~ A Service of
’. b Leibniz-Informationszentrum

.j B I l I Wirtschaft
) o o o Leibniz Information Centre
Make YOUT PUbllCCltlonS VZSlble. h for Economics ' '

Sziklai, Balazs

Working Paper
On how to identify experts in a community

IEHAS Discussion Papers, No. MT-DP - 2015/49

Provided in Cooperation with:
Institute of Economics, Centre for Economic and Regional Studies, Hungarian Academy of Sciences

Suggested Citation: Sziklai, Balazs (2015) : On how to identify experts in a community, IEHAS
Discussion Papers, No. MT-DP - 2015/49, ISBN 978-615-5594-14-4, Hungarian Academy of Sciences,
Institute of Economics, Budapest

This Version is available at:
https://hdl.handle.net/10419/129861

Standard-Nutzungsbedingungen: Terms of use:

Die Dokumente auf EconStor durfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your personal
Zwecken und zum Privatgebrauch gespeichert und kopiert werden. and scholarly purposes.

Sie durfen die Dokumente nicht fiir 6ffentliche oder kommerzielle You are not to copy documents for public or commercial purposes, to
Zwecke vervielféltigen, 6ffentlich ausstellen, 6ffentlich zugénglich exhibit the documents publicly, to make them publicly available on the
machen, vertreiben oder anderweitig nutzen. internet, or to distribute or otherwise use the documents in public.
Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen If the documents have been made available under an Open Content
(insbesondere CC-Lizenzen) zur Verfiigung gestellt haben sollten, Licence (especially Creative Commons Licences), you may exercise
gelten abweichend von diesen Nutzungsbedingungen die in der dort further usage rights as specified in the indicated licence.

genannten Lizenz gewahrten Nutzungsrechte.

Mitglied der

WWW.ECONSTOR.EU é@“}


https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/129861
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

MAGYAR TUDOMANYOS AKADEMIA .‘

Kb zeazdasie-és Regorslis TudomsnyiK tabokézpant Centre for Economic and Regional Studies

.... HUNGARIAN ACADEMY OF SCIENCES
MTA KRTK KTI

MUHELYTANULMANYOK DISCUSSION PAPERS

MT-DP - 2015/49

On how to identify experts in a community

BALAZS SZIKLAI

INSTITUTE OF ECONOMICS, CENTRE FOR ECONOMIC AND REGIONAL STUDIES,
HUNGARIAN ACADEMY OF SCIENCES BUDAPEST, 2015



Discussion papers
MT-DP - 2015/49

Institute of Economics, Centre for Economic and Regional Studies,
Hungarian Academy of Sciences

KTI/IE Discussion Papers are circulated to promote discussion and provoque comments.
Any references to discussion papers should clearly state that the paper is preliminary.
Materials published in this series may subject to further publication.

On how to identify experts in a community

Author:

Balazs Sziklai
junior research fellow
Momentum Game Theory Research Group
Institute of Economics - Centre for Economic and Regional Studies
Hungarian Academy of Sciences
e-mail: sziklai.balazs @krtk.mta.hu

September 2015

ISBN 978-615-5594-14-4
ISSN 1785 377X



On how to identify experts in a community

Balazs Sziklai

Abstract

The group identification literature mostly revolves around the problem of identifying
individuals in the community who belong to groups with ethnic or religious identity. Here we
use the same model framework to identify individuals who play key role in some sense. In
particular we will focus on expert selection in social networks. Ethnic groups and experts
groups need completely different approaches and different type of selection rules are
successful for one and for the other. We drop monotonicity and independence, two common
requirements, in order to achieve stability, a property which is indispensable in case of expert
selection. The idea is that experts are more effective in identifying each other, thus the
selected individuals should support each others membership. We propose an algorithm based
on the so called top candidate relation. We establish an axiomatization to show that it is
theoretically well-founded. Furthermore we present a case study using citation data to
demonstrate its effectiveness. We compare its performance with classical centrality

measures.

Keywords: Group identification, Expert selection, Stability, Citation analysis, Nucleolus

JEL classification: D71
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Hogyan azonositsunk szakértoket egy kozosségben?

Sziklai Balazs

Osszefoglald

A csoportidentifikacioval foglalkozé irodalom tobbnyire etnikai vagy vallasi csoportok
azonositasat érint6 kérdéseket vizsgal. Mihelytanulmanyunkban arra hasznaljuk a modellt,
hogy azonositsuk a kozosségben valamilyen szempontbol kulcsszerepet betolté szereplket.
Ezen beliil is a szakért6k tarsadalmi halozatokon beliili azonositadsara osszpontositunk.
Etnikai csoportok és szakért§ csoportok teljesen kiilonb6z6 megkozelitést igényelnek, mas
kivalasztasi szabaly lesz sikeres az egyik és a maésik esetében. Elhagyjuk a kivalasztasi
szabalyok két gyakran alkalmazott tulajdonsdgat — a monotonitast és a fiiggetlenséget —
annak érdekében, hogy biztositsuk a csoport stabilitasat. Ez utobbi elengedhetetlennek
bizonyul a szakért6k meghatarozasakor. A f6 gondolat az, hogy a szakért6k sikeresebben
azonositjadk egymast, tehat a megalakulé csoportnak bels6 tamogatottsaggal kell
rendelkeznie. Bemutatunk egy algoritmust, ami az tn. csucsjelolt-kivalasztason alapul. Az igy
nyert kivalasztasi szabalyt egy axiomatizacié segitségével elméletileg is megalapozzuk. A
modszer hatékonysigat egy citacids adatbazison alapul6 esettanulményon is szemléltetjiik.
Az algoritmus teljesitményének kiértékeléséhez a kapott eredményeket 6sszevetjiik azokkal,

amelyeket a klasszikus centralitas mértékek josolnak.

