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Existence and Indeterminacy of Markovian

Equilibria in Dynamic Bargaining Games

Vincent Anesi∗ John Duggan†

March 4, 2015

Abstract

We show that dynamic bargaining games are characterized by a continuum of station-
ary Markov perfect equilibria, when the set of alternatives is multidimensional and
players are patient. In fact, we show that there is a continuum of equilibria close to any
alternative satisfying a simple linear independence condition on the players’ gradients.
The approach extends the construction of simple solutions from Anesi and Seidmann
(2015) to the spatial setting. The implication is that constructive techniques, which
involve an explicit specification of a particular equilibrium and are common in the
literature, implicitly rely on a restrictive selection of equilibria.

1 Introduction

Most formal political analysts of legislative policymaking, until recently, have used models

in which legislative interaction ends once a proposal is passed (e.g., Romer and Rosenthal

1978, Baron and Ferejohn 1989, and Banks and Duggan 2000, 2006). As pointed out

by Baron (1996) and later by Kalandrakis (2004), however, most legislatures have the

authority to change existing laws by enacting new legislation; so that laws continue in

effect only in the absence of new legislation. To explore this dynamic feature of legislative

policymaking, these authors have introduced an alternative model that casts the classical

spatial collective-choice problem into a dynamic bargaining framework. Each period begins

with a status quo policy inherited from the previous period, and a legislator is chosen

randomly to propose any feasible policy, which is then subject to an up or down vote.

If the proposal is voted up, then it is implemented in that period and becomes the next

period’s status quo; if it is voted down, then the ongoing status quo is implemented and

remains in place until the next period. This process continues ad infinitum.

∗School of Economics, University of Nottingham. Email: vincent.anesi@nottingham.ac.uk.
†Department of Political Science and Department of Economics, University of Rochester. Email:

dugg@ur.rochester.edu.
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The problem immediately encountered in this framework is that existence results for

stationary Markov perfect equilibria provided in the extant game-theoretic literature do

not apply. The result has been a fast growing body of literature that explicitly constructs

stationary Markovian equilibria for bargaining games with an endogenous status quo, and

then analyzes the properties of policy outcomes implied by this selection of equilibria (e.g.,

Baron, 1996; Kalandrakis 2004, 2009, 2014; Bowen and Zahran, 2012; Nunnari, 2014;

Richter, 2014; Baron and Bowen, 2014; Zápal, 2014; and Anesi and Seidmann, 2015).

These constructions are an important development in the study of legislative dynamics; but

almost all of the analysis either assumes that the space of alternatives is unidimensional,

or it focuses on pie-division settings where each bargainer’s utility only depends on her

own share of the pie. There are no known conditions that guarantee the existence of a

stationary Markovian equilibrium for more general multidimensional choice spaces.1

In this note, we allow the feasible set of alternatives to be any nonempty subset of mul-

tidimensional Euclidean space, and we assume only continuously differentiable, bounded

stage utilities. The bargaining protocol is standard, and we permit the voting rule to be

any non-collegial rule. show that when players are sufficiently patient, stationary Markov

perfect equilibria in pure strategies can be constructed “close to” any alternative at which

the gradients of the players’ utilities are linearly independent, i.e., every open neighbor-

hood of an alternative satisfying this condition contains the absorbing points of a stationary

Markov perfect equilibrium. In fact, we show that there is a continuum of distinct sta-

tionary Markov perfect equilibria with absorbing points close to that alternative. Given a

set of alternatives of sufficiently high dimension, the linear independence condition holds

generically outside a set of alternatives with measure zero, with the implication that equi-

libria typically abound in such models. In addition, we establish an alternative sufficient

condition for existence of a continuum of stationary Markov perfect equilibria that holds

in some cases where linear independence of gradients fails everywhere.

