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Countercyclical versus Procyclical
Taylor Principles�

Jean-Bernard Chatelainy Kirsten Ralfz

March 23, 2016

Abstract
Assuming in�ation is a forward variable in Taylor (1999) model,

this paper �nds opposite policy rule recommandations with counter-
cyclical policy rule parameters (Taylor principle: in�ation rule larger
than one and bounded upwards) in the case of optimal policy under
commitment versus pro-cyclical policy rule parameters (in�ation rule
parameter below zero) in the case of discretionary policy. For the
observed high inertia of the Fed with tiny variations of the nominal
policy rate within the range [0%,4%] during the great moderation,
the cost of time-inconsistency is negligible for optimal policy without
commitment. In this case, time-inconsistency cannot be the ultimate
argument to reject counter-cyclical Taylor principle.
JEL classi�cation numbers: C61, C62, E43, E44, E47, E52,

E58.
Keywords: Determinacy, Stability, Identi�cation, Optimal policy

under commitment, Discretionary policy, Simple rule, Taylor princi-
ple.

1 Introduction

What is the best monetary policy? This paper revisits the classic com-
parison between Ramsey optimal policy under commitment (Simaan and
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Cruz (1973), Kydland and Prescott (1980), Miller and Salmon (1985), Miller
(1985), Backus and Dri¢ ll (1986), Ljungqvist and Sargent (2012, chapter
19)) versus time-consistent "discretionary" policy (Cohen and Michel (1988),
Oudiz and Sachs (1985), Backus and Dri¢ ll (1986)), see a recent interesting
comparison in Leith and Wren-Lewis (2013) among others. We seek compa-
rable observationally and mathematically equivalent representations of the
Taylor rules for each of the two policies. The focus is the range of values of
the in�ation Taylor rule parameter obtained by each of these two policies.
Taylor�s (1999) model is the simplest possible dynamic model of mone-

tary policy with an interest rule describing the Federal Reserve�s account of
its actions. The Fed�s policy interest rate has a negative e¤ect on current
output gap. Current output gap increases next period�s expected in�ation.
Cochrane (2011 and 2016) refers to Taylor�s (1999) as the benchmark model
of old Keynesian countercyclical monetary policy. In�ation and output are
predetermined variables, but Taylor (1999) mentions that "these equations
summarize more complex forward-looking models" (p.662).
We turn Taylor�s (1999) model into a forward-looking model, where ex-

pected in�ation is a forward looking variable. In the early eighties, in�ation
in the U.S. fell like a stone during Volcker�s mandate. It is di¢ cult to explain
the magnitude of this fall by old-Keynesian adaptive expectations where ex-
pectations depends only on the past values of in�ation. De�ning in�ation as
a forward looking variable, we �nd the feasible sets of in�ation rule parame-
ter (Taylor principles) and expectation-driven jumps of in�ation for credible
optimal policy under commitment, for discretionary policy and for simple
rules.
We �nd opposite Taylor principles with optimal policy under commitment

(with a countercyclical in�ation rule parameter) as compared to discretionary
policy (with a pro-cyclical in�ation rule parameter). This result matters a lot
for policy maker�s advice (Miles (2015)). Procyclical interest rule parameters
are the opposite of the explicitly countercyclical stabilizing language in the
Federal Reserve�s account of its actions. In simple rule equilibrium with ex-
pected in�ation as a forward variable, "higher in�ation leads the Fed to set
interest rates in a way that produces even higher future in�ation. For only
one value of in�ation today will in�ation fail to explode, or, more generally
leave a local region. Ruling out non-local equilibria, new-Keynesian modelers
conclude that in�ation today must jump to the unique value that leads to a
locally bounded equilibrium path" (Cochrane (2011), p.566). So far, Bank of
England o¢ cials do not state to the non-academic public that they set in-
terest rates based on pro-cyclical positive feedback except on a unique path
chosen by the public and that this mechanism is robust and successful to
tame in�ation (Miles (2015)). This paper adds discretionary policy as an-
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other theory of pro-cyclical positive feedback in�ation Taylor rule parameter,
besides simple rule equilibrium with expected in�ation as a forward variable.
The mechanism of the Fed�s lack of credibility for determining the price

level with discretionary policy seems to di¤er from the simple rule mecha-
nisms or narratives reviewed by Cochrane (2011). The Fed�s lack of credibility
implies that the private sector�s agents protect themselves against Fed�s time
inconsistency by forcing the Fed to select a pro-cyclical in�ation rule para-
meter. Hence, the Fed is unable to commit to an optimal sequence of future
interest rates determined by a countercyclical in�ation rule parameter that it
will renege in the future. Because all the agents of the private sector acknowl-
edge the forever failure of the Fed�s credibility to commit to a announced
sequence of policy interest rates in the future, the private sector and the Fed
decide, in a time consistent Nash equilibrium, to restrict optimal policy mak-
ing to a number of variables equal to the number of predetermined variables.
A procyclical in�ation rule parameter constrains the in�ation path to be a
recursive function of a number of linearly independent (non-multicollinear)
stationary macroeconomic variables equal to the number of private sector�s
predetermined variables.
Cochrane (2011) mentions two theories for a countercyclical negative feed-

