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Abstract

This paper illustrates that least squares learning may lead to suboptimal outcomes even when the

estimated function perfectly �ts the observations used in the regression.

We consider the Salop model with three �rms and two types of consumers that face di�erent

transportation costs. Firms do not know the demand structure and they apply least squares learning

to learn the demand function. In each period, �rms estimate a linear perceived demand function and

they play the perceived best response to the previous-period price of the other �rms.

This learning rule can lead to three di�erent outcomes: a self-sustaining equilibrium, the Nash

equilibrium or an asymmetric learning-equilibrium. In this last equilibrium one �rm underestimates

the demand for low prices and it attracts consumers with high transportation costs only. This type of

equilibrium has not been found in the literature on least squares learning before. Both the Nash equi-

librium and the asymmetric learning-equilibrium are locally stable therefore the model has coexisting

stable equilibria.
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1 Introduction

There are many situations where �rms do not fully know the demand conditions on the market. For

example, when a �rm is entering a new market or when a new product is introduced, �rms need to learn

over time how the demand for their good depends on the price they set and on their competitors' prices.

Similarly, changes in market regulation can also lead to demand uncertainty. In such situations �rms need

to learn about demand conditions to �nd the optimal price or production level.

A natural way to learn about unknown demand conditions is to gather market data and estimate the

demand function. Then this estimated function can form the basis for determining prices or quantities.

This process can be modeled with least squares learning (LSL). LSL consists of two parts: estimation and a

decision rule. In the estimation part agents estimate an unknown relationship between variables with OLS

regression and then they use the estimated function to determine their optimal action. If the functional

form in the estimation is correctly speci�ed, i.e. agents have observations about all the relevant variables

and these variables are included in the regression in the correct functional form, then LSL leads to the

rational expectations equilibrium, see Bray (1982), Marcet and Sargent (1989) and Evans and Honkapohja

(2001) for example. However, since the true relationship is unknown, it might occur that agents use a

misspeci�ed functional form in the regression. The e�ect of such misspeci�cation was analyzed in the

Industrial Organization literature, see Kirman (1975, 1983), Gates et al. (1977), Brousseau and Kirman

(1992), Kopányi (2013) and Anufriev et al. (2013). Misspeci�ed LSL leads to a so-called self-sustaining

equilibrium in which �rms do not learn the true demand function correctly but they end up in a situation

where 1. they are choosing the pro�t-maximizing price or quantity subject to their estimated function

and 2. in the equilibrium their estimation is correct in the sense that the price or demand they expect to

get (based on their estimation) coincides with the actual realization.1 This kind of outcome is unrelated

to any benchmark outcomes of the standard static model under complete knowledge about the demand

structure, such as the Nash equilibrium or the collusive outcome.2

In this paper we take an intermediate step between the aforementioned branches of the literature.

We take a slight departure from the correctly speci�ed version of LSL by assuming that �rms use all

the relevant variables in the regression (i.e. the prices set by their competitors) and that the functional

1Thus, their estimation is correct in the equilibrium point but not out of equilibrium.
2We must note that the result that misspeci�ed learning can lead to di�erent outcomes than a correctly speci�ed learning

rule holds not only for least squares learning. Bayesian learning leads to similar results depending on whether the likelihood

function is correctly speci�ed or not, see Blume et al. (1982) and the references therein. For market models with misspeci�ed

Bayesian learning see Blume and Easley (1982) and Schinkel et al. (2002) for example.
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form they use is correctly speci�ed locally but not globally.3 This situation is of particular interest as

the correctly speci�ed and misspeci�ed versions of LSL lead to substantially di�erent outcomes and it

is unclear whether a small misspeci�cation in the learning method, which can easily occur and is hard

to detect, is enough to prevent convergence to the Nash equilibrium. As our results show, LSL can lead

both to the Nash equilibrium and to a self-sustaining equilibrium. Moreover, a third kind of outcome,

which was not present in previous models, can also be reached: the asymmetric learning-equilibrium. In

this equilibrium some �rms charge higher prices than others and they focus only on a small part of the

market. A remarkable feature of this outcome is that even though �rms observe a perfect �t, the outcome

can be suboptimal for some �rms in the sense that they could make a higher pro�t by focusing on the

whole market. However, in some situations it can be optimal to focus on only one part of the market.

As a framework of the analysis we consider a modi�ed version of the circular road model introduced

by Salop (1979). Three �rms produce a homogeneous good. Firms are located along a circular road, in

equidistant locations. Consumers are uniformly distributed along the circle. When a consumer wants to buy

the good, it needs to visit one of the �rms. Transportation is costly, consumers face a �xed transportation

cost per distance unit. Thus, the total cost of buying the good from a speci�c �rm is given by the sum

of the price the �rm asks and the transportation costs. Demand is inelastic, each consumer is assumed

to buy exactly one unit of the good, at the lowest possible total cost. We introduce heterogeneity on the

consumer side. There are two types of consumers, one type faces low transportation cost while the other

type faces a high one.

Firms do not know the market structure and they use LSL to learn the demand function they face.

The true demand function is piecewise linear but �rms approximate it with a linear function. Hence the

approximation can be locally correct but globally incorrect as a �rm can get a correct approximation for

at most one of the linear parts of the true demand function. In this paper we investigate which outcomes

LSL can lead to in this situation. We analytically show that the model has three kinds of equilibria. When

�rms use all past observations in the estimation, LSL typically leads to a self-sustaining equilibrium. In

this equilibrium �rms choose the price that maximizes their expected pro�t subject to their beliefs about

demand conditions and their beliefs are correct in equilibrium but they are incorrect out of equilibrium.

On the other hand, when not all but only the most recent observations are used in the estimation, �rms

reach either the symmetric Nash equilibrium or the asymmetric learning-equilibrium. In this asymmetric

learning-equilibrium two �rms charge a low price and the third one asks a high price. The high-price

�rm attracts the high-type consumers only whereas the other two �rms serve both consumer types. The

3As we will explain later, they approximate a piecewise linear function with a linear one.

3



intuition behind this equilibrium is that the high-price �rm does not attract low-type consumers, therefore

it underestimates the demand at low prices and it does not perceive it pro�table to charge a lower price.

We analytically investigate which conditions determine the outcome of the learning process and we run

numerical simulations to evaluate how frequently the di�erent outcomes are reached.

Least squares learning was applied in market competition in other papers as well. See Anufriev et al.

(2013) for an overview of the literature on misspeci�ed LSL. Our results are in line with the �ndings of

this literature when �rms use all past observations in the regression. In the Nash equilibrium and in the

asymmetric learning-equilibrium, perceived demand functions are correctly speci�ed in the neighborhood

of the equilibrium price. This makes these outcomes more robust than the self-sustaining equilibria in

Brousseau and Kirman (1992) and Anufriev et al. (2013) in the sense that in case of an SSE a �rm would

discover that its perceived demand function is misspeci�ed by choosing a slightly di�erent price. This is

not the case for the Nash equilibrium and the asymmetric learning-equilibrium.4

Tuinstra (2004) takes a similar approach as we do in the sense that he considers a perceived demand

function that is locally correct but globally incorrect. In his paper, the perceived demand function is

the linear approximation of the true nonlinear demand function at the current price vector (i.e. the

perceived demand function matches the function value and the slope of the true demand function at the

current price).5 Thus, the approximation is correct at the equilibrium point only, whereas it is correct

in a neighborhood of an equilibrium in our model (in case of the Nash equilibrium and the asymmetric

learning-equilibrium). Another important di�erence is that �rms focus only on their own price e�ect in

the approximation in Tuinstra's paper while they take into account the prices of other �rms as well in our

model.

The paper is structured as follows. The circular road model is discussed in Section 2. In Section 3 we

discuss least squares learning and we derive the equilibria of the model. We analyze the stability of the

equilibria as well. Simulation results are reported in Section 4. Section 5 concludes. Proofs are presented

in Appendix A while robustness checks are reported in Appendix B.

2 The circular road model

The circular road model, one of the baseline models of horizontal product di�erentiation, was introduced

by Salop (1979). In this section we �rst review a simpli�ed version of the model that is relevant for our

4Note, however, that this di�erence is due to the di�erent informational structure of the models. In Brousseau and Kirman

(1992) and Anufriev et al. (2013) �rms can observe their own actions only, whereas they have full information about the

actions in our model.
5One of the equilibrium concepts in Silvestre (1977) is based on similar conditions.
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analysis and then we introduce heterogeneity on the consumer side.

2.1 Homogeneous consumers

Consider the market for a homogeneous good that is produced by three �rms. Firms simultaneously and

independently set the price of the good. Production costs are given by the same function for each �rm:

Ci(qi) = cqi for each �rm i, where qi is the production level of �rm i and c > 0 is a parameter. Firms

are located along a circular road, in equal distance from each other. Consumers are uniformly distributed

along the circle, their mass (or equivalently the circumference of the circle) is normalized to 1.

Consumers need to visit one of the �rms to purchase the good. They move along the circular road,

facing a transportation cost s per distance unit. If the minimal distance between �rm i and a given

consumer is x, then the consumer's total cost for buying the good from �rm i is pi + sx, where pi is the

price charged by �rm i and sx is the total transportation cost.6 Demand is inelastic: each consumer buys

exactly one unit of the good. Furthermore, consumers are assumed to buy the good at the lowest possible

cost, thus from the �rm for which the sum of the price and the total transportation cost is the lowest. An

alternative interpretation of the model is that the circle represents the product space and the location of

consumers determines their preferences for the di�erent products. Consumers choose a product based on

the prices and on the distances from their ideal product, which corresponds to their location.

Firms can drive out each other from the market by choosing a su�ciently low price. When a consumer

at the location of a �rm is better-o� by visiting another �rm, then the �rst �rm will not attract any

consumers. This setup results in demand functions that are discontinuous and which consist of piecewise

linear parts. This one-shot game has a unique symmetric Nash equilibrium, in which each �rm charges

the price p = c+ s
3 , see Tirole (1988), p. 283 for the proof. Having discussed how the basic model works,

let us introduce heterogeneity on the consumer side.

2.2 Heterogeneous consumers

Let us consider the same market structure as before but suppose that there are two types of consumers.

The types di�er with respect to the transportation cost they face: low-type consumers face a unit cost of

s while high-type consumers pay a unit cost of S, where s < S. The amount of consumers of each type is

normalized to 1, both types are assumed to be uniformly distributed along the circular road. Firms cannot

distinguish the two types, they cannot price discriminate between di�erent consumers.7

6It is assumed that �rms cannot price discriminate so they cannot charge di�erent prices to consumers from di�erent

locations.
7We also assume that resale is not possible.
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Figure 1: Demand function of �rm i for pj = 2 and pk = 2.2. Other parameters: s = 1, S = 2 and c = 1.

Similarly to the case with homogeneous consumers, �rms can drive each other out of the market by

choosing a su�ciently low price. Moreover, �rms can also be driven out of one part of the market only:

It can occur that a �rm attracts high-type consumers but not low-type ones. Consider for example the

situation pj + 1
3s < pi < pj + 1

3S. In this case the low-type consumer that is located at the position of �rm

i buys from �rm j rather than from �rm i. Consequently, �rm i does not attract low-type consumers. On

the other hand, the high-type consumer at the location of �rm i prefers �rm i to �rm j. Thus, in the given

situation, �rm j drives �rm i out of the market for low-type consumers but not for high-type consumers.

Demand functions are discontinuous and consist of piecewise linear parts again. There are more parts

than under homogeneous consumers since �rms can be driven out of multiple subparts of market in this

case. We do not report the exact formula for the demand function here as it is not important to know it

for understanding the results of the paper. The relevant linear parts of the demand function are derived in

Appendix A. Figure 1 illustrates the demand and pro�t functions of �rm i when the other two �rms do not

drive each other out of the market for either consumer type. We can see that the demand function indeed

consists of linear parts. There are 7 linear parts, they correspond to the following cases (as pi increases): 1.

