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Abstract

We provide a new modus operandi for the computation of the nucleolus in coop-

erative games with transferable utility. Using the concept of dual game we extend

the theory of characterization sets. Dually essential and dually saturated coalitions

determine both the core and the nucleolus in monotonic games whenever the core

is non-empty. We show how these two sets are related with the existing charac-

terization sets. In particular we prove that if the grand coalition is vital then the

intersection of essential and dually essential coalitions forms a characterization set

itself. We conclude with a sample computation of the nucleolus of bankruptcy games

- the shortest of its kind.

Keywords: Cooperative game theory, Nucleolus, Characterization sets

JEL-codes: C71

1 Introduction

The nucleolus, developed by Schmeidler (1969), soon became one of the most frequently

applied solution concepts of cooperative game theory. Despite its good properties it lost

some popularity in the last 20 or so years. Very much like the Shapley-value it su�ers

from computational di�culties. While the former has an explicit formula and various

axiomatizations, the nucleolus can only be computed by an LP and its axiomatization is

less straightforward.

Computing the nucleolus is a notoriously hard problem, evenNP-hard for some classes

of games. While NP-hardness was proven for minimum cost spanning tree games (Faigle,

Kern, and Kuipers, 1998), voting games (Elkind, Goldberg, Goldberg, and Wooldridge,

2009) and �ow and linear production games (Deng, Fang, and Sun, 2009), it is still
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unknown whether the corresponding decision problem � i.e. verifying whether an allocation

is the nucleolus or not � belongs to NP or not.

In recent years several polynomial time algorithms were proposed to �nd the nucleolus

of important families of cooperative games, like standard tree, assignment, matching and

bankruptcy games (Maschler, Potters, and Reijnierse, 2010; Solymosi and Raghavan, 1994;

Kern and Paulusma, 2003; Aumann and Maschler, 1985). In addition Kuipers (1996) and

Arin and Inarra (1998) developed methods to compute the nucleolus for convex games.

The main breakthrough came from another direction. In their seminal paper Maschler,

Peleg, and Shapley (1979) described the geometric properties of the nucleolus and devised

a computational framework in the form of a sequence of linear programs. Although these

LPs consist of exponentially many inequalities they can be solved e�ciently if one knows

which constraints are redundant. Huberman (1980); Granot, Granot, and Zhu (1998);

Reijnierse and Potters (1998) provided methods to identify coalitions that correspond to

non-redundant constraints.

Granot, Granot, and Zhu (1998) provided the most fruitful approach. They introduced

the concept of characterization set which is a collection of coalitions that determines the

nucleolus by itself. They proved that if the size of the characterization set is polynomially

bounded in the number of players, then the nucleolus of the game can be computed in

strongly polynomial time. A collection that characterizes the nucleolus in one game need

not characterize it in another one. Thus we are interested in characterization sets that

are universal, i.e. that yield the nucleolus in every TU-game.

Huberman (1980) was the �rst to show that such a collection exists. He introduced

the concept of essential coalitions which are coalitions that have no weakly minorizing

partition. Granot, Granot, and Zhu (1998) provided another collection that characterize

the nucleolus in cost games with non-empty cores. Saturated coalitions contain all the

players that can join the coalition without imposing extra cost.

We introduce two new characterization sets: dually essential and dually saturated

coalitions. We show that each dually inessential coalition has a weakly minorizing overlap-

ping decomposition which consists exclusively of dually essential coalitions. Thus dually

essential coalitions determine the core, and if the core is non-empty they determine the

nucleolus as well. If every player contributes to the value of a coalition then such coalition

is called dually saturated. We show that dually saturated coalitions also determine the

core, and if the core is non-empty, then also the nucleolus of a TU-game.

The larger a characterization set is the easier to uncover it in a particular game class.

However with smaller characterization set it comes a faster LP. Hence there is a tradeo�

between the di�culty in identifying the members of a characterization set and its e�ciency.

In order to exploit this technique we analyze the relationship of the four known universal

characterization sets. We prove that essential coalitions are a subset of dually saturated
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coalitions in monotonic pro�t games and that dually essential coalitions are a subset of

saturated coalition in case of monotonic cost games. We show that in general essential

and dually essential coalitions do not contain each other. In fact for additive games their

intersection is trivial (consist of the grand coalition only). We prove that if the grand

coalition is vital then the intersection of essential and dually essential coalitions forms a

characterization set itself.

2 Game theoretical framework

A cooperative game with transferable utility is an ordered pair (N, v) consisting of the

player set N = {1, 2, . . . , n} and a characteristic function v : 2N → R with v(∅) = 0. The

value v(S) represents the worth of coalition S. No matter how other players behave if the

players of S work together they can secure themselves v(S) amount of payo�. The set N

� when viewed as a coalition � is called the grand coalition.

De�nition 1. A cooperative game (N, v) is called monotonic if

S ⊆ T ⊆ N ⇒ v(S) ≤ v(T ).

and superadditive if

(S, T ⊂ N, S ∩ T = ∅) ⇒ v(S) + v(T ) ≤ v(S ∪ T ).

In superadditive games two disjoint coalitions can always merge without losing money.

Hence we shall assume that players form the grand coalition. The main question is then

how to distribute v(N) among the players in some fair way.

A solution for a cooperative game Γ = (N, v) is a vector x ∈ RN that represents

the payo� of each player. For convenience, we introduce the following notations x(S) =∑
i∈S xi for any S ⊆ N , and instead of x({i}) we simply write x(i). A solution is called

e�cient if x(N) = v(N) and individually rational if x(i) ≥ v(i) for all i ∈ N . The

imputation set of the game I(Γ) consists of the e�cient and individually rational solutions,

formally,

I(Γ) = {x ∈ RN | x(N) = v(N), x(i) ≥ v(i) for all i ∈ N}.

Given an allocation x ∈ RN , we de�ne the satisfaction of a coalition S as

satΓ(S, x) := x(S)− v(S).

The core of the cooperative game C(Γ) is a set-valued solution where all the satisfaction

values are non-negative. Formally,
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C(Γ) = {x ∈ RN | x(N) = v(N), x(S) ≥ v(S) for all S ⊆ N}.

De�nition 2. A cooperative game (N, v) is convex if the characteristic function is su-

permodular i.e.

v(S) + v(T ) ≤ v(S ∪ T ) + v(S ∩ T ), ∀ S, T ⊆ N.

