
Miller, Luis; Montero, Maria; Vanberg, Christoph

Working Paper

Legislative bargaining with heterogeneous disagreement
values: Theory and experiments

CeDEx Discussion Paper Series, No. 2015-24

Provided in Cooperation with:
The University of Nottingham, Centre for Decision Research and Experimental Economics (CeDEx)

Suggested Citation: Miller, Luis; Montero, Maria; Vanberg, Christoph (2015) : Legislative bargaining
with heterogeneous disagreement values: Theory and experiments, CeDEx Discussion Paper
Series, No. 2015-24, The University of Nottingham, Centre for Decision Research and Experimental
Economics (CeDEx), Nottingham

This Version is available at:
https://hdl.handle.net/10419/129836

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/129836
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Discussion Paper No. 2015-24

Luis Miller, Maria Montero
and Christoph Vanberg

December 2015

Legislative Bargaining
with Heterogeneous
Disagreement Values:
Theory and Experiments

CeDEx Discussion Paper Series
ISSN 1749 - 3293



The Centre for Decision Research and Experimental Economics was founded in
2000, and is based in the School of Economics at the University of Nottingham.

The focus for the Centre is research into individual and strategic decision-making
using a combination of theoretical and experimental methods. On the theory side,
members of the Centre investigate individual choice under uncertainty,
cooperative and non-cooperative game theory, as well as theories of psychology,
bounded rationality and evolutionary game theory. Members of the Centre have
applied experimental methods in the fields of public economics, individual choice
under risk and uncertainty, strategic interaction, and the performance of auctions,
markets and other economic institutions. Much of the Centre's research involves
collaborative projects with researchers from other departments in the UK and
overseas.

Please visit http://www.nottingham.ac.uk/cedex for more information about
the Centre or contact

Suzanne Robey
Centre for Decision Research and Experimental Economics
School of Economics
University of Nottingham
University Park
Nottingham
NG7 2RD
Tel: +44 (0)115 95 14763
Fax: +44 (0) 115 95 14159
suzanne.robey@nottingham.ac.uk

The full list of CeDEx Discussion Papers is available at

http://www.nottingham.ac.uk/cedex/publications/discussion-papers/index.aspx



Legislative Bargaining with Heterogeneous
Disagreement Values: Theory and

Experiments

Luis Miller∗, Maria Montero†and Christoph Vanberg‡

December 22, 2015

Abstract

We study a legislative bargaining game in which failure to agree
in a given round may result in a breakdown of negotiations. In
that case, each player receives an exogenous ‘disagreement value’.
We characterize the set of stationary subgame perfect equilibria un-
der all q-majority rules. Under unanimity rule, equilibrium payoffs
are strictly increasing in disagreement values. Under all less-than-
unanimity rules, expected payoffs are either decreasing or first in-
creasing and then decreasing in disagreement values. We conduct ex-
periments involving three players using majority and unanimity rule,
finding support for these predictions.
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1 Introduction

One of the central questions in political economy concerns the optimal rule
to be used for collective decision making in a group. Although real-world
institutions are far more complex, a number of important insights can be
gained from considering the choice among alternative q-majority rules: How
many members of a group should be required to consent before the group
undertakes some collective action such as passing a new law or engaging in
a joint project?

In a seminal analysis of this problem, Buchanan and Tullock (1962) iden-
tified a fundamental tradeoff between what they called ‘external costs’ and
‘decision costs’. According to the authors, more inclusive rules may help to
prevent that decisions taken will inflict (‘external’) harm on non-consenting
parties. On the other hand, such rules (especially unanimity rule) may in-
crease the costs associated with decision making itself. This may be true not
just for purely logistical or statistical reasons, but also because such rules
create incentives for individual participants to adopt a tougher bargaining
stance. In the case of unanimity rule, each member may be tempted to hold
out and refuse agreement in an effort to elicit compensation in exchange for
her support.

In prior research, Miller and Vanberg (2013, and 2015) have experimen-
tally investigated the effects of alternative decision rules in the context of a
simple multilateral bargaining game first proposed by Baron and Ferejohn
(1989) (henceforth BF). In the BF game, a group of individuals has the
opportunity to divide a fixed amount of some resource (e.g. money). Bar-
gaining proceeds over a potentially infinite number of rounds. Within each
round, one member is randomly chosen to propose a division, which is im-
mediately voted on. If the proposal passes (according to the decision rule
being employed), the game ends and players receive their respective shares.
If it fails, bargaining proceeds to a new round. This process continues until
a proposal passes. Payoffs are discounted, such that delay before reaching
agreement is costly and inefficient. (Results from these experiments will be
described briefly in the next section.)

Although it represents a purely distributive decision problem, the BF
game is an attractive “workhorse” model of group decision making more
generally. It can be interpreted to reflect a situation in which a group is
deciding whether to undertake a collective action or “project”. Under this
interpretation, the resource being divided represents a “surplus” that would
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result if the project is undertaken. This interpretation is appropriate if (a) the
action being considered is efficient (in the sense that it generates a positive
surplus), (b) transfers are possible (such that the surplus can be reallocated),
and (c) group members are identical, as reflected by the symmetry of the
game.1

If we want to interpret the BF game in this way, however, it would seem
to miss important features of real-world collective choice situations. In most
contexts, it is important to distinguish between the substantive proposal un-
der consideration (e.g. to build a bridge), and the transfers that might be
attached to such a proposal in an attempt to secure agreement. This distinc-
tion is not (explicitly) made in the BF model, since preferences are about
transfers only. Thus an implicit assumption is that all participants have
identical preferences with respect to the substantive proposal under consid-
eration. In most interesting contexts, however, individuals have heteroge-
neous preferences with respect to the substantive proposal. A more realistic
model should therefore allow that players differ in the value they attach to
agreement per se, in addition to transfers.

We introduce heterogeneity in preferences for agreement by modifying
the BF model in two ways. First, we assume that whenever a proposal fails,
bargaining will continue with probability δ, and otherwise “break down” (end
without agreement). Second, we assume that in case of failure, each mem-
ber receives an exogenously given non-negative payoff (disagreement value).2

Most importantly, these values are assumed to differ between members.
These modifications are interesting for at least two reasons. First, the

introduction of heterogeneous disagreement values is an easy way to exoge-
nously manipulate the ‘toughness’ of the bargaining stances. By analyzing
the relationship between disagreement values and expected payoffs, we can
investigate the incentives to adopt a ‘tough’ bargaining stance under differ-

1Another implicit assumption is that transfers are constrained such that it is not pos-
sible to make any player worse off.

2The disagreement value can be interpreted in several ways. One is that it represents the
value that a player attaches to the status quo, which will prevail if agreement is not reached.
Another is that it represents a reward directly associated with a failure to agree. For
example, a ‘tough’ bargainer can be thought of as an individual who anticipates an extrinsic
(social) or intrinsic (emotional) reward in case negotiations end with disagreement. Under
each interpretation, a large disagreement value is likely to be associated with a reluctance
to agree. An alternative approach would be to endow each member with an agreement
value which is received only in case agreement is reached. For technical reasons, the
approach we are taking is easier.
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ent decision rules. Second, the introduction of asymmetry is likely to make
agreement among experimental subjects more difficult, increasing observable
delays and creating more room for variation in delay under different treat-
ment conditions (decision rules).

Our main theoretical result is that a player’s expected equilibrium payoff
is increasing in his disagreement value under unanimity rule, but not so under
any less-than-unanimity rule. Under less inclusive rules, payoffs are either
decreasing in disagreement values (such that the player with the smallest
disagreement value achieves the highest expected payoff), or first increasing
and then decreasing (such that some other player, but never the one with
the highest disagreement value, achieves the greatest payoff). Substantively,
this means that a ‘tough’ bargaining stance (as modeled by a large disagree-
ment payoff) is beneficial under unanimity rule but possibly harmful under
majority rule.

Our experimental results provide partial support for these theoretical pre-
dictions. Consistent with our model, we find that the player with the largest
disagreement value indeed achieves the largest payoff under unanimity rule.
Under majority rule, however, that player is included in others’ coalitions
significantly less often. None the less, we do not find that this results in
consistently lower average payoffs. A statistically significant disadvantage in
terms of expected payoffs is found only if the highest disagreement value is
very large compared to others.

2 Related Literature

Despite its simplicity, the BF game is rich in strategic possibilities and admits
multiple subgame perfect equilibria. The theoretical literature has focused
on symmetric stationary equilibria, which are (essentially) unique (Eraslan,
2002, and Norman, 2002).These equilibria are characterized by three empir-
ically testable features. First, proposers form “minimal winning coalitions”,
allocating positive payoffs only to the number of players required to agree.
Second, the distribution of payoffs within the coalition is unequal, favoring
the proposer. Third, the first proposal passes immediately, so there is no de-
lay. All three of these properties are independent of the decision rule being
used (majority, qualified majority, or unanimity rule).

These (symmetric stationary subgame perfect) equilibrium properties of
the BF model have been experimentally investigated in a number of papers
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(McKelvey, 1991, Fréchette et al, 2003, 2005a, 2005b, Diermeier and Morton
2005, Agranov and Tergiman, 2014a, and Bradfield and Kagel, 2015). All
of these studies investigated the simple majority rule version of the game.
The central findings include: (1) Subjects do indeed form minimal winning
coalitions, allocating positive shares to a bare minimum of players. (2) The
distribution of shares within the majority coalition is generally more equal
than theory predicts, and (3) The vast majority of games end in immediate
agreement to the first proposal made.

Building on this literature, Miller and Vanberg (2013, and 2015) inves-
tigated the effects of different decision rules (majority and unanimity rule)
within experimental BF games. Inspired by Buchanan and Tullock (1962),
their main hypotheses were (a) that unanimity rule would be associated with
greater costly delay in reaching agreement, and (b) that this effect would be
driven in part by “tougher” bargaining at the individual level. The main
finding from these studies was that unanimity rule is indeed associated with
significantly greater delay.3 Both studies also find some support for the no-
tion that individuals adopt a ‘tougher’ stance under unanimity rule, more
often voting ‘no’ on a given proposal and making less generous offers when
proposing. Most importantly, and consistent with prior experiments, both
studies find relatively little delay overall, as well as a tendency to agree on
symmetric distributions - most commonly an equal split within a minimal
winning coalition.

The effect of heterogeneous disagreement values in the event of a break-
down of negotiations has been studied theoretically for the case of two players
(see Binmore et al., 1986); these results can be easily extended to n play-
ers and unanimity rule4. To the best of our knowledge, the case of general
q-majority rules has not been studied. The closest paper we are aware of
is Banks and Duggan (2006). In their model, players receive a flow payoff
every bargaining period; for every period in which agreement has not been

3Agranov and Tergiman (2014b) have replicated this result using larger groups. Their
study focuses on the effects of (verbal) communication. Their main result is that commu-
nication significantly increases proposer power under majority rule, causing outcomes to
be more consistent with theoretical predictions.

4Binmore et al. (1986) use the alternating-offer procedure of Rubinstein (1982) rather
than the random proposer procedure of Binmore (1987), Baron and Ferejohn (1989) and
Okada (1996). This makes little difference to the results under unanimity rule, namely
that a player benefits from having a higher disagreement value, and that disagreement
values remain relevant even as the breakdown probability goes to zero.
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reached, they receive a status quo payoff. They prove existence of SSPE for
very general policy spaces and voting rules. In one of the special cases they
consider (model 5), the policy space is the unit simplex and the decision rule
is simple majority; this is similar to our model with the additional restriction
q = n+1

2
(n odd). They discuss only equilibria in which all players have the

same continuation value, noting that the equilibrium may or may not be of
this type depending on the parameters. We provide a full characterization
for arbitrary values of the parameters and of q.