�rm i serves the whole market; 2. low-type consumers are served by �rm i only, high-type consumers are

served by �rms i and j; 3. low-type consumers are served by �rm i only, high-type consumers are served

by all 3 �rms; 4. low-type consumers are served by �rms i and j, high-type consumers are served by all 3

�rms; 5. both consumer types are served by all three �rms; 6. �rm i serves high-type consumers only, the

other two �rms serve both consumer types; and 7. �rm i is completely driven out of the market. We can

see from the pro�t function that the pro�t-maximizing decision of �rm i in the given situation is to drive
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the other two �rms out of the market for the low-type consumers but not for the high-type, as the pro�t

maximum is reached in the third case.

The model with heterogeneous consumers has a unique Nash equilibrium in pure strategies. Proposition

2.1 speci�es the equilibrium price. The proof of the proposition is presented in Appendix A.

Proposition 2.1 The Salop model with three �rms and two types of consumers has a unique Nash

equilibrium in pure strategies. This equilibrium is symmetric, with all three �rms charging the price

pN = 2Ss
3(S+s) + c and serving both consumer types.

Note that the proposition rules out the existence of asymmetric Nash equilibria. The Nash equilibrium

price is increasing in both s and S. The intuition behind this result is the following. When transportation

costs are higher, it is harder for �rms to attract consumers that are located farther away from them (or

equivalently, it is more costly for consumers to visit �rms that are farther away from them). This reduces

competition, �rms gain more market power and the equilibrium price increases consequently.

It can be seen that ∂pN
∂S < ∂pN

∂s , that is s has a larger impact on the equilibrium price than S does. To

understand this result, note the following. When a transportation cost increases, �rms have an incentive

to increase their price since they get more market power in the given market segment. When a �rm

increases its price, it will lose some low-type as well as high-type consumers. Since low-type consumers

are more mobile, the �rm will lose more low-type consumers. Thus, it is more favorable for �rms when

the transportation cost of low-type consumers increases since this makes low-type consumers less mobile,

resulting in a lower decrease in demand after a price increase. Thus, the equilibrium price increases more

when s increases.

After analyzing the static model under full information, we now turn to a dynamic model in which

�rms do not know the market speci�cation and they try to learn the demand for their good using market

observations.

3 Market dynamics under learning

When �rms do not know the market structure, they need to learn the demand function to �nd the optimal

action. When �rms apply least squares learning, they approximate the true demand function with a

perceived demand function and they estimate the unknown parameters of it using past observations about

prices and production levels.

We assume that the only information the �rms have about the market is that there are three �rms.

Thus, they do not know either about the circular-road structure of the market or about consumer hetero-

geneity. Firms are competing with each other on the same market over time and they can observe the prices

7



charged by their competitors and the corresponding demand for their own good (but not those of their

competitors). Thus, �rms gather information about the market over time and they use this information

to learn about the demand for their product.

In the following subsection we specify the learning method the �rms use and then we discuss the

equilibria of the model under learning.

3.1 Least squares learning

Firms approximate the demand for their product with a linear function. The perceived demand function

of �rm i is given by

DP
i (p) = ai − biipi + bijpj + bikpk + εi, (1)

where ai denotes the demand intercept, bix denotes the e�ect of �rm x's price on the demand for �rm i's

product (x = i, j, k) and εi is a random variable with mean 0. Parameters ai and bix are estimated with

OLS regression using observations about past prices and own-production levels.

Firms might not want to use all past observations for the estimation therefore we need to make a

distinction between a �rm's observations and information set. Observations of �rm i consist of the prices

of all three �rms and the demand �rm i faces for all past periods whereas the information set contains

only those observations that are used in the regression.8 The rationale behind not using all observations

in the regression is that older observations might carry less information about current demand conditions

than more recent ones, especially when there is a structural break in the data. Even though demand

conditions are �xed in the model we consider, not using all past observations, as we will see, has important

consequences for the properties of LSL.

Let us suppose that �rms use the last τ observations in the regression. Then parameter estimates for

�rm i are given by the standard OLS formula

βi =
(
X ′i,τXi,τ

)−1
X ′i,τyi,τ , (2)

where βi = (ai, bii, bij , bik)
′ is the 4×1 vector of parameter estimates9,Xi,τ is the τ×4 matrix of explanatory

variables (constant and price observations for the last τ periods) and yi,τ is the τ × 1 vector of the last τ

demand observations of �rm i (dependent variable).10

8Note that we use the term information set in its econometric sense and not in its game theoretical sense.
9To simplify notation, we denote the unknown parameters of the perceived demand function as well as the corresponding

parameter estimates by the same symbol. This should not be confusing as we will work only with parameter estimates from

now on.
10Similar formulas apply when �rms use all past observations. The only di�erence is that X and y then contain the prices

and the corresponding demand for all past periods.
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Given the parameter estimates of the perceived demand function, �rm i maximizes its one-period

expected pro�t EπPi (p) = (pi − c)EDP
i (p). This leads to the following best-response price:

pBRi =
ai + bijpj + bikpk

2bii
+
c

2
. (3)

Let us now discuss timing. At the end of period t �rms have observations about all t periods. Parameter

estimates are obtained by (2). In order to stress that parameter estimates are changing over time, we will

denote the parameter estimates at the end of period t as ai,t, bii,t, bij,t and bik,t. Since �rms are determining

their prices simultaneously, they can play the best response only against the expectations they have about

the prices of other �rms. Thus, we have to replace pj with p
e
j,t+1 and pk with p

e
k,t+1 in (3), stressing again

the dependence on time. We assume that �rms form naive expectations, meaning that they expect other

�rms to charge the same price as in the previous period: pej,t+1 = pj,t and p
e
k,t+1 = pk,t. This leads to the

following pricing formula for period t+ 1 :

pi,t+1 =
ai,t + bij,tpj,t + bik,tpk,t

2bii,t
+
c

2
. (4)

Note that pro�t maximization requires bii,t > 0, that is the perceived own-price e�ect must be negative.

Since the perceived demand functions the �rms use are not correctly speci�ed, the parameter estimate

for bii,t might become negative. In this case, (4) does not give the perceived pro�t-maximizing price. Also

note that when (4) yields a price that is lower than the marginal cost, the �rm would make a negative

pro�t (provided that it faces a positive demand). Thus, (4) is not applicable in this case either. In order

to overcome these possible issues with LSL, we augment the method with the following rule.

Random price rule: When bii,t ≤ 0 or (4) yields pi,t+1 < c, then �rm i chooses a price randomly from

the uniform distribution on a prede�ned interval I.

Interval I is speci�ed in Section 4. We need to impose additional rules to overcome some numerical

issues that may occur when �rms do not use all observations in the regression. When prices start to settle

down at a given value, there might not be enough dispersion in the observations and matrix Xi,τ can be

close to being singular, resulting in imprecise parameter estimates. This can lead to extremely high prices

for some periods. Since it should be clear for �rms that large unexpected price changes result from the

aforementioned issue, it is reasonable to assume that �rms do not follow pricing rule (4) in this case, they

rather keep their price unchanged. This leads to the following rule.

No jump rule: If (4) yields a price that is at least K times higher than the price of �rm i in the previous

9



period, then the �rm will keep its price unchanged and charge the same price as in the previous period.11

When there is not enough dispersion in the price observations, matrixXi,τ can become singular, making

the estimation impossible. We assume that �rms keep their price unchanged in this case.

Impossible estimation rule: When (2) is not applicable due to the singularity of Xi,τ , then �rm i will

keep its price unchanged and charge the same price as in the previous period.

It might seem as if the last two rules lead to an arti�cial stability in the model as we require �rms

to use the same price as in the previous period but actually these rules exclude an arti�cial instability.

Note that the estimation problem occurs only when the process has almost converged. Thus, �rms observe

that prices have settled down around some values and then the new parameter estimates lead to an

unexpectedly large price. First of all �rms might be reluctant to make such a big price change, secondly

after observing the time series of prices it should be clear that this sudden price change comes from a

numerical issue, therefore it is better not to change the price. Concerning the impossible estimation rule,

when parameter estimates cannot be obtained, then �rms either choose a price randomly or they �x the

price as we suggest.12 Keeping the price unchanged is a more reasonable solution to this issue. In Section

4 we discuss how often the di�erent rules are used in the simulations.

Let us now turn to the steady states of the process.

3.2 Equilibria under least squares learning

The system is in a steady state when neither the parameter estimates of the perceived demand functions

nor the prices change. It must hold for any steady state that the true and (expected) perceived demand

functions coincide for each �rm at the given price vector p∗, that is Di(p
∗) = EDP

i (p∗) for i = 1, 2, 3. To see

this, note the following. When Di(p
∗) = EDP

i (p∗), the perceived demand function perfectly approximates

the true demand function for the given price vector as the corresponding estimation error is 0. Since the

parameter estimates of the perceived demand function are obtained by minimizing the sum of squared

errors, this implies that the parameter estimates do not change in this case.

11Alternatively, we could impose an upper bound on price changes as Weddepohl (1995). In that case �rms would choose

the highest possible price if (4) resulted in a too large price jump. Since large price jumps are associated with imprecise

parameter estimates in the model we consider, it makes more sense not to change the price at all.
12Note that a rule like the no jump rule or the impossible estimation rule is essential for having convergence in a model

that is not subject to noise (e.g. demand shock) when �rms do not use all past observations in the regression. If the process

converged to a certain value, then estimation would not be possible since each observation would perfectly correspond to the

steady state. Thus, it needs to be speci�ed what happens when parameter estimates cannot be calculated.
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The same condition characterizes the self-sustaining equilibria in Brousseau and Kirman (1992) and in

Anufriev et al. (2013). Thus, the steady states of the model with least squares learning are self-sustaining

equilibria: �rms play the best response subject to their beliefs about demand conditions (i.e. the perceived

demand functions) and about the prices of the other �rms, and these beliefs are correct at the equilibrium

price vector. Self-sustaining equilibria can be formally de�ned as follows.

De�nition 3.1 Price vector p∗ = (p∗1, p
∗
2, p
∗
3) and the parameter estimates

{
a∗i , b

∗
ii, b
∗
ij , b
∗
ik

}
(i, j, k =

1, 2, 3; i 6= j 6= k) constitute a self-sustaining equilibrium if the following conditions hold for each �rm

i :

p∗i =
a∗i + b∗ijp

∗
j + b∗ikp

∗
k

2b∗ii
+
c

2
, (5)

EDP
i (p∗) = Di(p

∗). (6)

Condition (5) shows that �rms play the best response subject to their beliefs and (6) means that beliefs

are con�rmed in equilibrium as the actual demand is the same as the demand the �rm expects to get, and

the prices of the competitors are also as expected.

It can be seen from the de�nition that there are many di�erent self-sustaining equilibria, thus the

model has multiple steady states. Proposition 3.2 speci�es which price vectors can form a self-sustaining

equilibrium.

Proposition 3.2 For any price vector p = (p1, p2, p3) satisfying the conditions pi > c and Di(p) > 0 for

i = 1, 2, 3, there exist values of {ai, bii, bij , bik} (i, j, k = 1, 2, 3; i 6= j 6= k) such that the model is in a

self-sustaining equilibrium.

Thus, prices exceed the marginal cost and each �rm faces a positive demand in a self-sustaining

equilibrium. Note that the condition Di(p) > 0 implies that none of the �rms can be driven out of the

market for both types of consumers. But it is not required that each �rm should attract both consumer

types. In the above result, we did not take into account that {ai, bii, bij , bik} are not freely chosen but they

result from estimation. Therefore not all the price vectors that satisfy the conditions of Proposition 3.2

can necessarily be reached, despite the fact that we can �nd parameter values for which they constitute a

self-sustaining equilibrium.