Deriving results for convex games is a less challenging task than in general due to their

nice structure. Here we only mention a result of ?, namely that the core of a convex game

is not empty.

In many economic situations cooperation results in cost saving rather than pro�t

growth. For instance such situation occurs when customers would like to gain access to

some public service or public facility. The question is then, how to share the costs of

the service. Cost allocation games can be modeled in a similar fashion as cooperative

TU-games.

A cooperative cost game is an ordered pair (N, c) consisting of the player set N =

{1, 2, . . . , n} and a characteristic cost function c : 2N → R with c(∅) = 0. The value c(S)

represent how much cost coalition S must bear if it chooses to act separately from the rest

of the players. In most cases c is monotonic and subadditive. That is the more people

use the service the more it costs, however there is also an increase of e�ciency.

De�nition 3. A cost game (N, c) is called subadditive if

(S, T ⊂ N, S ∩ T = ∅) ⇒ c(S) + c(T ) ≥ c(S ∪ T ).

and concave if,

c(S) + c(T ) ≥ c(S ∪ T ) + c(S ∩ T ), ∀ S, T ⊆ N.

It is possible to associate a pro�t game (N, v) with a cost game (N, c), called the

savings game, which is given by v(S) =
∑

i∈S c(i) − c(S) for all S ⊆ N . Note that

a cost game is subadditive (concave) if and only if the corresponding savings game is

superadditive (convex). Similarly the relationship is reversed in all the previously listed

concepts such as individual rationality, satisfaction, the core and so on. Formally, let

Γ = (N, c) be a cost game and x ∈ RN an arbitrary allocation. The satisfaction of a

coalition S is de�ned as

satΓ(S, x) := c(S)− x(S).

As we pointed out in case of cost games the order of the characteristic function and

the payo� vector is reversed, hence the formula for satΓ depends on whether Γ is a cost
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or pro�t game. However, the essence of the satΓ(S, x) expression does not change. It still

indicates the contentment of coalition S under payo� vector x.

In a cost game (N, c) we say that x is individually rational if x(i) ≤ c(i) for all i ∈ N
and x is a core member if all the satisfaction values are non-negative. Notice that core

vectors of monotonic pro�t and cost games are non-negative. Indeed,

x(i) = x(N)− x(N \ i) ≥ c(N)− c(N \ i) ≥ 0

for any core allocation x and i ∈ N . For pro�t games this is even more trivial since

x(i) ≥ v(i) ≥ v(∅) = 0.

We say that a vector x ∈ Rm lexicographically precedes y ∈ Rm (denoted by x � y) if

either x = y or there exists a number 1 ≤ j < m such that xi = yi if i < j and xj < yj.

Let Γ = (N, v) be a game and let θ(x) ∈ R2n be the satisfaction vector that contains the

2n satisfaction values in a non-decreasing order.

De�nition 4. The nucleolus of Γ with respect to X is the set of allocations of a game

x ∈ Rn
+ that lexicographically maximizes θ(x) over X. Formally,

N (Γ, X) = {x ∈ X | θ(y) � θ(x) for all y ∈ X}.

It is well known that if X is nonempty and compact then N (Γ, X) 6= ∅ and if X is

convex then N (Γ, X) consist of a single point (for proof see (Schmeidler, 1969)). Fur-

thermore the nucleolus is a continuous function of the characteristic function. If X is

chosen to be the set of allocations, we speak of the prenucleolus of Γ, if X is the set of

imputations then we speak of the nucleolus of Γ. Throughout the paper we will use the

shorthand notation N (Γ) for N (Γ, I(Γ)).

3 Characterization sets

The concept of characterization sets was already used by Megiddo (1974), but somehow

went unnoticed at that time. Later Granot, Granot, and Zhu (1998) and Reijnierse and

Potters (1998) re-introduced the idea almost simultaneously. It is remarkable that two

such closely related and revolutionary papers appeared in the same year. Here we will

use the formalism of Granot, Granot, and Zhu (1998).

De�nition 5. Let ΓF = (N,F , v) be a cooperative game with coalition formation restric-

tions, where F ⊆ 2N consists of all coalitions deemed permissible. Then F is called a

characterization set for the nucleolus of the game Γ = (N, v), if N (ΓF) = N (Γ).

The main result of (Granot, Granot, and Zhu, 1998) is presented the following theorem.

We denote by eS ∈ {0, 1}N the membership vector of coalition S given by (eS)i = 1 if

i ∈ S and (eS)i = 0 otherwise.
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Theorem 6. Let Γ = (N, g) be a cooperative game, where g is either a characteristic cost

or pro�t function and let F ⊂ 2N . Denote by x the nucleolus of ΓF . The collection F is a

characterisation set for the nucleolus of Γ if for every S ∈ 2N \F there exists a nonempty

subcollection FS of F , such that

i. satΓ(T, x) ≤ satΓ(S, x), whenever T ∈ FS,

ii. eS can be expressed as a linear combination of {eT : T ∈ FS}.

Unfortunately the direction can not be reversed, i.e., the above conditions are su�cient

but not at all necessary. Take for example the (superadditive, but not balanced) pro�t

game with four players N = {1, 2, 3, 4} and the following characteristic function: v(i) = 0,

v(i, j) = 1, v(i, j, k) = 4 for any i, j, k ∈ N and let v(N) = 4. Then the 2-player coalitions

and the grand coalition are su�cient to determine the nucleolus, which is given by z(i) = 1

for all i ∈ N . However the 3-player coalitions have smaller satisfaction values at z, thus the

�rst condition of Theorem 6 is violated. Notice that in this game the 3-player coalitions

and the grand coalition are also su�cient to determine the nucleolus.

In general neither the 2-player nor the 3-player coalitions (and the grand coalition)

characterize the nucleolus. The fact that in this example they did was due to the particular

choice (the symmetry) of the coalitional function. We would like to deal with collections

that characterize the nucleolus independently of the realization of the coalitional function.

We say that a characterization set F is universal for a class of games if it satis�es both

conditions of Theorem 6 in every game from that class of games. Special focus will be

given to the class of games with a non-empty core.

A straightforward corollary of Theorem 6 is that we can enlarge universal characteri-

sation sets arbitrarily.

Corollary 7. Let F ⊂ 2N be a characterisation set that satis�es both conditions of

Theorem 6. Then T is a characterisation set for any F ⊂ T ⊆ 2N

Now we present four universal characterization sets for balanced games. The �rst one

is due to Huberman (1980).

