

e−
(a−b)2

2s +
z j(a−b)

√
t

b
√

s ds,(16)

where Kν is the modified Bessel function of the second kind (see Section 9.6 in [1]), Nν is the
number of zeros of the function Kν , and {z j, j = 1, . . . ,Nν} are the zeros of Kν (which are
different from each other).

Example 4.7. Here we give a formula for the first time that a Bessel bridge hits a line with
positive slope. Let Y be a δ -Bessel process with δ > 0 starting at Y0 := a > 0, and let τ :=
inf{s > 0 : Ys = b+ cs} with b,c > 0. Following Theorem 5.1 of [2],

(17) P(τ ∈ dt) :=
e(c/2b)(b2−a2)+tc2/2

(1+ tc/b)ν+2

∞

∑
j=1

a−νz jJν(z ja/b)
b2−νJν(z j)

e−z2
j

t
2b(b+ct)

where Jν is the Bessel function of the first kind (see Section 9.1 in [1]), for t ≥ 0. Now, let X
be the δ -Bessel bridge such that X0 := a and XT := 0. Following the reasoning of Example 4.5,
that is, taking into account Example 4.2 and Theorem 4.4, we arrive at an expression for the
density of

inf{s > 0 : Xs = b+ cs},

given by

Q(τ ∈ dt) =
h(t,b)
h(0,a)

P(τ ∈ dt), t ∈ [0,T ],

where P(τ ∈ dt) is precisely (17).

5 First hitting time of Bessel bridges II
When dealing with a Bessel bridge, we find relevant to modify the hitting–time problem by

making space-transformations of the SDEs that yield probably better-behaved equations, and
this is precisely the content of this section. We also realized that with these transformations one
can connect the original problem of Bessel bridges with one of Bessel processes with negative
dimension δ < 0.

Let us explain the idea. Let X be the Bessel bridge with dimension δ > 0, and let Y be the
Bessel process with dimension 4− δ < 4, both starting at a ∈ R and such that XT = 0. Let
us apply Itô’s formula (up to the time the processes hit zero) to the transformations Xδ−2 and
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Y δ−2. Then

dXδ−2
t = (δ −2)Xδ−3

t dXt

+
1
2
(δ −2)(δ −3)Xδ−4

t (dXt)
2

=

(
(δ −2)2Xδ−4

t − δ −2
T − t

Xδ−2
t

)
dt

+(δ −2)Xδ−3
t dWt .

Hence, if U := Xδ−2, then X =U
1

δ−2 and

dUt =

(
(δ −2)2U

δ−4
δ−2

t − δ −2
T − t

Ut

)
dt(18)

+(δ −2)U
δ−3
δ−2

t dWt .

Similarly, V := Y δ−2, i.e. V is the (4−δ )-Bessel process raised to the power δ −2, satisfies
the SDE

dVt = (δ −2)V
δ−3
δ−2

t dWt .(19)

Notice that if inf{s > 0 : Us = d} and inf{s > 0 : Vs = d} are related somehow, then so are
inf{s> 0 : Xs = b} and inf{s> 0 : Ys = b}. This is indeed the case due to the Theorem 5.2 below,
whose proof follows the same line of reasoning of Theorem 4.1. First we note the following.

Remark 5.1. To study Bessel bridges of dimension δ > 4 we are using Bessel processes of
dimension δ − 4. It is shown in [16, section 3], see pages 329 and 330, that if a δ -Bessel
process, with δ < 0, starts above zero, then it will become negative in finite time; however,
prior to this moment it behaves as a 4−δ Bessel process.

Theorem 5.2. Let S ⊂ R be an interval and σ : [0,∞)×S→ [0,∞) be a function such that the
following SDE has a unique strong solution,

(20) dVt =
√

σ(t,Vt)dWt , V0 = a ∈ S, t ∈ [0,τ0),

with τ0 ≤∞ allowed to be a random variable Assume as well that there exits a positive solution
h : [0,T ]×S→ R of the following PDE

−ht(s,y) =
1
2

σ(s,y)hxx(s,y), y ∈ S, s ∈ [0,T ].

Then Zt := h(t,Vt)/h(0,a) defines a new probability measure

(21) Q(A) := E[ZtIA] for all A ∈Fτ0,
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under which the process V is solution of the SDE

(22) dUt = σ(t,Ut)
hx(t,Ut)

h(t,Ut)
dt +

√
σ(t,Ut)dWt , U0 = a, t ∈ [0,τ0).