Since perceived demand functions are linear while the true demand functions are piecewise linear,

�rms cannot fully learn the true demand conditions: They can correctly learn the parameters of at most

one linear part. Note that condition (6) is required to hold at the equilibrium point only, thus �rms need

not learn in general any linear part correctly. Panel a of Figure 2 illustrates the true and the perceived
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Figure 2: Demand and pro�t functions of �rm i in a self-sustaining equilibrium. Parameters: s = 1, S = 5 and

c = 1. Equilibrium prices: p∗i = 2.0398, p∗j = 2.0264 and p∗k = 2.2083.

demand functions of a �rm in a typical self-sustaining equilibrium. The two functions cross each other in

a single point thus the �rm does not learn any linear part of the true demand function correctly. Panel b

depicts the true and the perceived pro�t functions. The �gure shows that in the SSE �rm i maximizes its

perceived pro�t but the price it chooses does not yield the true pro�t maximum.

Even though it is not the case for a general SSE, there are self-sustaining equilibria in which �rms

correctly learn the part of the true demand function on which they operate. Proposition 3.3 speci�es these

equilibria.

Proposition 3.3 The model with least squares learning has two self-sustaining equilibria in which �rms

correctly learn that linear part of the true demand function on which they operate. The Nash equilibrium

of the static game is always such an equilibrium of the learning process. When S
s ≥ Σ1 = 7+

√
89

4 ≈ 4.1085,

there also exists another equilibrium in which two �rms charge pL = 11Ss
12S+15s + c and the third �rm chooses

pH = 2S2+8Ss
12S+15s + c. We refer to this equilibrium as asymmetric learning-equilibrium (ALE).

Figure 3 illustrates the demand and pro�t functions in the Nash equilibrium and in the asymmetric

learning-equilibrium. Panels a, c and e con�rm that in both equilibria �rms correctly approximate the

linear part of the true demand function on which they operate. Panel b shows that the true pro�t maximum

coincides with the maximum of the perceived pro�t function of �rms in the Nash equilibrium. The same

holds for the low-price �rms in the ALE (see panel d). Note, however, that the perceived pro�t maximum

does not correspond to the true pro�t maximum for the high-price �rm (panel f ), it reaches a local pro�t

12
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(d) Pro�t functions of low-price �rms (ALE)
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(e) Demand functions of the high-price �rm (ALE)
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Figure 3: Demand and pro�t functions in the Nash equilibrium and in the asymmetric learning-equilibrium. Pa-

rameters: s = 1, S = 5 and c = 1.
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maximum only.13 This is why the ALE is not a Nash equilibrium of the game under known demand. As

panel e shows, the high-price �rm underestimates the demand for lower prices and thus it does not perceive

it more pro�table to charge a lower price, even though it would yield a higher pro�t. The intuition behind

this result is the following. If a �rm asks too high prices, it will not attract low-type consumers. Since

�rms learn about demand conditions solely from market observations, the �rm in question gets information

about one part of the market only and that is why it underestimates demand for lower prices.

The following proposition compares the Nash equilibrium and the ALE in terms of prices and pro�ts.

Proposition 3.4 The following relationships hold between prices and pro�ts in the Nash equilibrium and

the ALE:

• pN < pL < pH ,

• πH < πN < πL for 7+
√
89

4 < S
s < 8.91,

• πN < πH < πL for 8.91 < S
s <

89+11
√
73

8 ≈ 22.87,

• πN < πL < πH for 89+11
√
73

8 < S
s ,

• 3πN < 2πL + πH .

The �nding about prices is in line with the fact that prices are strategic complements in the model:

the high-price �rm charges a higher price than in the Nash equilibrium and this gives an incentive for the

other two �rms to increase their price. That is why pL > pN . Concerning pro�ts, low-price �rms always

earn a higher pro�t than in the Nash equilibrium while the high-price �rm may earn a lower as well as a

higher pro�t. Note that when πH < πN , the high-price �rm reaches a suboptimal outcome even though

the perceived demand function perfectly �ts the true demand function locally. For intermediate values of

S
s , all three �rms are better-o� than in the Nash equilibrium thus the high-price �rm is better-o� by not

attracting low-type consumers. For high values of S
s , the high-price �rm earns the highest pro�t. In this

case the high-price �rm still underestimates the demand for low prices but the perceived pro�t maximum

coincides with the true pro�t maximum. On the other hand, low-price �rms perceive a relatively high slope

and they underestimate the demand for high prices. Their perceived pro�t maximum does not coincide

with the true pro�t maximum as it would be more pro�table to charge a higher price. Finally, the total

pro�t of the three �rms is always higher in the ALE than in the Nash equilibrium.

13The ALE can be viewed as a local Nash equilibrium since the low-price �rms reach their global pro�t maximum while

the high-price �rm is in a local pro�t maximum only. See Bonanno and Zeeman (1985) and Bonanno (1988) for more details

about this concept.

14



Since prices are higher in the ALE than in the Nash equilibrium, consumers are worse-o�. Moreover,

welfare (measured as total surplus) is lower. Note that for comparing the welfare in the two outcomes,

it is enough to focus on transportation costs only. The reason for this is the following. The surplus of a

consumer can be measured as the net utility of consuming the good: v − p − sx (or v − p − Sx), where

v > 0 is the positive utility from consumption while p+ sx (or p+ Sx) is the total cost of purchasing the

good.14 Note that the price p is simply a transfer between the consumer and the �rm, therefore it does not

have a direct e�ect on welfare. Also note that total production is the same in the Nash equilibrium and

in the ALE. Since the marginal cost of production is constant and equal for the �rms, the di�erence in

individual production levels does not contribute to welfare di�erences. Thus, from a welfare perspective,

only transportation costs matter. Transportation costs are higher in the ALE than in the Nash equilibrium

for two reasons. First, low-type consumers go to the low-price �rms only, thus some of these consumers need

to travel more compared to the Nash equilibrium. Second, the high-type consumers that are indi�erent

between the high-price �rm and one of the low-price �rms, lie closer to the high-price �rm than under

a symmetric situation (as in the Nash equilibrium). Therefore, those high-type consumers that visit the

low-price �rm but would visit the other �rm in a symmetric situation, travel more than in the Nash

equilibrium. Thus, even though total pro�ts are higher, welfare is lower in the ALE.

3.3 Stability of equilibria

As we have seen in the previous section, the model with least squares learning has three types of equilibria:

a general self-sustaining equilibrium, the Nash equilibrium and the asymmetric learning-equilibrium. Next

we will investigate which equilibria can be reached and which factors determine which of the equilibria

is reached. It turns out that a special property of the information set plays a crucial role in this. Before

de�ning this property, note that di�erent price vectors may correspond to di�erent demand conditions.

For example, �rm i may serve both types of consumers for one price vector whereas it might serve high-

type consumers only for another price vector. These price observations carry information about di�erent

structural parameters as they lie on di�erent linear parts of the true demand function. We call price vectors

in the information set of �rms aligned when each �rm serves the same consumer type(s) for each price

vector. We distinguish two kinds of aligned price vectors. When all three �rms serve both consumer types,

we speak about symmetrically aligned prices. When two of the �rms serve both consumer types while the

third one attracts high-type consumers only, we speak about asymmetrically aligned prices.15 We de�ne

14Remember that each consumer is assumed to buy the good. This implies that v is assumed to be su�ciently large.
15Note that prices could be aligned in other ways as well. For example, we could consider the case when one �rm attracts

both types of consumers while the other two �rms attract high-type consumers only. We do not consider other possibilities
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these concepts formally as follows.

De�nition 3.5 A set of price vectors P ⊆ R3
+ is called symmetrically aligned when all three �rms attract

both types of consumers for all p ∈ P :

|pi − pj | <
s

3
∀i, j = 1, 2, 3.

A set of price vectors P ⊆ R3
+ is called asymmetrically aligned when �rms i and j attract both types of

consumers while �rm k attracts only the high-type consumers for all p ∈ P :

|pi − pj | <
s

3

min{pi, pj}+
s

3
< pk < min{pi, pj}+

S

3
.

A set of price vectors P ⊆ R3 is called not aligned when it is neither symmetrically, nor asymmetrically

aligned.

The condition |pi − pj | < s
3 ensures that �rms i and j do not drive each other out of the market for

either consumer type. The condition min{pi, pj}+ s
3 < pk < min{pi, pj}+ S

3 means that �rm k is driven

out of the market for low-type consumers but nor for the high-type ones.

When prices are aligned, then the corresponding demand observations are consistent in the sense that

they lie on the same linear part of the demand function. That is, observations carry information about the

same linear demand parameters and consequently �rms correctly learn the parameters that characterize

the linear part of the true demand function on which they operate.

Since �rms play the best response to the prices of the other �rms, subject to their perceived demand

function, it is important to analyze the conditions under which a set of aligned price observations remains

aligned after updating the set with the best-response prices. Lemma 3.6 summarizes these conditions.

Lemma 3.6 When price observations are symmetrically aligned, then updating the information set with

the best-response prices always results in symmetrically aligned price observations again.

When price observations are asymmetrically aligned, there are three possibilities.

1. For S
s < Σ1 price observations will not be asymmetrically aligned after updating the information set

with the best-response prices su�ciently many times.

2. For S
s ∈ [Σ1,Σ2) with Σ2 = 2 +

√
6 ≈ 4.4495, the updated price observations will be asymmetrically

aligned if the following condition holds for the most recent price observation p :

s

3

[
2

(
S

s

)2

− 7
S

s
− 4

]
+

(
1 +

S

s

)
|pi − pj |+ min{pi, pj} ≥ pk.

because they are not relevant for the equilibria of the learning process, as we have seen.
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3. For S
s ≥ Σ2, price observations always remain asymmetrically aligned after updating the information

set with the best-response prices.

According to this lemma, when the information set is symmetrically aligned, then it always remains

symmetrically aligned. Thus, �rms will learn the true parameters of the corresponding linear part. As

Proposition 3.3 shows, the only equilibrium that �rms may reach in this situation is the Nash equilibrium.

Concerning asymmetrically aligned observations, Lemma 3.6 says that when S
s is not high enough, the

information set will not be asymmetrically aligned eventually even if �rms start with an asymmetrically

aligned information set. So in this case the possible steady states of the model are a general SSE and the

Nash equilibrium. For intermediate values of Ss , an extra condition is needed for ensuring that the updated

information set remains asymmetrically aligned. Thus, all three steady states may exist for these values of

S
s . On the other hand, an asymmetrically aligned information set always remains asymmetrically aligned

by updating it with the best response prices when S
s is high enough. Thus, the only equilibrium in this

case is the asymmetric learning-equilibrium. When price observations are not aligned, then �rms cannot

learn the true parameters of the linear part on which they operate, consequently the only kind of steady

state in the given situation is a general self-sustaining equilibrium.

Note that these results concern existence only, under speci�c conditions. We have not analyzed the

stability of these equilibria yet. Proposition 3.7 summarizes the dynamical properties of the steady states.

Proposition 3.7 Both the Nash equilibrium and the asymmetric learning-equilibrium are locally stable

equilibria of the model with least squares learning.

According to the proposition, �rms will reach the Nash equilibrium when initial prices are close to the

Nash equilibrium price. A similar result holds for the asymmetric learning-equilibrium. Combining these

considerations with Lemma 3.6, we can conclude that the model has coexisting locally stable steady states

when S
s is su�ciently high. Note that Proposition 3.7 does not cover the stability of general self-sustaining

equilibria. Brousseau and Kirman (1992) show that �rms do not converge to a self-sustaining equilibrium

in general. The process slows down only because the weight of a new observation decreases when �rms

use all observations in the estimation.

Taking into account the above theoretical results, we summarize the steady states of the model in

Table 1. When �rms use all observations in the estimation, then all three equilibria can occur. More

speci�cally, when initial observations are symmetrically aligned, �rms converge to the Nash equilibrium.