De�nition 8 (Essential coalitions). Let N be a set of players, (N, v) a pro�t, (N, c) a

cost game. Coalition S is called essential in game Γ = (N, v) if it can not be partitioned

as S = S1

.
∪ . . .

.
∪ Sk with k ≥ 2 such that

v(S) ≤ v(S1) + . . .+ v(Sk).

Similarly S is called essential in game Γ = (N, c) if it can not be partitioned as

S = S1

.
∪ . . .

.
∪ Sk with k ≥ 2 such that

c(S) ≥ c(S1) + . . .+ c(Sk).
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The set of essential coalitions is denoted by E(Γ), where Γ is either (N, v) or (N, c).

By de�nition, the singleton coalitions are always essential in every game. It is easily

seen that in a pro�t / cost game each non-essential coalition has a weakly majorizing /

minorizing partition which consists exclusively of essential coalitions. Such coalitions are

called inessential. Moreover, the core is determined by the e�ciency equation x(N) =

v(N) and in pro�t games the x(S) ≥ v(S) inequalities, while in cost games the x(S) ≤ c(S)

inequalities corresponding to the essential coalitions, all the other inequalities can be

discarded from the core system.

Huberman (1980) showed that if the core of the game is non-empty then the grand

coalition and the essential coalitions form a characterization set for the nucleolus. This

observation helps us to eliminate large coalitions which are redundant for the nucleolus.

To detect small coalitions that are unnecessary for the nucleolus, we need the concept of

dual game.

De�nition 9. The dual game (N, v∗) of game (N, v) is de�ned by the coalitional function

v∗(S) := v(N)− v(N \ S) for all S ⊆ N .

Clearly, v∗(∅) = 0, hence (N, v∗) is indeed a cooperative TU-game. Notice that

v∗(N) = v(N) and (v∗)∗(S) = v(S) for all S ⊆ N . It will be useful to think of the

dual game of a pro�t game as a cost game and vice versa. We can identify the small

redundant coalitions, if we apply Huberman's argument to the dual game.

De�nition 10 (Dually essential coalitions). Let N be a set of players, (N, v) a pro�t,

(N, c) a cost game. Coalition S is called dually essential in game (N, v) if its complement

can not be partitioned as N \ S = (N \ T1)
.
∪ . . .

.
∪ (N \ Tk) with k ≥ 2 such that

v∗(N \ S) ≥ v∗(N \ T1) + . . .+ v∗(N \ Tk),

or equivalently,

v(S) ≤ v(T1) + . . .+ v(Tk)− (k − 1)v(N).

Similarly, S is called dually essential in cost game (N, c) if its complement can not be

partitioned as N \ S = (N \ T1)
.
∪ . . .

.
∪ (N \ Tk) with k ≥ 2 such that

c∗(N \ S) ≤ c∗(N \ T1) + . . .+ c∗(N \ Tk),

or equivalently,

c(S) ≥ c(T1) + . . .+ c(Tk)− (k − 1)c(N).

The set of dually essential coalitions is denoted by DE(Γ), where Γ is either (N, v) or

(N, c).
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Notice that each member of S appears in all of the coalitions T1, ..., Tk, but every

other player appears exactly k−1 times in this family. We call such a system of coalitions

an overlapping decomposition of S. For a more general de�nition, where the complements

of the overlapping coalitions need not form a partition of the complement coalition, see

e.g. Brânzei, Solymosi, and Tijs (2005) and the references therein.

By de�nition, all (n − 1)-player coalitions are dually essential in any game. It is

easily checked that if S and T are not dually essential coalitions and T appears in an

overlapping decomposition of S, then S cannot appear in an overlapping decomposition

of T . Consequently, in a pro�t / cost game each dually non-essential (dually inessential)

coalition has a weakly majorizing / weakly minorizing overlapping decomposition which

consists exclusively of dually essential coalitions. Moreover, the core of pro�t game (N, v)

can also be determined by the dual e�ciency equation x(N) = v∗(N) and the x(S) ≤
v∗(S) dual inequalities corresponding to the complements of the dually essential coalitions,

all the other dual inequalities can be discarded from the dual core system. An analogous

statement holds for the core of cost games.

The main feature of dually essential coalitions for the nucleolus lies in the next theorem.

Theorem 11. If C(Γ) 6= ∅, then the grand coalition and the dually essential coalitions

form a characterization set for N (Γ).

Proof. There are many ways to derive this result. A formal proof can be obtained by

copying the arguments in Huberman (1980). Here we pursue another way and deduce it

from Theorem 6.

Let S be a dually inessential coalition in the balanced pro�t game Γ = (N, v). As

remarked earlier, S has a weakly minorizing overlapping decomposition T1, . . . , Tk (k ≥ 2)

which consists exclusively of dually essential coalitions. Hence ii. of Theorem 6 follows

immediately. The �rst part follows from the fact that in balanced games the nucleolus is

in the core, and for any x ∈ C(Γ)

v(S) ≤ v(T1) + . . .+ v(Tk)− (k − 1)v(N)

v(S)− x(S) ≤ v(T1) + . . .+ v(Tk)− (k − 1)x(N)− x(S)

−satΓ(S, x) ≤ −(satΓ(T1, x) + . . .+ satΓ(Tk, x))

satΓ(S, x) ≥ satΓ(T1, x) + . . .+ satΓ(Tk, x) ≥ 0,

where the second inequality comes from v(N) = x(N), while the third from the identity

x(T1) + . . . + x(Tk) = (k − 1)x(N) + x(S) implied by N \ S = (N \ T1)
.
∪ . . .

.
∪ (N \ Tk).

The satisfaction values are non-negative for any core allocation x, hence satΓ(S, x) ≥
satΓ(Tj, x) for all j = 1, . . . , k.

The next characterization set was proposed by Granot, Granot, and Zhu (1998) for

monotonic balanced cost games.
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De�nition 12. A coalition S is said to be saturated in cost game (N, c) if i ∈ S whenever

c(S) = c(S ∪ {i}).

In other words if S is a saturated coalition then every new member will impose extra

cost on the coalition. A saturated coalition S said to be irreducible if there is no partition

S1, . . . , Sk of S such that Si are saturated and c(S) ≥ c(S1) + . . . + c(Sk). Let S∗(Γ)

denote the set of all irreducible saturated coalitions and

S(Γ) = S∗(Γ) ∪ {N \ i | i ∈ N} ∪ {N}.