back in�ation Taylor rule parameter: the �scal theory of the price level
(Leeper (1991), Leith and Leeper (2016)) and the old Keynesian theory which
assume that expected in�ation and prices are predetermined variables instead
of being forward variables (Taylor (1999)). This paper adds a third the-
ory: Ramsey optimal policy under commitment (e.g. Kydland and Prescott
(1980)). With this theory, a mathematical result is that the in�ation rule
parameter is identical to the one found by optimal policy as if all private
sector�s forward variables were assumed to be predetermined.
The mechanism of the Fed�s credibility for determining the price level with

optimal policy under commitment seems to di¤er from simple rule mecha-
nisms and narratives reviewed by Cochrane (2011). The private sector�s
believes in the policy maker�s commitment not to renege the announced plan
of future values of the policy interest rate. For a monetary policy transmis-
sion mechanism described by a given model of the private sector, in order
to fasten the convergence of in�ation to its long run target (maximizing wel-
fare), counter-cyclical rule parameters allow the optimal in�ation path to be
a recursive function of a number of linearly independent (non-multicollinear)
stationary macroeconomic variables equal to the number of all linearly inde-
pendent predetermined and forward variables describing the private sector�s
behaviour in the model. Fed�s negative feedback rule increased the number
of linearly independent stationary variables in the economy.
The Fed selects an optimal initial anchor of in�ation on predetermined
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variables maximizing welfare. The policy interest rate at the date of the
commitment is predetermined. There is no sunspot even though the opti-
mal path is surrounded by an in�nity of out-of-equilibrium in�ation paths
converging to the long-run in�ation target.
By contrast, in simple rule equilibrium with forward variables, the pol-

icy maker�s welfare criterion, which is instrumental in selecting the optimal
anchor of in�ation, is assumed away. The policy interest rate is a forward
variable. This generates sunspots and the indeterminacy of initial in�ation
and of the initial price level.
The observed high inertia of the Fed with tiny variations of the nomi-

nal policy rate within the range [0%,4%] during the great moderation may
suggest the Fed�s preference for a high relative cost of changing the policy
rate during this period. In this "minimum energy optimal control" case,
our paper demonstrates that the cost of time-inconsistency is negligible (or
of second order of magnitude) for optimal monetary policy. In this case,
time-consistency is no longer the ultimate criterion for advising discretionary
policy with a pro-cyclical in�ation rule parameter instead of optimal policy
under commitment with a countercyclical in�ation rule parameter.
A commitment to a low volatility of policy interest rate with counter-

cyclical negative feedback rule parameters is a policy recommendation which
enhances the credibility of the Fed�s time-consistent behavior for the private
sector. This recommendation seems more in line with policy makers con-
cerns (Miles (2015)) than pro-cyclical positive feedback rule parameters as a
private sector�s defense against the Fed�s time-inconsistent behavior.
Section 2 presents equilibria hypothesis using Taylor�s model. Section 3

�nds solutions of these equilibria. Section 4 compares these equilibria with
respect to Taylor principles and discusses the condition for negligible time-
inconsistency issues. Section 5 proposes some extensions. The last section
concludes.

2 Policymaker Equilibria with Taylor�s (1999)
model

The Taylor (1999) model assumes that the current output gap xt depends
negatively (parameter��) on the current nominal policy rate it minus current
in�ation �t and an additive identically and independently distributed normal
component "x;t of a random productivity shock zx;t:

xt = �� (it � �t) + zx;t where � > 0
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The productivity shock zx;t, also called forcing variable, includes an auto-
regressive component (auto-correlation �):

zx;t = �zx;t�1 + "x;t where 0 < � < 1 and "x;t i.i.d. normal N
�
0; �2x

�
Future in�ation �t+1 increases with current in�ation and current output

gap plus a random cost push shock "�;t, with possibly a non-zero covariance
with the productivity shock:

�t+1 = �t + �xt + "�;t where � > 0 and "�;t i.i.d. normal N
�
0; �2�

�
Eliminating output gap reduces the model to a two-equations system:

�t+1 = (1 + �)�t � �it + zt where 0 < � = ��� (1)

zt = �zt�1 + "t where 0 < � < 1 and "t i.i.d. normal N
�
0; �2 ("x;t + "�;t)

�
(2)