When initial observations are asymmetrically aligned and S
s is su�ciently high, then �rms reach the

asymmetric learning-equilibrium. When initial observations are not aligned or if they are asymmetrically

aligned but S
s is not high enough, then �rms move towards a self-sustaining equilibrium.
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information set

initial observations all observations last τ observations

symm. aligned Nash Nash

asymm. aligned

S
s ≤ Σ1 SSE Nash

Σ1 <
S
s < Σ2 ALE / SSE ALE / Nash

Σ2 ≤ S
s ALE ALE

not aligned SSE ALE / Nash

Table 1: The steady states of the model with least squares learning for di�erent types of initial observations and

di�erent number of observations in the information set.

When only the last τ observations are used in the regression, then SSE cannot be reached. If there is

convergence in the model, then the information set must become either symmetrically or asymmetrically

aligned: if this was not the case, then there must be jumps between the di�erent linear parts of the demand

function, contradicting convergence. Thus, the Nash equilibrium and the ALE can be reached more often

in this case for the following reason: an information set which is not aligned might become symmetrically

or asymmetrically aligned as old observations drop out of the information set at some point. Thus, when

only the most recent observations are used in the regression, the system can converge either to the Nash

equilibrium or to the ALE, or there is no convergence at all. Since both the Nash equilibrium and the

ALE are locally stable, we expect that observations will not jump between the di�erent linear parts of

the demand function and therefore one of the equilibria will be reached eventually. If this conjecture does

not hold, then the process does not converge at all as observations keep on jumping between the di�erent

linear parts of the true demand function.

In the next section we run computer simulations to investigate whether �rms indeed reach the Nash

equilibrium or the ALE when only the most recent observations are used. We also investigate how often

the di�erent outcomes are reached.

4 Simulation results

We run simulations with 1000 di�erent initializations. Each initialization runs until the maximal price

change is smaller than the threshold value of 10−8, i.e. max
i
|pi,t − pi,t−1| ≤ 10−8, or until period 1000 is

reached. We �x the market parameters at c = 1 and s = 1, and we vary the value of S. Based on the

theoretical results we consider 6 di�erent values, Table 2 summarizes them as well as the corresponding
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S

2 4 4.2 4.35 4.5 10

pN 1.4444 1.5333 1.5385 1.5421 1.5455 1.6061

pL - - 1.7064 1.7121 1.7174 1.8148

pH - - 2.0532 2.0810 2.1087 3.0741

Table 2: The Nash equilibrium price and prices in the asymmetric learning-equilibrium for di�erent values of S.

Other parameters: s = 1 and c = 1.

prices in the Nash equilibrium and in the asymmetric learning-equilibrium. The chance of reaching the

Nash equilibrium and the ALE is di�erent across these values. For S = 2 and S = 4 the ALE does not

exist as S < Σ1 ≈ 4.1085. For S = 4.2 and S = 4.35 the ALE exists but an asymmetrically aligned

information set not always remains asymmetrically aligned after updating it with the best response prices

since Σ1 < S < Σ2 ≈ 4.4495. For the last two values of S an asymmetrically aligned information set

always remains asymmetrically aligned as S > Σ2.

Concerning the parameters in the learning method, we �x K = 5 in the no jump rule. Whenever �rms

need to pick a price randomly, they use the interval I = [c, pH + c]. We believe that these choices are

appropriate since all the prices that are relevant for the long-run outcome of the model lie in interval I and

they are always smaller than cK for the model parameters we use, thus the jump size is not restrictive.16

We consider di�erent values for τ (the number observations used in the estimation). Since there are 4

parameters to be estimated, we need at least 4 observations in the information set. We will investigate

how the size of the information set a�ects the outcome of the simulations.

Since we conjectured to observe substantially di�erent outcomes when �rms use all observations com-

pared to the case when they use the last τ observations only, we discuss the simulation results for these

cases in separate sections.

4.1 Simulations with all observations

First we investigate the outcome of the model when �rms use all observations for estimating the perceived

demand function. In this case, �rms can move towards a general SSE, they can reach the Nash equilibrium

or the ALE (provided it exists). As we have shown, the latter two equilibria are reached only when the

initial observations are aligned. Since initial prices are drawn randomly, information sets are typically not

aligned, therefore a general SSE is reached, in which �rm do not approximate correctly even that linear

16Also note that our theoretical results do not depend on the rules that augment least squares learning.
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Figure 4: Time series of prices for S = 2. Other parameters: s = 1 and c = 1.

S = 2 S = 4 S = 4.2 S = 4.35 S = 4.5 S = 10

mean 1.6060 1.8648 1.8836 1.9045 1.9269 2.6018

median 1.5781 1.8308 1.8582 1.8787 1.9004 2.5203

stdev 0.1625 0.2372 0.2315 0.2362 0.2451 0.5694

Table 3: Descriptive statistics of �nal prices for di�erent values of S. Other parameters: s = 1 and c = 1.

part of the demand function on which they operate.17

Figure 4 illustrates the time series of prices in a typical simulation for S = 2. The �gure shows that

prices settle down fast and that �rms charge di�erent prices. The given simulation stopped in period 1000,

the maximal di�erence between the true and perceived demands at the �nal price vector is 0.3 · 10−3,

con�rming that �rms move towards a self-sustaining equilibrium.

As Proposition 3.2 shows, many price vectors can be part of an SSE. Therefore it is worthwhile

to investigate the distribution of �nal prices. Table 3 shows descriptive statistics of the �nal prices for

di�erent values of S. As S increases, both the average and the median prices increase.18 There is not much

di�erence in the standard deviations. Figure 5 shows histograms of the �nal prices over the 1000 di�erent

initializations, for di�erent values of S. The histograms show that there is substantial price dispersion and

that neither the Nash-equilibrium nor the ALE provides a benchmark outcome when all observations are

used. As S increases, the distribution seems to become �atter.

17We need 4×3 initial values for each simulation. We ran numerical simulations to investigate how often initial observations

are symmetrically or asymmetrically aligned. Based on 1.000.000 simulations for each value of S we considered, initial

observations are symmetrically aligned in less than 0.02% of the cases whereas they are asymmetrically aligned in less than

0.77% of the cases.
18Note that the upper bound of the interval for initial prices also increases.
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Figure 5: Histogram of �nal prices for di�erent values of S. Other parameters: s = 1 and c = 1.

S = 2 S = 4 S = 4.2 S = 4.35 S = 4.5 S = 10

mean 5.9 · 10−4 8.7 · 10−4 8.0 · 10−4 8.2 · 10−4 7.9 · 10−4 1.0 · 10−3

min 2.6 · 10−8 2.1 · 10−16 1.0 · 10−15 1.0 · 10−15 1.1 · 10−16 0

max 4.7 · 10−2 1.2 · 10−1 8.2 · 10−2 9.0 · 10−2 7.4 · 10−2 9.4 · 10−2

di� ≤ 10−2 978 971 973 974 977 962

di� ≤ 10−3 906 895 887 889 887 869

di� ≤ 10−4 371 443 454 455 465 615

Table 4: Descriptive statistics of the absolute di�erence between the true and perceived demands at �nal prices,

for di�erent values of S. Other parameters: s = 1 and c = 1.

In order to measure how close �rms get to a self-sustaining equilibrium, we calculate the absolute

di�erence between the actual and perceived demands at the �nal price vectors. The di�erence is 0 in an

SSE. Table 4 shows descriptive statistics of these di�erences for di�erent values of S. The �rst three rows

show the mean, minimal and maximal absolute di�erences over individual �rms whereas the last three

rows report the number of initializations for which the di�erence is smaller than 10−2, 10−3 and 10−4 for

the three �rms jointly.19

19For comparison, the mean initial di�erence (i.e. in period 5) ranges from 1 to 2 for the di�erent values of S we consider.
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Figure 6: Time series of prices for τ = 4. Parameters: s = 1, S = 2 and c = 1.

We can conclude from the table that di�erences are rather small in all cases. In almost all cases, the

maximal di�erence is at most 10−2. This con�rms that �rms get close to a self-sustaining equilibrium

when all observations are used in the regression. We practically never observed convergence to the Nash

equilibrium or to the ALE.

4.2 Simulations with the last τ observations

Next we turn to the case when information sets contain the last τ observations only. Our conjecture

was that information sets become either symmetrically or asymmetrically aligned in this case and �rms

converge either to the Nash equilibrium or to the asymmetric learning-equilibrium. From Proposition 3.3

we know that the ALE does not exist for S = 2 and S = 4, thus the Nash equilibrium should always be

reached for these values of S.

As we discussed, at least 4 observations are needed for the regression. It turns out that the process

does not converge typically when �rms use exactly τ = 4 observations. Figure 6 illustrates the time series

of prices in a typical simulation with τ = 4. The �gure shows that prices do not settle down at the Nash

equilibrium price. They are converging towards the Nash equilibrium (already indicating that the Nash

equilibrium is locally stable) but every now and then they diverge away from it. The reason behind this is

that when there is not enough dispersion in the observations, parameter estimates become imprecise and

one of the �rms will charge a relatively large price. When �rms use 4 observations only, then the weight

of a single observation is apparently large enough and the outlier observation can drive the prices far from

the equilibrium.

In contrast, when �rms use more observations, the weight of a single observation decreases, thus a
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Figure 7: Time series of prices for τ = 8. Parameters: s = 1, S = 5 and c = 1. Panels a and b: convergence to the

Nash equilibrium. Panels c and d : convergence to the ALE.

single outlier does not drive away prices from the equilibrium that much. We indeed �nd convergence

when the size of the information set increases. Figure 7 shows typical time series for τ = 8. Panel a

shows an example where prices converge to the Nash equilibrium. Panel b shows the same time series but

for the last 50 periods of the simulation. It turns out that we do not �nd exact convergence but small

oscillations around the Nash equilibrium. This is caused by the same numerical issue that we have for

τ = 4 : parameter estimates become imprecise when there is not enough variation in the observations.20

Panels c and d depict a similar pattern for the case of the ALE.

In order to investigate whether �rms always converge either to a neighborhood of the Nash equilibrium

20To con�rm that these oscillations are due to numerical issues we run the same simulations with using the true demand

coe�cients when observations in the information set are aligned. In this case we always �nd exact convergence to one of the

equilibria. These simulations serve as a theoretical benchmark only since the true coe�cients are not available for �rms.

23



2 4 4.2 4.35 4.5 10

6

8

10

20

S

τ

 

 

0%

20%

40%

60%

80%

100%

(a) Nash equilibrium

2 4 4.2 4.35 4.5 10

6

8

10

20

S

τ

 

 

0%

20%

40%

60%

80%

100%

(b) ALE

Figure 8: Convergence to the Nash equilibrium (panel a) and to the ALE (panel b) Parameters: s = 1 and c = 1.

or to a neighborhood of the ALE, we run 1000 simulations for each (S, τ) combination that we consider and

we calculate which proportion of the �nal price vectors lies in a small neighborhood of the Nash equilibrium

and the ALE respectively. Figure 8 illustrates the results. For each (S, τ) combination, the �gure shows

which proportion of the 1000 simulations leads to the 0.001-neighborhood of the Nash equilibrium (panel

a) or of the ALE (panel b).21 We can conclude from the �gure that �rms almost always reach either the

Nash equilibrium or the ALE, that is prices almost always converge.22 The �gure also shows that the Nash

equilibrium is reached more often as τ increases. On the other hand, the ALE becomes more dominant as

S increases. We will come back to these e�ects later.

To evaluate the e�ect of the numerical issue that results in not exact convergence, we ran the same

simulations with �rms using the true parameters of the given part of the demand function when the

information set is aligned. The results (reported in panel a of Table 7 in Appendix B) con�rm that �rms

always reach either the Nash equilibrium or the ALE. We again �nd that the Nash equilibrium is reached

more often as τ increases and that �rms converge to the ALE more often as S increases. However, the

Nash equilibrium is reached much more often than before. This shows that the numerical issue that occurs

when there is not enough variation in the observations, has an important e�ect on which equilibrium will

eventually be reached. The results suggest that the Nash equilibrium is less stable than the ALE in the

sense that the numerical issue can drive prices from the Nash equilibrium to the ALE more often than the

21We say that a vector (x1, . . . , xn) lies in the ε-neighborhood of another vector (y1, . . . , yn) if their Euclidean distance is

smaller than or equal to ε :

√
n∑

i=1

(xi − yi)
2 ≤ ε.