Theorem 13. (Granot, Granot, and Zhu, 1998) Let Γ = (N, c) be a monotonic cost game

with a non-empty core, then S(Γ) forms a characterization set for N (Γ).

Similarly to the other characterization sets, S(Γ) also induces a representation of the

core C(Γ) as well. Let us mention here that just because a collection of coalitions deter-

mines the core it does not necessarily characterize the nucleolus of the game. Maschler,

Peleg, and Shapley (1979) presented two games with the same core, but with di�erent

nucleoli.

We now convert the concept of saturatedness to monotonic pro�t games based on the

dualization correspondence between pro�t and cost games. Let (N, v) be a monotonic

pro�t game and S ⊆ N be an arbitrary coalition. We say that S is dually saturated if

v(S \ i) < v(S) for any i ∈ S. In other words every member contributes to the worth of

coalition S. A dually saturated coalition S said to be irreducible if there is no partition

S1, . . . , Sk of S such that Si are dually saturated and v(S) ≤ v(S1) + . . . + v(Sk). Let

DS∗(Γ) denote the set of all irreducible dually saturated coalitions and

DS(Γ) = DS∗(Γ) ∪ {i | i ∈ N} ∪ {N}.

The following de�nition is needed for our next theorem. Let (N, v) be a monotonic

game and S ⊆ N a dually non-saturated coalition, then we say that S 6= ∅ is a lower

closure of S if S ⊂ S, v(S) = v(S) and S is a dually saturated coalition. Note that if S

has no lower closure, then no member contributes to the worth of S or to any subset of

S. Hence v(S) = v(i) = v(∅) = 0 for any i ∈ S.

Theorem 14. Let Γ = (N, v) be a monotonic game with a non-empty core, then DS(Γ)

forms a characterization set for N (Γ).

Proof. Again we will use Theorem 6. Let S be a dually saturated but not irreducible

coalition, then there exists a partition S1, . . . , Sk of S, such that v(S) ≤ v(S1)+. . .+v(Sk).

Hence satΓ(S, x) ≥ satΓ(S1, x) + . . .+ satΓ(Sk, x). Note that we can choose S1, . . . , Sk to

be irreducible, since if one of them is not, then we take an irreducible re�nement of it.

Thus S1, . . . , Sk ∈ DS(Γ).

9



Now let S be a dually non-saturated coalition. If S has no lower closure then v(S) =

v(i) = 0 for any i ∈ S. From this observation also follows that satΓ({i}, x) ≤ satΓ(S, x)

for any i ∈ S and for any allocation x. Since all the singleton coalitions are included in

DS(Γ) by Theorem 6, S can be discarded. Finally let S be a lower closure of S and let

S \ S = T , then

satΓ(S, x) + x(T ) = x(S) + x(T )− v(S) = x(S)− v(S) = satΓ(S, x).

Since core vectors are non-negative this also means satΓ(S, x) ≤ satΓ(S, x) for any

x ∈ C(Γ). Now we show that satΓ({i}, x) ≤ satΓ(S, x) for any i ∈ T .

satΓ({i}, x) = x(i)− v(i) ≤ x(i) =

x(S)− x(S \ i) + v(S \ i)− v(S) =

satΓ(S, x)− satΓ(S \ i, x) ≤ satΓ(S, x)

We have shown that for any S ∈ 2N \ DS(Γ) there exist a subcollection F of DS(Γ),

such that F ful�lls both conditions of Theorem 6. Hence DS(Γ) is a characterization set

for N (Γ).

Next we show a relationship between dually essential and saturated coalitions.

Lemma 15. Let Γ = (N, c) be a monotonic cost game, then DE(Γ) ⊆ S(Γ)

Proof. The grand coalition and the n− 1 player coalitions are all members of both S(Γ)

and DE(Γ). Let S be a non-saturated coalition with at most n − 2 players. We will

show that S is dually inessential. As S is not saturated there exists i ∈ N \ S such that

c(S) = c(S ∪ i). Let S1 := S ∪ i and S2 := N \ i. Then S1 ∪ S2 = N and S1 ∩ S2 = S

therefore we can use De�nition 10 since

c(N) ≥ c(N \ i),

c(S) ≥ c(S) + c(N \ i)− c(N),

c(S) ≥ c(S1) + c(S2)− c(N).

In other words S appears in an overlapping decomposition of S1 and S2, therefore it can

not be dually essential.

The above lemma suggests that dually essential coalitions are more useful since they

de�ne a smaller characterization set, which in turn implies a smaller LP. However usually

it is also harder to determine whether a coalition is dually essential or not. Saturatedness

on the other hand can be checked easily. For instance for airport games1 there exist

1This class of games was introduced by Littlechild and Owen (1973).
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at most n saturated coalitions, which can be easily determined from the characteristic

function. In fact it is enough to know the value of the singleton coalitions to identify the

saturated coalitions, which gives us an alternative way to derive an e�cient algorithm for

the nucleolus.

There is a symmetrical result for essential and dually saturated coalitions.

Lemma 16. Let Γ = (N, v) be a monotonic pro�t game, then E(Γ) ⊆ DS(Γ).

Proof. Observe that the singleton coalitions are all members of both E(Γ) and DS(Γ).

Let S be a dually non-saturated coalition such that |S| > 1. Then there exists i ∈ S such

that v(S) = v(S \ i). By monotonicity v(i) ≥ 0, hence v(S) ≤ v(S \ i) + v(i). Thus S is

inessential.

When designing a characterisation set we may run into two kinds of di�culties. The

collection can be two small to describe (span) every other coalition. A more tricky prob-

lem is what we call a cycle in the decomposition2. This occurs when we try to discard

a coalition S using coalition T that was previously excluded because of S. For instance

the intersection of essential and dually essential coalitions do not always yield a charac-

terization set. It can happen that there is a series of coalitions S1, S2, . . . , Sk, where S`

is excluded because of S`+1 for ` = 1, 2, . . . , k − 1 and Sk = S1. The circular argument

leads to a contradiction when we try to use Theorem 6 to verify that the intersection

is indeed a characterisation set. A simple example for this is any additive game. Let

Γ = (N, v) such that v(S) =
∑

i∈S v(i). Then only the singleton coalitions and the grand

coalition are essential and the (n−1)-person coalitions and the grand coalition are dually

essential. Thus E(Γ)∩DE(Γ) = {N} and the grand coalition alone does not characterize

the nucleolus in any game.