A small number of experimental studies have introduced asymmetries
into the BF framework. Diermeier and Morton (2005) and Fréchette et al.
(2005a) consider the case in which some players are more likely to be selected
as proposers. Other papers consider asymmetric voting rules in which some
players are favored, either by being given veto power (Kagel et al., 2010)
or by having more votes than other players (Fréchette et al., 2005c, and
Drouvelis et al., 2010). In some cases, having more votes than other players
does not theoretically confer any objective advantage, and subject behavior
broadly confirms this (Diermeier and Morton, 2005, Fréchette et al., 2005b,
and Drouvelis et al., 2010). Diermeier and Gailmard (2006) study a 1-round
version of the game in which failure to agree results in exogenously given
payoffs that differ between players. This is a particular case of our model
presented below with δ = 0 (i.e. certain breakdown). Some of their findings
are similar to ours, in particular, the player with the highest disagreement
value is often excluded.

3 Model

Let N = {1, 2, ..., n} be the set of players and q be the number of votes
needed to pass a proposal, where q ≤ n. Within each round, Nature selects a
proposer randomly, with each player having a 1

n
probability of being selected.

The proposer can propose any vector x = (x1, ..., xn), provided that xi ≥ 0
for all i and

∑
i∈N xi ≤ 1. All players vote on the proposal.5 If there

are at least q votes in favor, the proposal passes. Otherwise, there is a
probability 0 ≤ δ < 1 that bargaining moves to the next round, and a
probability (1 − δ) that breakdown occurs, in which case payoffs are given
by a vector r = (r1, ..., rn) of disagreement values. Players are labeled so

5We assume that all players vote as if they are pivotal. This assumption may be
replaced by the assumption that voters vote sequentially.
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that 0 ≤ r1 ≤ r2 ≤ ... ≤ rn. The game continues until either a proposal is
accepted, or breakdown occurs. Note that under all decision rules, agreement
is efficient if and only if

∑
i∈N ri ≤ 1.

3.1 Equilibrium concept

A strategy in this game specifies a) what proposal a player makes when rec-
ognized as proposer, and b) how he would vote on any proposal made by
other players. In principle, these actions could depend upon the history of
play. For example, the proposal that a player makes in a given round may
depend on prior proposals or voting decisions. Following the prior litera-
ture on legislative bargaining, we will exclude such behavior and focus on
equilibria in which players use stationary strategies. Such strategies require
that players make the same (possibly random) proposal in each round, and
vote the same way on others’ proposals. A subgame perfect equilibrium in
which players use stationary strategies is called a stationary subgame perfect
equilibrium (SSPE).

Following common practice, we will refer to a player’s expected utility
given that a proposal has (just) been rejected as the player’s continuation
value. For any profile of stationary strategies (equilibrium or not), there is an
associated vector of continuation values, which are the same in all rounds.
Also, for any profile of stationary strategies, there is an associated vector
of expected payoffs computed at the beginning of the game, before Nature
selects a proposer. Given a profile of stationary strategies σ, we will denote
player i’s continuation value as zi(σ) and player i’s expected payoff as yi(σ);
we will drop σ from the notation if no confusion arises.6

In a SSPE, continuation values act as prices: it is optimal for player i to
vote in favor of any proposal with xi ≥ zi, and to vote against otherwise.
As a proposer, player i looks for the q − 1 players with the lowest zj and
sets xj = zj for these players, keeping the remainder. If the remainder is
below zi, it is better for player i to make a proposal that will be rejected
and get zi.

7 We can then distinguish between equilibria with no delay or

6A player’s continuation value differs from his expected payoff for two reasons. First,
future payoffs may be discounted. Second, breakdown may occur before another round of
bargaining begins.

7In case of indifference, we assume that players break ties in favor of agreement, that
is, responders vote in favor of proposals with xi = zi and proposers offer q − 1 players
their continuation value if the remaining payoff xi ≥ zi. This assumption simplifies the
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immediate agreement (in which all players prefer to make a proposal that
will be accepted) and equilibria with delay (in which at least one player
prefers to make a proposal that will be rejected, and hence disagreement
occurs with positive probability).

3.2 Example

Before presenting a general analysis, we will illustrate our main results using
a simple example. Assume that the group consists of n = 3 players, with
disagreement values r = (0, 0, 1

2
). Player 3, having the largest disagreement

value, can be thought of as ‘tougher’ than the other players. Let the contin-
uation probability be given by δ = 2/3. Thus, in case a proposal fails, the
game will end without agreement with probability 1

3
.

Suppose first that the group makes decisions using unanimity rule. Then,
there exists a stationary subgame perfect equilibrium in which the contin-
uation values are z =

(
2
18
, 2
18
, 11
18

)
. The strategies are as follows. If, say,

player 1 is selected as a proposer, he offers 2
18

to player 2 and 11
18

to player 3,
keeping 1 − 2

18
− 11

18
= 5

18
. Similarly, player 3 would offer 2

18
to each of the

other two players and keep 14
18

. Given these strategies, expected payoffs are
y1 = y2 = 1

3
5
18

+ 2
3

2
18

= 3
18

and y3 = 1
3
14
18

+ 2
3
11
18

= 12
18

. We can check that the z
values we have provided are indeed the continuation values for the players.
Given the strategies, z1 = z2 = 2

3
3
18

+ 1
3
0 = 2

18
and z3 = 2

3
12
18

+ 1
3
1
2

= 11
18

.
Under unanimity rule, we see that the players’ expected payoffs are in-

creasing in disagreement values. Mr. 3, being the ‘toughest’ player, is more
expensive to ‘buy’ into a coalition. Since all players have to be ‘bought’, he
is paid more for his vote than the other two players. Under unanimity rule,
it is good to be the ‘toughest’ player (to have a large disagreement value).

Next, suppose that the group decides using majority rule. In this case,
there exists a stationary subgame perfect equilibrium in which the contin-
uation values are z = (1

4
, 1
4
, 1
3
). As in the case of unanimity rule, these

continuation values are increasing in the disagreement values. Again, Mr.
3’s vote is ‘more expensive’ than that of the other two players. However,
in the case of majority rule, this causes the other players to exclude Mr. 3
from the coalition when they propose. If player 1 or 2 proposes, 3 is ex-
cluded and the other player is offered 1

4
. If player 3 proposes, he offers one

of the other players 1
4

(with equal probability). Expected payoffs are then

analysis and makes little difference to equilibria; see Appendix A.1.
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y1 = y2 = 1
3
[1 − 1

4
] + 1

3
1
4

+ 1
3
1
2
1
4

= 3
8
; y3 = 1

3

[
1− 1

4

]
= 1

4
. Again, it can be

easily checked that these expected payoffs are consistent with the conjectured
continuation values.

Under majority rule, the players’ expected payoffs are not increasing in
their disagreement values. Player 3’s continuation value is larger, making his
vote more expensive. This is why he is excluded whenever others propose.
His expected payoff under majority rule is smaller than that of the other
players. Under majority rule, being ‘tough’ (having a large disagreement
value) can be a disadvantage.

To summarize, the example demonstrates a set of patterns that turn
out to be more general. Under all decision rules, continuation values z are
increasing in disagreement values. Under unanimity rule, the same is true for
expected payoffs y. Under all less-than-unanimity rules, by contrast, expected
payoffs are either decreasing or non-monotone in disagreement values, and
the player with the largest disagreement value never achieves the greatest
payoff.8 The following subsection establishes that all equilibria without delay
satisfy these properties. Equilibria with delay are discussed in Appendix A.6.

3.3 Equilibria with no delay

Recall that a no-delay equilibrium is one in which all players make proposals
that pass. In order to characterize the properties of such equilibria, as well
as the conditions under which they occur, it will be useful to consider how
the payoffs yi and continuation values zi are related to one another.

When a proposal passes, we refer to the players who vote in favor as the
coalition that forms, and to players in the coalition other than the proposer
as the coalition partners. In any no-delay equilibrium, coalition partners
receive zi, and the proposer receives 1−

∑
j∈T\{i} zj, where T is (one of) the

‘cheapest’ coalition(s) that includes i.9 All other players receive 0.
As we show in Appendix A.2, continuation values are ordered like the

disagreement values, i.e.,

z1 ≤ z2 ≤ ... ≤ zn.

8Another general pattern is that a player’s payoff is larger if he proposes than when he
is a coalition partner.

9If the cheapest coalition is not unique, player i can mix. By definition, the total ‘price’
of all cheapest coalitions is the same.
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It follows that (one of) the cheapest coalition(s) a player can buy consist
of himself plus the ‘first’ (q − 1) other players (those with the smallest con-
tinuation values zj). Let Zq =

∑q
j=1 zq. This would be the minimum ‘price’

to pay for the first q votes. However, player i must buy only (q − 1) votes.
If his own continuation value is no larger than zq, he must pay Zq − zi for
his cheapest coalition(s) (he need not pay himself). If his own continuation
value is strictly larger than zq, he must pay Zq − zq (he need not buy player
q). It follows that player i’s payoff as a proposer is (1− Zq + min{zi, zq}).

We denote the ex ante probability of player i being in the coalition that
forms by µi. Naturally, player i will be in the coalition whenever he is the
proposer; this occurs with probability 1

n
. Then the equilibrium probability of

i being a coalition partner is µi − 1
n
. As a coalition partner, player i’s payoff

is given by zi.
From what we have said so far, it follows that the expected equilibrium

payoff for player i, denoted yi, is related to the continuation values and
inclusion probabilities as follows.

yi =
1

n
(1− Zq + min{zi, zq}) +

(
µi −

1

n

)
zi

In case a proposal fails, bargaining continues with probability δ, in which
case players’ expected payoffs are again given by yi. Bargaining will break
down with probability 1− δ, in which case players receive their disagreement
value ri. Therefore, player i’s continuation value is given by

zi = δyi + (1− δ)ri.