Targyszavak: csoportidentifikdci6, szakért-kivalasztas, stabilitds, citacios elemzés,

nukleolusz

JEL kod: D71



On how to identify experts in a community

Balazs Sziklai*

September 12, 2015

Abstract

The group identification literature mostly revolves around the prob-
lem of identifying individuals in the community who belong to groups
with ethnic or religious identity. Here we use the same model frame-
work to identify individuals who play key role in some sense. In par-
ticular we will focus on expert selection in social networks. Ethnic
groups and experts groups need completely different approaches and
different type of selection rules are successful for one and for the other.
We drop monotonicity and independence, two common requirements,
in order to achieve stability, a property which is indispensable in case
of expert selection. The idea is that experts are more effective in iden-
tifying each other, thus the selected individuals should support each
others membership. We propose an algorithm based on the so called
top candidate relation. We establish an axiomatization to show that
it is theoretically well-founded. Furthermore we present a case study
using citation data to demonstrate its effectiveness. We compare its
performance with classical centrality measures.

Keywords and phrases: Group identification, Expert selection, Sta-
bility, Citation analysis, Nucleolus

JEL-codes: D71

1 Introduction

The group identification literature has been focusing primarily on social cat-
egories such as ethnicity and religion. The original model of Kasher and

*Research was funded by OTKA grants K109354 and K108383 and by the Hungarian
Academy of Sciences under its Momentum Programme (LD-004,/2010).



Rubinstein (1997) stemmed from questions related to Jewish identity, while
Miller (2008) reports on federal policy regulating racial data collection in
the US. They argue that self-identification is the only conceptually sound
selection rule. Self-identification indeed seems to be the good choice when
the group’s characteristics depend on the inner beliefs of the individuals,
however, it does not fare so well when there are more objective traits which
define who belongs to the group. For instance determining who is the best
chess player is an altogether different problem. The latter kind of questions
are usually decided by competitions. There is an extensive literature on
tournament solutions, for a comprehensive review see (Laslier, 1997).

Samet and Schmeidler (2003) consider a broader spectrum of group iden-
tification problems ranging from issues that can be decided by the individ-
ual, such as who can read a book, to problems which need some kind of
social consent, e.g. electing a candidate. They view it as the confrontation
of two democratic principles: liberalism (or individualism) and majoritarian-
ism. They propose a family of rules characterized by three axioms, symmetry,
monotonicity and independence!. The relationship of the latter two are also
studied by Ju (2010) and Cengelci and Sanver (2010).

Some groups, however, cannot be captured by voting rules which satisfy
independence or monotonicity. Consider the problem of identifying under-
ground? music bands. A band which is referred too many times is by defi-
nition mainstream, and the individuals who refer to it have false perception
regarding its popularity. Politicians who will achieve a surprisingly good
result on the next election compose another group which is impossible to
capture with monotonic voting rules. If everyone believes that a politician
will produce a good result in the upcoming election, then his success is hardly
surprising.

Independence is also violated in some cases. The problem of identifying
experts in a community incorporates both subjective and objective elements.
We can not decide who is the best economist by competitions, but self-
appointment or simple majority voting will not suffice either. The latter one
fails because experts and non-experts have different capabilities in identifying
each other. Experts tend to identify each other better, while laypersons may
rule out real experts and recommend dilettantes.

We will translate the recommendations of the individuals into a directed
graph network. Experts in the graph are nodes with certain desirable fea-
tures. The general problem, measuring the significance of some nodes in a

I The formalization of this three axiom substantially differs from how they were estab-
lished in (Kasher and Rubinstein, 1997). In particular monotonicity and independence
were much weaker. Note that Miller (2008) refers to symmetry as anonymity.

2Here 'underground’ refers to the popularity of the band and not to the music style.



network, occurs in various field, such as Computer science, Chemistry or Bi-
ology. Various methods were invented in parallel to quantify the importance
of these nodes. Boldi and Vigna (2014) offers a axiomatic overview on the
most commonly applied centrality measures.

In this paper we focus on the axiomatic foundation of expert selection. We
argue that stability is a key component of any solution. That is, the selected
group should consider each of its members as experts and no one else outside
the group. Depending on the qualification criterion we distinguish between
different types of stability. We provide an iterative algorithm that is strongly
stable with respect to the so called top candidate relation. Top candidates
of an individual are persons who are approved by both the community and
by the individual in question. Unlike in (Dimitrov et al., 2007) where the
procedure starts from a small set and gradually extends the group until a
certain condition holds, we start with the whole community and shrink the
group size until stability is met.