The indeterminacy result extends the approach of Anesi and Seidmann (2015), who

define the concept of simple solution as a list of alternatives for each player and a corre-

sponding list of decisive coalitions such that for each player: the player’s utility takes two

values over the list of alternatives, a “reward” payoff and a “punishment” payoff; the player

is included in and excluded from at least one coalition; and the player receives her reward

payoff whenever included in a coalition and receives her punishment payoff whenever ex-

cluded. The above authors show that in the pie-division environment, given any simple

1An exception is Duggan and Kalandrakis (2012), who establish existence of stationary Markovian

equilibria in pure strategies for general environments. They modify the basic framework by adding noise

to the status quo transition and assuming preference shocks in each period. This paper concentrates on

existence conditions that do not rely on such noise.
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solution and sufficiently patient players, there is a stationary Markov perfect equilibrium

with absorbing set coinciding with the simple solution. We extend the analysis to the

general spatial setting by constructing a continuum of simple solutions around any alter-

native satisfying the linear independence condition, and by making use of the equilibrium

construction of Anesi and Seidmann (2015).

Our analysis has important implications for the analysis of legislative policymaking in

spatial environments. In high-dimensional policy spaces, assuming discount factors are

close to one, constructive techniques that involve an explicit specification of a particular

equilibrium must rely on a restrictive selection of equilibria. In the absence of further jus-

tifications for such a selection, the multiplicity of equilibria we highlight therefore severely

limits the usefulness of these constructions in predicting the policy outcomes and under-

standing the dynamics and comparative statics of legislative bargaining. Studies of spatial

bargaining with an endogenous status quo thus face an important equilibrium refinement

issue.

As mentioned earlier, existence results for stationary Markov perfect equilibria provided

in the literature on stochastic games do not apply to the spatial bargaining framework,

as they rely on continuity conditions on the transition probability that are violated in

the bargaining model (cf. Duggan 2014 for a more detailed discussion). Existence (and

characterization) results for Markov perfect equilibria have been obtained in alternative

frameworks of dynamic bargaining in which the policy space is finite (Anesi 2010; Diermeier

and Fong 2011, 2012; and Battaglini and Palfrey 2012) or without discounting (Anesi and

Seidmann 2014) or when the set of possible status quos is countable (Duggan 2014).

In this paper, we restrict attention to spatial bargaining games with non-collegial voting

rules. A description of these environments and a formal definition of the equilibrium

concept appear in Section 2. Section 3 provides a result on simple solutions that is key for

our analysis. Section 4 presents our main result on indeterminacy of equilibria in dynamic

bargaining games. Finally, in Section 5, we give formal proofs of our theorems.

2 Spatial Bargaining Framework

In this section, we define the general class of dynamic bargaining games with non-collegial

voting rules.

Spatial bargaining games with an endogenous status quo. In each of an infinite

number of discrete periods, indexed t = 1, 2, . . ., a finite set of players N ≡ {1, . . . , n},

with n ≥ 3, must reach a collective choice from a nonempty set of alternatives, X ⊆ ℜk.
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Let xt denote the alternative chosen in period t. Bargaining takes place as follows. Each

period t begins with a status-quo alternative xt−1, in place from the previous period.

Player i is selected with probability pi ∈ (0, 1) to propose a policy in X; all players then

simultaneously vote to accept or to reject the chosen proposal. It is accepted if a coalition

C ∈ D of players vote to accept, and it is rejected otherwise, where D ⊆ 2N \ {∅} is

the collection of decisive coalitions, which have the authority to decide policy in a given

period. If proposal y is accepted, then it is implemented in period t and becomes the status

quo next period (i.e., xt = y); otherwise the previous status quo, xt−1, is implemented and

remains the status quo in period t+1 (i.e., xt = xt−1). This process continues ad infinitum.

The initial status quo, x0 ∈ X, is exogenously given.