A collection of coalitions BS ⊆ 2N is said to be S-balanced if there exist positive weights

λT , T ∈ BS, such that
∑

T∈BS λT eT = eS. An N -balanced collection is simply called

balanced. A coalition S is called vital if for any S-balanced collection BS and any system

(λT )T∈BS of balancing weights for BS,
∑

T∈BS λTv(T ) < v(S). By de�nition every vital

coalition is essential. The concept was introduced by Gillies (1959) and further analyzed

by Shellshear and Sudhölter (2009). Huberman (1980) showed that vital coalitions do not

necessarily characterize the nucleolus. The next theorem provides a su�cient condition

for E(Γ) ∩ DE(Γ) to be a characterization set.

Theorem 17. Let Γ = (N, v) a monotonic game with a non-empty core. The collection

E(Γ) ∩ DE(Γ) forms a characterization set of N (Γ) if the grand coalition is vital.

2Strongly essential coalitions that were introduced in (Brânzei, Solymosi, and Tijs, 2005) are not

immune to this kind of failure, hence they do not form a characterization set for the nucleolus.
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Proof. If there is no cycle in the decomposition, then by Theorem 6 E(Γ) ∩ DE(Γ) is a

characterization set. By contradiction suppose that the grand coalition is vital, but there

is a cycle T1, T2, . . . , Tr in the decomposition. Note that we may assume without loss of

generality that the series alternates between inessentiality and dual inessentiality. If T`

and T`+1 were deemed redundant for the same reason (e.g. they are both inessential) then

the inequality that shows inessentiality of T` can be re�ned by the inequality that shows

inessentiality of T`+1. Let us assume that T1 is inessential � the proof is the same if T1 is

dually inessential. Thus using the de�nition of essentiality and dual essentiality

v(T1) ≤ v(T2) +

k1∑
j=1

v(S1
j ) (1)

v(T2) ≤ v(T3) +

k2∑
j=1

v(S2
j )− k2 · v(N) (2)

v(T4) ≤ v(T5) +

k3∑
j=1

v(S3
j ) (3)

...

v(Tr) ≤ v(T1) +
kr∑
j=1

v(Sr
j )− kr · v(N) (4)

In words T1 is inessential because of the collection T2, S
1
1 , . . . , S

1
k1
(these are all essential

coalitions, thus the inequality cannot be re�ned any more). Then T2 is dually inessential

because of the collection T3, S
2
1 , . . . , S

2
k2
compose an overlapping decomposition of T2 (and

these are all dually essential). And so on until �nally Tr is deemed redundant because

of T1, S
r
1 , . . . , S

r
kr
. Note that there may be coalitions among S1

1 , . . . , S
2
1 , . . . , S

r
1 , . . . , S

r
kr

that coincide. Using indicator functions and the conditions of inessentiality and dual

inessentiality.

eT1 = eT2 +

k1∑
j=1

eS1
j

(5)

eT2 = eT3 +

k2∑
j=1

eS2
j
− k2 · eN (6)

eT4 = eT5 +

k3∑
j=1

eS3
j

(7)

...

eTr = eT1 +
kr∑
j=1

eSr
j
− kr · eN (8)
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Thus by summing (1)-(4) we obtain that

v(N) ≤ 1

k2 + k4 + · · ·+ kr

r∑
i=1

ki∑
j=1

v(Si
j)

while from (5)-(8) we gather that

eN =
1

k2 + k4 + · · ·+ kr

r∑
i=1

ki∑
j=1

eSi
j

i.e. the collection S1
1 , . . . , S

2
1 , . . . , S

r
1 , . . . , S

r
kr

is balanced. This contradicts the fact that

the grand coalition is vital.

4 Verifying the nucleolus

Faigle, Kern, and Kuipers (1998) conjecture the decision problem: "given x∗ ∈ RN , is

x∗ the nucleolus?" to be NP-hard in general. The most resourceful tool regarding this

problem is the criterion developed by (Kohlberg, 1971).

Theorem 18. (Kohlberg, 1971) Let Γ = (N, v) be a game with non-empty core and

let x ∈ I(Γ). Then x = N (Γ) if and only if for all y ∈ R the collection {∅ 6= S ⊂
N | satΓ(S, x) ≤ y} is balanced or empty.

The Kohlberg-criterion is often used to verify the nucleolus in practical computation

when the size of the player set is not too large. As the following LP shows it is easy

to tell whether a given collection of coalitions is balanced or not. Let S1, . . . , Sm be the

collection which balancedness is in question and let q ∈ [0, 1]m. For k = 1, . . . ,m let

p∗k = max qk
m∑
i=1

qieSi
= eN (9)

q1, . . . , qm ≥ 0.

Lemma 19. The collection S1, . . . , Sm is balanced if and only if p∗k > 0 for each k =

1, . . . ,m.

Proof. Trivially p∗k > 0 is a necessary condition. Let a1, . . . , am ∈ [0, 1] be arbitrary reals

such that a1 + · · ·+ am = 1. Furthermore let qk be an optimal solution of the kth LP. We

claim that λ =
∑m

i=1 aiq
i is a vector of balancing weights. Note that λj =

∑m
i=1 aiq

i
j > 0

as qjj = p∗j > 0 and
∑m

j=1 q
i
jeSj

= eN for all i = 1, . . . ,m by (9). Then
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m∑
j=1

λjeSj
=

m∑
j=1

m∑
i=1

aiq
i
jeSj

=
m∑
i=1

ai

m∑
j=1

qijeSj
= (a1 + · · ·+ am)eN = eN .

Sobolev (1975) extended Theorem 18 to the prenucleolus (where instead of x ∈ I(Γ)

we only require x to be an allocation). A direct consequence of the Sobolev-criterion is

that the prenucleolus of monotonic games is non-negative.

Theorem 20. Let Γ = (N, v) be a monotonic game and let z denote its prenucleolus,

then z(i) ≥ 0 for all i ∈ N .

Proof. By contradiction suppose that z(i) < 0 for some i ∈ N . Let B0 contain the

coalitions with the smallest satisfaction values under z. By the Sobolev-criterion B0 is

a balanced collection. For every S ∈ B0, i ∈ S otherwise S ∪ {i} would have an even

smaller satisfaction due to the monotonicity of the characteristic function and the fact

that z(i) < 0. By balancedness of B0,
∑

S∈B0 λSeS = eN . As i ∈ S for all S ∈ B0 this

also means that
∑

S∈B0 λS = 1. Then for all j 6= i and for all S ∈ B0, S must contain j.