22See Table 5 in Appendix B for the exact values on which the �gure is based.
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other way around.23 In fact, panel c of Figure 7 shows a situation where prices settle down around the

Nash equilibrium initially but after a high price realization the �rms converge to the ALE. This �nding

explains why �rms converge more frequently to the Nash equilibrium when τ increases. As we discussed,

when the size of the information set increases, a single observation has a smaller e�ect on the parameter

estimates. Therefore a high price realization that may occur after prices have settled down around the

Nash equilibrium, has a smaller impact on the parameter estimates, therefore the best-response prices stay

in the basin of attraction of the Nash equilibrium instead of reaching the basin of attraction of the ALE.

An alternative way to assess the e�ect of the numerical issue is to introduce noise in the model. By

adding a small noise to the demand faced by �rms, there will be enough variation in the observations and

therefore parameter estimates do not become imprecise. We drew a random number from the N(0, 0.0012)

distribution in each period for each �rm (independently across �rms and periods) and added it to the

demand faced by the �rm. We focused on the case τ = 8 only. The outcomes of these simulations are

similar to those when the true coe�cients are used in the regression (see panel b Table 7 in Appendix B).

The reason for this is that the numerical issue that occurs in the model under deterministic demand does

not occur under noise and consequently there are no unexpected jumps in prices. This is also con�rmed

by the fact that there are hardly any switches from the Nash equilibrium to the ALE unlike in the

deterministic model.

We checked the robustness of our results with respect to the number of periods in the simulations and

the number of di�erent initializations. We focused on the case τ = 8 and we ran two sets of simulations

with the previously used values of S : one set with 10000 periods instead of 1000 and another one with

10000 di�erent initializations instead of 1000. The outcomes of these simulations are shown in Table 8 in

Appendix B. The outcomes are in line with our previous results. In the case of 10000 runs, we get more or

less the same proportions for the di�erent (S, τ) combinations as before.24 Therefore we conclude that our

results are robust with respect to the number of simulations. However, the Nash equilibrium is reached

less often when simulations ran for 10000 periods.25 This di�erence is in line with the �nding that switches

occur from the Nash equilibrium to the ALE but not in the other direction.

23To investigate whether the Nash equilibrium is indeed less stable than the ALE, we analyzed the entire time series of

prices for each initialization and we found that 1. prices leave the 0.001-neighborhood of the Nash more often than that of

the ALE and 2. there are barely any switches from the ALE to the Nash equilibrium while there are much more switches in

the other direction.
24The mean absolute di�erence between the proportions is 1.2%-point while the maximal absolute di�erence is 2.6%-point

over the di�erent values of S.
25The mean di�erence between the proportions for the Nash equilibrium is 3.54%-point while the maximal di�erence is

8.8%-point over the di�erent values of S.
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Finally, we investigated how often the di�erent augmenting rules are used in the simulations. The

results show that the random price rule is used a few times but the other two rules are hardly ever used.26

We ran additional simulations with di�erent values of K (the jump size in the no jump rule) as well. The

results show that the Nash equilibrium is reached more often as K decreases. The reason for this becomes

clear from panel c of Figure 7. As we can see, prices settled down around the Nash equilibrium price

initially but a large jump around period 60 moved prices towards the ALE-prices. Thus, if we allow for

smaller jumps only, prices will be driven out of the neighborhood of the Nash equilibrium less often. But

the ALE does not disappear for smaller values of K, we still observe convergence to the ALE as well.

5 Discussion

This paper has focused on learning about market conditions. Firms apply least squares learning where the

perceived demand function is correctly speci�ed locally and �rms can observe the actions of each other.

We have proved that the model has coexisting locally stable equilibria and we have shown that least

squares learning can result in a suboptimal outcome for some �rms even when the estimated function

perfectly �ts the market observations. This outcome, the asymmetric learning-equilibrium, was not found

in the literature of least squares learning before. Our results show that �rms can approximate the demand

function better when they use only the most recent observations in the regression. However, the resulting

market outcome can be suboptimal for some �rms therefore it might worthwhile to experiment with the

price (by charging a lower sales price for example) every now and then as this might ensure that �rms do

not get locked up in the suboptimal situation.

We have considered the Salop model with 3 �rms in equidistant locations and with two types of

consumers, di�ering in their transportation costs. Firms do not know the market structure and they apply

least squares learning to learn about demand conditions. They approximate the (piecewise linear) demand

function with a linear perceived demand function and they maximize their pro�t subject to their perceived

demand function. The model has three kinds of equilibria: a general self-sustaining equilibrium, the Nash

equilibrium and the asymmetric learning-equilibrium. In a self-sustaining equilibrium �rms approximate

the true demand function correctly only in the equilibrium but the approximation is incorrect for out-of-

equilibrium prices. In the Nash equilibrium and the ALE �rms correctly learn the linear part of the true

demand function on which they operate. In the ALE the high-price �rm underestimates the demand for

low prices and it attracts high-type consumers only. This situation is suboptimal for the �rm when the two

transportation costs are not too di�erent. However, when transportation costs become su�cintly di�erent,

26See Table 6 in Appendix B for more details.
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then the high-price �rm is better-o� by not attracting low-type consumers. The ALE has worse welfare

properties than the Nash equilibrium outcome. We have proved that both the Nash equilibrium and the

ALE are locally stable, thus the model can have coexisting locally stable equilibria. When �rms use all

past observations in the approximation, then they typically reach a general SSE. On the other hand, when

only the most recent observations are used, �rms converge either towards the Nash equilibrium or towards

the ALE. As �rms use more observations in the regression (but not all observations), the Nash equilibrium

is reached more often. In contrast, the ALE is reached more often as the transportation cost of high-type

consumers increases.

In the model we have made some assumptions whose e�ects should be discussed. First of all, we have

introduced heterogeneity on the demand side of the market. This is not an unrealistic assumption as

consumers could easily di�er in their transportation costs, moreover it makes the model more general.

With homogeneous consumers, the true demand function is still piecewise linear so least squares learning

can lead to an SSE or to the Nash equilibrium. The ALE, however, does not exist since if a �rm does not

attract any consumers, then it will charge a lower price eventually since the observations with zero demand

will move the parameter estimates in a direction that yields a lower price. Thus, consumer heterogeneity

is essential for having an asymmetric outcome.

We have assumed that �rms do not know anything about the demand structure. This assumption

might sound too restrictive in the transportation cost interpretation of the Salop model. On the other

hand, if we consider the product space interpretation of the circular road, then it is not unreasonable to

assume that �rms do not know how consumers evaluate di�erent product types. From a di�erent point of

view, the method that the �rms are using to learn about demand conditions is extremely natural. They do

not assume a complicated structural model behind the data, instead they are using the simplest possible

functional form in the regression. When they do not use all observations in the regression, they indeed �nd

that the linearity assumption is correct so there is no need to reconsider the functional form. Nevertheless,

the assumption of not knowing the demand structure is crucial for the results: If �rms knew the underlying

demand structure, they could recover the transportation costs and the amount of each consumer type from

the parameter estimates and they could �nd the Nash equilibrium of the static game.

The assumption of symmetry between �rms (equidistant locations, equal marginal costs of production)

can be relaxed to some extent. If locations are not far from each other and marginal costs are not very

di�erent, then the model has the same types of equilibria. The ALE becomes even more plausible in the

sense that all three �rms charge di�erent prices thus it will not be suspicious for the high-price �rm that

the other two �rms charge the same price. We assumed symmetry only to simplify calculations.

Let us now elaborate on whether our results could still hold in more general models. If we increase
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the number of �rms or the number of consumer types in the Salop framework, the true demand function

remains piecewise linear and thus �rms may still learn at most one linear part correctly. Therefore �rms can

reach an SSE or the Nash equilibrium again. Preliminary simulations con�rm that asymmetric outcomes

can occur for higher numbers of �rms too. In fact, there are multiple asymmetric outcomes: These outcomes

di�er with respect to the number as well as the locations of high-price �rms. We expect that the same

kind of outcomes can occur in di�erent market structures too. Consider for example a Bertrand oligopoly

with heterogeneous goods. Suppose that consumers are heterogeneous and that two di�erent functions

characterize their demand. This situation can lead to a kink in the aggregate demand functions. If the

functional form of the perceived demand function coincides with the functional form of one (or both) part

of the true demand functions, then the same kind of asymmetric equilibrium may easily occur. Some �rms

might focus on one consumer group only while other �rms might attract both consumer groups.
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APPENDIX

A Proofs and derivations

A.1 The proof of Proposition 2.1

Proof.

First note that pi ≥ c must hold for each �rm in equilibrium. Otherwise the �rm with the lowest price,

say �rm j, would always face a positive demand and would make a certain loss on each product. The �rm

could increase its pro�t by choosing a higher price for which its pro�t is at least 0. This can be achieved

by any pj ≥ c.

Now we will show that each �rm must face a positive demand in equilibrium. To see this suppose that

�rm i is driven out of the whole market by �rm j, that is pj < pi − 1
3S. Let c ≤ pj ≤ pk without loss of

generality. In this case, �rm i can increase its pro�t by choosing the price pi = c+ ε for a su�ciently small

but positive ε. For this price �rm i will not be driven out of the market since pi − 1
3S = c + ε − 1

3S < c

for a su�ciently small ε, meaning that �rm i can only be driven out of the market with a price that is

smaller than the marginal cost. This, as we have seen, cannot occur in equilibrium.

The condition that each �rm must have a positive demand in equilibrium implies that all three �rms

must attract high-type consumers. Thus, equilibria can di�er only in the number of �rms attracting

low-type consumers. There might be three possibilities: 3, 2 or 1 �rm attracts low-type consumers. We

investigate these cases separately.

Case 1: symmetric Nash equilibrium

When all three �rms attract low-type consumers, then �rm i faces the following demand function: Di(p) =

2
3 + (pj + pk − 2pi)

(
1
2S + 1

2s

)
. To see this note that there is one low-type and one high-type indi�erent

consumer between any two �rms. The low-type indi�erent consumer between �rms i and j is at the distance

x =
pj−pi
2s + 1

6 from �rm i. A similar formula applies for the high-type indi�erent consumer and for the

indi�erent consumers between �rms i and k.

Firm i maximizes its pro�t with respect to its price: max
pi

(pi − c)Di(p). The �rst-order conditions27

27Note that the pro�t functions are quadratic, with the quadratic terms having a negative coe�cient. Thus, the second-

order conditions are satis�ed.
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for �rms 1, 2 and 3 respectively are

2

3
+ (p2 + p3 − 2p1)

(
1

2S
+

1

2s

)
−
(

1

S
+

1

s

)
(p1 − c) = 0, (A.1)

2

3
+ (p1 + p3 − 2p2)

(
1

2S
+

1

2s

)
−
(

1

S
+

1

s

)
(p2 − c) = 0, (A.2)

2

3
+ (p1 + p2 − 2p3)

(
1

2S
+

1

2s

)
−
(

1

S
+

1

s

)
(p3 − c) = 0. (A.3)

Subtracting (A.2) from (A.1) yield 5
2(p2 − p1)

(
1
S + 1

s

)
= 0, from which p1 = p2. Similarly, subtracting

(A.3) from (A.2) gives p1 = p3. Let pN denote this common price. Then the �rst-order conditions simplify

to 2
3 −

(
1
S + 1

s

)
(pN − c) = 0, from which

pN =
2Ss

3(S + s)
+ c.

