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Dynamic Bargaining and External Stability

with Veto Players

Vincent Anesi∗ John Duggan†

June 4, 2015

Abstract

This note examines the structure of stationary bargaining equilibria
in the finite framework of Anesi (2010). The main result establishes
a tight connection between the set of equilibrium absorbing points
and the von Neumann-Morgestern solutions: assuming that players
are patient, that the voting rule is oligarchical, and that there is at
least one veto player with positive recognition probability, a set of
alternatives corresponds to the absorbing points of an equilibrium if
and only if it is a von Neumann-Morgenstern solution. We also apply
our analysis of ergodic properties of equilibria to the persistent agenda
setter environment of Diermeier and Fong (2012). We show that all
equilibria are essentially pure, and we extend their characterization of
absorbing sets to allow an arbitrary voting rule and by removing the
restriction to pure strategy equilibira.

1 Introduction

Since the seminal work of Baron (1996), bargaining games with an endoge-
nous status quo have become more and more prominent in the literature
on dynamic collective decision-making.1 In these games, each period begins

∗School of Economics, University of Nottingham. Email:
vincent.anesi@nottingham.ac.uk.
†Department of Political Science and Department of Economics, University of

Rochester. Email: dugg@ur.rochester.edu.
1To cite a few of the many examples, Kalandrakis (2004), Diermeier and Fong (2011,

2012), Battaglini and Palfrey (2012), Bowen and Zahran (2012), Duggan and Kalandrakis
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with a status quo alternative inherited from the previous period, and a player
is chosen randomly to propose any feasible alternative, which is then subject
to an up or down vote. If the proposal is voted up, then it is implemented
in that period and becomes the next period’s status quo; if it is voted down,
then the ongoing status quo is implemented and remains in place until the
next period; this process continues ad infinitum. Anesi (2010) was the first
to consider the finite framework, where the set of alternatives is finite and
players have strict preferences. His main goal was to provide a noncoopera-
tive interpretation for von Neumann-Morgenstern solutions (von Neumann
and Morgenstern, 1944), whose rationale in voting context had been ques-
tioned by political scientists (e.g., McKelvey et al. 1978). Assuming patient
players, he shows that given a von Neumann-Morgenstern solution Y for
the voting rule and a sufficiently high discount factor, there is a stationary
Markovian equilibrium σ such that the set A(σ) of absorbing alternatives
under σ is equal to Y . Left open is the opposite logical direction: conditions
under which given a stationary Markovian equilibrium σ, the set A(σ) of
absorbing alternatives is a von Neumann-Morgenstern solution.2 Concen-
trating on pure strategy equilibria, Diermeier and Fong (2012) obtain this
direction by assuming, in addition to high discount factors, that the same
player proposes with probability one in every period.

The main objective of this note is to contribute further to this research
program by examining the structure of (mixed-strategy) stationary Marko-
vian equilibria in the finite framework of Anesi (2010). The analysis relies
on the characterization of the ergodic properties of equilibria. Namely, we
show that when the Nakamura number of the voting rule is high relative
to the number of alternatives, all ergodic sets are singleton; in particular,
if there is a veto player, then beginning from any given status quo, the
equilibrium process transitions with probability one to the set of absorbing
alternatives. Moreover, we show that if there is a veto player with posi-
tive recognition probability and players are patient, then starting from any
given alternative, there is a unique absorbing point to which the equilibrium
process transitions.

These results allow us to establish a tight connection between the set of
equilibrium absorbing points and the von Neumann-Morgestern solutions.
Maintaining the assumption that players are patient and there is at least

(2012), Nunnari (2014), Richter (2014), Baron and Bowen (2014), Zápal (2014), Anesi
and Seidmann (2015) and Dziuda and Loeper (2015) all use such games.

2Anesi (2010) shows by example that, under majority voting, equilibrium absorbing
sets may not be von Neumann-Morgenstern solutions.
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one veto player with positive recognition probability, we increase the struc-
ture of our model in two directions. First, we assume that the voting rule
is oligarchical, so that agreement of all veto players is not only necessary,
but sufficient for a proposal to pass. Our main result is that under these
conditions, a set of alternatives corresponds to the absorbing points of an
equilibrium if and only if it is a von Neumann-Morgenstern solution. Sec-
ond, allowing a general voting rule, we add the assumption that there is a
persistent agenda setter, i.e., a fixed player who proposes with probability
one in each period. We apply our analysis of ergodic properties of equi-
libria to show that all equilibria are essentially pure, and we again obtain
the equivalence between equilibrium absorbing points and von Neumann-
Morgenstern solutions. Thus, we extend Theorem 1 of Diermeier and Fong
(2012) by generalizing the quota rules to an arbitrary voting rule and by
removing the restriction to pure strategy equilibria.

Noncooperative foundations for von Neumann-Morgenstern solutions in
political economy have been investigated in several different institutional
settings, including electoral competition (Anesi 2012) and committee voting
(Anesi and Seidmann 2014). In particular, Diermeier et al. (2014) consider
a discrete version of the divide-the-dollar environment, in which players bar-
gain over allocations of a private good. As in Diermeier and Fong (2012),
these authors assume the existence of a veto player and obtain a charac-
terization of pure-strategy equilibria in terms of von Neumann-Morgenstern
solutions.