Combining these equations yields n equations relating the vector of con-
tinuation values z = (z1, ..., zn) to the vector of inclusion probabilities µ =
(µ1, ..., µn). Specifically,

zi =

{
1

1−δµi

(
(1− δ)ri + δ

n
(1− Zq)

)
zi ≤ zq

1

1−δ(µi− 1
n)

(
(1− δ)ri + δ

n
(1− Zq + zq)

)
zi > zq

i = 1, ..., n

In equilibrium, the inclusion probabilities µ must reflect the fact that
proposers will buy the cheapest available coalition given z. An equilibrium
can therefore be constructed as follows. (Details are presented in Appendix
A.3.)
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Begin by conjecturing that L ∈ {0, 1, ..., q−1} players are strictly cheaper
than player q. For these players, we must have µi = 1 as they are included
in all coalitions. Then for these players

zi =
1

1− δ

(
(1− δ)ri +

δ

n
(1− Zq)

)
i = 1, ..., L

Also assume that H ∈ {0, 1, ..., n − q} players are strictly more expensive
than player q. For these players, we must have µi = 1

n
as they are included

only in their own coalitions. Therefore

zi = (1− δ)ri +
δ

n
(1− Zq + zq) i = n−H + 1, ..., n

The remaining M = n−L−H ≥ 1 players are exactly as expensive as player
q and so we have

zq =
1

(1− δµi)

(
(1− δ)ri +

δ

n
(1− Zq)

)
i = L+ 1, ..., n−H

Although the individual inclusion probabilities for these players are not im-
mediately determined, it’s clear that the average inclusion probability for
these players must be exactly large enough to achieve an expected coalition

size of q. Specifically, it must equal µ̄M =
q−L−H

n

n−H−L . Therefore the correspond-
ing equations can be combined to yield

zq =
1

(1− δµ̄M)

(
(1− δ)r̄M +

δ

n
(1− Zq)

)
,

where r̄M = 1
n−H−L

∑n−H
i=L+1 ri is the average disagreement value among those

players for whom zi = zq.
Suppose for example that M = n. Then, µ̄M = q

n
and Zq = qzq. The

last equation then reduces to zq = (1 − δ)r̄N + δ
n
. This makes sense, since

assuming immediate agreement,
∑

i∈N zi = δ+(1− δ)
∑

i∈N ri. If M = n, all
players have the same continuation value, which must then equal the previous
expression divided by n.10

In similar fashion, the equations derived above can be solved explicitly
for any conjecture regarding the numbers L, M , and H. Subsequently, the

10As mentioned in Section 2, this is the special case of our model considered by Banks
and Duggan (2006). We provide a more complete characterization.
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resulting vector of continuation values can be inspected to verify that the
first L players are strictly cheaper than player q, etc. If so, the combination
of continuation values and implied inclusion probabilities constitute a SSPE
of the model. We show in the Appendix that each conjecture regarding L,
M , and H indeed uniquely determines the continuation values and inclusion
probabilities (proposition 3). Furthermore, there is only one combination of
L, M , and H that leads to an equilibrium (proposition 5). Hence, all no-
delay SSPE have the same payoffs. Based on our analysis, we are able to
construct equilibria for all constellations of the parameters ri and δ. In what
follows, we concentrate on stating our main results.

3.4 Unanimity rule (q = n)

Under unanimity rule, immediate agreement occurs in equilibrium if and
only if it is efficient, and both continuation values and expected payoffs are
increasing in disagreement values.

Proposition 1. For q = n, immediate agreement occurs if and only if∑
i∈N ri ≤ 1. In this case, the SSPE is unique.11 Expected equilibrium payoffs

are given by

yi =
1

n

(
1−

∑
i∈N

ri

)
+ ri,

and continuation values are given by

zi =
δ

n

(
1−

∑
i∈N

ri

)
+ ri.

If
∑

i∈N ri > 1, disagreement occurs with probability 1 and zi = yi = ri.

Proof. See Appendix A.4.

Note that the expected payoffs are independent of δ, such that the pro-
file of disagreement payoffs (ri)i∈N remains relevant even if the continuation
probability becomes arbitrarily close to 1. For all δ, players effectively share
the surplus from agreement equally. This result is analogous to the results for
two-player bargaining with breakdown probability. Most importantly, note
that expected equilibrium payoffs are increasing in disagreement values.

11For the case
∑
i∈N ri = 1, the tie-breaking rule is used to select a unique equilibrium.
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Although expected payoffs do not depend of δ, the outcome of the game,
conditional on the identity of the proposer, does. This can be seen by com-
paring the expressions for yi and zi. Since zi < yi, it follows that the payoff
conditional on being a responder is lower than that conditional on being pro-
poser. This difference, which indicates a proposer advantage, is decreasing
in δ and vanishes in the limit when δ approaches 1.

3.5 Less-than-unanimity rules (q < n)

For less-than-unanimity rules, we can establish a sufficient condition for im-
mediate agreement. Under unanimity rule, immediate agreement occurred if
it was potentially Pareto improving. Under majority rule, an analogous con-
dition holds that takes into account that only q players need to agree in order
for a proposal to be implemented: if

∑q−1
i=1 ri + rn < 1, each player can find

a coalition of q players to which they belong for which
∑

i∈S rj < 1, hence
each proposer can find a coalition for which agreement is potentially Pareto
improving, and all equilibria involve immediate agreement in this case.

We also show that, even though SSPE with immediate agreement may
differ in the strategies that are played, they all lead to the same expected
payoffs and continuation values for the players.

Finally, we establish a crucial difference between unanimity and less-than-
unanimity decision rules: even though continuation values are ranked in
the same way as disagreement values, expected equilibrium payoffs are not.
Expected equilibrium payoffs follow one of two basic patterns: they are either
decreasing in disagreement values, or first increasing and then decreasing in
disagreement values (in both cases, there may be an additional flat region
after the decreasing part). The player with the greatest disagreement value
never gets the highest expected payoff.

Proposition 2. Let q < n.
(i). If

∑q−1
i=1 ri + rn < 1, then all SSPE exhibit immediate agreement.

(ii). Continuation values and expected equilibrium payoffs in a no-delay
equilibrium are uniquely determined.

(iii). Continuation values are weakly increasing in the r-values.
(iv). Inclusion probabilities are weakly decreasing in the r-values.
(v). The player with the greatest disagreement value never gets the highest

expected payoff.

Proof. See Appendix.
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It follows from propositions 1 and 2 that efficiency of agreement (i.e.,∑
j∈N rj < 1) is a sufficient condition for immediate agreement under all

decision rules. However, under less-than-unanimity rules, agreement may
occur even though it is inefficient.

4 Experimental Design

4.1 Experimental Procedures

We conducted several games involving 3 players with a divisible amount of
100 ‘tokens’. The continuation probability was δ = 2

3
. This was imple-

mented using a virtual die roll, with the game continuing until the number
rolled exceeded four. Prior to a game, each subject was randomly assigned
a disagreement value from the set {0, 20, 40, 60}. Instructions referred to
“default tokens” which the subject would receive unless the group agreed.

Within each game, the sequence of events was as follows. First, each
subject was randomly assigned a letter i.d. (‘A’,‘B’,‘C’) which remained
fixed throughout the game. Next, disagreement values were assigned. Each
subject was informed about the disagreement values for all members of the
three-person group. These also remained fixed throughout the game. At the
beginning of a given round of the game, one subject was randomly chosen to
make a proposal. All subjects were immediately informed of the proposer’s
i.d., and the chosen subject was prompted to enter a proposal, consisting of
three positive integers which sum to at most 100 tokens. After the proposer
clicked ‘ok’, this proposal was displayed to all members of the group, who
were then prompted to vote either ‘yes’ or ‘no’. Following this, detailed
results of the vote were displayed to all subjects. This included the proposal
made, the i.d. of the proposer, and the individual votes cast by each player
(‘A’,‘B’, ‘C’). If the proposal failed, the results screen also informed subjects
of the outcome of a die roll to determine whether the game would continue. If
so, a new round began. In games that continued beyond round 1, a detailed
history table showed the proposer i.d., the proposal made, as well as the
individual votes, for all prior rounds of the game.

Each participant played either 10 or 15 games, with random rematching
of subjects between games.12 At the end of the experiment, one game was

12Following these games, subjects played an additional 10 or 15 games in which dis-
agreement values were private information. Results from these games will be discussed in
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randomly chosen to be paid. The exchange rate was 1 token = 0.25 EUR.
Subjects also received a 3 EUR show-up fee. The experiment was conducted
at the University of the Basque Country in Bilbao. Participants were under-
graduate students of economics and business.

We conducted four sessions, two involving majority and the other two
unanimity rule.13 Sessions involved between 18 and 36 subjects divided into
matching groups of size 6. We have a total of 19 matching groups, 10 in the
unanimity treatment and 9 under majority. It follows that the raw numbers
of observations from our experiment break down as shown in Table 1.

Table 1. Treatments, subjects and observations

Short sessions (10 games) Long sessions (15 games)
6 matching groups 3 matching groups

majority rule 36 subjects 18 subjects
120 proposals 90 proposals

360 voting decisions 270 voting decisions
6 matching groups 4 matching groups

unanimity rule 36 subjects 24 subjects
120 proposals 120 proposals

360 voting decisions 360 voting decisions

4.2 Hypotheses

As indicated, our experimental games involve n = 3 subjects and two pos-
sible values for q: q = 3 (unanimity rule) and q = 2 (majority rule).
The randomly assigned disagreement values took on four possible values,
ri ∈ {0, 0.2, 0.4, 0.6}. Finally, the continuation probability was δ = 2

3
in all

cases. Not all possible combinations of disagreement values occurred in our
experiment. For all combinations that did occur, Table A1 in the Appendix
presents the equilibrium values for zi (player i’s continuation value and the
‘price’ for his vote), yi (player i’s expected equilibrium payoff) and µi (the
probability of being in the final coalition as a proposer or as a coalition
partner).

Our aim in the experiment will not be to test the precise point predictions
presented in Table A1. Instead we will be interested in the following quali-

a follow-up paper.
13In each treatment condition, one session consisted of 10 games and one session con-

sisted of 15 games
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tative predictions concerning the relationship between disagreement values,
probabilities of being in the coalition, offers, and expected payoffs. More-
over, we will be especially interested in comparing these relationships under
majority vs. unanimity rule.

For all hypotheses, it should be noted that the predictions concerning
expected equilibrium payoffs are based on the assumption that all player
types are chosen as proposers exactly 1

3
of the time. The appropriate way to

test these hypotheses is therefore to first calculate average payoffs each type
achieves within each role (proposer or responder), and then to calculate the
‘expected’ payoffs by calculating the weighted sum of those values. (Here,
‘within each role’ might best be operationalized as ‘given the role the player
is assigned at the beginning of the game’, i.e., if I am proposer in round 1,
the theory says I should get a certain amount. If my game actually goes on
to round 3 where I am responding, it is still valid to say that for this game
the relevant prediction was what I would get as proposer. An alternative way
of testing would be looking at the role at the point in time when agreement
is reached.)

Hypothesis 1. When all players have the same disagreement value, offers
made to coalition partners do not differ between majority and unanimity
rule.14

Hypothesis 2. Under unanimity rule: When disagreement values differ,
the player with the largest disagreement value (a) exhibits a larger acceptance
threshold, (b) is offered more, and (c) achieves a larger average payoff than
the other player types both as proposer and as coalition partner.

Hypothesis 3. Under majority rule: When disagreement values differ,
the player with the largest disagreement value (a) exhibits a larger acceptance
threshold, (b) is less often included in others’ coalitions, (b’) is not offered
more than others when included, and (c) achieves a smaller average payoff
when he is responder than do the other player types. As proposer, he achieves
at least as much as other types.

Hypotheses 1-3 are valid for all situations in which the sum of the dis-
agreement values is less than 100 tokens, such that agreement is efficient. Our
final hypothesis concerns the only situation that occurred in our experiment
in which agreement is actually inefficient.

14In particular, agreement is reached immediately under both rules and therefore the
average payoff is 100

3 tokens. If all disagreement values are zero, coalition partners must
be offered 2

3 of this value, i.e. 200
9 . Since only integer amounts can be offered, proposers

would have to offer others 23 tokens.
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Hypothesis 4. When agreement is inefficient, no agreement occurs
under unanimity rule. Under majority rule, agreement always occurs if
r1 + r3 < 100.

5 Results

5.1 Proposals

Table 2 summarizes the average offers made under unanimity rule, for each
of the constellations of ri values that occurred in our experiment. Looking
first at the symmetric situations, we find no difference in the amounts offered
when r = (0, 0, 0) vs. r = (20, 20, 20). Contrary to the theoretical prediction,
offers are not larger in the latter case.