We assume that D is nonempty and monotonic, i.e., any superset of a decisive coalition

is itself decisive: C ∈ D and C ⊆ C ′ imply C ′ ∈ D. In addition, we assume that D is

non-collegial, in the sense that no player has a veto: we have N \ {i} ∈ D for all i ∈ N .

Thus, the model allows for most familiar voting rules, short of unanimity rule (in which

case each player has a veto).

The preferences of each player i ∈ N over X are represented by a continuously differ-

entiable, bounded von Neumann-Morgenstern stage utility function ui : X → ℜ. We say

ui is Euclidean if there exists x̂i ∈ X such that for all x ∈ X, we have ui(x) = −||x− x̂i||2.

For later use, we say ui is pseudo-concave at x if for all y ∈ X with ui(y) > ui(x), we

have ∇ui(x) · (y − x) > 0. Of course, Euclidean preferences are pseudo-concave. Another

example is linear preferences, for which a non-zero gradient ai ∈ ℜk is fixed and for all

x ∈ X, we have ui(x) = ai · x. Given a sequence of alternatives
{

xt
}

∈ X∞, player i’s

payoff is (1− δi)
∑∞

t=1 δ
t−1
i ui(x

t), where δi ∈ [0, 1) is her discount factor.

A noteworthy special case of our general environment is the pie-division setting, in

which X = {(x1, . . . , xn) ∈ [0, 1]n :
∑n

i=1 xi ≤ 1} is the unit simplex, and each ui is strictly

increasing function in xi and constant in x1, . . . , xi−1, xi+1, . . . , xn; more formally, ∂ui

∂xi
(x) >

0 and ∂ui

∂xj
(x) = 0 for all x and all j 6= i. This implies, in particular, that each ui is pseudo-

concave. We interpret xi as an amount of a fixed resource (the “pie”) allocated to i, and the

restriction on utilities reflects the assumption that there are no consumption externalities.

Strategies and stationary bargaining equilibrium. We focus on subgame perfect

equilibria in which players use stationary Markov (pure) strategies, defined as follows.

For any player i ∈ N , a stationary Markov strategy σi = (πi, αi) consists of a proposal

strategy πi : X → X, where πi(x) is the proposal made by player i when the current

status quo is x (conditional on her being selected to propose), and a voting strategy

αi : X
2 → {0, 1}, where αi(x, y) is the (degenerate) probability i votes to accept a proposal
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y when the current default is x. A stationary Markov perfect equilibrium is a subgame

perfect equilibrium in which all players use stationary Markov strategies.

We follow the standard approach of concentrating throughout on equilibria in stage-

undominated voting strategies; i.e., those in which, at any voting stage, no player uses

a weakly dominated strategy. Hence, we refer to a pure stationary Markov perfect equi-

librium in stage-undominated voting strategies more succinctly as a stationary bargaining

equilibrium.

Absorbing points and the no-delay property. Every stationary Markov strategy

profile σ = (σ1, . . . , σn) (in conjunction with recognition probabilities) generates a transi-

tion function P σ : X2 → [0, 1], where P σ(x, y) is the probability, given σ, that the alterna-

tive implemented in the next period is y, given that the alternative implemented in the cur-

rent period is x.2 We say that x ∈ X is an absorbing point of σ if and only if P σ(x, x) = 1,

and we denote the set of absorbing points of σ by A(σ) ≡ {x ∈ X : P σ(x, x) = 1}. We will

say that σ is no-delay if and only if: (i) A(σ) 6= ∅; and (ii) for all x ∈ X, there is y ∈ A(σ)

such that P σ(x, y) = 1. In words, a strategy profile is no-delay if an absorbing point is

implemented in every period (both on and off the equilibrium path).

3 Continuum of Simple Solutions

In this section, we make some observations about simple solutions and stationary bargain-

ing equilibria of spatial bargaining games.

Preliminaries on simple solutions and existence of equilibria. The next definition

extends Anesi and Seidmann’s (2015) definition of a simple solution for the pie-division

setting to the general spatial setting.