We conclude with a case study based on citation data. A citation can
be considered as a recommendation made by one author to another, which
fits well with the group identification framework. We chose the nucleolus — a
rather specific, but still extensive research topic in cooperative game theory
— as the subject of our analysis.

Ranking scientific researchers based on their productivity and the recog-
nition of their work is a popular topic with many applications, such as per-
formance evaluation, recruitment, or handing out of a prize or a grant. The
literature mostly focuses on developing and analysing indexes such as the
h-index (Hirsch, 2005) and the g-index (Egghe, 2006). Our method provides
a complementary tool for this task. The main difference between the clas-
sical metrics and our method is that instead of coming up with numbers
that represent the importance of the individuals our algorithm selects a few
individual who are deemed important.

Potential applications of the proposed model include content recommen-
dation (Amatriain et al., 2009; Carchiolo et al., 2015), identifying profession-
als in community technical supports (Pal and Konstan, 2010) and locating
competencies and expertise in large enterprises (John and Seligmann, 2006).

2 Model

Let N ={1,2,...,n} denote the set of individuals in the community. Based
on the opinion of the individuals we would like to identify a certain subset of
N. An opinion profile P = (p;;)nxn is a matrix which contains the opinions,
where p;; = 1 if 7 believes that j belongs to the group, and p;; = 0 otherwise.



If p;; = 1 then we say that ¢ recommends j. We assume that everyone states
his or her true preference, the opinion matrix is not affected by modesty,
envy or any strategic behaviour.

It is natural to think of P as the adjacency matrix of a directed graph,
whose node and arc set are the individuals and their recommendations re-
spectively. We denote by N (i) the neighbours of 4, i.e. the set of individuals
who according to ¢’s opinion belong to the group. The supporters of 7, the
individuals who believe that i is a group member, is denoted by B(i). We
allow for i to form an opinion about herself®, that is, N(i) and B(:) may
contain 1.

We extend the model of Kasher and Rubinstein in one way: we allow
for some individuals to form opinion without being elective. That is, some
individuals cannot be chosen as a group member. This is quite natural
in some applications. Suppose, for instance, that there is a prize which
is awarded annually to the best economist. Individuals who won the prize on
a previous occasion can not be chosen again. Their opinion however matters.
The same problem happens when an examining committee is assembled and
some persons are deemed unsuitable due to conflict of interest. For example
an editor may not like to hand over a manuscript to a former coauthor of
the submitter, but he may inquire his opinion about the referee selection.
To ensure that every relevant information is encompassed in the decision, we
allow the non-elective members to form opinion and also for others to form
opinion about them.

A group identification problem (shortly GIP) T is triple (N, P, X) con-
sisting the set of individuals NV, the corresponding opinion profile P and a
list X containing the non-elective members. The complement of X - the
members who can be elected - are denoted by E. The GIP (N, P,)) where
every individual is elective is of special importance and will be denoted by
I'y. The set of group identification problems on N is denoted by GV. A
selection rule is function f : G — 2F that assigns a set of individuals (i.e.
the members of the group) for each GIP. The most widely studied selection
rule is the liberal rule (aka self-identification), denoted by L, which picks
the elective individuals who consider themselves group members, formally
LI)={jeE|jeNU)}

3We would like to avoid even the appearance that selecting experts is a 'man’s job’.
Thus we refer to individual 4 as ’she’ and individual j as 'he’.



3 Proposed Axioms

Stability of a solution is a central concept both in mechanism design and
game theory. Stability is also crucial for expert selection algorithms: the
selected members must support each other’s membership. Ultimately, the
best judge of an expert is another expert.

This idea has some history. Samet and Schmeidler (2003) examine the
problem of identifying Hobbits in the community. They introduce the so
called affirmative self-determination axiom, which requires that Hobbits and
only Hobbits determine who Hobbits are. However, they use it to charac-
terize the liberal rule by applying standard axioms like monotonicity and
independence. Miller (2008) proposes two new class of rules: agreement and
nomination rules. Both of them — with different intensity — require from a
group member to have inner support. The combination of these two rule
types yields one-vote rules where the relevant set, which decides the group
membership of an individual, consist of one person. Once again the liberal
rule is characterized by using the so called separability axioms.

The stability requirement we propose has two aspects. First each mem-
ber of the group must have some inner support. Secondly, if an individual is
recognized as a group member then the persons he recommends are also po-
tential members. To treat these conditions formally we introduce the notion
of qualifiers.

Definition 1. Let Q : 2V — 2% be a selection criterion that assigns a set of
individuals to any subset of N. A selection criterion () is called a qualifier if
it satisfies the following two conditions

e Qi) C N(i) for all i € N and
o Q(S) = UjesQ(i) for any S C N.
We say that i nominates j under Q if j € Q(1).

Qualifiers serve as filters, they narrow down the possible group members.
The set Q(S) collects those individuals who are nominated by at least one
person in S. Note that qualifiers — unlike to selection rules — may nominate
non-elective members as well. Let us clarify that the identification of a quali-
fied persons is made by the aggregator and not by the individuals themselves.
In this model we do not take into consideration whether an individual has a
preference order on the other individuals or not.