2 Dynamic Bargaining Framework

Consider the following dynamic bargaining model. The set X of alternatives
is finite with |X| ≥ 2, and individuals are numbered 1, . . . , n. In each of an
infinite number of discrete periods t = 1, 2, . . ., a status quo q ∈ X is given,
and a proposer is drawn from the fixed distribution (ρ1, . . . , ρn) with ρi > 0
for each i. The selected individual makes a proposal x ∈ X, and a vote is
held. If the group C of individuals who accept belongs to the collection D
of decisive groups, then the outcome for the current period is zt = x; and
otherwise, if C is not decisive, then zt = q is the outcome for the current
period. In both cases, the current outcome zt becomes the status quo in
the next period, where the process is repeated. Assume the voting rule D
is nonempty and monotonic. It is collegial if there is some individual who
belongs to every decisive group and has a veto — that is, if

⋂
D 6= ∅ —
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and we refer to such an i as a veto player. The rule is oligarchical if in
addition the set of veto players is itself decisive, i.e.,

⋂
D ∈ D, in which case

a coalition is decisive if and only if it contains all veto players.

Each individual i has a stage utility function ui : X → < such that for
all distinct x, y ∈ X, we have ui(x) 6= ui(y). Define the dominance relation
� such that x � y if and only if {i : ui(x) > ui(y)} ∈ D. A von Neumann-
Morgenstern solution (or vNM-solution) is a set S ⊆ X satisfying both
internal stability (for all x, y ∈ S, ¬(x � y)) and external stability (for all
x /∈ S, there exists y ∈ S with y � x). Given a sequence z = (z1, z2, . . .) of
outcomes, the payoff to player i is the normalized discounted utility

Ui(z) = (1− δ)
∞∑
t=1

δt−1ui(z
t),

where δ ∈ [0, 1) is a common discount factor. We extend payoffs to proba-
bility distributions over such sequences via expected utility. The status quo
in period 1 is an exogenously given alternative x0.

The above elements define a dynamic game, and we focus on subgame
perfect equilibria in stationary Markov strategies. Specifically, a stationary
Markov strategy for player i is a pair of mappings σi = (πi, αi) such that
πi : X ×X → [0, 1] and αi : X ×X → [0, 1], where:

• πi(x, y) is the probability that player i proposes y given status quo x,

• αi(x, y) is the probability that player i accepts alternative y when it
is on the floor and the status quo is x.

We term πi the proposal strategy and αi the voting strategy of player i, and
we let σ = (σ1, . . . , σn) denote a profile of stationary Markov strategies.
A proposal (resp. voting) strategy is pure if for all x, y ∈ X, we have
πi(x, y) ∈ {0, 1} (resp. αi(x, y) ∈ {0, 1}). Let α(x, y) be the probability
that y passes if proposed given status quo x, i.e.,

α(x, y) =
∑
C∈D

(∏
i∈C

αi(x, y)

)(∏
i/∈C

(1− αi(x, y))

)
.

Given such a profile σ, let P (·|σ) denote the stochastic transition process
engendered by σ, so that

P (x, y|σ) =
∑
i

ρiπi(x, y)
∑
C∈D

(∏
j∈C

αj(x, y)

)(∏
j /∈C

(1− αj(x, y))

)
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is the probability that next period’s outcome is y given that the outcome
in the current period is x. Then P (x, Y |σ) =

∑
y∈Y P (x, y|σ) is the proba-

bility that next period’s outcome belongs to Y given current outcome x. In
general, define P 1(·|σ) = P (·|σ), and given t ≥ 2, let P t(·|σ) be the t-step
transition defined by

P t(x, y|σ) =
∑
z∈X

P 1(x, z|σ)P t−1(z, y|σ),

so that P t(x, ·|σ) gives the distribution over outcomes t periods in the future,
given outcome x in the current period.

The expected discounted payoff, or dynamic payoff, from outcome x in
a given period for player i is

Vi(x|σ) = (1− δ)ui(x) + δ
∞∑
t=1

δt−1
∑
z∈X

ui(z)P
t(x, z|σ).

Of course, this dynamic payoff is the unique solution to the recursion

Vi(x|σ) = (1− δ)ui(x) + δ
∑
y∈X

P (x, y|σ)Vi(y|σ). (1)

A stationary Markov profile σ is a stationary bargaining equilibrium if
proposals and votes are optimal for all histories; that is, if (i) for all x ∈ X
and all i ∈ {1, . . . , n}, πi(x, ·) puts positive probability on solutions to

max
y∈X

α(x, y)Vi(y|σ) + (1− α(x, y))Vi(x|σ),

and (ii) for all x, y ∈ X and all j ∈ {1, . . . , n}, we have αj(x, y) = 1 if
Vj(y|σ) ≥ Vj(x|σ), and we have αj = 0 if Vj(y|σ) < Vj(x|σ). Note that the
optimality condition (ii) on voting strategies incorporates the refinement
that players do not cast stage-dominated votes. Moreover, the condition
assumes deferential voting strategies, so that a player votes for a proposed
alternative if indifferent between acceptance and rejection. Because of this
assumption, existence of a stationary bargaining equilibrium does not fol-
low from known existence results for Markov perfect equilibria in stochastic
games. Nevertheless, existence is not an issue: our first theorem does not re-
quire the deferential voting restriction; the others assume that C is collegial
and that the discount factor is high, in which case results by Muto (1984)