Turning to the asymmetric situations, we find that the player with the
largest disagreement value is consistently offered more, consistent with our
main theoretical prediction.15 However, contrary to our prediction, we find
that players with ri > 20 are offered less than ri on average. Given that
all players must agree for a proposal to pass, this is perhaps surprising and
lets us anticipate that many of these proposals are likely to fail. Generally,
actual offers are less sensitive to disagreement values than predicted offers.16

Result 1: Under unanimity rule, the player with the largest disagreement
value is consistently offered more.

15We use the Mann-Whitney U-test to establish that the amount offered to the player
with the largest disagreement value is statistically different from the amount offered to
the other players. To control for the dependency of observations, we use matching group
level data. Focusing on average positive offers: Z = −2.065, p = 0.039, for r = (0, 0, 20);
Z = −3.628, p < 0.001, for r = (0, 0, 40); Z = −3.682, p < 0.001, for r = (0, 0, 60);
Z = −3.780, p < 0.001, for r = (0, 20, 60); Z = −2.309, p = 0.021, for r = (20, 20, 40);
Z = −2.309, p < 0.001, for r = (20, 40, 60).

16This echoes the results of Anbarci and Feltovich (2013) for two-player bargaining with
a deadline.
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Figure 1. Majority rule - minimal winning coalitions

Note: For the first ten periods, we pool the data from the two majority sessions (black

line). For periods 11-15, data come from a single session (grey line).

Table 2. Average offers - Unanimity

Disagreement values Predicted offers Average offers
(r1, r2, r3) (z1, z2, z3) (ẑ1, ẑ2, ẑ3)

(0, 0, 0) (23, 23, 23) (30, 30, 30)
(20, 20, 20) (29, 29, 29) (31, 31, 31)

(0, 0, 20) (18, 18, 38) (28, 28, 32)
(0, 0, 40) (13, 13, 53) (25, 25, 37)
(0, 0, 60) (9, 9, 69) (21, 21, 49)

(0, 20, 60) (4, 24, 64) (17, 26, 44)
(20, 20, 40) (24, 24, 44) (25, 25, 38)
(20, 40, 60) (20, 40, 60) (22, 28, 37)

Next, consider proposals being made under majority rule. Theoretically,
we predict that proposers build minimal winning coalitions. Figure 1 displays
the fraction of proposals that allocate zero to one of the responders. This
proportion increases over time.

Table 3 summarizes information on proposals conditional on the respon-
der types. Minimal winning coalitions are more frequently proposed when
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the responders have different disagreement values. In these cases, the player
with the largest disagreement value is less often included. However, this re-
sult is only statistically significant when ri = 60.17 If we focus on inclusion
frequencies in MWCs, we find that players with the largest disagreement
value are included in less that one third of the coalitions when ri = 40 and
almost never included when ri = 60. When included, players with high ri
are not necessarily offered more.18

Result 2: Under majority rule, the player with the largest disagreement
value is not offered more as a coalition partner.

Table 3. Proposals given responders’ r values (majority rule)

Frequency Inclusion frequencies Average positive offers
{r1, r2} of MWC p1 p1MWC p2 p2MWC Offer 1 Offer 2

{0,0} 0.28 0.87 0.5 0.87 0.5 26 26
{20,20} 0.39 0.81 0.5 0.81 0.5 30 30

{0,20} 0.58 0.58 0.36 0.74 0.64 27 33
{0,40} 0.48 0.83 0.64 0.69 0.36 32 32
{0,60} 0.46 0.91 0.87 0.57 0.13 33 26
{20,40} 0.67 0.83 0.75 0.50 0.25 32 43
{20,60} 0.39 0.94 0.86 0.67 0.14 35 29

Similar information is summarized in Table 4, where we compare pre-
dicted and observed offers in the various situations. In symmetric situations,
there is no difference between r = (0, 0, 0) and r = (20, 20, 20), contrary to
the theoretical prediction. For all asymmetric and efficient situations taken
together, we find that Player 3 (with the largest disagreement value) (a) is

17Mann-Whitney U-test, using matching group level inclusion frequencies: Z = −0.442,
p = 0.658, for {r1, r2} = {0, 20}; Z = −0.728, p = 0.467, for {r1, r2} = {0, 40}; Z = 2.743,
p = 0.006, for {r1, r2} = {0, 60}; Z = −0.943, p = 0.346, for {r1, r2} = {20, 40}; Z =
1.626, p = 0.104, for {r1, r2} = {20, 60}.

18Mann-Whitney U-test, using matching group level average positive offers: Z = −0.960,
p = 0.337, for {r1, r2} = {0, 20}; Z = −0.354, p = 0.724, for {r1, r2} = {0, 40}; Z = 1.815,
p = 0.069, for {r1, r2} = {0, 60}; Z = −1.155, p = 0.248, for {r1, r2} = {20, 40}; Z =
1.309, p = 0.191, for {r1, r2} = {20, 60}.
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not less often included (Z = 1.281, p = 0.200).19 However, when ri > 20,
Player 3 is marginally less often included (Z = 1.643, p = 0.100), and when
ri = 60, Player 3 is less often included (Z = 2.219, p = 0.026). This lends
partial support to our predictions. We also find that Player 3 (b) is not
offered more than others when included (Z = −0.132, p = 0.895) and (c) is
offered less than he is under unanimity rule (Z = −2.776, p = 0.005).

We now compare average offers under unanimity and majority rule. Con-
sistent with hypothesis 1, when all players have the same disagreement values,
offers made to coalition partners do not differ between unanimity and ma-
jority rule (Z = −1.022, p = 0.307). Looking at all asymmetric and efficient
situations together, we find that players 1 and 2 (who have smaller ri) are
offered more, on average, than they are under unanimity rule (Z = 1.796,
p = 0.072). These results are consistent with the theoretical predictions.
The only deviation from the theory is that the player with the largest dis-
agreement value is included too often when his disagreement value is small
(ri = 20).

Table 4. Average positive offers and inclusion frequencies - Majority

Disagreement values Predicted Average positive Predicted inclusion Inclusion
(r1, r2, r3) offers offers received frequencies frequencies
(0, 0, 0) (23, 23, 23) (28, 28, 28) (50,50,50) (87, 87, 87)

(20, 20, 20) (29, 29, 29) (30, 30, 30) (50,50,50) (81, 81, 81)
(0, 0, 20) (24, 24, 24) (28, 28, 34) (70,70,09) (67, 67, 78)
(0, 0, 40) (25, 25,−) (26, 26, 32) (75,75,0) (85, 85, 69)
(0, 0, 60) (25, 25,−) (35, 35, 28) (75,75,0) (89, 89, 48)
(0, 20, 60) (28, 29,−) (25, 34, 27) (100,50,0) (75, 86, 69)
(20, 20, 40) (31, 31, 31) (32, 32, 43) (66,66,18) (83, 83, 50)
(20, 40, 60) (36, 36, 36) (26, 29, 36) (94,52,4) (44, 92, 71)

Result 3:Under majority rule, the player with the largest disagreement value
is less often included in others’ coalitions when ri is greater than the equal
split.

19This result is driven by the fact that the player with the largest disagreement value
is as likely to be included as the other players when ri = 20 (Z = −0.816, p = 0.414).
Interestingly, this is the only case where this player disagreement value is below the equal
split.
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5.2 Individual voting and aggregate rate of passage

Regarding voting behavior, recall that the predicted acceptance thresholds
for each combination of values that occurred in our experiment can be found
in Table A.1 in the Appendix. It follows from this table that players with
the largest disagreement value should be more ‘demanding’ under unanimity
rule than under majority rule, meaning that they must be offered more in
order to vote yes. The reverse should be true for players with smaller ri. To
test these predictions, we would ideally want to observe players’ acceptance
thresholds. Unfortunately, these are not observed in our experiment.20 As an
alternative approach, we estimate regression models in which the dependent
variable is the decision to vote yes. Results are reported in Table 5.

Controlling for the kind of offer being considered, we find that the player
with the largest disagreement value is less likely to vote yes under unanimity
rule than under majority rule. This lends support to the idea that he is more
‘demanding’ under unanimity rule. However, we do not find the opposite
effect for those with smaller disagreement values - contrary to our theoretical
prediction.21

Result 4:The player with the largest disagreement value is less likely to vote
yes under unanimity rule than under majority rule.

20An alternative design would have asked subjects to state an acceptance threshold. A
disadvantage of this approach is that we would have forced subjects to use a cutoff strategy
that depends only on their own payoff.

21We may add the following observations regarding voting behavior. First, players more
often vote yes the more they are offered, and the less the proposer keeps for himself.
Second, the probability of voting yes is decreasing in ri. Finally, having the largest ri
value does not in itself affect the probability of voting yes, except under unanimity rule.
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Table 5. Probability of voting yes

Random-effects probit regression - marginal effects
Dependent variable: “Voting yes” (asymmetric and efficient situations)

All ri All ri All ri Low & Medium ri Highest ri
Unanimity -0.237* -0.338** -0.304** 0.0231 -0.871***

(0.130) (0.151) (0.142) (0.219) (0.336)
Own share 0.028*** 0.051*** 0.046*** 0.080*** 0.048***

(0.005) (0.007) (0.007) (0.013) (0.014)
Proposer’s share -0.006 -0.011*** -0.011*** -0.012** -0.013

(0.004) (0.004) (0.004) (0.005) (0.012)
ri = 20 -0.378** -0.620** 1.407***

(0.183) (0.242) (0.524)
ri = 40 -0.952*** 0.856***

(0.211) (0.303)
ri = 60 -1.726***

(0.222)
Highest -1.138***

(0.159)
Period -0.015 -0.017 -0.020 0.005 -0.041

(0.015) (0.017) (0.016) (0.023) (0.034)
Observations 498 498 498 339 159
Number of id 113 113 113 109 94
Note: The unit of analysis is individual acceptance behavior; marginal effects from
random-effect probit regressions presented; standard errors in parentheses.
***, **, and * indicate statistical significance at the 1%, 5%, and 10% level.

Next consider the rate of passage. Focusing on the very first round of
bargaining, Figure 2 shows the fraction of proposals that pass immediately.
We observe a significantly lower rate of passage under unanimity rule (Z =
1.726, p = 0.084, for symmetric r; Z = 3.681, p < 0.001, for asymmetric and
efficient r; Z = 2.291, p = 0.004, for inefficient r).

When agreement is inefficient, all first-round proposals should be rejected
under unanimity rule; we observed only one agreement (out of 20 groups) in
this case. There are many inefficient agreements under majority rule, though
their frequency is far from the theoretically predicted 100%.
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Figure 2.Fraction of first round proposals that pass

5.3 Realized payoffs

Finally, let us look at the payoffs realized within the experiment. We present
predicted and realized payoffs separately for proposer and responder roles in
symmetric (Table 6) and asymmetric (Table 7) situations. For instance, in
row 1 of table 6, the 11.5 comes from the fact that, conditional on being a
responder, a subject is included in a MWC with probability 1/2, in which
case he is paid 23. So a responder’s expected payoff is 11.5.