We propose the following qualifier. Let each individual point to the per-
son(s) among those he approves who are the most acknowledged in the com-
munity. The persons selected by ¢ in this way are called the top candidates
of i.



Definition 2. We say that j is a top candidate of i if j € N(i) and |B(j)| >
|B(5")| for any other j' € N(i).

Note that a person can have more than one top candidate. The set of top
candidates for individual 7 is denoted by Q7(7), and we will use the following
notation Q7 (S) = U;es@r(7). Now we are ready to formulate our stability
axiom.

Stability: Let I' = (IV, P, X) be a GIP, @) a qualifier and f a selection

rule. Furthermore let X’ % f(Ty) \ f(T'). Then we say that f is stable with
respect to Q if Q(f(T)UX') C f(T)U X' for all T € GV. We say that f is
strongly stable with respect to Q if Q(f(T)UX') = f(T)U X' forall T € GV.

The set X' collects those members which would have been selected by
f, were X not excluded in I'. According to rule f only the individuals
contained in f(I")UX’ may have relevant opinion. Stability requires that each
nomination made by f(I') U X’ under the qualifier @) refers to someone inside
the relevant group. In addition to this, strong stability requires that each of
the selected individuals should be nominated by another group member.

The interpretation and the formal treatment of the stability axiom can
be simplified if we restrict our attention to selection rules which do not dis-
tinguish between the opinion of the elective and excluded members.

Equal treatment of members: We say that a rule f satisfies equal
treatment of members (ETM) if f(T') = f(Ty) \ X for any T' = (N, P, X).

Note that ETM indeed simplifies the conditions of (strong) stability. In-
stead of Q(f(I") UX") C f(I') U X" it is enough to require Q(f(I'y)) C f(I'y)
for all T € GV (substitute =" instead of 'C’ in case of strong stability).

We argue that strong stability with respect to Q7 is a good selection
requirement. Top candidates are approved by both the individual and the
community. Strong stability with respect Q)1 requires that

1. each expert should be a top candidate of at least one other expert, and

2. the top candidates of any expert should be also included in the group
of experts.

In decentralized networks where there are many ’hubs’ any reasonable
selection algorithm will pick experts locally. For instance if the opinion graph
consist of several disjoint or ’almost disjoint’ components, it is more natural
if the selection rule includes experts from each component. Suppose we
would like to choose the economist of the year and we inquire the opinion
of every economist. It is plausible that both micro- and macroeconomists
will support someone among themselves. In such a heterogenous society it is
better if we allow the selection rule to compose a mixed group. Then, after we

6



narrowed down the number of possible recipients of the prize, we can decide
the winner by qualitative analysis. From time to time a macroeconomist will
recommend a microeconomist and vice versa. Thus we cannot decompose
the opinion graph to disjoint components. That is, we should require more,
than simply demanding from the selection rule to pick an expert from each
component.

Exhaustiveness: Let I' = (N, P, X) be a group identification problem
and f a selection rule. Let [" = (N, P, X’) be another problem derived from
[ by setting X' = X U f(T"). We say that a rule f is ezhaustive if f(I") =)
for each I € GV.

The exhaustiveness axiom requires from the selection rule to find every
relevant participant. If, after excluding f(I'), the selection rule finds new
experts, then the rule is not exhaustive — these individuals should have been
included in the original group.

Note that ETM implies exhaustiveness. Let I'y = (N, P, X;) and 'y =
(N, P, X;Uf(I'1)) where f is a rule that satisfies ETM. Then f(I'y) = f(I'p)\
X1. We need to show that f(I'y) = (), indeed

f(Ty) = f(Tg) \ (X1 U f(T'1)) = f(Tp) \ f(Typ) = 0.

On the other hand there are rules which are exhaustive but does not
satisfy ETM. Tt is easy to check that

N X =9
r)= {@ it X £ ().

is one such rule.

Since the rule that assigns the empty set for each GIP is both strongly
stable and exhaustive, we need some kind of existence axiom as well.

TC-component existence: We call a subset of the individuals C' C N
a TC-component if Qr(C') = C. A rule f satisfies TC-component existence
if f(T') # () whenever P contains a top candidate component which has at
least one elective member.

TC-component existence is a weak requirement which ensures the non-
emptiness of the solution set under general conditions. For instance each
GIP, where every individual has at least one recommendation, has a TC-
component. This follows from the fact that any individual which has a rec-
ommendation has also a top candidate. In such cases there exist a cycle of
top candidates, from which it follows that a TC-component exists.



4 The Expert Selection Algorithm

The method we propose is based on the same concept as the PageRank algo-
rithm (Page et al., 1999). There is one fundamental difference between the
two approaches. While the PageRank — similarly to other measures of cen-
trality — outputs a vector of real numbers that describes the importance of the
individuals, our algorithm produces a set of individuals who are deemed im-
portant. Similar results can be obtained by setting a limit and declare every
individual important whenever his or her score is above the limit. However
choosing the limit is not an easy task. An ex ante decision could lead to an
arbitrary result, while setting the limit a posteriori is inherently biased by
subjective elements, and the outcome might be viewed as prejudicial.