5



and Anesi (2010) imply that the game possesses a stationary bargaining
equilibrium.3

A set Y ⊆ X of alternatives is invariant under σ if for all x ∈ Y , we
have P (x, Y |σ) = 1, and it is ergodic if it is minimal among invariant sets
according to set inclusion. We let E(σ) denote the collection of ergodic sets
under σ. An alternative x is absorbing if P (x, x|σ) = 1, or alternatively, {x}
is ergodic. If there is some t such that P t(x, y|σ) > 0, then y is reachable
from x. Let A(x|σ) be the set of absorbing points that are reachable from x.

These concepts can be reformulated in graph-theoretic terms. Define
the graph of σ, denoted Γ(σ), as follows: for all x, y ∈ X, we have xΓ(σ)y
if and only if P (x, y|σ) > 0. Let Γ1(σ) = Γ(σ), and for each t = 2, 3, . . .,
define Γt(σ) as follows: for all x, y ∈ X, we have xΓt(σ)y if and only if
there exists z ∈ X such that xΓ(σ)zΓ(σ)t−1y. The transitive closure of Γ,
denoted Γ∞(σ), is defined as Γ∞(σ) =

⋃∞
t=1 Γt(σ). Then Y is ergodic if and

only if for all x, y ∈ Y , we have xΓ∞(σ)y and yΓ∞(σ)x; an alternative x
is absorbing if and only if for all y ∈ X, xΓ(σ)y implies y = x; and y is
reachable from x if and only if xΓ∞(σ)y.

It is well-known that from any outcome x, the equilibrium Markov chain
eventually leads to an ergodic set with probability one. To formalize this
claim, let P∞(x, Y |σ) = lim inf P t(x, Y |σ). Then for all x, we have

P∞

(
x,
⋃
E(σ)|σ

)
= 1,

so that with probability one the set
⋃
E(σ) is entered from x and remains

in that set. In graph-theoretic terms, for all x ∈ X, there exist an ergodic
set Y and y ∈ Y , such that xΓ∞(σ)y.

3 Absorbing Alternatives

Our first result establishes that when the set of alternatives is small relative
to the Nakamura number of the bargaining game, every ergodic set is a
singleton, the lone element being an absorbing alternative. To begin, we
define the Nakamura number of the voting rule, denoted N (D), in two cases.

3The former shows that there exists a (unique) vNM solution if D is collegial; the latter
that a (pure strategy) stationary bargaining equilibrium exists if there is a vNM solution.
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First, in case the rule is non-collegial, let

N (D) = min
{
|G| | G ⊆ D and

⋂
G = ∅

}
.

In words, N (D) is the size of the smallest collection of decisive coalitions
having empty intersection. Second, in case the rule is collegial, the set N (D)
is equal to the cardinality of the integers. It is known that when the number
of players is either three or strictly greater than four, the Nakamura number
of majority rule is three. In general, for a quota rule with quota q, the
Nakamura number is

N (D) =

⌈
n

n− q

⌉
,

so it becomes arbitrarily high when the number of players is large and the
quota becomes large relative to n.

Theorem 1: Assume |X|(|X| − 1) < N (D), and consider any stationary
bargaining equilibrium σ. For every Y ⊆ X, Y is ergodic if and only if there
is an absorbing alternative x such that Y = {x}.

Proof: One direction is obvious. For the other, suppose there is an ergodic
set Y with |Y | = k ≥ 2, and enumerate the elements as y1, . . . , yk. For each
h = 1, . . . , k, let

Yh = {z ∈ X \ {yh} | P (yh, z|σ) > 0},

and enumerate the elements of this set as zh,1, . . . , zh,`h . For each h =
1, . . . , k and each ` = 1, . . . , `h, there exists Ch,` ∈ D such that for all
i ∈ Ch,`, we have

Vi(zh,`|σ) ≥ Vi(yh|σ).

Since |Y | ≤ |X| and |Yh| ≤ |X| − 1, we have |Y |(maxh |Yh|) < N (D), so
by assumption there exists i ∈

⋂k
h=1

⋂`h
`=1Ch,`. Let ym maximize player i’s

dynamic payoff over Y , i.e., Vi(ym|σ) = maxh=1,...,k Vi(yh|σ). Then for all
` = 1, . . . , `m, we must have

Vi(zm,`|σ) = Vi(ym|σ).

Since Y is ergodic, this argument in fact implies that for all h = 1, . . . , k, we
have Vi(yh|σ) = Vi(ym|σ), so that the dynamic payoff of player i is constant
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on Y , and we can denote this by V . But choosing any yh and zh,`, we then
have

(1− δ)ui(yh) + δV = Vi(yh|σ)

= Vi(zh,`|σ)

= (1− δ)ui(zh,`) + δV ,

which implies ui(yh) = ui(zh,`), a contradiction. We conclude that for every
ergodic set Y , we have |Y | = 1, so that there is an absorbing alternative x
such that Y = {x}. Q.E.D.