Proof. By Itô’s formula and the hypotheses (the constant h(0,a) can be dismissed for a moment)

dZt = hx(t,Vt)dVt +ht(t,Yt)dt +
1
2

hxx(t,Vt)(dVt)
2

= hx(t,Vt)dWt +ht(t,Vt)dt +
1
2

hxx(t,Vt)σ(t,Vt)dt

= Zt
hx(t,Vt)

h(t,Vt)
dWt ,

with t ∈ [0,τ0) and Z0 = 1. This means that Z is a positive martingale for t < τ0 and with Z0 = 1.
Thus, Q is well defined and (10) holds. Furthermore, Z satisfies the SDE Zt = 1+

∫ t
0 ZsdMs for

t < τ0, and where

Mt :=
∫ t

0

hx(s,Ys)

h(s,Ys)
dWs.

So, Z is the Doléans-Dade exponential

exp
{∫ t

0

hx(s,Ys)

h(s,Ys)
dWs−

1
2

∫ t

0

h2
x(s,Ys)

h2(s,Ys)
ds
}
.

Hence the new dynamics (11) comes from a change of measures (see e.g. [33] or [30]). �

Under Q the process V will be denoted by U .

Example 5.3. Let us put in action Theorem 5.2 to deal with equations (18) and (19), with
τ0 := inf{s > 0 : Vs = 0}.

For the solution V of (19), the associated PDE is

−ht(t,x) =
1
2
(δ −2)2x2 δ−3

δ−2 hxx(t,x),(23)

and the solution we are interested in is

h(t,x) = x(T − t)−
δ

2 exp

{
− x

2
δ−2

2(T − t)

}
.(24)

Then

hx(t,x)
h(t,x)

=
1
x
− x

2
δ−2−1

(δ −2)(T − t)
.

We also have that

σ(x) = (δ −2)2x2 δ−3
δ−2 ,(25)
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and so

σ(x)
hx(t,x)
h(t,x)

= (δ −2)2x
δ−4
δ−2 − δ −2

T − t
x.

It follows that the dynamics of U in equation (18) can be expressed as

dUt = σ(Ut)
hx(t,Ut)

h(t,Ut)
dt +

√
σ(Ut)dWt ,

which is the new dynamics under Q.

Remark 5.4. One can see that under the hypotheses of Theorem 5.2 the conclusions in Corol-
lary 4.3 and Theorem 4.4 remain valid, and the proofs are actually the same. That is, if
τ := inf{s > 0 : Us = b} for some b ∈ S with τ ≤ τ0 almost surely, then

Q(τ < t) = EP
[
ZtI{τ<t}

]
and, moreover

Q(τ < t) =
∫ t

0

h(s,b)
h(0,a)

P(τ ∈ ds),(26)

when t ≤ T . Here, P(τ ∈ ds) is the law of τ under P, which ends up being inf{s > 0 : Vs = b}.

We are now in position to find the distribution of inf{s > 0 : Xs = b} for δ 6= 2, which is
carried out by finding the distribution of inf{s > 0 : Us = bδ−2}. Since U is related to V by
means of Theorem 5.2, we can then use formula (26). At the end, we can use the fact that

inf{s > 0 : Vs = bδ−2}= inf{s > 0 : Ys = b}

together with the first hitting–time distribution of the Bessel process Y (which is found in the
literature; see [6, 27, 18]). Let us present two examples of this idea in the coming proposition
and example.

Remark 5.5. According to [26] (see also equation (2.5) in [18]), for δ ∈ R and 0 < b < a, the
Laplace transform of the first time that a δ -Bessel process Y starting at a hits b is given by

(27) E
[
e−θτ

]
=

a−ν

b−ν

Kν

(
a
√

2θ

)
Kν

(
b
√

2θ

) ,
where Kν(x) is the the modified Bessel function of the second kind and ν := δ/2−1.
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Proposition 5.6. Let V be the solution of (19) with V0 = a > 0, and let τV := inf{s > 0 : Vs = d}
with 0 < d < a. Then its Laplace transform is

EQ

[
e−θτV

]
=

√
a
d

K2−δ

2

(√
2θy

1
δ−2

)
K2−δ

2

(√
2θd

1
δ−2

) ,(28)

for θ > 0.

Proof. The result follows from formula (27) due to the equality

τV = inf{s > 0 : Ys = d1/(δ−2)}.