The corresponding pro�ts are πN = 2
3(pN − c) = 4

9
Ss
S+s .

The price vector p = (pN , pN , pN ) constitutes a Nash equilibrium only if none of the �rms has an

incentive to deviate from this price unilaterally. A �rm can deviate in two possible ways. It can drive out

the two other �rms from the market of the low-type consumers or it can drive out the other �rms from

the whole market.28

Let us �rst consider the case when �rm 1 chooses pN − 1
3S ≤ p1 ≤ pN −

1
3s. In this case �rm 1 attracts

the low-type consumers and the three �rms share the high-type consumers. Thus, �rm 1 faces the following

demand function: D1(p) = 4
3 + pN−p1

S . To �nd the optimal price, the following constrained optimization

problem needs to be solved:

max
p1≤pN− s

3

(p1 − c)
(

4

3
+
pN − p1

S

)
.

The Karush-Kuhn-Tucker conditions yield

4

3
+
pN − p1

S
− 1

S
(p1 − c) ≥ 0(

4

3
+
pN − p1

S
− 1

S
(p1 − c)

)(
pN −

s

3
− p1

)
= 0.

Let us suppose that 4
3 + pN−p1

S − 1
S (p1− c) = 0. This gives p1 = 2S

3 + pN+c
2 . We need to check whether the

28We do not have to consider marginal deviations from pN since the �rst-order conditions imply that the local pro�t

maximum is reached at pN .
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condition p1 ≤ pN − s
3 is satis�ed.

2S

3
+
pN + c

2
≤ pN −

s

3

0 ≤ pN − c
2

− 2S

3
− s

3

0 ≤ Ss

3(S + s)
− 2S

3
− s

3

0 ≤ Ss− 2S(S + s)− s(S + s)

0 ≤ −2S2 − 2Ss− s2,

where we used the formula for pN . The last condition is never satis�ed so we can conclude that p
D
1 = pN− 1

3s

is the optimal deviation in this case. The corresponding demand and pro�t are qD1 = 1
3

(
4 + s

S

)
and

πD1 =
(
pN − 1

3s− c
)

1
3

(
4 + s

S

)
, which simpli�es to πD1 = s

9
S−s
S+s

(
4 + s

S

)
. Firm 1 does not have an incentive

to deviate if πN ≥ πD1 , which gives

4

9

Ss

S + s
≥ s

9

S − s
S + s

(
4 +

s

S

)
4S ≥ (S − s)

(
4 +

s

S

)
0 ≥ −3s− s2

S
.

The last inequality is always satis�ed as S, s > 0. Thus, this deviation is never pro�table.

Now let us consider the other deviation when �rm 1 drives the other �rms out of the whole market. In

this case p1 < pN − 1
3S should hold. Note, however, that pN − 1

3S = 2Ss
3(S+s) + c− 1

3S = 1
3S

s−S
S+s + c < c as

s− S < 0. This means that �rm 1 would have to charge a price below the marginal cost to attract every

consumer, leading to negative pro�ts.

Thus, �rms do not have an incentive to deviate unilaterally from the price pN . The price vector

p = (pN , pN , pN ) is the unique symmetric Nash equilibrium.

Case 2: asymmetric situation with 2 �rms serving low-type consumers

Now we will show that the situation in which exactly one �rm focuses only on high-type consumers, cannot

constitute a Nash equilibrium. Assume without loss of generality that �rm 3 charges a high price such

that only high-type consumers buy from �rm 3: min{p1, p2}+ S
3 ≥ p3 ≥ min{p1, p2}+ s

3 . In this situation

32



the demand functions are as follows:

D1(p) =
5

6
+
p2 − p1

s
+
p2 + p3 − 2p1

2S
, (A.4)

D2(p) =
5

6
+
p1 − p2

s
+
p1 + p3 − 2p2

2S
, (A.5)

D3(p) =
1

3
+
p1 + p2 − 2p3

2S
. (A.6)

Pro�t maximization yields the following �rst-order conditions (for �rms 1, 2 and 3 respectively)

5

6
+
p2 − p1

s
+
p2 + p3 − 2p1

2S
−
(

1

s
+

1

S

)
(p1 − c) = 0, (A.7)

5

6
+
p1 − p2

s
+
p1 + p3 − 2p2

2S
−
(

1

s
+

1

S

)
(p2 − c) = 0, (A.8)

1

3
+
p1 + p2 − 2p3

2S
− 1

S
(p3 − c) = 0. (A.9)

If a Nash equilibrium exists in the given situation, it must be the solution of these �rst-order conditions.

By subtracting (A.8) from (A.7), it can be seen that p1 = p2 must hold. Therefore, let p1 = p2 = pL and

p3 = pH . The �rst-order conditions then simplify to

5

6
+
pH − pL

2S
−
(

1

s
+

1

S

)
(pL − c) = 0, (A.10)

1

3
+
pL − pH

S
− 1

S
(pH − c) = 0. (A.11)

Subtracting (A.11) from (A.10) yields 1
2 + 3

2
pH−pL
S − 1

s (pL − c) + 1
S (pH − pL) = 0, from which

pH − pL
2S

=
pL − c

5s
− 1

10
. (A.12)

Combining (A.10) with (A.12) gives 11
15 + pL−c

5s −
(
1
s + 1

S

)
(pL − c) = 0. Solving this equation for pL yields

pL =
11Ss

12S + 15s
+ c.

Plugging this expression for pL in (A.12) yields an equation that can be solved for pH . The solution

simpli�es to

pH =
2S2 + 8Ss

12S + 15s
+ c.

Note that the previous calculations yield admissible prices only when pL + 1
3S ≥ pH ≥ pL + 1

3s, or

equivalently 1
3s ≤ pH − pL ≤

1
3S. Using that

pH − pL =
2S2 − 3Ss

12S + 15s
,

the condition 1
3s ≤ pH − pL leads to 4Ss+ 5s2 ≤ 2S2 − 3Ss, or equivalently 2

(
S
s

)2 − 7Ss − 5 ≥ 0. Solving

this quadratic equation gives that S
s ≥

7+
√
89

4 must hold.
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The condition pH − pL ≤ 1
3S leads to 12S + 15s ≥ 6S − 9s, from which 6S + 24s ≥ 0. This condition

is satis�ed as S, s > 0. Thus, this type of asymmetric Nash equilibrium may exist only when S
s ≥

7+
√
89

4 .

The price vector p = (pL, pL, pH) constitutes a Nash equilibrium only if none of the �rms has an

incentive to deviate unilaterally. Now we will show that either the high-price �rm or the low-price �rms can

earn a higher pro�t by charging a di�erent price. First, let us calculate the pro�ts under p = (pL, pL, pH).

Plugging the prices in demand functions (A.4)-(A.6) yields q1 = q2 = qL = 11S+11s
12S+15s and q3 = qH = 2S+8s

12S+15s .

The corresponding pro�ts are π1 = π2 = πL = 121Ss(S+s)
(12S+15s)2

and π3 = πH = S
(

2S+8s
12S+15s

)2
.

First let us suppose that the high-price �rm deviates and charges pD3 = pL, where superscript D refers

to deviation. In that case qD3 = 2
3 since all three �rms charge the same price. The corresponding pro�t is

πD3 = 2
3

11Ss
12S+15s . This deviation leads to a higher pro�t for �rm 3 when

2

3

11Ss

12S + 15s
> S

(
2S + 8s

12S + 15s

)2

11s(12S + 15s) > 6S2 + 48Ss+ 96s2

0 > 6S2 − 84Ss− 69s2. (A.13)

Now let us suppose that �rm 1 deviates by charging pD1 = pH . In that case �rm 1 serves the high-type

consumers only so it faces a similar demand function as (A.6). Thus, its demand equals qD1 = 1
3 + pL−pH

2S =

6S+13s
2(12S+15s) and the corresponding pro�t is πD1 = 6S+13s

12S+15s
S(S+4s)
12S+15s . This deviation leads to a higher pro�t for

�rm 1 when

6S + 13s

12S + 15s

S(S + 4s)

12S + 15s
>

121Ss(S + s)

(12S + 15s)2

(6S + 13s)(S + 4s) > 121s(S + s)

6S2 − 84Ss− 69s2 > 0. (A.14)

Comparing conditions (A.13) and (A.14), we �nd that one of the �rms always has an incentive to

deviate whenever 6S2 − 84Ss − 69s2 6= 0. Now we will show that the high-price �rm has an incentive

to deviate even if the previous equation holds with equality. Note that we did not consider the optimal

deviation in the previous calculations. We only showed that there exists a deviation that is more pro�table

under certain conditions. When 6S2 − 84Ss − 69s2 = 0 holds, �rm 3 is indi�erent between charging pL

and pH (keeping the price of the other two �rms �xed):

π3(pL, pL, pL) = π3(pL, pL, pH). (A.15)

We will now show that the marginal pro�t of �rm 3 is not equal to 0 at p = (pL, pL, pL). This implies

that a marginal deviation from p3 = pL (in the appropriate direction) yields a strictly higher pro�t, thus

p = (pL, pL, pH) cannot be a Nash equilibrium.
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The marginal pro�t of �rm 3 at p = (pL, pL, pL) can be calculated using (A.3):

∂π3
∂p3

∣∣∣∣
p=(pL,pL,pL)

=
2

3
−
(

1

S
+

1

s

)
(pL − c).

Plugging in the formula for pL yields 2
3 −

S+s
Ss

11Ss
12S+15s , which simpli�es to 7S+9s

12S+15s . This expression is

always positive since S, s > 0. Thus, �rm 3 can get a strictly higher pro�t by marginally increasing its

price: π3(pL, pL, pL + ε) > π3(pL, pL, pL) for a small enough ε > 0. Combining the last inequality with

(A.15) shows that p = (pL, pL, pH) cannot be a Nash equilibrium.

Thus, we have shown that one of the �rms can always get a higher pro�t by unilaterally changing its

price. We can conclude that there does not exist an asymmetric Nash equilibrium in pure strategies where

exactly two �rms attract low-type consumers.

Case 3: asymmetric situation with 1 �rm serving low-type consumers

Now we will show that the situation in which two �rms focus only on the high-type consumers, cannot

constitute a Nash equilibrium. Assume without loss of generality that �rm 1 charges a low price such that

it attracts every low-type consumer: p1 + S
3 ≥ {p2, p3} ≥ p1 + s

3 . In this situation the demand functions

are as follows:

D1(p) =
4

3
+
p2 + p3 − 2p1

2S
,

D2(p) =
1

3
+
p1 + p3 − 2p2

2S
,

D3(p) =
1

3
+
p1 + p2 − 2p3

2S
,

with the corresponding �rst-order conditions for pro�t maximization

4

3
+
p2 + p3 − 2p1

2S
− 1

S
(p1 − c) = 0, (A.16)

1

3
+
p1 + p3 − 2p2

2S
− 1

S
(p2 − c) = 0, (A.17)

1

3
+
p1 + p2 − 2p3

2S
− 1

S
(p3 − c) = 0. (A.18)

By subtracting (A.18) from (A.17), it can be seen that p2 = p3 must hold. Let p1 = pL and p2 = p3 =

pH . Then the �rst-order conditions simplify to

4

3
+
pH − pL

S
− 1

S
(pL − c) = 0, (A.19)

1

3
+
pL − pH

2S
− 1

S
(pH − c) = 0. (A.20)
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Subtracting (A.20) from (A.19) yields 1+ 3
2S (pH−pL)+ 1

S (pH−pL) = 0. This equation, however, does

not give an admissible solution. Since every coe�cient is positive and the right hand side is 0, pH < pL

must hold, which contradicts the assumption pH ≥ pL+ s
3 . Thus, there exists no asymmetric pure-strategy

Nash equilibrium in which exactly one �rm serves the low-type consumers. �

A.2 The proof of Proposition 3.2

Proof.

To simplify notation, let DP
i (p) = Ai−biipi, where Ai = ai+bijpj+bikpk. Then using (3) the best response

price is given by

pBRi =
Ai
2bii

+
c

2
. (A.21)

Since pi = pBRi in an SSE, the perceived demand is given by

DP
i (p) =

Ai − biic
2

. (A.22)

Note that 9 variables characterize an SSE under the simpli�ed notation: 1 price and the 2 parameters

of the perceived demand function for each �rm. On the other hand, there are 6 conditions (best response

price and equality of actual and perceived demands for each �rm). Thus, the system of equations that

characterizes an SSE might be solved, with 3 free variables. We will now show that for a given price vector

p = (pi, pj , pk) we can �nd values of {Ai, bii}3i=1 such that the system is in an SSE.