Definition 1. Let C ≡ (Ci)i∈N ∈ Dn be an ordered n-tuple of decisive coalitions such

that for each i ∈ N , we have i ∈ Ci and, for some j ∈ N \ {i}, i /∈ Cj . An or-

dered n-tuple of alternatives s̄ = (x̄1, . . . , x̄n) ∈ Xn is a C-simple solution if there exist

(v1, . . . , vn), (w1, . . . , wn) ∈ ℜn such that

(i) for all i ∈ N , vi > wi, and

(ii) for all i, j ∈ N ,

uj(x̄
i) =

{

vj if j ∈ Ci,

wj otherwise.

2As all players use pure strategies, P σ(x, ·) is a discrete probability density with |supp(P σ(x, ·))| ≤ n

for all x ∈ X.
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Then s̄ ∈ Xn is a simple solution if there exists an n-tuple C of decisive coalitions (as

defined above) such that s̄ is a C-simple solution.

Why study simple solutions? Anesi and Seidmann (2015) show that in pie-division

settings, simple solutions identify alternatives that are absorbing points of stationary bar-

gaining equilibria for the corresponding bargaining games. Simple solutions for the general

spatial setting are justified on precisely the same grounds.3

Proposition 1. Let s̄ = (x̄1, . . . , x̄n) be a simple solution. There is a threshold δ̄ ∈ (0, 1)

such that if mini∈N δi > δ̄, then there exists a no-delay stationary bargaining equilibrium σ

with absorbing points {x̄1, . . . , x̄n}. Moreover, this threshold can be specified as a continuous

function δ̄(x̄1, . . . , x̄n) of the simple solution.

Therefore, if one can show that a simple solution exists, then necessarily the spatial bar-

gaining game (with sufficiently large discount factors) will possess a stationary bargaining

equilibrium.

Multiplicity of simple solutions. To use Proposition 1 for an equilibrium existence

result, it remains to find conditions under which a simple solution exists. Two such condi-

tions take the form of restrictions on the gradients of players’ utility functions at interior

points of X.

(C1) {∇ui(x) : i ∈ N} is linearly independent.

Condition (C1) implies the intuitive property that we can obtain values of the util-

ity profile u = (u1, . . . , un) in an open neighborhood of u(x) ∈ ℜn by arbitrarily small

variations of x, i.e., the Jacobian of u at x has full row rank, and thus it holds only in

multidimensional settings such that d ≥ n. Given our formulation of pie division, (C1)

holds at any alternative x at which the pie is not fully allocated, i.e.,
∑n

i=1 xi < 1. More

generally, the condition generically holds outside a closed set of measure zero of alternatives

(Smale 1974). Note, however, that it is violated at Pareto optimal alternatives.

Simple solutions may exist even in cases where no alternative satisfies (C1), as when

d < n. To see this, let N = {1, 2, 3} and assume each i ∈ N has Euclidean preferences on

X ⊆ ℜ2 with equidistant ideal alternatives x̂i, i = 1, 2, 3. As is easily seen in Figure 1 by

setting C1 = {1, 3}, C2 = {1, 2}, and C3 = {2, 3}, simple solutions such as (x̄1, x̄2, x̄3) can

be constructed in any open neighborhood of alternative x, which lies at the center of the

convex hull of the players’ ideal alternatives. Though (C1) is violated everywhere in X, x

satisfies an alternative sufficient condition for existence of a simple solution, defined next.

3The proof of Proposition 1 exactly parallels that of Theorem 1 in Anesi and Seidmann (2015) and

hence is omitted.
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x̂1

x̂2 x̂3

x

x̄3

x̄1x̄2

v1

w1

Figure 1: Simple solution under (C2)

(C2) (i) There exist coefficients α1, . . . , αn > 0 such that
∑

i∈N αi∇ui(x) = 0; (ii) for all

i ∈ N , ui is pseudo-concave at x; and (iii) for all i ∈ N , {∇uj(x) : j ∈ N \ {i}} is

linearly independent.