The algorithm proceeds as follows. Each individual points to its top can-
didate among his or her neighbours. Then the procedure is repeated with
the individuals who received at least one nomination. During the iteration
we do not restrict ourselves to the opinions of the nominees, each recommen-
dation still counts. Hence the set of top candidates for any person remains
unchanged all through. The algorithm stops when it produces the same set
of players twice. Formally

(Initialization) I = N, k=0

while (I}, # I,y or Ij, # 0)

{

k:=k+1

Iy :={j € It_1 | j is a top candidate for some j' € I}, 1}

}
(Output) I \ X

We refer to the result of the algorithm as the core of I' with respect to
Qr or simply the T'C-core and denote it with TC'(I"). Note that in the last
step we make sure that TC(I") does not contain any excluded members. As
a direct consequence the TC-algorithm satisfies ETM.

Example 3. Consider the opinion profile depicted in Figure 1. The indi-
viduals make the following nominations: Qr(i) = Qr(m) = {j}, Qr(j) =
Qr(l) = Qr(n) = {m}, Qr(k) = 0. Only individuals j and m receive nomi-
nations, hence I1 = {j, m}. Since Qr(m) = {j} and Qr(j) = {m}, it follows
that Iy = {j, m} too. Thus, the algorithm stops and concludes that the core
experts are j and m.

Theorem 4. A selection rule satisfies strong stability with respect to Qr,
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Figure 1: Graph representation of an opinion profile and the first (and last)
iteration of the T'C-algorithm. Red arcs indicate top candidate relation.

exhaustiveness and TC-component existence if and only if it is the TC-
algorithm.

Proof. First we prove the if part. Let I' = (N, P, X) be an arbitrary GIP.
If I = () for some k > 1 then TC(T") = () independently of the choice of X.
In particular TC(T'y) = 0, thus Qr(TC(Ty)) = Qr(0) = 0. That is strong
stability holds. If I,y = I} # () for some k > 1 then T'C(Ty) = I}, and

Qr(TC(Ty)) = Qr(lx) = Qr(lr—1) = I) = TC(Ty).

hence by ETM the TC-algorithm is strongly stable. Exhaustiveness again
follows from ETM. Since I is derived independently of X, if X is set as [
then the algorithm is forced to yield (). Finally note that each TC-component
is included in each I; set. Thus, if there is at least one TC-component with
an elective member then the TC-algorithm will not result in the empty set.

Now we prove the only if part. Let f be a selection rule that satisfies
strong stability, exhaustiveness and TC-component existence. No stable set
(with respect to Qr) contains individuals from N\ I; since these are not top
candidates of anybody. Similarly no stable set contains individuals from I;\ I,
as these are recommended only by individuals from N\ I;. Consequently no
stable set contains individuals from I;_; \ I; for 1 < j < k. Thus, if there
exist i € f(I') \ I; for some 0 < j < k then f(I') is not strongly stable. This
implies f(I') C TC(T).

Let I' = (N,P,X) and let i € E be a member of a TC-component.
Suppose that i ¢ f(I') and let IV = (N, P, X U f(I')). By TC-component
existence f(I) # (. This contradict exhaustiveness of f. Hence f must
contain every TC-component which has at least one elective member, that is

TC(T) C f(I). O

An interesting variant of the TC-algorithm can be derived by slightly
altering its setup. One could argue that the opinion of those individuals
who did not receive a nomination does not count. Thus at every iteration



h'*= k h

Figure 2: From left to right: Graph representation of the original opinion profile
and the profiles of the restricted games which correspond to the first and second
iteration of the eliminative TC-algorithm. Red arcs indicate top candidate relation.

we could just delete the nodes and arcs that belong to the non-nominated
members. To capture this idea we need the concept of restricted game.

Definition 5. Let I' = (N, P, X) be a GIP, and S C N a set of individu-
als. The restricted problem I'g- is the GIP (N \ S, Ps-, X \ 5) where Pg-
denotes the profile that is derived from P by deleting the rows and columns
corresponding to the members of S.

The eliminative top candidate algorithm proceeds as follows.

(Initialization) Ty = (N, P,X), Iy =N, k=05 =0

while ([k 75 [k,1 or [k 7é (Z))

{

k:=k+1

In:={j € I;_1 | j is a top candidate in T';,_; for some j' € I; 1}
Ty = (N\ S, Ps—, X\ S)

—_—

Output) I \ X

We refer to the result of the algorithm as the eliminative core of I' with
respect to Qr or simply the eliminative TC-core.

Example 6. Consider the opinion profile depicted in Figure 2. The nomi-
nations are: Qr(h) = {i}, Qr(i) = {j}, Qr(j) = {h.i} and Qr(k) = {h, j}.
Since k is not nominated by anyone, his opinion is disregarded in the remain-
ing part of the process. This affects the nominations as follows: Qr(h) = {i},
Qr(i) = {j}, Qr(j) = {i}. Now h is not nominated anymore and he is
dropped from the selection process. Finally ¢ an j are chosen as eliminative
core members.