For symmetric situations and in line with our theoretical predictions,
we find that the average realized payoff is smaller under majority rule than
under unanimity rule for responders (Z = −2.346, p = 0.019) and larger for
proposers (Z = 4.086, p < 0.001). We find no difference in payoffs between
the two symmetric situations. This means that breakdown was rare in the
experiment, as otherwise the payoffs in (0, 0, 0) would have been significantly
lower than in (20, 20, 20).
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Table 6. Average payoffs earned in
the experiment - Symmetric situations

Predicted Realized
RULE ROLE (r1, r2, r3) predict1 predict2 predict3 u1 u2 u3
majority responder (0,0,0) 11.5 11.5 11.5 23 23 23

(20,20,20) 14.5 14.5 14.5 25 25 25
proposer (0,0,0) 77 77 77 44 44 44

(20,20,20) 76 76 76 46 46 46
unanimity responder (0,0,0) 23 23 23 26 26 26

(20,20,20) 29 29 29 31 31 31
proposer (0,0,0) 54 54 54 31 31 31

(20,20,20) 42 42 42 32 32 32

For asymmetric situations, our main theoretical prediction is that the
player with the largest disagreement value should achieve the largest pay-
off under unanimity rule (both as a proposer and as a responder), but the
lowest payoff under majority rule (as a responder). The data are summa-
rized in Table 7. Under unanimity rule, we find that the player with largest
ri earns more than the other players (Z = −6.728, p < 0.001, for respon-
ders; Z = −5.689, p < 0.001, for proposers). However, under majority rule,
he does not consistently earn less (Z = 0.827, p = 0.408, for responders;
Z = −0.770, p = 0.441, for proposers).

Result 5:In asymmetric situations and under unanimity rule, the player
with the largest disagreement value earns more than the other players.

Result 6:In asymmetric situations and under majority rule, the player with
the largest disagreement value does not achieve a lower average payoff. A
statistically significant disadvantage in terms of expected payoffs is found
only if the highest disagreement value is very large compared to others.
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Table 7. Average payoffs earned in
the experiment - Asymmetric situations

Predicted Realized
RULE ROLE (r1, r2, r3) predict1 predict2 predict3 u1 u2 u3
unanimity responder (0,0,20) 18 18 38 21 21 28

(0,0,40) 13 13 53 20 20 37
(0,0,60) 9 9 69 8 8 51
(0,20,60) 4 24 64 7 24 56
(20,20,40) 24 24 44 22 22 40
(20,40,60) 20 40 60 20 40 58

proposer (0,0,20) 44 44 64 23 23 37
(0,0,40) 34 34 74 25 25 47
(0,0,60) 22 22 82 13 13 54
(0,20,60) 12 32 62 10 21 56
(20,20,40) 32 32 52 20 20 45
(20,40,60) 20 40 60 20 40 60

majority responder (0,0,20) 17 17 2.2 18 18 30
(0,0,40) 18.6 18.6 0 20 20 25
(0,0,60) 18.6 18.6 0 34 34 16
(0,20,60) 28 14.5 0 18 31 19
(20,20,40) 20.5 20.5 5.5 27 27 22
(20,40,60) 20.5 20.5 5.5 19 35 31

proposer (0,0,20) 76 76 76 51 51 47
(0,0,40) 75 75 75 38 38 37
(0,0,60) 75 75 75 45 45 20
(0,20,60) 71 72 72 46 47 61
(20,20,40) 69 69 69 52 52 -
(20,40,60) 64 64 64 43 50 60

These patterns appear to be at most roughly consistent with our main
theoretical prediction. A possible reason for the discrepancy is the fact that
the theory predicts immediate agreement. In the experiment, a non-trivial
number of groups failed to agree before negotiations broke down. When this
occurs, it is clear that a larger disagreement payoff is an advantage. Substan-
tively, however, this is not an advantage within the negotiation. Therefore
it is perhaps interesting to separately consider the payoffs achieved only in
those cases where agreement was actually reached. When we focus on those
cases only, we find that the player with the largest payoff does consistently
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achieve the lowest payoff as a responder under majority rule (p = 0.004).

6 Conclusion

We study a legislative bargaining game in which failure to agree in a given
round may result in a breakdown of negotiations. In that case, each player re-
ceives an exogenous ’disagreement value’. We characterize the set of station-
ary subgame perfect equilibria under all q-majority rules. Under unanimity
rule, equilibrium payoffs are strictly increasing in disagreement values. Un-
der all less-than-unanimity rules, expected payoffs are either decreasing or
first increasing and then decreasing in disagreement values.

A different way to model a situation where some players have less to lose
than others if agreement is delayed is to introduce heterogeneous discount
factors. Intuitively, a player with a greater discount factor has less to lose
from delay since the value of the pie is less heavily discounted; similarly, a
player with a greater disagreement value has less to lose from delay since he
receives a greater payoff in the event of a breakdown of negotiations. An
important difference is that in the case of heterogeneous discount factors
immediate agreement is always efficient, and no player can be harmed by an
agreement compared to the situation of perpetual disagreement.

The two-player game with asymmetric discount factors (and unanimity)
was solved by Rubinstein (1982) for the case of alternating offers; the random
proposers case is very similar (Binmore, 1987). The Baron-Ferejohn model
with possibly asymmetric discount factors and general q-voting rules has
been studied in Eraslan (2002) and Kalandrakis (2015); both papers estab-
lish uniqueness of equilibrium payoffs using different methods. Continuation
values are nondecreasing in discount factors (Eraslan, 2002); similarly, we
find that continuation values are nondecreasing in disagreement values. For
the case of unanimity rule, expected equilibrium payoffs are increasing in the
discount factors (Eraslan, 2002). However, under majority rule, expected
equilibrium payoffs are decreasing in discount factors provided that the dis-
count factors are sufficiently high (Kawamori, 2005); this result is analogous
to our result that, when the continuation probability is sufficiently close to
1, expected equilibrium payoffs are decreasing in disagreement values (Ap-
pendix A.6). We analyze expected equilibrium payoffs more fully in our
setting, since we do not restrict ourselves to the limit case in which the con-
tinuation probability is sufficiently close to 1, and we are able to show that
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there are only two possibilities for expected equilibrium payoffs: they are ei-
ther decreasing in disagreement values, or they are first increasing and then
decreasing in disagreement values.

We conducted an experiment designed to investigate games involving 3
players, comparing majority and unanimity rule treatments. Our results lend
qualitative support for several of our main predictions. Specifically, we find
that the player with the largest disagreement value indeed achieves the largest
payoff under unanimity rule. Under majority rule, however, that player is
included in others’ coalitions significantly less often. None the less, we do
not find that this results in consistently lower average payoffs. A statistically
significant disadvantage in terms of expected payoffs is found only if the
highest disagreement value is very large compared to others.

Substantively, our results support the notion that ‘being tough’ (having
a large disagreement value) may be advantageous under unanimity rule, but
bad under majority rule. This, in turn, suggests that more inclusive decision
rules may create incentives for players to ‘act’ tough under unanimity rule.
In ongoing theoretical work, we are studying a version of the game in which
disagreement values are privately known. Our main conjecture is that, in
such a game, players may attempt to ‘signal’ a higher disagreement value by
acting ‘tough’ under unanimity rule, but not under majority rule.
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A Appendix

A.1 Characterization of equilibrium

For reasons that will become clear, it is possible and convenient to formulate
a set of necessary and sufficient conditions for an SSPE in terms of the
continuation values associated with the equilibrium strategies.

Lemma 1. Let σ = (σ1, ..., σn) be a combination of stationary strategies and
(z1, ..., zn) its associated vector of continuation values. The strategy combi-
nation σ is an SSPE if and only if the following conditions are satisfied:

1. As a responder, player i votes ‘yes’ on any proposal with xi > zi and
‘no’ on any proposal with xi < zi.

2. If minS:S3i,|S|=q
∑

j∈S zj < 1, the only proposals that player i makes
with a positive probability as a proposer are such that xj = zj for all j ∈
T\{i}, xi = 1 −

∑
j∈T\{i} zj and xj = 0 for all j ∈ N\T , where T ∈

arg minS:S3i,|S|=q
∑

j∈S zj. These proposals are always accepted.
3. If minS:S3i,|S|=q

∑
j∈S zj > 1, player i always makes a proposal that

would be rejected.

Proof. 1. This follows from subgame perfection and our assumption that
players always vote as if they are pivotal.

2. Suppose minS:S3i,|S|=q
∑

j∈S zj < 1 and let T ∈ arg minS3i,|S|=q
∑

j∈S zj.
Player i can propose xj = zj + ε for j ∈ T\{i}, xj = 0 for j ∈ N\T and
xi = 1 −

∑
j∈T\{i} zj − (q − 1)ε for a sufficiently small ε > 0. This proposal

would be accepted and gives player i a payoff above zi, which would be the
payoff from making a proposal that would be rejected. Hence, player i will
never make a proposal that would be rejected since there is a more favorable
proposal that would be accepted. Take any of the proposals that player i
makes with positive probability in equilibrium, and let Q be the set that
votes in favor of this proposal. It must be the case that xj = zj for all
j ∈ Q\{i}, since xj < zj would lead to a rejection and xj > zj could not be
optimal since player i could always do better by reducing xj while keeping
the inequality xj > zj. Also, Q ∈ arg minS:S3i,|S|=q

∑
j∈S zj, since otherwise

player i could do better by proposing coalition T and offering zj + ε to each
player in T\{i} for a sufficiently small ε.

3. If minS:S3i,|S|=q
∑

j∈S zj > 1, it is not possible to find a proposal that
would give player i and q − 1 other players at least their continuation value,
hence it is optimal for player i to make a proposal that will be rejected.
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Note that the concept of SSPE imposes no restrictions on behavior in
the knife-edge case minS:S3i,|S|=q

∑
j∈S zj = 1. Player i may or may not offer

their continuation value to players in some T ∈ arg minS:S3i,|S|=q
∑

j∈S zj and,
even if player i does, the remaining players in T may or may not accept the
proposal. However, such a situation however can only arise if disagreement
values are very high. As we will see in section A.3 (lemma 3 and corollary
1),
∑q−1

j=1 rj + rn < 1 implies that minS:S3i,|S|=q
∑

j∈S zj < 1 for all i.
Note also that the lemma does not constrain players to vote yes to all

proposals with xi = zi. In principle they could vote no, but only in the afore-
mentioned case arg minS:S3i,|S|=q

∑
j∈S zj = 1 or off the equilibrium path, i.e,

as a response to a proposal that is never actually made.
In our discussion henceforth we will assume that both proposers and

responders break ties in favor of agreement.22

A.2 Ranking of continuation values

The characterization of equilibrium above depends on the continuation values
zi; these values are endogenous. It will be useful to have results in terms of
the exogenous disagreement values ri. The following lemma shows that the
zi values are ranked in the same order as the ri values, though as we will see
some strict inequalities may become weak inequalities.

Lemma 2. Let ri ≤ rj. Then zi ≤ zj in any SSPE.

Proof. Suppose ri ≥ rj but zj > zi.
If minS:S3j,|S|=q

∑
k∈S zk > 1, player j never makes acceptable proposals.

In this case nobody would make acceptable proposals involving player j and
it is clear that zj ≤ zi, since i gets at least the same as j in the event of
disagreement and may get something in the event of agreement (while j is
sure to get nothing).