Thus the only coalition in B0 is the grand coalition. However the grand coalition has zero

satisfaction under any allocation, while coalition {i} has negative satisfaction under z,

which contradicts that B0 contains the coalitions with the smallest satisfaction values.

Reijnierse and Potters (1998) proved that for every game (N, v) there exists a collection

with at most 2(n − 1) coalitions that determine the nucleolus. Although �nding these

coalitions is as hard as computing the nucleolus itself. Unfortunately this result does not

make the veri�cation of the nucleolus belong toNP . Even if somehow we could e�ortlessly

put the satisfaction values of the 2n coalition in increasing order. It can happen that these

2(n−1) coalitions are scattered among the di�erent balanced coalition arrays and we have

to evaluate exponential many of them before we could con�rm that the given allocation

is indeed the nucleolus.

The Kohlberg-criterion applied to games with coalition formation restrictions yields

the following theorem.

Theorem 21. Let F be a characterization set and x be an imputation of the game Γ with

C(Γ) 6= ∅. Then x = N (Γ) if and only if for all y ∈ R the collection {S ∈ F | satΓ(S, x) ≤
y} is balanced or empty.

For a proof see (Maschler, Potters, and Tijs, 1992). A similar criterion appears

in (Groote Schaarsberg, Borm, Hamers, and Reijnierse, 2013). With the help of the

Kohlberg-criterion the problem of �nding the nucleolus is reduced to �nding the right

characterization set.
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5 The nucleolus of bankruptcy games

The game theoretic analysis of bankruptcy games was initiated by O'Neill (1982), but

Aumann and Maschler (1985) made the problem really popular3 by proving the equiv-

alence of the Talmud-rule and the nucleolus. Although their result was spectacular the

proof used complicated concepts like the reduced game or kernel. Many believed that an

elementary proof should exists for this problem. Benoît (1997) was the �rst to publish

a simpli�cation, although he still needed long pages of computation to reach the desired

result. Recently Fleiner and Sziklai (2012) managed to provide an elementary and in-

structive proof with the help of the hydraulic framework that was developed by Kaminski

(2000).

The di�erences between the approaches are remarkable. The hydraulic proof seems to

be straightforward enough but the elapsed time between the original and this proof signals

that a few subtle tricks were needed to overcome the di�culties. It seems that for each

particular game class a di�erent idea is needed to compute the nucleolus. Bankruptcy

games make a textbook examples why characterization sets are so resourceful. The ben-

e�ts of Theorem 6, 11 and 17 all come together. Here � after de�ning bankruptcy games

� we disclose a simple treatment of the problem, which is barely two-page long.

Let N = {1, 2, . . . , n} be the set of creditors. The bankruptcy problem4 is de�ned as a

pair (d,E) where E ∈ R+ represents the �rm's liquidation value (or estate/endowment)

and d ∈ Rn
+ is the collection of claims with

∑n
i=1 di > E. A solution of a bankruptcy

problem is a vector x ∈ Rn
+ such that

∑n
i xi = E.

The characteristic function corresponding to the bankruptcy problem (d,E) is

v(d,E)(S) = max{E − d(N \ S), 0}

By de�nition, this is the value that is left from the �rm's liquidation value E =

v(d,E)(N) after the claim of each player of the complement coalition N \ S has been

satis�ed. Coalition S can achieve v(d,E)(S) without any e�ort. Note that v(d,E) is non-

negative and supermodular. Hence bankruptcy games are convex, which implies that they

are superadditive and monotonic as well.

The hydraulic proof of Fleiner and Sziklai (2012) hints that only the singleton coali-

tions and the n − 1 person coalitions are relevant in the computation of the nucleolus.

Let us investigate whether any of the characterization sets coincide with this collection of

coalitions.

3After Aumann and Maschler's seminal paper the literature virtually exploded. A recent comprehen-

sive survey of Thomson (2015) lists nearly 200 references!
4Sometime it is referred as the claims or rationing problem.
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Lemma 22. Let (d,E) be a bankruptcy problem and Γ = (N, v(d,E)) be the corresponding

bankruptcy game. Then E(Γ) is a subset of the singleton coalitions, the grand coalition

and coalitions with non-zero characteristic function value.

Proof. Let S ⊂ N be such that |S| > 1 and v(d,E)(S) = 0. It follows from monotonicity

of v(d,E) that v(d,E)(T ) = 0 for any T ⊂ S. Thus for any partition S1, . . . , Sk of S,

v(d,E)(S) ≤ v(d,E)(S1) + · · ·+ v(d,E)(Sk).

That is, S is inessential.

In fact E(Γ) contains exactly the singleton coalitions, the grand coalition and coalitions

with non-zero characteristic function value. We will come back to this question later, since

we do not need it for the computation of the nucleolus.

Lemma 23. Let (d,E) be a bankruptcy problem and Γ = (N, v(d,E)) be the corresponding

bankruptcy game. Then DE(Γ) is a subset of the n−1 player coalitions, the grand coalition

and coalitions with characteristic function value of zero.

Proof. By default DE(Γ) contains all the n− 1 player coalitions. Let S ⊂ N be such that

|S| < n− 1 and v(d,E)(S) > 0. It follows from monotonicity of v(d,E) that v(d,E)(T ) > 0 for

any S ⊂ T . Thus for any overlapping decomposition T1, . . . , Tk of S,

E − d(N \ S) ≤ E − d(N \ S)

E − d(N \ S) ≤ kE − d(N \ S)− (k − 1)E

E − d(N \ S) ≤ E − d(N \ T1) + · · ·+ E − d(N \ Tk)− (k − 1)v(d,E)(N)

v(d,E)(S) ≤ v(d,E)(T1) + · · ·+ v(d,E)(Tk)− (k − 1)v(d,E)(N)

where we used that d(N \S) = d(N \T1)+· · ·+d(N \Tk). Thus S is dually inessential.

It seem that neither of these two characterization sets coincide with the desired col-

lection. A natural idea is to examine the intersection of these two sets.

Observation 24. Let (d,E) be a bankruptcy problem and Γ = (N, v(d,E)) be the corre-

sponding bankruptcy game. Then E(Γ) ∩ DE(Γ) is subset of the grand coalition, n − 1

person coalitions with non-zero characteristic function value and singleton coalitions with

characteristic function value of zero.