10



Note that in this case the eliminative TC-algorithm resulted in a smaller
set than the TC-core as the latter would have included A among the group as
well. In general, however, the core and the eliminative core has no obvious
relation. We will see in Section 6 a case where the eliminative core is a
superset of the core.

Finally we note that both versions of the TC-algorithm are fast. If the
community consist of n individuals the algorithms need to perform at most
O(n?) operations.

5 Axiomatic analysis

Kasher and Rubinstein (1997) define five basic axioms which characterize
the liberal rule: consensus, symmetry, monotonicity, independence and the
Liberal Principle. Sung and Dimitrov (2005) showed that these five axioms
are not independent and symmetry, independence and the Liberal Principle
are already enough for the characterization.

The Top Candidate algorithm satisfies consensus and symmetry, the two
most basic requirements, that can be imposed on selection rules.

Definition 7. A selection rule f satisfies consensus if for any i € £
e B(i)=N=1i€ f(I') and
e B(i)=0=1i¢ f(I)
for any opinion profile P.

Definition 8. We say that two elective individuals ¢ and j are symmetric in
profile P if,

everyone else thinks the same about them

they think the same about everyone else

¢ thinks that he belongs to the group iff 5 thinks that he belongs to the
group

7 and 7 think the same about each other

A selection rule is symmetric if for every pair of such individuals it is true
that i € f(I') < 5 € f(I).

11



If i and j are symmetric in profile P then i € Q7(k) < j € Qr(k) for any
ke N\{ij}and i € Qr(i) & j € Qr(j). By strong stability every expert
is qualified by another expert, hence if i, j € E are symmetric and i € f(I)
then this implies that j € f(I).

Definition 9. Let ' = (N, P, X) and I' = (N, P', X) be two GIPs where
P and P are identical profiles except that p;; = 0 and p;; = 1 for some
i,7 € N. A selection rule is called monotonic if i € f(I') = ¢ € f(I") for any

such pair of problems I', IV € GV¥. A selection rule is called group monotonic
if f(T') C f(I") for any such pair of problems I', " € GV.

Group monotonicity was introduced by Samet and Schmeidler (2003) al-
though without the ’group’ prefix. We use the prefix here to distinguish
from ’simple’” monotonicity defined by Kasher and Rubinstein (1997). Note
that group monotonicity implies monotonicity. There is also a difference how
these two papers interpret independence.

Definition 10. Let I' = (N, P, X) and [" = (N, P’, X)) be two GIPs and let
i € F such that B(i) = B'(i). A selection rule satisfies group independence if
i € f(I') < i€ f(I') for any such pair of problems I',T” € GV. Suppose, in
addition, that for all k # i it is true that k € f(I') & k € f(I"). A selection
rule satisfies independence if for any such pair of problems I',I” € GV, i €
f(I') & i € f(I') whenever the previous condition hold.

Again the axiom introduced by Samet and Schmeidler, group indepen-
dence, is stronger, i.e. it implies independence. Figure 3 features two exam-
ples which demonstrate that the TC-core violates both (group) monotonicity
and (group) independence.

Figure 3: In both examples dashed lines represent the change in the opinion
profile. (On the left) If i recommends herself then both h and i drops out from the
TC-core, which is a violation of monotonicity. (On the right) If k& recommends j
then ¢ drops out from the TC-core, thus independence is violated.

The final axiom of Kasher and Rubinstein’s characterization is the Liberal
Principle.
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Definition 11. A selection rule f satisfies the Liberal Principle if it does not
pick the empty set whenever there is an elective individual who recommends
herself, and it does not pick the whole set whenever there is an elective
individual who does not support herself, formally

e JicE, ie N(i)= f(T)#0.
e icE, ig Ni)= f(I') # N.

The liberal rule can be characterized in terms of strong stability. For this
we introduce the liberal qualifier.

Definition 12. The liberal qualifier (), selects those individuals among the
neighbours of a set of agents S who recommend themselves, formally

Qu(S) ={j € UiesN (i) | j € N(j)}-

Strong stability with respect to Q1 requires that each individual in the
selected group recommends himself and there is a group member that testifies
this (i.e. qualifies him). This second requirement is straightforward since
any individual who recommends himself and is included in the group also
qualifies himself. We can define an iterative algorithm in the same way
as in case of the top candidate relation, which finds the liberal core of a
game: Let each individual point to the persons among his neighbours who
recommend themselves. Then the procedure is repeated with the individuals
who received at least one nomination. Note that if an individual recommend
himself then he also nominates himself. Thus the procedure always finishes
after the second iteration. The proof of the next theorem is straightforward
and is left to the reader.

Theorem 13. A selection rule satisfies strong stability with respect to Qy,,
exhaustiveness and the Liberal Principle if and only if it is the liberal rule.
Moreover the liberal core coincides with the solution specified by the liberal
rule.