Now consider the case minS:S3j,|S|=q
∑

k∈S zk ≤ 1, so that player j finds
it profitable to make acceptable proposals (and so does player i). Delay is
not completely ruled out in this case, since there may be players other than
i and j who cannot find a profitable coalition. Denote by α the probability

22Eraslan and McLennan (2013, appendix A) formally show that there is little loss of
generality in requiring responders to accept proposals when indifferent. Banks and Duggan
(2006) incorporate this tie-breaking rule into their definition of equilibrium.
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that one of those players is selected to make a proposal; α ≥ 0.23

Denoting player k’s payoff conditional on being proposer as πk, continu-
ation values are given by

zi =
δ

n
πi + δ

[
µi −

1

n
+ α

]
zi + (1− δ)ri (1)

zj =
δ

n
πj + δ

[
µj −

1

n
+ α

]
zj + (1− δ)rj (2)

The inequality zj > zi implies πi ≤ πj, but the difference πj − πi cannot
exceed zj − zi. We also know that µi ≥ µj. This is because players other
than i and j would never include j in the coalition and exclude i. As for
i and j themselves, suppose player j does not propose to player i with cer-
tainty. Then there must be a coalition T such that j ∈ T , i /∈ T that is
optimal for player j, that is,

∑
k∈T zk ≤

∑
k∈S zk for all S ⊇ {i, j}. But then∑

k∈T\{j}∪{i} zk <
∑

k∈S zk for all S ⊇ {i, j}, that is, player i would never

involve player j in the coalition as T\{i}∪{j} would be strictly cheaper than
any coalition involving j.

zi =
δ

n
πi + δ

[
µj + (µi − µj)−

1

n
+ α

]
zi + (1− δ)ri

zj ≤
δ

n
(πi + zj − zi) + δ

[
µj −

1

n
+ α

]
zj + (1− δ)rj

Subtracting and collecting terms

zj − zi ≤
δ

n
(zj − zi) + δ

[
µj −

1

n
+ α

]
(zj − zi)− (µi − µj)zi − (1− δ)(ri − rj)

(zj − zi) (1− δµj − δα) ≤ −(µi − µj)zi − (1− δ)(ri − rj)

Since the LHS is strictly positive and the RHS is nonpositive, we have a
contradiction.

23This paragraph assumes that ties are always broken in favor of agreement. If we do
not impose this, player j could make proposals that are rejected with positive probability
if minS:S3j,|S|=q

∑
k∈S zk = 1. This does not affect the discussion on πi and πj . We

would then have two separate values, αi and αj , where αk would be the probability that
a proposal is made by a player other than k and rejected. We would then have αi ≥ αj ,
which goes in the same direction as µi ≥ µj , and the proof can be easily adapted.

30



A.3 Equilibria with immediate agreement

It will be useful to distinguish between equilibria in which all players make
acceptable proposals and equilibria in which some players do not. We will
refer to the former as equilibria with no delay or immediate agreement, and
to the latter as equilibria involving delay. We begin by presenting sufficient
conditions for immediate agreement.

Lemma 3. If there exists a coalition S with |S| = q and
∑

j∈S rj < 1, then
all players in S make acceptable proposals in any SSPE.

Proof. We start by establishing that, for any S ⊆ N ,
∑

j∈S rj < 1 implies∑
j∈S zj < 1. Since total payoffs for S add up to less than 1 in the event of

disagreement and can add up to at most 1 in the event of agreement, the
maximum possible value of

∑
j∈S zj is δ + (1 − δ)

∑
j∈S rj < 1. The result

then follows from part 2 of lemma 1.

Corollary 1. If
∑q−1

j=1 rj + rn < 1, any SSPE exhibits immediate agreement.

If agreement is efficient, corollary 1 implies that immediate agreement
will occur in any SSPE for any decision rule. When q < n, corollary 1 also
implies that immediate agreement may occur even if it is not efficient. In
fact, the following example shows that immediate agreement may occur even
in the extreme case where

∑
j∈S rj > 1 for all S such that |S| = q.

Let n = 3, q = 2, ri = 9
15

and δ = 0.5. There is an equilibrium in which
proposers offer 7

15
to a randomly selected partner, and responders accept all

proposals that give them at least 7
15

. (There is also an equilibrium in which
agreement is never reached).

To see that this is an equilibrium, note that the continuation values that
follow from the strategies are determined as follows. When proposing, a
player receives 1− 7

15
= 8

15
. If not proposing, they are included in the coalition

with probability 1
2
; in this case they earn 7

15
. Thus, a player’s expected payoff

is 1
3

8
15

+ 2
3
1
2

7
15

= 5
15

. Therefore, the continuation value is δ 5
15

+ (1− δ) 9
15

; since
δ = 0.5 this is 7

15
.

As the above example shows, there is a very strong pressure for imme-
diate agreement under less-than-unanimity rule. We now characterize the
properties of equilibria which exhibit immediate agreement. It will be useful
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to define the following sets:

L = {i ∈ N : zi < zq}
M = {i ∈ N : zi = zq}
H = {i ∈ N : zi > zq}

That is, the set L is the set of players whose votes are ”cheaper” than
that of player q, and the set M contains all players who are as expensive
as player q, while the set H contains those that are strictly more expensive.
Therefore, when any player proposes, an optimal strategy involves buying all
players in L and as many players in M as are necessary to build a coalition
of size q. Clearly the set M is always nonempty, though one or both of the
sets L and H may be empty.

We will denote the cardinalities of those sets by L, M and H respectively.
By lemma 2, any SSPE must have z1 ≤ z2 ≤ ... ≤ zn. Hence, in order to
know the partition into the three sets it is sufficient to know the cardinalities
L, M and H.

We begin by showing that a no-delay equilibrium is characterized by L,
M and H in the sense that the continuation values zi, expected payoffs yi and
inclusion probabilities µi are uniquely determined by L, M and H, though
there may be several strategy combinations that lead to the same values of
zi, yi and µi.

24,25

Proposition 3. Given an SSPE with immediate agreement, the partition of
the player set into the sets L, M and H uniquely determines the equilibrium
values of y, z and µ.

Proof. In a no-delay equilibrium, the proposer offers zi to q−1 other players
(the ones with the q−1 lowest values of zi) and 0 to the remaining players.26

24We are not (yet) claiming that the no-delay equilibrium is unique, just that other
no-delay equilibria would lead to different values of L, M and H.

25It is a known feature of legislative bargaining models that a given vector of equilibrium
expected payoffs may be supported by several strategy combinations (see e.g. Eraslan and
McLennan, 2013).

26Note that it cannot be optimal for the proposer to offer their continuation value to
more than q− 1 players because he would be better-off by excluding the coalition partner
with the highest zi. The only possible exception would be if zi = 0 for more than q − 1
players, but this is not possible since each of those players could form a coalition with the
rest and get a positive payoff as a proposer, which would contradict zi = 0.
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Define Zq :=
∑

i≤q zi and ZL :=
∑

i∈L zi. By definition, Zq = ZL + (q −
L)zq. Continuation values are given by the following equations:

L : zi = δ

[
1

n
(1− Zq + zi) +

(
µi −

1

n

)
zi

]
+ (1− δ)ri.

M : zi = δ

[
1

n
(1− Zq + zi) +

(
µi −

1

n

)
zi

]
+ (1− δ)ri.

H : zi = δ

[
1

n
(1− Zq + zq) +

(
µi −

1

n

)
zi

]
+ (1− δ)ri.

As a proposer, a player buys the votes from the cheapest q − 1 other
players. Recall that the total continuation value of the cheapest q players is
Zq. Players in L are themselves among the cheapest q, so they pay Zq − zi.
Players in H are not among the cheapest q, so they can buy the cheapest
q − 1 votes and pay Zq − zq. Players in M can be thought of as paying
Zq − zi or Zq − zq, since zi = zq. Expected equilibrium payoffs are thus
yi = 1

n
(1− Zq + min(zi, zq)) +

(
µi − 1

n

)
zi. Continuation values are given by

zi = δyi + (1− δ)ri.
Consider players inM. Collecting terms and taking into account that by

definition zi = zq in this set we find

M : zq = δ

[
1

n
(1− Zq) + µizq

]
+ (1− δ)ri

This has a very clear interpretation: if bargaining goes on after a rejection,
player i gets his continuation value whenever he is part of a coalition, and
on top of that he gets the proposer surplus with probability 1

n
(the proposer

surplus is the difference between i’s payoff as a proposer and i’s payoff as a
coalition partner; its value for players in L or M is 1− Zq).

Collecting terms again

M : (1− δµi) zq =
δ

n
(1− Zq) + (1− δ)ri (3)

We also know that
∑

i∈N µi = q, that is, the coalition that forms always
contains exactly q players. Moreover, µi = 1 for all i in L and µi = 1

n
for all i

inH. That is, players in L are always included in the coalition, and players in
H are only included when they are proposers. Hence,

∑
i∈M µi = q−L− H

n
.

Note that
∑

i∈M µi >
M
n

, which, since each player in M is the proposer
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with probability 1
n
, implies that, collectively, players in M have a positive

probability of being coalition partners.27

If we add up all the equations (3),

Mzq − δ
(
q − L− H

n

)
zq = M

δ

n
(1− Zq) + (1− δ)

∑
i∈M

ri

Dividing everything by M ,

zq − δ
(
q − L− H

n

)
M

zq =
δ

n
(1− Zq) + (1− δ)rM

where rM is the average value of r in the set M,
∑

i∈M ri
M

.
We also know Zq = ZL + (q − L)zq, so we can get an equation with two

unknowns, ZL and zq.

zq − δ
(
q − L− H

n

)
M

zq =
δ

n
(1− ZL − (q − L)zq) + (1− δ)rM

Collecting terms[
1− δ(q − L)

(
1

M
− 1

n

)
+ δ

H

Mn

]
zq =

δ

n
(1− ZL) + (1− δ)rM (4)

This gives us an equation where, given H, M and L, the only unknowns
are zq and ZL.

If all players are inM, the equation simplifies to zq = δ
n

+(1−δ)rN , which
is clear since, assuming immediate agreement,

∑
i∈N zi = δ+ (1− δ)

∑
i∈N ri.

If all players are inM they all have the same continuation value, which must
then equal the previous expression divided by n.

For players in L, since µi = 1, we find

L : zi = δ

[
1

n
(1− Zq + zi) +

n− 1

n
zi

]
+ (1− δ)ri

zi = δ

[
1

n
(1− Zq) + zi

]
+ (1− δ)ri (5)

27If L = 0 we have
∑
i∈M µi = q− H

n , which, since q > 1 and H < n implies
∑
i∈M µi >

1. If L > 0, by definition we have q − L ≥ 1 and n−H > M , hence
∑
i∈M µi ≥ 1− H

n =
n−H
n > M

n .
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zi − ri =
δ

1− δ
1

n
(1− Zq) (6)

We then see that zi − ri is a constant, that is, all players in L get the
same surplus above ri.

Replacing Zq by its value we find

zi − ri =
δ

1− δ
1

n
(1− ZL − (q − L)zq) (7)

If we instead add up the equations (5) for players in L, we find

ZL = δ

[
L

n
(1− Zq) + ZL

]
+ (1− δ)LrL

Replacing Zq by its value in terms of zq and ZL and collecting terms:(
1− δ + δ

L

n

)
ZL = δ

L

n
(1− (q − L)zq) + (1− δ)LrL (8)

The set H is residual. For players in this set,

H : zi =
δ

n
(1− Zq + zq) + (1− δ)ri (9)

Clearly, zi is increasing in ri for players in the set H.
The values ZL and zq can be found from the system of two linear equations

and two unknowns (4) and (8). Once these two values have been found, zi
values for players in L can be found from (7) and zi values for players in
H can be found from (9). The probabilities of inclusion in the coalition for
players in H and L are known; the probabilities of inclusion µi for players
in M can be found from (3). Expected payoffs (y)i∈N are found from the
equation zi = δyi + (1− δ)ri.