Although Observation 24 gives us the collection of coalitions that we have looked for,

we still need to prove that E(Γ) ∩DE(Γ) is actually a characterization set itself. For this

we will show that the grand coalition is vital.
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Theorem 25. Let (d,E) be a bankruptcy problem and Γ = (N, v(d,E)) be the corresponding

bankruptcy game. Then

{i ∈ N | v(d,E)(i) = 0} ∪ {N \ i | i ∈ N, v(d,E)(N \ i) > 0} ∪ {N}

is a characterization set for N (Γ).

Proof. Due to Theorem 17 we only need to prove that the grand coalition is vital. Suppose

by contradiction that the grand coalition is not vital, that is, there exists a collection

B ⊂ 2N and positive balancing weights {λT > 0 | T ∈ B} such that
∑

T∈B λT eT = eN and

v(d,E)(N) ≤
∑
T∈B

λTv(d,E)(T ). (10)

Let B+ ⊆ B denote those coalitions for which v(d,E)(T ) is not zero, then Eq. (10) can be

written as

v(d,E)(N) ≤
∑
T∈B+

λTv(d,E)(T ) =
∑
T∈B+

λT (E − d(N \ T )).

Note that
∑

T∈B+ λT > 1 otherwise v(d,E)(N) = E >
∑

T∈B+ λT (E − d(N \ T )). Then

v(d,E)(N) ≤
∑
T∈B+

λT (E − d(N \ T )) =
∑
T∈B+

λT (E − d(N) + d(T )) =

∑
T∈B+

λT (E − d(N)) +
∑
T∈B+

λTd(T ) ≤
∑
T∈B+

λT (E − d(N)) +
∑
T∈B

λTd(T ).

Using that
∑

T∈B λTd(T ) = d(N) we obtain

E − d(N) ≤
∑
T∈B+

λT (E − d(N)),

1 ≥
∑
T∈B+

λT ,

which contradicts that
∑

T∈B+ λT > 1.

Since the grand coalition is vital E(Γ)∩DE(Γ) is a characterization set. From Lemma

22 and 23 it follows that

E(Γ) ∩ DE(Γ) ⊆ {i ∈ N | v(d,E)(i) = 0} ∪ {N \ i | i ∈ N, v(d,E)(N \ i) > 0} ∪ {N}.

Any enlargement of a characterization set is a characterization set by Corollary 7, thus

we are done.
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We obtained a collection � whose size is linear in the number of players � that charac-

terize the nucleolus in every bankruptcy game. For sake of completeness we provide the

couterparts of Lemma 22 and 23.

Theorem 26. Let (d,E) be a bankruptcy problem and Γ = (N, v(d,E)) be the corresponding

bankruptcy game. Then

a. E(Γ) contains the singleton coalitions, the grand coalition and coalitions with non-zero

characteristic function value,

b. DE(Γ) contains the n − 1 player coalitions, the grand coalition and coalitions with

characteristic function value of zero.

Proof. In light of Lemma 22 it is enough to prove that coalitions with non-zero char-

acteristic function value are essential. By contradiction suppose that v(d,E)(S) > 0 and

S is inessential. Then there exists a partition T1, . . . , Tk+1 of S such that v(d,E)(S) ≤∑k+1
i=1 v(d,E)(Ti). Some of the v(d,E)(Ti) values may be zeros. By uniting these coalitions

the characteristic function may only increase. Thus we may assume that v(Ti) > 0 for

i = 1, . . . , k and v(d,E)(Tk+1) = 0 where we allow Tk+1 to be the empty set. Notice that

k ≥ 2 in this setting.

v(d,E)(S) ≤
k+1∑
i=1

v(d,E)(Ti) =
k∑

i=1

v(d,E)(Ti),

E − d(N \ S) ≤
k∑

i=1

(E − d(N \ Ti)) = k(E − d(N)) +
k∑

i=1

d(Ti).

By subtracting
∑k

i=1 c(Ti) from both sides and estimating the sum from below we get

E − d(N) ≤ E − d(N \ Tk+1) = E − d(N \ S)−
k∑

i=1

d(Ti) ≤ k(E − d(N)),

1 ≥ k.

which contradicts that k ≥ 2.

For the second part of the Theorem we need prove that coalitions with characteristic

function value of zero are dually essential. By contradiction suppose that v(d,E)(S) =

max{E − d(N \ S), 0} = 0 and S is dually inessential. By perturbing the claims with

a small positive number we can always achieve that no collection of claims sum up to
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the estate, therefore we may also suppose that E − d(N \ S) < 0. Then there exists an

overlapping decomposition T1, . . . , Tk, Tk+1, . . . , T` of S such that

v(d,E)(S) ≤
∑̀
i=1

v(d,E)(Ti)− (`− 1)v(d,E)(N).

Some of the v(d,E)(Ti) values may be zeros. We may assume that v(Ti) > 0 for i = 1, . . . , k

and v(d,E)(Ti) = 0 for i = k + 1, . . . , ` where we allow k = `.

0 = v(d,E)(S) ≤
∑̀
i=1

v(d,E)(Ti)− (`− 1)v(d,E)(N) =
k∑

i=1

v(d,E)(Ti)− (`− 1)v(d,E)(N) =

k(E − d(N)) +
k∑

i=1

d(Ti)− (`− 1)E ≤ k(E − d(N)) + (k − 1)d(N) + d(S)− (`− 1)E ≤

kE − d(N) + d(S)− (k − 1)E = E − d(N \ S) < 0.

which is clearly a contradiction. Note that we used that

k∑
i=1

d(Ti) ≤ (k − 1)d(N) + d(S),

which follows from the fact that T1, . . . , Tk, Tk+1, . . . , T` compose an overlapping decom-

position of S.

In view of Theorem 26 we can easily construct a bankruptcy game where every coalition

is dually essential or a game where every coalition is essential. What is more we can

de�ne a game Γ with n players where both the size of E(Γ) and DE(Γ) is O(2n). Instead

of proving that the grand coalition is vital we could simply derive Theorem 25 from

Theorem 6. This method is also instructive since it shreds some light on the structure of

satisfaction values, thus we present it as well.

Second proof. We need to prove that when we exclude coalition S because it is (du-

ally) inessential, then there is an (overlapping decomposition) partition of S, contain-

ing coalitions that belong to E(Γ) ∩ DE(Γ) and have smaller satisfaction values than S.