Note that when the voting ruleD is collegial, the Nakamura number takes
an infinite value, so the conditions of Theorem 1 are satisfied. Because the
Nakamura number of majority rule is three, the result does not apply unless
there are just two alternatives; cycles can arise and ergodic sets with multiple
elements can be supported in equilibrium as Example 1 below illustrates.
But for a large set of players and quota rules with higher quotas, the result
does apply.

Example 1: Let n = 3, X = {x, y, z}, and suppose that the players’ utilities
and discount factor satisfy the following inequalities:

(3− δ)−1 [(3 + δ)u1(y)− δu1(x)] < u1(z) < u1(y) < u1(x) ;

(3− δ)−1 [(3 + δ)u2(x)− δu2(z)] < u2(y) < u2(x) < u2(z) ;

(3− δ)−1 [(3 + δ)u3(z)− δu3(y)] < u3(x) < u3(z) < u3(y) .

We further assume that D is majority rule — i.e., D = {C ⊆ N | |C| ≥ 2}—
and that the three players have the same recognition probability — i.e., ρi =
1/3 for each i = 1, 2, 3. Under these assumptions, there is a (pure strategy)
stationary bargaining equilibrium such that: given status quo x, players 2
and 3 propose and accept y, whereas player 1 maintains the status quo;
given status quo y, players 1 and 2 propose and accept z, whereas player 3
maintains the status quo; and given status quo z, players 1 and 3 propose and
accept x, whereas player 2 maintains the status quo. (We provide the precise
details of the equilibrium construction in the supplementary appendix.) The
induced Markov chain on X is depicted in Figure 1. Observe that there is
no absorbing alternative and that the only ergodic set is the entire set of
alternatives X. �

An important implication of Theorem 1 for a stationary bargaining equi-
librium σ is that for each alternative x, we have A(x|σ) 6= ∅. This in turn
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Figure 1: Equilibrium Markov chain with a Condorcet cycle.

implies that beginning from any given alternative, the equilibrium Markov
chain eventually transitions to an absorbing alternative with probability one.

4 Bargaining Equilibria and vNM-Solutions

We now increase the structure imposed on the analysis by considering the
case of patient players and assuming that there is at least one veto player
with positive recognition probability. The following result establishes that
for each alternative, there is a unique alternative to which it is absorbed.

Theorem 2: Assume that there is at least one veto player with positive
recognition probability, i.e., there exists i ∈

⋂
D with ρi > 0. Then there ex-

ists δ ∈ (0, 1) such that for all δ ∈ (δ, 1), all stationary bargaining equilibria
σ, and all x ∈ X, there exists y ∈ X such that A(x|σ) = {y}.

Proof: By Theorem 1, we know that for all x ∈ X, we have A(x|σ) 6= ∅.
To deduce a contradiction, suppose there are a sequence of discount factors
{δk} converging to one and corresponding stationary bargaining equilibria
{σk} such that for each k, there exist xk with |A(xk|σk)| ≥ 2. Then {Γ(σk)}
is the corresponding sequence of equilibrium graphs. Since X is finite, we
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can go to a subsequence (still indexed by k) on which these alternatives and
graphs are constant, and henceforth we write x = xk for the given alternative
and Γ = Γ(σk) for the equilibrium graph. Abusing notation slightly, let A =
A(σk) denote the set of absorbing alternatives of σk, and let A(y) = A(y|σk)
denote the absorbing alternatives reachable from an alternative y; these sets
are constant along the sequence, and we have |A(x)| ≥ 2. Let w minimize
the stage payoff of player i among absorbing alternatives reachable from x,
i.e., ui(w) = miny∈A(x) ui(y). Let {y1, y2, . . . , ym} be a path from x to w, so
that

x = y1Γy2 · · ·Γym−1Γym = w,

and let y` be the highest indexed alternative such that |A(y`)| ≥ 2, and note
that ` < m. For all k, we have

Vi(y`+1|σk) ≥ Vi(y`|σk),

and since the equilibrium Markov chain eventually transitions from y`+1 to
w with probability one, we have Vi(y`+1|σk) → ui(w). With the preceding
inequality, we also have Vi(y`|σk) → ui(w). By construction, there exists
z ∈ A(y`)\{w}, so that ui(z) > ui(w). Then there exist z1, . . . , zh ∈ X such
that y` = z1Γz2 . . .Γzh−1Γzh = z. Thus, there exist C1, . . . , Ch ∈ D such
that for each k = 1, 2, . . ., for each r = 1, . . . , h − 1, and for each j ∈ Cr,
we have Vj(zr|σk) ≤ Vj(zr+1|σk). It follows that if player i proposes zr+1

given status quo zr, the proposal will pass with probability one (deferential
voting). Note, moreover, that the probability that i is recognized as proposer
is ρi > 0. Since player i’s equilibrium proposal strategy is optimal, it follows
that

Vi(y`|σ) ≥ ρh−1i ui(z) + (1− ρh−1i )ui(w),

which is bounded strictly above ui(w), a contradiction. Q.E.D.

Note that Theorem 2 does not establish that for each x, there is a unique
path of alternatives leading to the absorbing alternative y. In fact, the
following example illustrates the possibility of multiple absorbing paths.