Proposition 4. For q < n, expected equilibrium payoffs in any no-delay
SSPE are strictly increasing in ri within the set L, strictly decreasing in ri
within the set M, and constant within the set H. Furthermore, expected
payoffs for all players in M are at least as high as those for players in H.

Proof. Since all players in L are in the final coalition with probability 1,
expected payoffs yi and continuation values zi are ranked in the same way
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within this set. Expected payoffs for a player in L are found from the equation
yi = 1

n
(1− Zq + zi) + n−1

n
zi. Collecting terms, yi = 1

n
(1− Zq) + zi.

Players in M all get 1− Zq + zq as proposers and zq as responders, thus
any difference in expected payoffs must be due to differences in µi. Since µi
is decreasing in ri by (3), yi is decreasing in ri as well.

Finally, since no player in H receives proposals from other players, all
players in H have yi = 1

n
(1− Zq + zq), which does not depend on ri.

Since players inM and H get the same payoff as proposers and players in
H never get any proposals from other players, it is clear that expected payoffs
for a player inM cannot be lower than those of a player in H. Indeed, they
will typically be strictly higher, except for non-generic cases in which player
L+M (the most expensive player in M) does not get any proposals. We
know that collectively the players in M have a positive probability of being
coalition partners, hence player L+ 1 must have a strictly higher payoff than
players in H.

The sets L,M and H are endogenous. Putting proposition 4 and lemma
2 together allows us to state a result in terms of the exogenous values ri.
Under all less-than-unanimity rules, expected equilibrium payoffs are either
decreasing or first increasing and then decreasing in ri. The player with the
highest expected equilibrium payoff is either player L or player L+ 1.

Corollary 2. The highest expected equilibrium payoff is achieved by (one or
more) player(s) for whom ri ≤ rq.

There may be multiple no-delay SSPE. However, all no-delay SSPE are
equivalent in the sense that they lead to the same expected equilibrium pay-
offs, continuation values and probabilities of being included in the final coali-
tion, though they may differ in the exact mixed strategies used, as in the
original model (see Eraslan and McLennan (2013)).

Proposition 5. Let σ and σ′ be two no-delay SSPE. Then y = y′, z = z′

and µ = µ′.

Proof. By contradiction, suppose σ and σ′ are two SSPE that induce different
partitions of the set N . We will denote by L, M and H the sets associated
to σ (the sets associated to σ′ will be denoted by L′,M′ and H′). Recall that
continuation values must respect the order of the disagreement values, hence
if L and L′ have the same cardinality the actual sets must also coincide.
Similarly, if L 6= L′, one of the two sets must be a strict subset of the other.
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Case 1. Suppose L = L′. Then M 6= M′ (otherwise the partitions would be
identical).

1. a) Suppose Zq = Z ′q. Recall that the equation for the continuation
value of a player in set L is

zi = ri +
δ

1− δ
1

n
(1− Zq). (10)

The same equation holds in equilibrium σ′, with zi being replaced
by z′i and Zq being replaced by Z ′q.

Since by assumption Zq = Z ′q, it follows that zi = z′i for all players
in L ∩ L′. Since, also by assumption, L = L′, we have ZL = Z ′L′ ,
and (given that Zq = ZL + (q − L)zq and Z ′q = Z ′L′ + (q − L′)z′q)
zq = z′q.

Since the partitions are different, M 6= M′. Given our result on
how the zi values are ranked in the same way as the ri values,
and given that L = L′ by assumption, one of the two sets must
be a subset of the other. Without loss of generality, letM  M′.
Let j ∈ M′\M (hence j ∈ H). Since player j is one of the
expensive players in equilibrium σ and one of the medium players
in equilibrium σ′, and, as we have shown, zq = z′q, it must be the
case that zj > z′j. We now show that this is not possible.

The following equation holds for a player in M∪H (and hence
for player j, since j ∈ H):

zj =
δ

n
[1− Zq + zq] + δ

(
µj −

1

n

)
zj + (1− δ)rj. (11)

Collecting terms in j, we find(
1 +

δ

n
− δµj

)
zj =

δ

n
[1− Zq + zq] + (1− δ)rj (12)

An analogous equation holds for a player in M′ ∪ H′ (and hence
for player j, since j ∈M′):(

1 +
δ

n
− δµ′j

)
z′j =

δ

n
[1− Z ′q + z′q] + (1− δ)rj. (13)
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By assumption, Z ′q = Zq and, as we have shown, this implies
z′q = zq. Hence, player j gets the same payoff as proposer in both
equilibria. The only way in which zj > z′j is if µj > µ′j. However,
since j ∈ H, j is never a responder in equilibrium σ but may be a
responder in equilibrium σ′, implying zj ≤ z′j, a contradiction.

1. b) Suppose Zq 6= Z ′q. Without loss of generality, let Zq < Z ′q.

Coming back to equation (10), this implies zi > z′i for all i ∈ L∩L′.
Given that L and L′ coincide, it follows that ZL > Z ′L′ , which
together with Zq < Z ′q implies zq < z′q.

Consider the set M∩M′ (clearly, this set is nonempty since q ∈
M ∩M′). For any i ∈ M, zi = zq and z′i = z′q, so (replacing
zi = zq in (12) and collecting terms) we can write i’s equilibrium
comntinuation value as

(1− δµi)zq =
δ

n
(1− Zq) + (1− δ)ri. (14)

Analogously, for any i ∈M′,

(1− δµ′i)z′q =
δ

n
(1− Z ′q) + (1− δ)ri. (15)

Given that Z ′q > Zq but zq < z′q, it must be the case that µ′i > µi.

Now consider the total probability of being involved in a coalition
in equilibrium. The total probability is

∑
i∈N µi =

∑
i∈N µ

′
i = q.

Further, each player must be included if he is selected to be the
proposer, hence µi ≥ 1

n
for all i. There is then a total probability

of being coalition partner of q−1, which may be distributed differ-
ently in the two equilibria. Given that players in H (respectively
H′) never get proposals, we have a total probability of q− 1 to be
distributed between players in L ∪M in equilibrium σ, and be-
tween players in L′ ∪M′ in equilibrium σ′. Further, note that all
players in L have µi = 1, and all players in L′ have µ′i = 1. Since
by assumption L = L′, we have

∑
i∈M(µi − 1

n
) =

∑
i∈M′(µ′i − 1

n
),

and the only way in which µ′i > µi for all players in M∩M′ is if
M′  M (otherwise we would ”run out of probability”).

Let j be a player in M\M′. If we consider equilibrium σ, using
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(11) we have (since the worst-case scenario is µj = 1
n
):

zj = zq ≥
δ

n
(1− Zq + zq) + (1− δ)ri

(1− δ

n
)zq ≥

δ

n
(1− Zq) + (1− δ)ri

If we consider equilibrium σ′, where j ∈ H′, we have

z′q < z′j =
δ

n
(1− Z ′q + z′q) + (1− δ)ri

(1− δ

n
)z′q <

δ

n
(1− Z ′q) + (1− δ)ri

Putting the two expressions together, since Z ′q > Zq, we find

(1− δ
n

)z′q <
δ

n
(1−Z ′q)+(1−δ)ri <

δ

n
(1−Zq)+(1−δ)ri ≤ (1− δ

n
)zq

which implies z′q < zq, a contradiction.

Case 2. Suppose L 6= L′. Without loss of generality, let L  L′. There are two
possible cases, depending on how Zq compares with Z ′q.

2. a) Suppose Zq ≤ Z ′q. We can write Zq ≤ Z ′q as∑
i∈L

zi + (q − L)zq ≤
∑
i∈L

z′i +
∑
i∈L′\L

z′i + (q − L′)z′q

By equation (10), Zq ≤ Z ′q implies zi ≥ z′i for all i ∈ L∩L′, hence

(q − L)zq ≤
∑
i∈L′\L

z′i + (q − L′)z′q

By definition, z′i < z′q for all i ∈ L′. Hence, the equation above
indicates that zq is at most as large as a weighted average of several
values, the largest of which is z′q. Thus, zq < z′q.

If we now look at players j ∈M∩M′ (a set that includes player
q), comparing equations (14) and (15) we see that, given that
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Zq ≤ Z ′q, the only way in which zq < z′q is if µi < µ′i for all these
players.

Recall that the probability of being a coalition partner is µi − 1
n

(µ′i − 1
n

in equilibrium σ′). It holds that
∑

i∈L∪M
(
µi − 1

n

)
=∑

i∈L′∪M′

(
µ′i − 1

n

)
= q− 1. Consider the allocation of this proba-

bility, starting by player 1 onwards. Players in L∩L′ (i.e., players
in L) have µi = µ′i = 1. Players inM∩L′ have µi ≤ µ′i = 1. Play-
ers inM∩M′ have µi < µ′i. It then follows that L′∪M′ ( L∪M,
that is, the total probability q − 1 must be exhausted earlier in
the equilibrium σ′. Hence, the setM\(L′∩M′) is nonempty. Let
j be a player in this set. Player j is in set M in the equilibrium
σ, but is in set H′ in equilibrium σ′. Since zq < z′q, this implies
zj = zq < z′q < z′j. We can then find a contradiction by the same
reasoning as in case 1b).

2. b) Let Zq > Z ′q. Then zi < z′i for all i ∈ L. We then have

Zq =
∑
i∈L

zi + (q − L)zq >
∑
i∈L

z′i +
∑
i∈L′\L

z′i + (q − L′)z′q = Z ′q.

Hence, (q−L)zq >
∑

i∈L′\L z
′
i + (q−L′)z′q. This does not seem to

give us a clear relationship between zq and z′q, though it tells us
that zq > z′i , where i ∈ L′\L. In other words, players in M∩L′
have zi > z′i. Consider the equations for zi and z′i, i ∈ M ∩ L′.
Since i ∈M, we have

(1− δµi)zi =
δ

n
(1− Zq) + (1− δ)ri.

On the other hand, since i ∈ L′, we have

(1− δ)z′i =
δ

n
(1− Z ′q) + (1− δ)ri.

Since µi ≤ 1 and Zq > Z ′q, it follows that z′i > zi, a contradiction.

Hence, SSPE payoffs are unique if the sufficient conditions for immediate
agreement are satisfied; if not, there may be multiple equilibria.
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A.4 Proof of propositions 1 and 2

Propositions 1 and 2 easily follow from the results of the previous section.
Proof of proposition 1. If

∑
i∈N ri < 1, all SSPE must have immediate

agreement by corollary 1. If
∑

i∈N ri > 1, each player can ensure disagree-
ment by rejecting all proposals and proposing xi = 1, hence

∑
i∈N zi > 1

and no agreement can occur. If
∑

i∈N ri = 1, it is an equilibrium for all
players to propose x = r and accept any proposal with xi ≥ ri, and this is
the equilibrium selected by our tie-breaking rule.