There are two cases. If v(d,E)(S) = 0, then by monotonicity v(d,E)(i) = 0 for all i ∈ S.

Thus satΓ(S, x) ≥ satΓ(i, x) for all i ∈ S and for any core allocation x. Furthermore

i ∈ E(Γ) ∩DE(Γ) for all i ∈ S and naturally eS can be expressed as a linear combination

of {ei : i ∈ S}. If v(d,E)(S) > 0, then by monotonicity v(d,E)(N \ i) > 0 for all i ∈ N \ S.
The collection {N \ i | i ∈ N \ S} is an overlapping decomposition of S, furthermore for
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any core allocation x (cf. Lemma 23)

v(d,E)(S) ≤
∑

i∈N\S

v(d,E)(N \ i)− (|N \ S| − 1)v(d,E)(N)

x(S)− v(d,E)(S) ≥ −
∑

i∈N\S

v(d,E)(N \ i) + (|N \ S| − 1)x(N) + x(S)

x(S)− v(d,E)(S) ≥
∑

i∈N\S

x(N \ i)−
∑

i∈N\S

v(d,E)(N \ i)

satΓ(S, x) ≥
∑
i∈S

satΓ(N \ i, x)

Thus satΓ(S, x) ≥ satΓ(N \ i, x) for all i ∈ N \ S. Again N \ i ∈ E(Γ) ∩DE(Γ) for all

i ∈ N \ S and eS can be expressed as a linear combination of {eN\i : i ∈ N \ S} and eN .
By Theorem 6 we conclude that E(Γ) ∩ DE(Γ) is a characterization set for the nucleolus

of Γ.

6 Literature overview

There are many ingenious techniques to compute the nucleolus of various classes of co-

operative games. A standard method is to verify the nucleolus through the satisfaction

vector, i.e. guessing what the solution is, then checking whether the satisfaction vector of

the proposed allocation is lexicographically maximal. For example such a method is used

to �nd the nucleolus of voting games with a non-empty core (Elkind, Goldberg, Goldberg,

and Wooldridge, 2009) and the nucleolus of standard tree games (Megiddo, 1978).

A more advanced technique of this kind when the balancedness of the satisfaction

vector is examined. The Kohlberg-criterion is mostly used in combination with other

methods as proving balancedness for abstract coalition structures can be a challenging

task. In comparison verifying balancedness of a given collection of coalitions can be done

with a simple LP (cf. Lemma 19). The Chinese postman game that was introduced by

Granot, Hamers, Kuipers, and Maschler (2011) provides an example where balancedness

is crucial in the proof. The e�ectiveness of the painting algorithm of Maschler, Potters,

and Reijnierse (2010) is also proven with the help of Kohlberg-criterion.

The application of the axiomatization of the nucleolus is more intricate. It is usually

hard to con�rm whether a solution admits the reduced game property. Only when the

structure of the game is simple enough, that is, the reduced game falls into the same game

class, it is possible to use the axiomatization5. Brânzei, Iñarra, Tijs, and Zarzuelo (2006)

used this technique the �nd the nucleolus of airport pro�t games. Another perhaps more

famous example that uses reduced game property is the Theorem of Aumann and Maschler

(1985) which states that the Talmud-rule yields the nucleolus in case of bankruptcy games.

5For instance the reduced game of a standard tree game is not a standard tree game.
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The linear programming approach received substantial attention. The sequential LP

of Maschler, Peleg, and Shapley (1979) was the �rst that was suitable for computational

purposes. In general this method needs O(4n) number of linear programs with constraint

coe�cients in {−1, 0, 1}. Since then there have been many attempts to improve the

computation process either by restraining the number of LPs or by �nding a unique

minimization problem with minimal number of constraints. Sankaran (1991) provided a

method that needs O(2n) number of LPs with constraint coe�cients in {−1, 0, 1}. Later
Fromen (1997) improved his results. Potters, Reijnierse, and Ansing (1996) proposed a

fast algorithm to �nd the nucleolus of any game with non-empty imputation set. This

algorithm is based on solving a prolonged simplex algorithm. It requires solving n − 1

linear programs with O(2n) number of rows and columns. The most recent result is

by Puerto and Perea (2013). They o�ered a unique minimization problem with O(4n)

constraints where the coe�cients are from the set {−1, 0, 1}. An interesting addition to

this topic is provided by Guajardo and Jörnsten (2014). They collect examples from the

literature where the nucleolus was miscalculated and analyze what went wrong.

By itself the linear programming approach is not an e�ective tool as we either need a

sequential LP with exponential many programs or a unique maximization problem with

exponential many constraints. The LP approach is often used to calculate the nucleolus

in practice when the number of players is limited and no theory is available. There are

quite a few instances when the opposite is true: an LP helps to derive a theoretical result,

for an example see (Kamiyama, 2014) or (Kern and Paulusma, 2003).

Surprisingly few papers use the concept of characterization-sets explicitly � the main

theoretical advancement that was developed parallel by Granot, Granot, and Zhu (1998)

and Reijnierse and Potters (1998). Some papers like (Kamiyama, 2014) and (Brânzei,

Solymosi, and Tijs, 2005) exploit this idea but there are many others which use it un-

knowingly. For instance Maschler, Potters, and Reijnierse (2010) identify a collection that

determines the core and nucleolus of standard tree games which is in fact a characteriza-

tion set. However they do not make the connection between their method and the above

mentioned two papers.

The primary contribution of this paper is the expansion of the theory of characteriza-

tion sets. When the game in question is well-structured, characterization sets can simplify

the proof substantially. Even when the structure is more complicated characterization sets

can make the proof signi�cantly simpler or at least possible.

Naturally characterization sets do not make other approaches obsolete. The algorithm

for the nucleolus of bankruptcy games uncovered by Aumann and Maschler (1985) is

considerably faster than the LP approach. Also from didactical point of view the hydraulic

representation of Kaminski (2000) is much more instructive. The main advantage of

characterization sets is their algebraic formalism. The proofs need less bag-tricks and
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more mechanical computation which is perhaps aesthetically less pleasing but much more

e�ective in terms of results.

Finally let us stress that the four universal characterization sets that we analyzed

in this paper can only help when the game in question has a non-empty core. Göthe-

Lundgren, Jörnsten, and Värbrand (1996) computed the nucleolus of a vehicle routing

game using the concept of essential coalitions. However as Chardaire (2001) pointed out

these games are not necessarily balanced, hence their approach is �awed.
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