Example 2: Let the set of alternatives be X = {x, y, a, b}, let there be four
players, each with recognition probability p = 1/4, and let the voting rule
be such that a coalition is decisive if and only if it contains {1, 2} and at
least one other player, i.e., D = {C | 1, 2 ∈ C and |C| ≥ 3}. This voting rule
makes players 1 and 2 veto players, but it is not oligarchical. Stage payoffs
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satisfy

u1(x) < u1(b) < u1(a) < u1(y) , u2(x) < u2(a) < u2(b) < u2(y) ,

u3(b) < u3(y) < u3(a) < u3(x) , and u4(a) < u4(y) < u4(b) < u4(x) .

We further assume that

3u3(x) + u3(a) < 5u3(y)− u3(b) , and 3u4(x) + u4(b) < 5u4(y)− u4(a) .

It is worth remarking that the veto players both prefer y to x, but no other
player agrees, and thus it is not the case that y � x. It is readily checked that
if the discount factor δ is sufficiently large, then the Markov chain depicted
in Figure 2 corresponds to a stationary bargaining equilibrium such that:4

given status quo x, each player proposes her favorite alternative in {y, a, b},
and this proposal passes; given status quo y, all players maintain the status
quo; given status quo a, player 3 maintains the status quo, whereas all other
players obtain the outcome y; with analogous actions at status quo b. In
particular, given status quo x, players 3 and 4 are willing to vote for proposal
y in order to avoid obtaining their least preferred alternative, which occurs
with probability 1/4 if the status quo is maintained — our assumptions
guarantee that, for sufficiently large δ, Vi(x|σ) < Vi(y|σ) for each i = 3, 4.
And given status quo x, players 1 and 2 are willing to vote for any of a and
b in order to avoid remaining at their least preferred alternative for another
period. �

The next result strengthens the assumptions of Theorem 2 to provide
a tight connection between equilibrium ergodic sets and von Neumann-
Morgenstern solutions: if the voting rule is oligarchical, then a set of al-
ternatives is obtained as the absorbing points of a stationary bargaining
equilibrium if and only if it is a von Neumann-Morgenstern solution.

Theorem 3: Assume D is oligarchical, and that there is at least one veto
player with positive recognition probability, i.e., there exists i ∈

⋂
D with

ρi > 0. Then there exists δ ∈ (0, 1) such that for all δ ∈ (δ, 1) and all subsets
Y ⊆ X, there is a stationary bargaining equilibrium σ with A(σ) = Y if and
only if Y is a von Neumann-Morgenstern solution.

Proof: One direction follows from Anesi (2010). For the other, suppose
toward a contradiction that there are a sequence {δk} of discount factors

4Details are provided in the supplementary appendix.
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Figure 2: Multiple paths.

converging to one and a sequence {σk} of stationary bargaining equilibria
such that for each k, the set A(σk) of absorbing points of σk is not a von
Neumann-Morgenstern solution. Clearly, the set A(σk) is internally stable,
for else there exist x, y ∈ A(σk) such that x � y, but then given status quo
y, player i could successfully propose x, contradicting the fact that y is an
absorbing alternative. It follows that A(σk) violates external stability, so
there exists xk ∈ X \ A(σk) such that for all y ∈ A(σk), it is not the case
that y � xk. By Theorem 2, for sufficiently high k, there exists yk such that
A(xk|σk) = {yk}, so that starting from xk, the equilibrium Markov process
is absorbed into yk. Going to a subsequence (still indexed by k), we can
assume that these alternatives are constant, and henceforth we write x = xk
and y = yk. Let wk,1 minimize player i’s dynamic payoff over the outcomes
distinct from x that occur with positive probability given status quo x, i.e.,

Vi(wk,1|σk) = min
z 6=x:P (x,z|σk)>0

Vi(z|σk),
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and recursively, given wk,1, . . . , wk,h, let

Vi(wk,h+1|σk) = max
z 6=wk,h:P (wk,h,z|σk)>0

Vi(z|σk).

This generates a finite sequence wk,1, . . . , wk,`k with wk,`k = y. Since i
is a veto player, it follows that Vi(wk,1|σk) ≥ Vi(x|σk) and that for each
h = 1, . . . , `k − 1, we have Vi(wk,h|σk) ≤ Vi(wk,h+1|σk). In particular, we
have ui(y) ≥ Vi(wk,1|σk). Now suppose in order to deduce a contradiction
that for arbitrarily high k, we have ui(x) > Vi(wk,1|σk). For such k, we have

Vi(x|σk)
= (1− δ)ui(x) + δP (x, x|σk)Vi(x|σk) + δ

∑
z 6=x

P (x, z|σk)Vi(z|σk)

> (1− δ)Vi(wk,1|σk) + δP (x, x|σk)Vi(x|σk) + δ
[
1− P (x, x|σk)

]
Vi(wk,1|σk),

which implies

Vi(x|σk) > Vi(wk,1|σk),

a contradiction. We conclude that for sufficiently high k, we have ui(y) ≥
Vi(wk,1|σk) ≥ ui(x). Thus, we have ui(y) ≥ ui(x), which further implies
ui(y) > ui(x). For sufficiently high k, this inequality holds for every veto
player, and since the voting rule is oligarchical, we conclude that y � x.
This final contradiction completes the proof. Q.E.D.