In a no-delay equilibrium under unanimity rule, each player offers the
other n− 1 players their continuation value and µi = 1 for all players, hence

yi =
1

n

1−
∑

j∈N\{i}

zj

+
n− 1

n
zi =

1

n

[
1−

∑
j∈N

zj

]
+ zi (16)

Continuation values are related to expected payoffs by the equation

zj = δyj + (1− δ)rj (17)

If we add up equations (17) and take into account that
∑

j∈N yj = 1 in a
no-delay equilibrium, ∑

j∈N

zj = δ + (1− δ)
∑
j∈N

rj (18)

If we take equation (16) and replace zi by its value from (17) and
∑

j∈N zj
by its value from (18), we obtain an equation with yi as the only unknown.
Solving this equation, we get yi = 1

n
[1 −

∑
j∈N rj] + ri, and, using (17),

zi = δ
n
[1−

∑
j∈N rj] + ri.

Proof of Proposition 2. Parts (i)-(iii) follow directly from corollary 1,
proposition 5 and lemma 2 respectively.

(iv) In a no-delay equilibrium, players in L are included in the final coali-
tion with probability 1 (the maximum possible), and players in H are in-
cluded in the final coalition with probability 1

n
(the minimum possible, since

proposers always include themselves). Within the set M, the probability of
inclusion is decreasing in ri as can be seen from equation (3).

(v) This is a consequence of proposition 4. Since expected equilibrium
payoffs are increasing within L, decreasing within M and constant (but not
higher than those in M) within L, there are four possible cases:
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If N =M, expected payoffs are decreasing in the r-values.
If onlyM and H are nonempty, expected payoffs are first decreasing and

then constant in the r-values.
If only L and M are nonempty, expected payoffs are first increasing and

then decreasing in the r-values.
If all three sets are nonempty, expected payoffs are first increasing, then

decreasing and then constant in the r-values.

A.5 Limit results as δ → 1

Proposition 6. If q < n, there is a value δ < 1 such that the unique no-delay
SSPE of the game G(n, q, δ, r) has N =M for δ < δ < 1.

Proof. L and H must both be empty when δ is sufficiently close to 1. This
can be proved by contradiction.

Suppose L 6= ∅ in equilibrium for δ → 1. If we look at equation (6)
for zi in L, we see that 1−Zq

1−δ becomes unbounded when q < n as δ → 1, a
contradiction. This is because in a no-delay equilibrium we have

∑
i∈N zi =

δ+ (1− δ)
∑

i∈N ri, therefore the largest continuation value must be at least
δ
n

+ (1 − δ)rN . Since q < n, Zq ≤
∑

i∈N zi − zn ≤ δ n−1
n

+ (n − 1)(1 − δ)rN ,
and 1 − Zq ≥ 1 − δ n−1

n
− (n − 1)(1 − δ)rN . When δ → 1, the lower bound

for 1−Zq approaches 1
n
> 0. More generally, µi < 1 for all i for δ sufficiently

large (also for players inM), as otherwise we could rewrite (3) and find that
zq becomes unbounded in the same way.

Similarly, suppose H 6= ∅ and take player n ∈ H. Let m be the player
with the smallest ri in M (in general the identity of player m may depend
on δ). We now show that zm − zn = δ

(
µm − 1

n

)
zq − (1 − δ)(rn − rm) > 0

for δ close enough to 1, a contradiction. To see this, note that expression
(1 − δ)(rn − rm) clearly converges to 0, since rn − rm ≤ rn − r1 and δ → 1.
It remains to be shown that

(
µm − 1

n

)
zq remains strictly positive as δ → 1.

First we show that µm > 1
n

for all values of δ. Given that L = ∅ for a
sufficiently large value of δ and q ≥ 2,

∑
i∈M µi = q− H

n
= q−1+ M

n
≥ 1+ M

n
.

Since m is the player with the smallest value of ri, he is also the player with
the highest µi in M according to equation (3), hence µm ≥ 1

M
+ 1

n
≥ 2

n
. It

remains to be shown that zq > 0 for δ → 1. This is clear since, using (3),
zq ≥ δ

n
(1− Zq) + (1 − δ)rm, and we have established that 1 − Zq remains

positive as δ → 1. Hence the set H is empty for δ close enough to 1.
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Corollary 3. In the limit when δ → 1, yi = 1
n

for all i ∈ N .28

Hence, there is a sharp contrast between the results for q = n and for
q < n when δ → 1. Under unanimity rule, the r-values remain relevant even
if δ → 1. Under any majoritarian rule, continuation values are less sensitive
to the r-values, which is consistent with players being unable to unilaterally
secure these values, and these values become irrelevant in the limit as δ → 1.

A.6 Equilibria with delay

Consider a SSPE that involves delay, i.e. at least one player, when proposing,
makes a proposal that is not accepted. Call him player i. Then it follows from
Lemma 1 and our tie-breaking rule that the cheapest q-coalition including
Mr. i has

∑
S zj > 1. This in turn implies that no other player will build a

coalition that includes Mr. i. Thus, the only way that Mr. i influences the
game is that he will ‘stall’ when it is his turn to propose, thereby increasing
the chance that breakdown will occur before an ‘active’ player is chosen.

Suppose there are k such ‘stallers’ in equilibrium. The remaining players
make proposals that are accepted, and so they are essentially playing an
equilibrium with immediate agreement, however in a ‘transformed’ game in
which the probability of breakdown is increased. What is the new probability
of breakdown?

After a proposal fails, breakdown will occur immediately with probability
(1− δ). If not, then with probability k

n
, a staller will propose next, in which

case failure will again occur with probability (1− δ), etc. So the probability
that breakdown will occur is

(1− δ̃) = (1− δ) +
δk

n

[
(1− δ) +

δk

n

(
· · ·
)]

= 1− δ(n− k)

n− δk
and so the modified continuation probability is

δ̃ =
δ(n− k)

n− δk
which is equal to δ when k = 0 and equal to zero when k = n.

28When all players are in M we have zq = δ
n + (1 − δ)rN . Putting this together with

the equation zq = δyi + (1− δ)ri, we see that both zi and yi converge to 1
n as δ → 1.
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The expected payoffs and continuation values of the remaining n − k
players are determined as in equilibria with immediate agreement. For the
‘stallers’, expected payoffs are simply

yj = ρrj

where ρ is the probability that breakdown will occur before an active
player is chosen to propose.

ρ =
k

n
(1− δ̃) =

(1− δ)k
n− δk

Two cases are possible: (1) If k ≤ n − q, agreement will occur if one of
the non-stallers is chosen to propose. The payoffs and continuation values
of these players satisfy exactly the conditions we have previously derived.
And the continuation values of the stallers must be strictly greater than the
others. (2) k = n, i.e. no agreement occurs.

A.7 The three-player case

The three-player case can be solved by enumeration. With three players
there are only four possible types of no-delay equilibria: L = 1 and M = 2;
L = 1,M = 1 and H = 1; M = 3; M = 2 and H = 1. For each of these four
possible types we can find conditions on the parameters r and δ in order for
this type of equilibrium to exist. The no-delay equilibrium is unique as we
know from proposition 5, hence each parameter combination is compatible
with only one type of equilibrium.

Proposition 7. Let r1 + r3 < 1. There is a unique no-delay SSPE for each
combination of r and δ. The no-delay SSPE is of one of four possible types:

a) L=1,M=1,H=1 occurs if r1 < r2 < r3 and δ <δ.
b) L=1, M=2 occurs if r2 >

r1+r3
2

and δ ≤ δ < δ.

c) M=2, H=1 occurs if r2 <
r1+r3

2
and δ ≤ δ < δ.

d) M=3 occurs if δ ≥ δ.

The idea of the proof is as follows. We first conjecture a particular value
for L, M and H (for example, L = 1 and M = 2). This conjecture leads to
a system of equations that can be solved for zi and µi (see section A.3). In
order for the solution to be an equilibrium, the found values of zi must be
consistent with our initial conjecture (in the example, the found value of z1
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must be below the found value of z2 = z3), and any mixed strategies that are
played must involve probabilities between 0 and 1 (in the example, player 1
is mixing between proposing to player 2 and proposing to player 3). These
conditions leads to inequalities involving the parameters r1, r2, r3 and δ.

Even though the proof is quite lengthy, the intuition behind the result is
clear.

First, there are some conditions on the ri values. In particular, case
L = 1, M = 1, H = 1 is only possible if all values are different. L = 1,
M = 2 is only possible if r2 >

r1+r3
2

, so that r2 and r3 are close together
relative to r1 and players 2 and 3 can be grouped together in the same class.
M = 2, H = 1 is only possible if r2 <

r1+r3
2

so that players 1 and 2 can be
grouped together in the same class.

Second, there are some conditions on δ. L = 1, M = 1, H = 1 occurs
when r1 < r2 < r3 and δ = 0 since zi = ri in this case. The inequality z1 <
z2 < z3 can be sustained as long as δ is sufficiently low, so that the difference
in ri overrules the fact that players with a lower ri get more proposals. L = 1,
M = 2 occurs when z1 < z2 = z3, which can be sustained for r2 >

r1+r3
2

given
an intermediate value of δ. On the one hand, δ needs to be sufficiently high
so that player 1’s strategy can compensate the difference between r2 and
r3 by proposing to player 2 more often (if r2 = r3 there is no difference
to compensate, so δ = 0), but sufficiently low to keep z1 below z2 despite
player 1 getting more proposals. Likewise, M = 2, H = 1 occurs when
z1 = z2 < z3, which can be sustained for r2 <

r1+r3
2

given an intermediate
value of δ. The continuation probability δ needs to be sufficiently high so
that player 3’s strategy can compensate the difference between r1 and r2,
but sufficiently low to keep z1 and z2 below z3, despite player 3 getting no
proposals (if r1 = r2, δ = 0). Finally, M = 3 needs a sufficiently high value
of δ so that z1 = z2 = z3 despite the possible differences between r1, r2
and r3. The thresholds δ and δ have a different expression in terms of the
r-values depending on whether r2 <

r1+r3
2

or r2 >
r1+r3

2
(both formulas are

equivalent when r2 = r1+r3
2

). The reason for this is that different inequalities
are binding depending on the parameters.

A.8 Equilibria for situations in the experiment

The following table presents the equilibrium predictions for those situations
that actually occurred within the experiment. Our main hypotheses are
based on these values.
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Table A1. Equilibrium predictions

Disagreement
values Majority rule Unanimity rule
(r1, r2, r3) (z1, z2, z3) (µ1, µ2, µ3) (y1, y2, y3) (z1, z2, z3) (y1, y2, y3)
(0,0,0) (23, 23, 23)

(
2
3
, 2
3
, 2
3

)
(33, 33, 33) (23, 23, 23) (33, 33, 33)

(0,0,20) (24, 24, 24) (.8, .8, .39) (37, 37, 27) (18, 18, 38) (27, 27, 47)
(0,0,40) (25, 25, 30)

(
5
6
, 5
6
, 1
3

)
(38, 38, 25) (13, 13, 53) (20, 20, 60)

(0,0,60) (25, 25, 37)
(
5
6
, 5
6
, 1
3

)
(38, 38, 25) (9, 9, 69) (13, 13, 73)

(0,20,60) (28, 29, 36) (1, 2
3
, 1
3
) (43, 34, 24) (4, 24, 64) (7, 27, 67)

(20,20,20) (29, 29, 29)
(
2
3
, 2
3
, 2
3

)
(33, 33, 33) (29, 29, 29) (33, 33, 33)

(20,20,40) (31, 31, 31) (.77, .77, .45) (37, 37, 27) (24, 24, 44) (27, 27, 47)
(20,40,60) (36, 36, 36) (.95, .67, .39) (43, 33, 23) (20, 40, 60) (20, 40, 60)
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