From (A.21) we get Ai = bii (2pi − c) . Combining this with (A.22), the perceived demand simpli�es

to DP
i (p) = bii (pi − c) . Since the actual and the perceived demands must coincide at price vector p =

(pi, pj , pk), it must hold that Di(p) = bii (pi − c) , from which

bii =
Di(p)

pi − c
. (A.23)

Combining this with the previous formula for Ai yields

Ai =
Di(p)

pi − c
(2pi − c) . (A.24)

Thus, for a given price vector p = (pi, pj , pk), formulas (A.23) and (A.24) specify the values of bii and

Ai under which the system is in an SSE.

Let us investigate which price vectors lead to an economically sensible perceived demand function.

That is, we want to characterize the set of prices for which bii > 0 and Ai > 0 (i.e. the perceived demand

function is downward-sloping and the �intercept� is positive)29.

It follows from (A.23) that bii > 0 if and only if Di(p) > 0 and pi > c. Under these conditions, Ai > 0

is satis�ed as well. �
29For having an economically sensible perceived demand function, one might consider introducing the conditions ai > 0,
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A.3 The proof of Proposition 3.3

Proof.

We know from Proposition 3.2 that Di(p) > 0 must hold for each �rm. Since each �rm must face a positive

demand in an SSE, each �rm must attract high-type consumers. This implies that there are three possible

SSE in which �rms correctly learn one linear part of the true demand function, depending on whether 1,

2 or 3 �rms serve low-type consumers.30

When all 3 �rms attract low-type consumers, then demand conditions are characterized by Di(p) =

2
3 + (pj + pk − 2pi)

(
1
2S + 1

2s

)
(see Case 1 in the proof of Proposition 2.1). The best response function

can be derived from �rst-order conditions (A.1)-(A.3). As we have seen, these �rst-order conditions have

a unique solution, which corresponds to the Nash equilibrium of the model with known demand. Thus,

when all 3 �rms serve both consumer types and �rms correctly learn the corresponding linear part of the

true demand function, then the Nash equilibrium is the unique steady state of the learning process.

When only 2 �rms attract low-type consumers, then demand conditions are characterized by (A.4)-

(A.6) (see Case 2 in the proof of Proposition 2.1). The corresponding best response functions can be derived

from �rst-order conditions (A.7)-(A.9). These �rst-order conditions have a unique solution, in which the

low-price �rms charge pL = 11Ss
12S+15s + c and the high-price �rm asks the price pH = 2S2+8Ss

12S+15s .We have also

seen that this outcome exists only when S
s ≥ Σ1. Even though this outcome is not a Nash equilibrium of

the model with known demand, it is a steady state of the learning process. The reason behind this is that

�rms do not know that it would be pro�table to change their price unilaterally since they approximate

the demand function with a linear function, implying that they do not know that they would get a much

higher demand by undercutting other �rms. Thus, when only 2 �rms serve both consumer types and

�rms correctly learn the corresponding linear part of the true demand function, then the unique steady

state is given by 2 �rms charging pL and 1 �rm charging pH . We refer to this outcome as asymmetric

learning-equilibrium.

We have seen that when only 1 �rm serves the low-type consumer, then �rst-order conditions (A.16)-

(A.18) do not yield an admissible solution. Therefore the learning process does not have a steady state in

this situation.

This shows that the Nash equilibrium and the asymmetric learning-equilibrium are the only steady

states in which all three �rms correctly learn the linear part of the true demand function on which they

bij > 0 and bik > 0 in addition to the condition Ai > 0. Note, however, that these extra conditions do not restrict the set of

admissible prices further as for a given positive Ai one can always �nd values for ai, bij and bik such that Ai = ai+bijpj+bikpk

holds and the conditions on the signs are satis�ed.
30Note that these are exactly the same cases that we analyzed in the proof of Proposition 2.1.
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operate. �

A.4 The proof of Proposition 3.4

First we show that the Nash equilibrium price is smaller than the lower price in the ALE. Comparing

pN and pL, we get that pN < pL if and only if 2Ss
3(S+s) <

11Ss
12S+15s . This reduces to 0 < 9S + 3s, which

always holds since S, s > 0. We have shown before that pH > pL whenever the ALE exists. Thus, we have

pN < pL < pH .

We have seen in the proof of Proposition 2.1 that the Nash-equilibrium pro�t is πN = 4
9
Ss
S+s while the

pro�ts in the ALE are given by πL = 121Ss(S+s)
(12S+15s)2

and πH = S
(

2S+8s
12S+15s

)2
. The low-price �rms make a

higher pro�t than the high-price �rm only if 121s(S+ s) > 4(S+ 4s)2, from which 0 > 4
(
S
s

)2− 89Ss − 57.

This gives S
s <

89+11
√
73

8 ≈ 22.87.

The Nash-equilibrium pro�t is always smaller than the pro�t of low-price �rms in the ALE: 4
9
Ss
S+s <

121Ss(S+s)
(12S+15s)2

if and only if 4(12S + 15s)2 < 1089(S + s)2, which reduces to 0 < 9S + 3s. This inequality is

always satis�ed.

Next we show that the Nash-equilibrium pro�t is larger than the pro�t of the high-price �rm in the

ALE only if Ss is low enough. 4
9
Ss
S+s > S

(
2S+8s

12S+15s

)2
if and only if (4S + 5s)2s > (S + s)(S + 4s)2. This is

equivalent to the following inequality: −
(
S
s

)3
+7
(
S
s

)2
+16Ss +9 > 0. First we will argue that the function

f(x) = −x3 + 7x2 + 16x+ 9 has a single real root. Note that f is a cubic function, therefore it may have 1,

2 or 3 real roots. It is easy to see that f has a local maximum at x+ = 7+
√
97

3 ≈ 5.61 and a local minimum

at x− = 7−
√
97

3 ≈ −0.95. Since the function value is positive both at the local maximum and at the local

minimum (around 142.51 and 0.97, respectively), the function has a unique root. Numerical calculations

show that this root is around 8.91. Thus, when S
s < 8.91, then πN > πH , otherwise the opposite relation

holds.

Finally, we show that the total pro�t of �rms in the Nash equilibrium is always smaller than in the ALE.

Using the previous formulas, 3πN < 2πL+πH reduces to 6s(4S+ 5s)2 < 121s(S+ s)2 + 2(S+ 4s)2(S+ s).

This simpli�es further to 0 < 2S3 + 43S2s+ 50Ss2 + 3s3. This inequality is always satis�ed as S, s > 0.

A.5 The proof of Lemma 3.6

Proof.

When price observations are aligned, estimation yields the true parameters that characterize the given lin-

ear part of the demand function. Under symmetrically aligned price observations the parameter estimates

are given by ai = 2
3 , bii = 1

S + 1
s and bij = bik = 1

2S + 1
2s (see Case 1 in the proof of Proposition 2.1 for
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the corresponding demand function). Thus, using (3), the best response of �rm i is

pBRi =
2
3 +

(
1
2S + 1

2s

)
(pj + pk)

2
(
1
S + 1

s

) +
c

2
.

Then |pBRi − pBRj | = 1
4 |pj − pi| for any two �rms. Since price observations were symmetrically aligned,

|pj − pi| < s
3 holds and therefore |pBRi − pBRj | < s

3 is also satis�ed. Thus, adding the best-response prices

to the price observations gives a symmetrically aligned set again.31

When �rms i and j attract both types of consumers while �rm k attracts high-type consumers only,

then �rms learn the following demand parameters: ai = aj = 5
6 , bii = bjj = 1

S + 1
s , bij = bji = 1

2S + 1
s ,

bik = bjk = 1
2S , ak = 1

3 , bkk = 1
S and bki = bkj = 1

2S (see Case 2 in the proof of Proposition 2.1 for the

corresponding demand functions). Using (3), the best-response prices are given by

pBRi =
5
6 +

(
1
2S + 1

s

)
pj + 1

2Spk

2
(
1
S + 1

s

) +
c

2
,

pBRj =
5
6 +

(
1
2S + 1

s

)
pi + 1

2Spk

2
(
1
S + 1

s

) +
c

2
,

pBRk =
1
3 + 1

2S (pi + pj)

2 1
S

+
c

2
.

Then |pBRi − pBRj | =
( 1
2S

+ 1
s )

2( 1
S
+ 1

s )
|pj − pi| = 2S+s

4S+4s |pj − pi| <
s
3 since 2S+s

4S+4s < 1 and |pj − pi| < s
3 because

price observations were asymmetrically aligned. Thus, the �rst condition in the de�nition is satis�ed.32

Let us suppose that pi ≤ pj in the most recent price observation. In that case, pBRj ≤ pBRi and it

must hold for having asymmetrically aligned price observations that pBRj + s
3 < pBRk < pBRj + S

3 . Using the

formulas above, it can be shown that

pBRk − pBRj =
1

12(S + s)

[
2S2 − 3Ss− 3Spi + (3S + 3s)pj − 3spk

]
.

We will �rst show that the condition pBRk −pBRj < S
3 is always satis�ed. Using the formula for pBRk −pBRj ,

the condition simpli�es to

−S
3

(
2
S

s
+ 7

)
+

(
1 +

S

s

)
(pj − pi) < pk − pi.

The left-hand side is smaller than −S
3

(
2Ss + 7

)
+
(
1 + S

s

)
s
3 since pj − pi < s

3 . It is easy to see that this

expression is always negative. On the other hand, the right-hand side is positive since pk − pi > s
3 . Thus,

pBRk − pBRj < S
3 is always satis�ed.

31Notice the contraction mapping feature of playing the best-response price. This implies that symmetrically aligned prices

converge to the same value. Since prices are best response to each other, �rms will reach the Nash equilibrium in this case.
32Note the contraction mapping feature again, which implies that the low-price �rms will reach the same price if the

information set always remains asymmetrically aligned.
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Next let us consider the condition pBRk − pBRj > s
3 . Using the formula for pBRk − pBRj , the condition

simpli�es to

s

3

[
2

(
S

s

)2

− 7
S

s
− 4

]
+

(
1 +

S

s

)
(pj − pi) > pk − pi. (A.25)

The left-hand side of the inequality is greater than or equal to s
3

[
2
(
S
s

)2 − 7Ss − 4
]
as pj − pi ≥ 0. The

right-hand side is smaller than S
3 since price observations are asymmetrically aligned. Thus, a su�cient

condition for (A.25) to hold is that

s

3

[
2

(
S

s

)2

− 7
S

s
− 4

]
≥ S

3
.

This leads to 2
(
S
s

)2−8Ss −4 ≥ 0, for which S
s ≥ 2+

√
6 must hold. Thus, when the latter condition holds,

asymmetrically aligned price observations always remain asymmetrically aligned, irrespective of the exact

values in the last price observation. On the other hand, when S
s < 2 +

√
6, condition (A.25) has to hold

for the most recent price observation in order to have asymmetrically aligned price observations again.

Since price observations were asymmetrically aligned, s3 < pk − pi. Thus, the following condition must

hold
s

3
<
s

3

[
2

(
S

s

)2

− 7
S

s
− 4

]
+

(
1 +

S

s

)
(pj − pi).

As we have seen, playing the best response works as a contraction mapping for the low-price �rms, therefore

pj − pi → 0 if the information set always remains asymmetrically aligned. Thus, s3 ≤
s
3

[
2
(
S
s

)2 − 7Ss − 4
]

must hold. This leads to 1 ≤ 2
(
S
s

)2 − 7Ss − 4, from which S
s ≥

7+
√
89

4 . Thus, when the latter condition

does not hold, then an asymmetrically aligned information set cannot stay asymmetrically aligned.