The assumption that the voting rule is oligarchical, rather than merely
collegial, is needed for the latter result. This is illustrated by the preceding
example, in which player 1 is a veto player (with positive recognition proba-
bility), yet there are multiple paths from x leading to the unique absorbing
point y, and it is not the case that y � x.

5 Persistent Agenda Setter

It is worthwhile to summarize briefly the steps in the analysis above. First,
Theorem 1 assumes that the Nakamura number of the voting rule is high
relative to the number of alternatives; then Theorem 2 adds more struc-
ture by assuming a veto player. The additional structure of an oligarchic
rule is then used in Theorem 3 to obtain a characterization of stationary
bargaining equilibria in terms of von Neumann-Morgenstern solutions. Our
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next theorem adds structure to Theorems 1 and 2 in a different direction:
it casts the analysis into the persistent agenda setter model (Diermeier and
Fong 2011, 2012), in which some player i is given the sole power to make
proposals.

Let Di be the voting rule obtained from D by adding player i to every
decisive coalition in D, that is, Di = {C ∪ {i} : C ∈ D}. If player i is the
single agenda setter (i.e., ρi = 1), then any stationary bargaining equilibrium
σ with rule D is also a stationary bargaining equilibrium with collegial rule
Di. To see this, note that if σ is not an equilibrium with rule Di then, at
some status quo x, i must propose an alternative y that is accepted with
rule D and rejected with rule Di. This implies that i rejects this proposal
and, therefore, that (with rule D) she would have been strictly better off
maintaining status quo x rather than proposing y; a contradiction. Hence,
Theorems 1 and 2 can be applied directly to any voting rule to yield the
following corollary.

Corollary 1: Assume that there is a persistent agenda setter, i.e., there
exists i ∈ {1, . . . , n} with ρi = 1. Then there exists δ ∈ (0, 1) such that for
all δ ∈ (δ, 1), all stationary bargaining equilibria σ, and all x ∈ X, there
exists y ∈ X such that A(x|σ) = {y}.

The preceding argument does not directly yield a version of Theorem 3
for the persistent agenda setter model, as the theorem assumes an oligarchic
rule. Nevertheless, the structure of a single proposer allows us to obtain a
sharper result than Theorem 2, which we will draw on to obtain a character-
ization of von Neumann-Morgenstern solutions. Our final theorem indeed
establishes that this structure, in addition to ensuring the uniqueness of the
absorbing alternative y from any status quo x, implies that there is a unique
path determined in equilibrium from x to y. In particular, the equilibrium
graph Γ(σ) possesses no “branches,” so that for every alternative x, there
is a unique alternative z such that xΓ(σ)z, precluding equilibrium Markov
chains of the sort demonstrated in Example 2. Note the further implication
that under the conditions of the theorem, stationary bargaining equilibria
are essentially pure, in the sense that for every non-absorbing alternative
x /∈ A(σ), the proposal strategy πi(x, ·) puts probability one on the single
alternative z such that xΓ(σ)z; if x is an absorbing alternative, then the
setter may mix between proposals that are rejected, but mixing in this case
is nominal. Thus, we find that Diermeier and Fong’s (2012) restriction to
pure strategy equilibria is redundant.
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Theorem 4: Assume that there is a persistent agenda setter, i.e., there
exists i ∈ {1, . . . , n} with ρi = 1. Then there exists δ ∈ (0, 1) such that for
all δ ∈ (δ, 1), all stationary bargaining equilibria σ, and all x ∈ X, there
exist a unique absorbing alternative y ∈ X, a unique natural number m ≥ 1,
and unique alternatives z1, . . . , zm ∈ X such that

xΓ(σ)z1Γ(σ) · · · zm−1Γ(σ)zm = y.

Proof: Consider an arbitrary sequence {δk} of discount factors converging
to one and a corresponding sequence {σk} of stationary bargaining equilib-
ria. Going to a subsequence (still indexed by k), we can assume that the
corresponding graph, Γ is constant. Consider an alternative x. By Corollary
1, there exists a unique alternative y such that A(x|σk) = {y} for all k ∈ N.
It suffices to show that for sufficiently high k, there is a unique path between
x and y. We proceed in three steps:

Step 1: The alternative y maximizes player i’s utility over the set R(x)
of alternatives reachable from x. The proof for this step parallels exactly the
proof of Theorem 3 — though i may not be a veto player in this case, being
the single agenda setter, she can still (unilaterally) maintain the status quo.

Step 2: Γ is acyclic. Suppose toward a contradiction that there exist
x1, . . . , xm such that x1Γx2Γ · · ·xmΓx1. This implies that

Vi(x1|σk) = · · · = Vi(xm|σk).

Note that the setter i solves a dynamic programming problem, and σki is
optimal, given σk−i. Since x2 is proposed with positive probability given
status quo x1, it is an optimal choice at x1, given that future choices are
made according to σki . Then it is optimal to always choose x2 at x1, using σki
at all other status quos. Call this strategy σk,1i . We then modify σk,1i so that
at x2, the setter chooses x3 with probability one. The resulting strategy,
σk,2i , is also optimal. In general, we modify σk,ji so that at status quo xj ,
the setter chooses xj+1 with probability one, giving us an optimal strategy

at each step. In the end, the strategy σk,mi is optimal, but following it, the
setter just cycles through x1, . . . , xm. It follows from Step 1 that the setter’s
payoff from σk,mi , starting from x1, is bounded above by

max{ui(xj) | j = 1, . . . ,m} < uj(y).
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For sufficiently high k, this payoff is less than the payoff from following σki ,
because following that strategy y is eventually reached with probability one.
This contradiction completes the step.