Find more details in [26]. �

Example 5.7. Take X to be the Bessel bridge of dimension δ = 5 with X0 = a. Thus according
to (18) the process U := X3 is solution of the SDE

dUt =

(
9U1/3

t − 3Ut

T − t

)
dt +3U2/3

t dWt , U0 = a3, t < T.

On the other hand, we consider the process V defined in (19), which is the cube of a Bessel
process with dimension −1, solution of

dVt = 3V 2/3
t dWt , V0 = a3, t < T.

Using (26) and (24) we have that

Q(τ < t) = Q(inf{s > 0 : Us = b3}< t)

=
∫ t

0

h(s,b3)

h(0,a3)
P(inf{s > 0 : Vs = b3} ∈ ds)

=
∫ t

0

h(s,b3)

h(0,a3)
P(inf{s > 0 : Ys = b} ∈ ds)

=
∫ t

0

h(s,b3)

h(0,a3)
P(τ ∈ ds).

Since ν − 1/2 = −2, and if in addition 0 < b < a, we are then in the situation of equation
(16), and the density P(inf{s > 0 : Ys = b} ∈ ds) can be written explicitly; in this case it is
known that Kν has only one zero z1 =−1, so that Nν = 1.
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Using Leibnitz’ rule, we can write down the explicit density by taking the derivative of (16):

P(τ ∈ dt) =

(
b
a

)ν+|ν | a−b√
2πt3

e−
(a−b)2

2t

−
(

b
a

)ν Nν

∑
j=1

Kν(az j/b)
z jKν+1(z j)

a−b√
2πt3

e−
(a−b)2

2t +
z j(a−b)

b

−
(

b
a

)ν Nν

∑
j=1

Kν(az j/b)
z jKν+1(z j)

∫ t

0

a−b√
2πs3

z j(a−b)
2b
√

st
e−

(a−b)2
2s +

z j(a−b)
√

t
b
√

s ds.

Therefore the density of the first time that the 5-Bessel bridge X hits level b (with 0 < b < a)
is given by

Q(τ ∈ dt) =
h(t,b3)

h(0,a3)
P(τ ∈ dt).(29)

With h as in (24). Some numerical simulations to observe the form of the density of Q yield
Figure 1.

6 Counterparty risk via Bessel bridges
In previous sections we studied hitting times of Bessel bridges, here we would like to give

some words on a possible application of Bessel bridges in mathematical finance, specifically in
the context of credit risk.

It is known that the short rate model r, see [3, p.374], specifies the zero-coupon bond price
as

p(t,s) := E
[
e−

∫ s
t rudu|Ft

]
.(30)

For instance, let b,c > 0 and suppose that r has the following dynamics (Vasicek or Ornstein-
Uhlenbeck process)

drt = (b− crt)dt +σdWt +dXt , t > 0,(31)

where W is a Wiener process and X is a stochastic process which is called in this context the
counterparty credit-index process. In order to model the financial phenomena, process X is
considered to take a specific value at time s, and this consideration represents the so-called time
of default, see [11]. In particular, one may assume that X is modelled with a δ -Bessel bridge.

From stochastic calculus we have that

r(s) = e−csr(0)+
∫ s

0
e−c(s−u)bdu+

∫ s

0
σe−c(s−u)dWu +

∫ s

0
e−c(s−u)dXu.
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FIGURE 1. The graph was made in the statistical software R. The line represents
the density of the first time that a 5-Bessel bridge, started at X0 = 101/3 and
finishing in zero at time T = 4, hits level b = 31/3, that is, using expression
(29). The histogram is made out of 20,000 simulations of the described 5-Bessel
bridge hitting the level.

Moreover, taking W and X independent, it turns out that to calculate the zero coupon bond price
(30), see e.g. [3, p.382], one needs to calculate the following expectation

E
[
e−ce−cs−

∫ s
0 ce−c(s−u)Xudu

]
.

Knowing the density of the hitting times of X may be used to study the time of default.

7 Conclusions
In this paper we have given explicit expressions for the hitting–time densities of a class of

Bessel bridges with δ ∈ R. The main tools used have been Doob’s h-transform, some space
transformations, and the optional sampling theorem (as has been done for the Brownian bridge).
Our basic approach was described in Section 4. To broaden the range of applications we have
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developed the technique in such a way that one can recycle it for other processes, namely those
that solve specific SDEs.
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