A key result of this paper establishes existence of a continuum of simple solutions in

non-collegial, spatial bargaining games under either condition.

Theorem 1. Let x be any interior point of X that satisfies either (C1) or (C2). Every

open neighborhood U of x is such that Un contains a continuum of simple solutions.

Outline of the argument. A detailed proof of Theorem 1 is provided in Section 5.

To see the idea behind that proof, consider an alternative x that fulfills (C1) and, for

expositional simplicity, suppose that N = {1, 2, 3}.4 Our first step is to find a triple of

alternatives (x1, x2, x3) such that each player i’s utility can only take two possible values

over the three alternatives: her “reward payoff” vi or her “punishment payoff” wi. To

this end, define f as the function that maps vectors of alternatives (x1, x2, x3) ∈ X3 to

corresponding utility vectors (ui(x
j))i,j∈N ∈ ℜ9. The argument is depicted in Figure 2,

where we place (u1(x), u2(x), u3(x)) at the center of the simplex in ℜ3. Condition (C1)

implies that the Jacobian of f has full row rank at x. By the local submersion theorem

(e.g., Guillemin and Pollack, 1974), therefore, we can perturb x to alternatives x1, x2, x3,

so as to give each player i her “punishment payoff” at xi while giving the other players

their “reward payoffs,” e.g., for sufficiently small ǫ > 0, we can set ui(x
i) = ui(x)− 2ǫ ≡ wi

and uj(x
i) = uj(x) + ǫ ≡ vj for all i and j 6= i.

4An analogous proof strategy can be used for the case where x satisfies condition (C2) instead.
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voter 3’s

voter 1’s voter 2’s
utilityutility

utility

f

x2

x3

x

x1
U

Figure 2: Mapping to utility vectors

To apply Definition 1, we simply let C1 = {1, 3}, C2 = {1, 2}, C3 = {2, 3}, x̄1 = x2,

x̄2 = x3, and x̄3 = x1. As D is non-collegial, coalitions C1, C2 and C3 must all be decisive.

Moreover, we have

uj(x̄
i) =

{

uj(x) + ǫ if j ∈ Ci ,

uj(x)− 2ǫ otherwise,

for all i, j ∈ N . Hence, (x1, x2, x3) = (x̄1, x̄2, x̄3) constitutes a simple solution. It is readily

checked that we can use the same argument for a continuum of values of ǫ that each yield

a different simple solution (cf. Section 5).

4 Indeterminacy of Stationary Bargaining Equilibria

Combined, Proposition 1 and Theorem 1 immediately yield an equilibrium existence result

for the spatial bargaining game when the dimension of the set of alternatives is high: as

discount factors become close to one, absorbing points of stationary bargaining equilibria

exist “around” every alternative that satisfies either (C1) or (C2). More significant are

the implications of Theorem 1 for the predictive power of stationary bargaining equilibria

in this class of games: when players are sufficiently patient, the spatial bargaining game

admits a continuum of such equilibria. Our main result, next, states this formally and

establishes indeterminacy of stationary bargaining equilibria.

Theorem 2. Let x be any interior point of X that satisfies either (C1) or (C2). For every

open neighborhood U of x, there exists δ̄ ∈ (0, 1) such that if mini∈N δi > δ̄, then there is a
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continuum of simple solutions in Un corresponding to absorbing sets of no-delay stationary

bargaining equilibria with discount factors δ1, . . . , δn.