Step 3. There is a unique path between x and y in Γ. It follows from
the previous step that if z ∈ R(x), then R(z) $ R(x). Say z branches if
there are distinct alternatives s, t such that zΓs and zΓt. Suppose toward
a contradiction that some alternative z ∈ R(x) branches, and choose z so
that R(z) is minimal among

{R(w) | w ∈ R(x) and w branches}.

Then following w are at least two deterministic paths that lead to y. But
as δk → 1, it is not possible to maintain the setter’s indifference over these
paths for arbitrarily high k. Q.E.D.

We close this note by recording an implication of Theorem 4 for the
connections between von Neumann-Morgenstern solutions and equilibrium
absorbing sets in the persistent agenda setter model. Note that this corol-
lary imposes no restriction on the voting rule D. This result thus extends
Theorem 1 in Diermeier and Fong (2012) by generalizing their quota rules
to an arbitrary voting rule and by removing the restriction to pure strategy
equilibria.

Corollary 2: Assume that there is a persistent agenda setter, i.e., there
exists i ∈ {1, . . . , n} with ρi = 1. Then there exists δ ∈ (0, 1) such that for all
δ ∈ (δ, 1) and all subsets Y ⊆ X, there is a stationary bargaining equilibrium
σ with A(σ) = Y if and only if Y is a von Neumann-Morgenstern solution
for Di.

Proof: Sufficiency follows from Diermeier and Fong (2012). For necessity,
suppose toward a contradiction that there are a sequence {δk} of discount
factors converging to one and a sequence {σk} of stationary bargaining equi-
libria such that for each k, the set A(σk) of absorbing points of σk is not a
von Neumann-Morgenstern solution. By the same logic as in the proof of
Theorem 3, the set A(σk) must be internally stable. It follows that A(σk)
violates external stability, so there exists xk ∈ X \ A(σk) such that for all
y ∈ A(σk), it is not the case that y � xk. By Corollary 1 and Theorem 4, for
sufficiently high k, there exist: an alternative yk such that A(xk|σk) = {yk};
a unique path {xk, zk1 , . . . , zkmk

} from xk to yk; and a coalition Ck ∈ Di such

that Vj
(
xk|σk

)
≤ Vj

(
zk1 |σk

)
for all j ∈ Ck. Going to a subsequence (still
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indexed by k), we can assume that this coalition and these alternatives are
constant, and henceforth we write C = Ck, x = xk, and z1 = zk1 . Hence, for
each k, we have

0 ≤ Vj(z1|σk)− Vj(x|σk)
= Vj(z1|σk)− (1− δk)uj(x)− δkVj(z1|σk)
= (1− δk)(Vj(z1|σk)− uj(x))

for all j ∈ C. This implies Vj(z1|σk) ≥ uj(x) for all j ∈ C. Taking lim-
its and using Vj(z1|σk) → uj(y), we then have uj(y) ≥ uj(x) and, thus,
uj(y) > uj(x) for all j ∈ C. This contradicts our supposition that there is
no absorbing alternative y such that y � x. Q.E.D.
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Supplementary Appendix:
Details of the Equilibria in Examples 1 and 2

Example 1. Let the strategy profile σ be defined by:

π1(x, x) = π1(y, z) = π1(z, x) = π2(x, y) = π2(y, z) = π2(z, z)

= π3(x, y) = π3(y, y) = π3(z, x) = 1;

α2(x, y) = α3(x, y) = 1−α1(x, y) = 1; α1(x, z) = α3(x, z) = 1−α2(x, z) = 0;

α2(y, x) = α3(y, x) = 1−α1(y, x) = 0; α1(y, z) = α2(y, z) = 1−α3(y, z) = 1;

α1(z, x) = α3(z, x) = 1−α2(z, x) = 1; α1(z, y) = α2(z, y) = 1−α3(z, y) = 0.

Hence,

α(x, x) = α(x, y) = 1− α(x, z) = 1 , (2)

α(y, y) = α(y, z) = 1− α(y, x) = 1 , (3)

α(z, z) = α(z, x) = 1− α(z, y) = 1 . (4)

Simple calculations then yield

Vi(x|σ) =
(3− δ)2ui(x) + 2(3− δ)δui(y) + 4δ2ui(z)

3 (3 + δ2)
,

Vi(y|σ) =
4δ2ui(x) + (3− δ)2ui(y) + 2(3− δ)δui(z)

3 (3 + δ2)
,

Vi(z|σ) =
2(3− δ)δui(x) + 4δ2ui(y) + (3− δ)2ui(z)