We change Taylor (1999) model assuming in�ation is a forward variable
with unknown initial condition in order to model rational expectations. As a
consequence, we deal with jumps of expected in�ation and the related issue
of time-inconsistency of the policy-maker. The forcing variable zt is assumed
to be predetermined with given initial value z0 and bounded with an auto-
regressive parameter strictly between zero and one (initial and �nal boundary
conditions):

z0 predetermined (3)

lim
t!+1

�tEt (zt) = 0: (4)

The Fed determines the policy rate it and the path of in�ation �t mini-
mizing a discounted quadratic loss function L�0 with a discount factor � and
relative weightQ�z � 0 on the covariance of in�ation with the forcing variable
and a strictly positive relative cost of changing the policy rate R > 0 subject
to the private sector�s model (with an optimal value function v(�0; z0)):

v(�0; z0) = max
fit;�tg

� 1
2
Et

+1X
t=0

�t
�
�2t + 2Q�z�tz�;t +Ri

2
t

�
(5)

We compare dynamics, policy rules and Taylor principles of these equi-
libria ordered by their degree of optimality:
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(1) Optimal policy under commitment (Simaan and Cruz (1973), Kyd-
land and Prescott (1980), Miller and Salmon (1985), Miller (1985), Backus
and Dri¢ ll (1986), Ljungqvist and Sargent (2012, chapter 19)): The Fed
minimizes the loss function (5) subject to private sector�s law of motion (1,
2) and boundary conditions (3,4) and to two initial and �nal transversality
conditions for the forward variable in�ation (6, 7). The Fed chooses the op-
timal initial and �nal value of in�ation minimizing the optimal value of her
loss function at the initial and the �nal date. The marginal value of Fed�s
optimal loss function (equal to the Lagrange multiplier of in�ation ��;t=0) is
set to zero at the initial date and for its in�nite horizon limit. Hence, the
Lagrange multiplier of in�ation is a second predetermined variable besides
the forcing variable zt. This implies that expected in�ation is bounded:

@v(�0; z0)

@�0
= 0 = �0 predetermined, �0 = �

�
0 (6)

lim
t!+1

@v(�t; zt)

@�t
= 0 = lim

t!+1
�t�t , lim

t!+1
�t = lim

t!+1
��t (7)

For example, Bryson and Ho ((1975), p.55) explain these transversality
conditions. "If �t is not prescribed at t = 0; it does not follow that ��0 = 0:
In fact, there will be an optimum value for �0 and it will be such that �v = 0
for arbitrary small variations of �0 around this value. For this to be the
case, we choose @v

@�0
= �0 = 0 (1) which simply says that small changes of

the optimal initial value of the forward variables �0 on the loss function is
zero. We have simply traded one boundary condition: �0 given, for another,
(1). Boundary conditions such as (1) are sometimes called "natural bound-
ary conditions" or transversality conditions associated with the extremum
problem." When using the Lagrange multiplier solution, the policy maker�s
Lagrange multipliers of private sector�s forward in�ation is predetermined
at the value zero: �0 = 0. Hence, the policy maker�s Hamiltonian system
includes a number of predetermined variables which is equal to the num-
ber of private sector�s predetermined variables and the number of the policy
maker�s Lagrange multiplier of each of the private sector�s forward variables.
The number of the policy maker�s predetermined variables is equal to the
sum of the number of private sector�s predetermined and forward variables.
(2) Time-consistent "discretionary" policy (Oudiz and Sachs (1985): The

Fed minimizes the loss function (5) subject to the private sector�s law of
motion (1, 2) and boundary conditions of the forcing variable (3, 4) and
subject to two additional constraints: a private sector�s in�ation rule (8) and
a policy rule (9). First, it is assumed that the private sector�s in�ation rule
is a linear function of the predetermined variable with an optimal bounded
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parameter ND to �nd:
�t = NDzt (8)

Equation (8) implies that transversality conditions on expected in�ation
(6 and 7) are no longer useful. As seen in section 3, the initial transversality
condition on the private sector�s forward variable, in�ation, (equation 6) sets
an anchor of in�ation proportional to the forcing variable only at the initial
date. It has been eliminated by the private sector�s in�ation rule (equation
8), which sets an anchor of in�ation proportional to the forcing variable for
all future periods and not only for the initial date.
Second, the policy maker�s interest rule is a linear function of the prede-

termined forcing variable with an optimal bounded forcing variable Taylor
rule parameter Fz;D to �nd, or, alternatively, an optimal bounded in�ation
Taylor rule parameter F�;D to �nd:

it = Fz;Dzt = F�;D�t with F�;D = Fz;DN�1
D (9)

Time-inconsistent discretionary policy without rules depending on a num-
ber of variables equal to the number of predetermined variables may exist.
(3) Simple rule: The Fed does not minimize the loss function (5). One

only seeks determinacy sets of rule parameters Fz;S and F�;S for the ad hoc
rational expectations linear system including the private sector�s law of mo-
tion (1, 2), boundary conditions of the forcing variable (3, 4), private sector
in�ation rule (8) and policy rule (10) instead of (9):

it = Fz;Szt + F�;S�t (10)

(4) Laissez-faire equilibrium: It is a corner solution of the simple rule
equilibrium where the rule parameters are equal to zero: Fz;S = Fz;S = 0:

it = 0 (11)

The following sections details the solutions of each of these equilibria.