The political-economy literature on bargaining games with an endogenous status quo

has devoted considerable attention to the set A∗ of dynamically stable alternatives, i.e.,

the alternatives that can be supported as long run outcomes of stationary bargaining

equilibria. Formally, A∗ consists of every alternative x such that there exists δ̄ ∈ (0, 1)

such that if mini∈N δi > δ̄, then there is a stationary bargaining equilibrium σ for discount

factors δ1, . . . , δn such that x ∈ A(σ). In terms of predicting bargaining outcomes, however,

the characterization of dynamically stable alternatives is only informative if A∗ is “small”

relative to the set of alternatives. This is typically not the case in spatial bargaining games

with high dimensional spaces. It follows as a corollary of Theorem 2 that under generic

conditions, when players are sufficiently patient, the dynamically stable alternatives are

dense in the set of alternatives.

Corollary 1. Assume that the set of alternatives at which (C1) or (C2) hold is dense in

intX. The set A∗ of dynamically stable alternatives given δ1, . . . , δn is dense in intX.

The above observation is reminiscent of the cycling results in the social choice literature

(e.g., McKelvey, 1979). Just as the top cycle is generically dense in the set of alternatives

in sufficiently high dimensional spaces, we find that long-run bargaining outcomes for any

such environment are highly indeterminate. Whereas McKelvey’s chaos theorem evokes

the picture of collective choices moving arbitrarily through the set of alternatives over

time, our results establish the possibility that collective choices via dynamic bargaining

can come to rest at arbitrary locations in the set of alternatives. Although the nature

of the indeterminacy is different, the results appear to present similar difficulties for the

prediction and analysis of social choices in dynamic environments.

5 Proofs of Theorems

Proof of Theorem 1 Let x be an interior point of X that satisfies either (C1) or

(C2), and let U ⊆ X be an open neighborhood of x. The proof of Theorem 1 relies on

the following simple observation. If the vector of alternatives (x1, . . . , xn) ∈ Xn satisfies

ui(x
i) ≤ ui(x) < ui(x

j) = ui(x
k) for every selection of three distinct players i, j, k ∈ N ,

then (x1, . . . , xn) constitutes a simple solution. To see this, set Ci = N \ {i + 1}, set

x̄i = xi+1, set vi = ui(x
i+1), and set wi = ui(x

i) for all i 6= n; and set Cn = N \ {1},

set x̄n = x1, set vn = un(x
1), and set wn = un(x

n). As D is non-collegial, we have

(Ci)i∈N ∈ Dn. It immediately follows from Definition 1 that (x1, . . . , xn) constitutes a

simple solution.
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To establish the theorem, therefore, it remains to show that there is a continuum of

such alternative vectors in Un.

Case 1: x satisfies (C1). That is, {ui(x) : i ∈ N} is linearly independent. Define the

mapping f : Xn → ℜn2

by

f(x1, . . . , xn) =































u1(x
1)

...

u1(x
n)

...

un(x
1)

...

un(x
n)































.

The derivative of f at arbitrary (x1, . . . , xn) ∈ Xn is the n2 × nd matrix

Df(x1, . . . , xn) =















































Du1(x
1) 0 · · · 0 0

...
...

. . .
...

...

0 0 · · · 0 Du1(x
n)

Du2(x
1) 0 · · · 0 0

...
...

. . .
...

...

0 0 · · · 0 Du2(x
n)

...
...

. . .
...

...

Dun(x
1) 0 · · · 0 0

...
...

. . .
...

...

0 0 · · · 0 Dun(x
n)















































,

where we view Dui(x
j) as a 1 × d row matrix. By assumption, this matrix has full row

rank at (x, . . . , x). Moreover, we have d ≥ n, since the individuals’ gradients are linearly

independent, and therefore dn ≥ n2.

Let y = (y1, . . . , yn) = f(x, . . . , x), where yi = (ui(x), . . . , ui(x)) is then the n-fold

copy of individual i’s utility from x. By the local submersion theorem (e.g., Guillemin and

Pollack, 1974), we can choose an arbitrarily small open set Ũ ⊆ Un containing (x, . . . , x)

such that the image Ṽ ≡ f(Ũ) is an open set containing y. Therefore, there exists ǫ > 0
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such that

zǫ =

















































































u1(x) + ǫ
...

u1(x) + ǫ

u1(x)− (n− 1)ǫ

u2(x)− (n− 1)ǫ

u2(x) + ǫ
...

u2(x) + ǫ

...

un(x) + ǫ
...

un(x) + ǫ

un(x)− (n− 1)ǫ

un(x) + ǫ

















































































belongs to Ṽ .