3 (3 + δ2)
;

so that

Vi(x|σ) ≥ Vi(y|σ) iff (3 + δ)ui(x) ≥ (3− δ)ui(y) + 2δui(z) ,

Vi(x|σ) ≥ Vi(z|σ) iff (3− δ)ui(x) + 2δui(y) ≥ (3 + δ)ui(z) , and

Vi(y|σ) ≥ Vi(z|σ) iff (3 + δ)ui(y) ≥ 2δui(x) + (3− δ)ui(z) ,

for each i = 1, 2, 3. Thus, under our assumptions on stage utilities, dynamic
payoffs satisfy V1(y|σ) < V1(z|σ) < V1(x|σ), V2(x|σ) < V2(y|σ) < V2(z|σ),
and V3(z|σ) < V3(x|σ) < V3(y|σ). Combined with equations (2)-(4), these
inequalities imply that σ satisfies the conditions for a stationary bargaining
equilibrium.
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Example 2. The strategy profile σ, described in the example, is defined
by

• Policy strategies given status quo x: π1(x, y) = π2(x, y) = π3(x, a) =
π4(x, b) = 1;

• Policy strategies given status quo y: πi(y, y) = 1 for each i = 1, 2, 3, 4;

• Policy strategies given status quo a: π1(a, y) = π2(a, y) = π3(a, a) =
π4(a, y) = 1;

• Policy strategies given status quo b: π1(b, y) = π2(b, y) = π3(b, y) =
π4(b, b) = 1;

• Voting strategies given status quo x: αi(x, y) = 1 for each i = 1, 2, 3, 4,

α1(x, a) = α2(x, a) = α3(x, a) = 1− α4(x, a) = 1 ,

α1(x, b) = α2(x, b) = α4(x, b) = 1− α3(x, b) = 1 ,

so that
α(x, x) = α(x, y) = α(x, a) = α(x, b) = 1 ; (5)

• Voting strategies given status quo y: αi(y, x) = 0 for each i = 1, 2, 3, 4,

α1(y, a) = α2(y, a) = α4(y, a) = 1− α3(y, a) = 0 ,

α1(y, b) = α2(y, b) = α3(y, b) = 1− α4(y, b) = 0 ,

so that
α(y, x) = 1− α(y, y) = α(y, a) = α(y, b) = 0 ; (6)

• Voting strategies given status quo a:

α1(a, x) = α2(a, x) = α3(a, x) = 1− α4(a, x) = 0 ,

α1(a, y) = α2(a, y) = α4(a, y) = 1− α3(a, y) = 1 ,

α1(a, b) = 1− α2(a, b) = α4(a, b) = 1− α3(a, b) = 0 ,

so that

1− α(a, x) = α(a, y) = α(a, a) = 1− α(a, b) = 1 ; (7)
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• Voting strategies given status quo b:

α1(b, x) = α2(b, x) = α4(b, x) = 1− α3(b, x) = 0 ,

α1(b, y) = α2(b, y) = α3(b, y) = 1− α4(b, y) = 1 ,

α1(b, a) = 1− α2(b, a) = α3(b, a) = 1− α4(b, a) = 1 ,

1− α(b, x) = α(b, y) = 1− α(b, a) = α(b, b) = 1 . (8)

It is readily checked that the corresponding dynamic payoffs are:

Vi(y|σ) = ui(y) ,

Vi(a|σ) =
(1− δ)ui(a) + δ(1− p)ui(y)

1− δp
,

Vi(b|σ) =
(1− δ)ui(b) + δ(1− p)ui(y)

1− δp
,

Vi(x|σ) = (1− δ)ui(x) + δp [2Vi(y | σ) + Vi(a | σ) + Vi(b | σ)]

for each i = 1, 2, 3, 4. Furthermore, for any two distinct alternatives z and
z′ in {a, b, c}, we have

Vi(z|σ)− Vi(x|σ)

1− δ
= ui(z)− ui(x) +

δp

1− δp
[
ui(y)− ui(z′)

]
for every i = 1, 2, 3, 4. From our assumptions on u1 and u2, it follows that

V1(x|σ) < V1(b|σ) < V1(a|σ) < V1(y|σ) (9)

and
V2(x|σ) < V2(a|σ) < V2(b|σ) < V2(y|σ) . (10)

In addition,

Vi(y|σ)− Vi(x|σ)

1− δ
= ui(y)− ui(x) +

δp

1− δp
[
2ui(y)− ui(a)− ui(b)

]
for each i = 1, 2, 3, 4. Combined with these equalities, our assumptions on
u3 and u4 imply that there exist δ̄3, δ̄4 ∈ (0, 1) such that, for each i = 3, 4,
Vi(y|σ) > Vi(x|σ) for all δ ∈

(
δ̄i, 1

)
; so that

V3(b|σ) < V3(x|σ) < V3(y|σ) < V3(a|σ) (11)

whenever δ > δ̄3, and

V4(a|σ) < V4(x|σ) < V4(y|σ) < V4(a|σ) (12)
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whenever δ > δ̄4.

Suppose δ > max
{
δ̄3, δ̄4

}
. Inequalities (9)-(12) imply that the voting

strategies defined above satisfy condition (ii) in the definition of a station-
ary bargaining equilibrium. Coupled with (5)-(8), these inequalities also
imply that the proposal strategies defined above satisfy condition (i) in that
definition. This proves that σ is a stationary bargaining equilibrium.
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