6 Case study — Top researchers of the nucleolus

A natural application of the above proposed model is the analysis of citation
databases. Researchers acknowledge the valuable contributions of others by
referencing them in their papers. Thus, journal articles can be viewed as
declarations made by the authors about who is an expert of a certain subject.
Naturally some of the papers are written to criticize a model, or to show the
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flaw in logic of some argument. The vast majority of references, however, are
made to recognize the works of others.

We reviewed 88 articles of 57 authors focusing on the nucleolus and related
topics (see Figure 4). Note that some of the coauthors of these papers were
omitted in the analysis. Only those researchers were included in the list
who are generally acclaimed to be an expert on cooperative game theory,
especially on the topic of nucleolus®.

The opinion matrix was formed on the basis of the bibliography section
of the articles. If author X cited author Y in any of the reviewed papers
then pxy was set to 1. Self-citations were also accounted for. The most cited
author was David Schmeidler who introduced the nucleolus. This exposes a
bias that is inherent in any citation analysis: older articles tend to have more
citations, since references rarely point to the future®.

Table 1 compiles the result of the citation analysis. The first column of
the table shows the number of articles the researcher coauthored from the 57
articles in scope. The second column shows how many of these article con-
tained a citation referencing the researcher. The last three column displays
the well-known centrality measures: Betweenness and Closeness centrality
and the PageRank value. Gold, silver and bronze colors of the cells denote
the first, second and third biggest value in the column.

Betweenness centrality of a node measures the probability that a random
shortest path passes through the given node. The closeness centrality of a
node is the inverse of the sum of the shortest distances between the node and
all other nodes reachable from it. PageRank of a node is defined recursively
and depends on the number and PageRank metric of all nodes that recom-
mend it. A node that receives many recommendations from nodes with high
PageRank will have a high PageRank value itself. The formal definitions of
these tree measures can be found in (Boldi and Vigna, 2014).

Table 1: Top researchers of the nucleolus. Based on the citation data of 88 articles.

Author # of art. # of ref. Betweenness Closeness PageRank
Aarts, H. 2 16 9.736 0.0119 1.036
Arin, J. 4 16 28.724 0.0120 1.106
Aumann, R, J. 1 20 17.450 0.0114 0.908
Branzei, R. 2 9 14.551 0.0119 1.041

4This is admittedly a subjective element of our analysis. It is quite possible that some
researchers, who deserved to be on this list, were omitted. If so, it is undoubtedly a result
of oversight and not the depreciation of their work. Nevertheless, the conclusion drawn
from the model is robust.

5Some actually do. Schmeidler introduced the nucleolus in 1969. Oddly enough,
Kopelowitz already proposed a series of linear programs to compute the nucleolus in 1967.

14



Table 1: Top researchers of the nucleolus. Based on the citation data of 88 articles.

Author # of art. # of ref. Betweenness Closeness PageRank
Deng, X. 2 11 12.975 0.0120 1.073
Derks, J. 3 16 44.789 0.0127 1.235
Dragan, 1. 2 6 3.428 0.0099 0.536
Driessen, T. S. H. 4 24 31.795 0.0127 1.210
Elkind, E. 2 2 2.380 0.0101 0.587
Faigle, U. 4 15 18.626 0.0122 1.107
Fang, Q. 4 6 15.025 0.0122 1.107
Feltkamp, V. 3 14 21.818 0.0116 1.006
Fragnelli, V. 2 9 18.407 0.0114 0.941
Granot, D. 4 26 26.049 0.0127 1.203
Granot, F. 1 19 11.468 0.0119 1.041
Grotte, J. H. 1 6 1.089 0.0097 0.433
Hamers, H. 2 12 7.845 0.0112 0.886
Hokari, T. 2 4 3.780 0.0102 0.633
Hou, D. 2 3 0.981 0.0098 0.497
Huberman, G. 2 26 14.857 0.0122 1.103
Inarra, E. 2 8 6.647 0.0109 0.810
Jornsten, K. 3 5 26.676 0.0112 0.927
Katsev, . V. 4 5 18.524 0.0119 1.025
Kern, W. 6 14 15.422 0.0120 1.077
Khmelnitskaya, A. B. 2 5 9.599 0.0109 0.818
Kohlberg, E. 2 37 64.942 0.0133 1.372
Kopelowitz, A. 1 20 19.432 0.0110 0.821
Kuipers, J. 4 27 18.258 0.0127 1.194
Littlechild, S, C. 1 20 15.377 0.0111 0.877
Maschler, M. 6 50 159.629 0.0169 1.888
Megiddo, N. 3 29 35.683 0.0125 1.187
Montero, M. 3 2 0.941 0.0100 0.557
Nunez, M. 3 2 3.416 0.0103 0.644
Okamoto, Y. 1 3 1.825 0.0102 0.624
Orshan, G. 2 6 1.211 0.0104 0.668
Owen, G. 2 39 68.788 0.0137 1.422
Paulusma, D. 3 5 6.049 0.0111 0.857
Peleg, B. 2 49 135.792 0.0159 1.759
Peters, H. 2 2 13.178 0.0110 0.815
Potters, J. 8 32 105.505 0.0152 1.655
Raghavan, T. E. S. 3 25 38.708 0.0132 1.305
Reijnierse, H. 4 25 41.420 0.0132 1.308
Sankaran, J. K. 1 8 1.451 0.0102 0.579
Schmeidler, D. 1 95 208.239 0.0175 1.942
Serrano, R. 2 5 4.184 0.0103 0.661



Table 1: Top researchers of the nucleolus. Based on the citation data of 88 articles.