Since zǫ ∈ Ṽ , there is a vector (x1ǫ , . . . , x
n
ǫ ) ∈ Un such that f(x1ǫ , . . . , x

n
ǫ ) = zǫ, and

(x1ǫ , . . . , x
n
ǫ ) constitutes a simple solution. We can similarly construct vectors zγ ∈ V and

(x1γ , . . . , x
n
γ ) ∈ Un for all γ ∈ (0, ǫ). By construction, γ1 6= γ2 implies zγ1 6= zγ2 . As f is

locally equivalent to the canonical submersion of ℜn2

onto ℜn, this in turn implies that

(x1γ1 , . . . , x
n
γ1
) 6= (x1γ2 , . . . , x

n
γ2
). We conclude that there is a continuum of simple solutions

contained in Un.

Case 2: x satisfies (C2). That is, (i) there exist coefficients α1, . . . , αn > 0 such that
∑

i αi∇ui(x) = 0, (ii) for all individuals i, ui is pseudo-concave at x, and (iii) for all i,

11



{∇uj(x) : j 6= i} is linearly independent. Define the mapping f : Xn → ℜn(n−1) by

f(x1, . . . , xn) =























































u1(x
2)

...

u1(x
n)

u2(x
1)

u2(x
3)

...

u2(x
n)

un(x
1)

...

un(x
n−1)























































.

The derivative of f at arbitrary (x1, . . . , xn) ∈ Xn is the n(n− 1)× nd matrix

Df(x1, . . . , xn) =



































































0 ∇u1(x
2) 0 · · · 0

0 0 ∇u1(x
3) · · · 0

...
...

...
. . .

...

0 0 0 · · · ∇u1(x
n)

∇u2(x
1) 0 0 · · · 0

0 0 ∇u2(x
3) · · · 0

...
...

...
. . .

...

0 0 0 · · · ∇u2(x
n)

...
...

...
. . .

...

∇un(x
1) 0 0 · · · 0

0 ∇un(x
2) 0 · · · 0

0 0 ∇un(x
3) · · · 0

...
...

...
. . .

...

0 0 0 · · · 0



































































By (iii), this matrix has full row rank at (x, . . . , x). Moreover, (iii) implies that d ≥ n− 1,

and therefore nd ≥ n(n− 1).

Let y = (y1, . . . , yn) = f(x, . . . , x), where now yi is an (n− 1)-dimensional vector with

ui(x) in each coordinate. By the local submersion theorem, there is an arbitrarily small

open set Ũ ⊆ Un containing (x, . . . , x) such that the image Ṽ = f(Ũ) is an open set
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containing y. Therefore, there exists ǫ > 0 such that

zǫ =





























































u1(x) + ǫ
...

u1(x) + ǫ

u2(x) + ǫ
...

u2(x) + ǫ

...

un(x) + ǫ
...

un(x) + ǫ





























































belongs to Ṽ . That is, in contrast to the first case, we simply modify y by adding ǫ to each

component. Since zǫ ∈ Ṽ , there exists (x1ǫ , . . . , x
n
ǫ ) ∈ Un such that f(x1ǫ , . . . , x

n
ǫ ) = zǫ.