�

A.6 The proof of Proposition 3.7

Proof.

We will now show that both the Nash equilibrium and the ALE are locally stable equilibria. First we will

describe the system in the neighborhood of the equilibria and then we show that the eigenvalues of the

Jacobian are always less than 1 in absolute value. First we focus on the Nash equilibrium.

Part 1: Stability of the Nash equilibrium

When prices in the information set are symmetrically aligned, then �rms learn the correct demand pa-

rameters of the linear part on which they operate. Moreover, as we have seen in Lemma 3.6, updating

the information set with the best-response prices results in a symmetrically aligned information set again.
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Thus, the parameters of the perceived demand functions do not change in this case. Then the perceived

demand function of �rm i is always given by DP
i (p) = 2

3 −
(
1
S + 1

s

)
pi +

(
1
2S + 1

2s

)
pj +

(
1
2S + 1

2s

)
pk (see

Case 1 in the proof of Proposition 2.1 for the demand parameters of the relevant linear part). Then the

next-period price of �rm i is given by

pi,t+1 =
1

3

Ss

S + s
+

1

4
(pj,t + pk,t) +

1

2
c.

This holds for every �rm i, therefore the Jacobian of the system is given by

J =


0 1

4
1
4

1
4 0 1

4

1
4

1
4 0

 .

The characteristic equation is given by

k(λ) = −λ3 +
3

16
λ+

1

32
= 0.

It is easy to see that k(λ) can also be expressed as k(λ) = −
(
λ− 1

2

) (
λ+ 1

4

)2
. Thus, the eigenvalues

of the Jacobian are λ1 = 1
2 and λ2 = −1

4 . Both eigenvalues are smaller than 1 in absolute value, therefore

the Nash equilibrium is locally stable.

Part 2: Stability of the ALE

When prices in the information set are asymmetrically aligned, then �rms learn the correct demand

parameters of the linear part on which they operate. Moreover, as we have seen in Lemma 3.6, updating

the information set with the best-response prices results in an asymmetrically aligned information set

again when S
s > Σ2.

33 Thus, the parameters of the perceived demand functions do not change in this case.

Suppose that �rms i and j are the low-price �rms and �rm k is the high-price �rm. Then the perceived

demand function of �rm i is always given by DP
i (p) = 5

6 −
(
1
S + 1

s

)
pi +

(
1
2S + 1

s

)
pj + 1

2Spk while that

of �rm k is DP
k (p) = 1

3 −
1
Spk + 1

2Spi + 1
2Spj (see Case 2 in the proof of Proposition 2.1 for the demand

parameters of the relevant linear part). Then the next-period price of �rms i and k are given by

pi,t+1 =
5

12

Ss

S + s
+

1

4

2S + s

S + s
pj,t +

1

4

s

S + s
pk,t +

1

2
c,

pk,t+1 =
1

6
S +

1

4
(pi,t + pj,t) +

1

2
c.

33Even if S
s
> Σ2 does not hold, we can consider a su�ciently small neighborhood of the ALE for which the updated

information set is asymmetrically aligned. This can be done as (A.25) holds for (pL, pL, pH) whenever the ALE exists.
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The next-period price of �rm j is given by a similar formula as for �rm i, we just need to switch i and

j. Then the Jacobian of the system is given by

J =


0 A B

A 0 B

C C 0

 ,

where A = 1
4
2S+s
S+s , B = 1

4
s

S+s and C = 1
4 . The characteristic equation is given by

k(λ) = −λ3 +
(
A2 + 2BC

)
λ+ 2ABC = 0.

It is easy to see that k(λ) can also be expressed as k(λ) = − (λ+A)
(
λ2 −Aλ− 2BC

)
. Thus, one

eigenvalue is λ1 = −A. This eigenvalue is always smaller than 1 in absolute value. A > 0 since S, s > 0.

A < 1 if and only if 2S + s < 4(S + s), which is always satis�ed.

The other two eigenvalues are the solutions of the equation λ2 − Aλ − 2BC = 0. The discriminant

is D = A2 + 8BC > 0, so there are two real roots: λ2,3 = A±
√
A2+8BC
2 . Root λ2 = A+

√
A2+8BC
2 has the

larger absolute value. Its absolute value is smaller than 1 if and only if
√
A2 + 8BC < 2−A, from which

A2 + 8BC < 4− 4A+A2 (using that A < 1). This simpli�es to the condition A+ 2BC < 1.

Plugging in the values for A, B and C yields A+ 2BC = 1
4
2S+s
S+s + 21

4
s

S+s
1
4 = 1

8
4S+3s
S+s . This is smaller

than 1 in absolute value if and only if 4S + 3s < 8(S + s), which is satis�ed for any S, s > 0.

Thus, all three eigenvalues are smaller than 1 in absolute value, implying that the ALE is locally stable.

�

B Robustness check

We report the results of the robustness checks in this section. First we summarize the baseline results in

Tables 5 and 6. For each (S, τ) combination we ran 1000 simulations and we investigated how often prices

lie in a small neighborhood of the Nash equilibrium or of the ALE. Table 5 shows 4 numbers for each

(S, τ) combination. The upper values refer to the Nash equilibrium whereas the lower ones to the ALE.

The numbers that are not in brackets correspond to the 0.001-neighborhood of the given equilibrium while

the numbers in brackets show the proportion of �nal price vectors in the 0.0001-neighborhoods.34 As we

have discussed before, there is no exact convergence in the model, that is why not all the outcomes lie in

the small neighborhood of the equilibria.

34Remember, a vector (x1, . . . , xn) lies in the ε-neighborhood of another vector (y1, . . . , yn) if their Euclidean distance is

smaller than or equal to ε :

√
n∑

i=1

(xi − yi)
2 ≤ ε.
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τ

6 8 10 20

S

2
96.5% (89.7%) 99.8% (97.7%) 100% (99.8%) 100% (100%)

0.0% (0.0%) 0.0% (0.0%) 0.0% (0.0%) 0.0% (0.0%)

4
95.0% (87.8%) 99.7% (97.9%) 100% (99.6%) 99.6% (99.6%)

0.0% (0.0%) 0.0% (0.0%) 0.0% (0.0%) 0.0% (0.0%)

4.2
59.3% (53.8%) 77.2% (75.6%) 83.6% (83.1%) 88.8% (88.8%)

37.3% (33.9%) 22.5% (21.9%) 16.4% (15.9%) 11.2% (11.2%)

4.35
50.8% (46.8%) 73.5% (72.1%) 76.5% (76.2%) 83.3% (83.3%)

47.4% (43.3%) 26.1% (25.4%) 23.5% (22.9%) 16.5% (16.5%)

4.5
50.1% (45.5%) 71.4% (70.0%) 72.4% (71.9%) 80.0% (80.0%)

47.8% (44.0%) 28.3% (26.8%) 27.6% (27.1%) 19.8% (19.8%)

10
7.3% (7.1%) 12.1% (11.7%) 15.9% (15.9%) 21.0% (21.0%)

91.7% (79.5%) 87.6% (81.6%) 84.0% (80.9%) 78.2% (78.0%)

Table 5: Proportion of outcomes in the 0.001 and the 0.0001-neighborhoods (in brackets) of the Nash equilibrium

(upper numbers) and the asymmetric learning-equilibrium (lower numbers) over 1000 simulations, for di�erent

values of S and τ. Other parameters: s = 1 and c = 1.

mean median mode

random price rule 2− 13.5 1− 9 0− 4

no jump rule 0.35− 1.21 0− 1 0

imp. est. rule 0− 6 · 10−3 0 0

Table 6: Summary statistics of the usage of augmenting rules.

Table 6 reports information about the usage of the di�erent augmenting rules discussed in Section

3.1. For each (S, τ) combinations we considered, we counted how many times each rule was used during a

given initialization and then we calculated the average, the median and the mode of these numbers over

the 1000 di�erent initializations. The table reports the range of these statistics over the di�erent (S, τ)

combinations. Note that each rule could have been used 996 · 3 = 2988 times as each �rm could use each

rule in each period except for the initial ones.

Next we report the results that exclude the e�ect of the numerical issue that leads to imprecise param-

eter estimates. Panel a of Table 7 summarizes the outcomes of simulations when �rms use the true linear
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τ

6 8 10 20

S

2
100% 100% 100% 100%

0% 0% 0% 0%

4
100% 100% 100% 100%

0% 0% 0% 0%

4.2
92.3% 94.4% 94.7% 96.1%

7.7% 5.6% 5.3% 3.9%

4.35
90.6% 92.4% 94.8% 94.7%

9.4% 7.6% 5.2% 5.3%

4.5
88.0% 90.8% 91.8% 92.6%

12.0% 9.2% 8.2% 7.4%

10
41.5% 46.0% 47.0% 49.4%

58.5% 54.0% 53.0% 49.6%

(a) True coe�cients

τ

8

S

2
100% (89.1%)

0.0% (0.0%)

4
100% (81.1%)

0.0% (0.0%)

4.2
97.5% (77.9%)

2.4% (1.0%)

4.35
92.7% (74.8%)

7.3% (3.5%)

4.5
90.4% (72.7%)

9.6% (4.8%)

10
46.2% (34.4%)

52.2% (13.8%)

(b) Noise

Table 7: Percentage of outcomes in small neighborhoods of the Nash equilibrium (upper numbers) and the asym-

metric learning-equilibrium (lower numbers) under the true coe�cients (panel a) and under noise (panel b). Number

of simulations: 1000, other parameters: s = 1 and c = 1.

parameter values instead of parameter estimates whenever their information set becomes symmetrically

or asymmetrically aligned. Since now there is exact convergence, we show the values that correspond to

the 0.0001-neighborhoods only.35 Panel b show the results under noise (N(0, 0.0012)). Since noise is added

to the model, we consider bigger neighborhoods of the equilibria than in Table 5: The reported numbers

correspond to the 0.01 and 0.001-neighborhoods (in brackets) respectively. Notice that the proportions for

the 0.01 neighborhoods are quite close to those under the true coe�cients.

Finally, Table 8 summarizes the results of simulations with 10000 runs and with 10000 periods for the

case τ = 8.

35The values for (S, τ) = (10, 20) do not add up to 100%. This is caused by the no jump rule: In some simulations one �rm

got stuck with its last randomly drawn price as the best-response price was too high compared to their most recent price

and thus the no jump rule prevented the price change. In these simulations �rms reached neither the Nash equilibrium, nor

the ALE. However, if we turn o� the no jump rule, then such situation does not occur.
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estimated coe�cients true coe�cients

10000 periods 10000 runs 10000 periods 10000 runs

S

2
99.6% (97.7%) 99.5% (97.9%) 100% 100%

0.0% (0.0%) 0.0% (0.0%) 0.0% 0.0%

4
99.5% (97.7%) 99.4% (97.5%) 100% 100%

0.0% (0.0%) 0.0% (0.0%) 0.0% 0.0%

4.2
71.5% (70.1%) 78.5% (77.0%) 94.4% 94.8%

27.8% (26.7%) 21.1% (20.5%) 5.6% 5.2%

4.35
68.2% (66.6%) 72.1% (70.5%) 92.4% 92.9%

31.7% (30.9%) 27.6% (26.6%) 7.6% 7.1%

4.5
62.6% (61.3%) 68.8% (67.5%) 90.8% 91.4%

37.3% (36.0%) 30.8% (30.0%) 9.2% 8.6%

10
10.8% (10.6%) 12.4% (12.2%) 46.0% 44.8%

88.9% (82.9%) 81.4% (81.1%) 54.0% 55.2%

Table 8: Outcome of simulations with 10000 periods and 10000 di�erent initializations. The proportion of out-

comes in the 0.001 and the 0.0001-neighborhoods (in brackets) of the Nash equilibrium (upper numbers) and the

asymmetric learning-equilibrium (lower numbers) for di�erent values of S and τ = 8. Other parameters: s = 1 and

c = 1.
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