Author # of art. # of ref. Betweenness Closeness PageRank
Shapley, L, S. 1 50 148.548 0.0164 1.821
Snijders, C. 1 5) 32.349 0.0132 1.298
Sobolev, A, 1. 1 27 0.228 0.0097 0.423
Solymosi, T. 6 26 36.310 0.0119 1.087
Sudholter, P. 6 18 29.035 0.0118 1.050
Tijs, S. 6 31 97.916 0.0149 1.614
van den Brink, R. 2 3 5.635 0.0110 0.828
Wallmeier, E, 1 10 3.693 0.0101 0.593
Yanovskaya, E. 2 3 6.477 0.0108 0.775
Zarzuelo, J. M. 2 6 6.612 0.0103 0.627
Zhou, L. 1 5 1.347 0.0098 0.464
Zhu, W. R. 2 15 5.179 0.0115 0.941

The TC-algorithm selects Michael Maschler and David Schmeidler as the
core experts. This conclusion is backed up by the three classic centrality
measure which rank these two game theorist as the top 2 experts among the
researchers of this field. The eliminative TC-algorithm also selects Maschler
and Schmeidler but also includes Elon Kohlberg, Bezalel Peleg and Lloyd S.
Shapley.

Indeed all these researchers had a great impact in the development of
the nucleolus. Schmeidler, as we mentioned earlier, introduced the solution
concept itself. Maschler, Peleg and Shapley are the authors of one of the
most influential papers in the subject, "Geometric Properties of the Kernel,
Nucleolus, and Related Solution Concepts". They not only gave an intuitive
geometric description of the nucleolus but also devised a linear programming
framework to compute it. This was the first LP that could actually be
implemented to determine the nucleolus. All the previous attempts needed
way too many constraints (one in particular worked with O(2"!)) or had other
weaknesses. Finally Kohlberg introduced a criterion, which can be used to
verify whether an allocation is the nucleolus or not. The Kohlberg-criterion
has great practical and theoretical significance.

All centrality measures proved to be an appropriate tool in identifying the
key researchers of this field. The two algorithms we proposed in this paper
performed no worse. Both the TC- and eliminative TC-algorithms picked the
top choices of these measures. This indicates that the TC-algorithms can be
effectively used to create a shortlist of experts.
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7 Conclusion and future research

We extended the group identification framework in two ways. First we
changed the focus from subjective social categories like ethnicity or religion
to groups whose formation encompasses both subjective and objective ele-
ments. Secondly we lifted the requirements that selection rules must satisfy
monotonicity and independence. We have shown that there are interesting
groups and selection rules that identify such groups, which are not compatible
with either monotonicity or independence.

The Top Candidate and eliminative Top Candidate algorithms are effec-
tive complementary tools that can be applied in citation analysis. By narrow-
ing down the possible group members we can determine the core experts in
the community. The Top Candidate algorithm is axiomatically well-founded
- strong stability and exhaustiveness are natural axioms, which — with the
appropriate qualifier — also characterize the liberal rule. It remains an open
question how the eliminative Top Candidate algorithm can be characterized.

The new characterization of the liberal rule suggests that there is a con-
nection between the axiomatic approach used in this paper and the ideas
of Miller (2008) and Samet and Schmeidler (2003). In particular it is an
interesting question how strong stability relates to affirmative and exclusive
self-determination, or the meet and join separability axioms.

Apart from a recent working paper by Cho and Saporiti (2015), which
studies strategy-proofness in a group identification setting, very little has
been done concerning the incentives of the individuals. Here we did not
delve into the strategic aspect of the model. One could argue that the Top
Candidate algorithm is somewhat vulnerable to strategic manipulation. A
possible scenario is when an individual cites only his own papers and works
that belong to lesser known researchers. Such an individual forms a top
candidate component by himself, hence he is selected by the Top Candi-
date algorithm. This is quite natural for researchers with exceptional skills,
however even a mediocre individual can trick himself into the selection if he
consistently avoids to cite the prominent figures of his field.

Finally it is worth to note that the literature already turned toward the
analysis of social networks with multiple groups. The popularity of network
services like Facebook or Twitter suggests that there will be an increasing
demand for tools that can identify key players in networks (e.g. for advertising
purposes). Chen et al. (2010) examined the problem from game theoretical
point of view, while Nicolas (2007) used the group identification framework
to study such models. A straightforward question is how to extend the Top
Candidate algorithm to handle multiple groups and how to solve the arising
algorithmic and axiomatic difficulties.
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Citation data of 88 articles focusing on the nucleolus and related topics. The opinion graph has 57 nodes (authors)
and 937 arcs (references). Author nodes with at least 25 references are labeled. Visualized by NodeXL using Harel-Koren Fast

Multiscale method. The Top Candidate algorithm selects Michael Maschler and David Schmeidler as the core experts.
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