To see that (x1ǫ , . . . , x
n
ǫ ) constitutes a simple solution, note that for each i and each

j 6= i, we have ui(x
j
ǫ) = ui(x)+ ǫ, so the “reward payoffs” are the same across xjǫ , j 6= i, for

each individual i. We now claim that for each i, we have ui(x
i
ǫ) < ui(x), so that xiǫ yields

the “punishment payoff” for i. Indeed, for each j 6= i, uj(x
i
ǫ) > uj(x) and pseudo-concavity,

from (ii), imply ∇uj(x) · (x
i
ǫ − x) > 0. Then (i) implies

∇ui(x) · (x
i
ǫ − x) =

∑

j 6=i

−
αj

αi
∇uj(x) · (x

i
ǫ − x) < 0.

Finally, pseudo-concavity then implies ui(x
i
ǫ) ≤ ui(x) < ui(x) + ǫ, as desired.

By same argument as in Case 1, this in turn implies that there is a continuum of simple

solutions, completing the proof of Theorem 1.

Proof of Theorem 2 In the proof of Theorem 1, we define a mapping f : Xn → ℜn2

and

show that the Jacobian Df(x, . . . , x) has full row rank for every interior x satisfying (C1)

or (C2). Thus, the column rank of Df(x, . . . , x) is n2, and there is a subspace L ⊆ ℜkn

with dimension n2 such that the linear transformation from L to ℜn2

given by the matrix

Df(x, . . . , x) is bijective. Let

W = ((x, . . . , x) + L) ∩Xn

13



be the n2-dimensional manifold defined, essentially, by translating the linear subspace L to

(x, . . . , x). define f̃ : W → ℜn2

as the restriction of f to W , and note that the derivative

Df̃ is invertible. Now define the mapping g : W ×ℜ → ℜn2

by

g(w, γ) = f̃(x1, . . . , xn)− zγ ,

where we write w = (x1, . . . , xn), and note that this mapping is continuously differentiable.

Moreover, g(x, . . . , x, 0) = 0, and if x satisfies (C1) or (C2), then the derivative of g with

respect to w is invertible. Then the implicit function theorem (e.g., Theorem 11.2 of

Loomis and Sternberg, 1968) implies that there exist ǫ > 0 and a continuous function

ξ : (0, ǫ) → W such that for all γ ∈ (0, ǫ), we have g(ξ(γ), γ) = 0. Setting (x1γ , . . . , x
n
γ )

equal to ξ(γ) for all γ ∈ (0, ǫ), we obtain the simple solution (x1γ , . . . , x
n
γ ) as a continuous

function of γ.

Now, to prove Theorem 2, consider any alternative x ∈ intX such that (C1) or (C2)

hold, and consider any open neighborhood U ⊆ X of x. In the proof of Theorem 1,

modified as above, we obtain ǫ > 0 and a set Sǫ = {s̄γ : γ ∈ (0, ǫ)} of distinct simple

solutions with Sǫ ⊆ Un and such that s̄γ = (x1γ , . . . , x
n
γ ) is continuous as a function of

γ on (0, ǫ). From Proposition 1, it follows that for each γ ∈ (0, ǫ), there is a threshold

δ̄(x1γ , . . . , x
n
γ ) ∈ (0, 1) such that if mini∈N δi > δ̄(x1γ , . . . , x

n
γ ), then there exists a no-delay

stationary bargaining equilibrium with absorbing points {x1γ , . . . , x
n
γ}. Moreover, Propo-

sition 1 establishes continuity of the threshold δ̄ as a function of the simple solution, and

it follows that δ̄(x1γ , . . . , x
n
γ ) is continuous as a function of γ on (0, ǫ). Thus, it takes a

maximum, say δ̂, on the interval [ ǫ2 ,
2ǫ
3 ]. We conclude that if mini∈N δi > δ̂, it follows

that for each simple solution in the set {s̄γ : γ ∈ [ ǫ2 ,
2ǫ
3 ]}, there is a no-delay stationary

bargaining equilibrium with absorbing points {x1γ , . . . , x
n
γ}. As this set has the cardinality

of the continuum and δ̂ < 1, this completes the proof of Theorem 2.
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