3 Equilibrium Solutions

3.1 Optimal policy under commitment

The Fed chooses optimal policy while taking expected in�ation law of motion
as constraints. Her Lagrangian includes Lagrange multipliers 2�t+1�t+1.

L = �
+1X
t=0

�t
�

�2t + 2Q�z�tzt +Ri
2
t

+2��t+1 [(1 + �)�t + zt � �it � �t+1]

�
(12)
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Because of the certainty equivalence principle for determining optimal
policy in the linear quadratic regulator including additive normal random
shocks (Simon (1956)), the expectations of random variables "t are set to
zero and do not appear in the Lagrangian. In what follows, let us denote
�t+1 = Et�t+1. The �rst order conditions are with respect to the Fed�s target
(forward in�ation �t+1) and with respect to the Fed�s instrument (policy
interest rate it):

@L
@�t

= 0) � (1 + �)�t+1 = �t � �t �Q�zzt (13)

@L
@it

= 0) � (��)�t+1 = �Rit: (14)

Substitute the Fed�s Lagrange multiplier of in�ation by the Fed�s interest
rate in the Fed�s Euler equation @L

@�t
. The Fed�s interest rate Euler equation

links recursively the future value of Fed�s interest rate to its current value,
because of the Fed�s relative costs of changing interest rate R > 0 in its loss
function:

@L
@�t

= 0)
�
1 +

1

�

�
Rit + �t +Q�zzt =

R

��
it�1 (15)

The Hamiltonian system and its boundary conditions can be alternatively
written by an Euler equation including the policy rate it or by an Euler
equation including the Lagrange multiplier on in�ation �t:

8>>>>>>><>>>>>>>:

zt = �zt�1 + "t
Et�t+1 = (1 + �)�t � �it + zt�
1 + 1

�

�
Rit + �t +Q�zzt =

R
��
it�1

�t+1 =
R
��2
it

0 = lim
t!+1

�t��;t
@L�

@�0
= 0 = �0 and z0 given

,

8>>>>>>><>>>>>>>:

zt = �zt�1 + "t
Et�t+1 = (1 + �)�t � ��2

R
�t+1 + zt

� (1 + �)�t+1 = c� �t �Q�zzt
it =

��2

R
�t+1

0 = lim
t!+1

�t��;t
@L�

@�0
= 0 = �0 and z0 given

(16)
In the appendix, it is shown that the Hamiltonian system when zt = 0 in-

cluding in�ation and the Lagrange multiplier of in�ation has the usual saddle
point equilibrium property: one eigenvalue is stable and the other eigenvalue
is unstable. Hence, the full system including in�ation, the Lagrange mul-
tiplier of in�ation (or the policy rate), and the stationary dynamics of the
forcing variable zt 6= 0 with stable eigenvalue � has two stable eigenvalue and
one unstable eigenvalue. Using the in�nite horizon transversality conditions,
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the relevant solution is the one that stabilizes the state-costate vector for
any initialization of in�ation �0 and of the exogenous shock z0 in a stable
subspace of dimension two within a space of dimension three (zt; �t; �t) or
(zt; �t; it) of the Hamiltonian system (Anderson et al. (1996)). We seek a
characterization of the Lagrange multiplier �t on in�ation minimizing the
loss function L�t at all dates t such that it is a linear function of the two other
variables in order to remain in the stable invariant subspace of dimension
two of the Hamiltonian system:

�t = �P��t � P�zzt =
@v (�t; zt)

@�t
: (17)

The parameter P� of the optimal value v0 is the solution of a Riccati
equation. The parameter P�z of the optimal value v0 is the solution of a
Sylvester equation (Anderson et al. (1996)). They depend on the monetary
policy transmission mechanism (�; �; �) (the discount factor is set to one to
simplify matters) and on the Fed�s preferences (R;Q�z). They do not depend
on the variance of the shock nor on initial conditions of in�ation and of the
forcing variable. Assuming � = 1 for simplicity and without loss of generality
in what follows, we obtain (see appendix):

P�

�
�
�
; R
+

�
=
1

2
+R

�
1

2
+
1

�

�
�

s�
1

2
+R

�
1

2
+
1

�

��2
+
R

�2
(18)

P�z

�
�
�
; R
+
; �
+
; Q�z
+

�
=
Q�z + (1 + � � �F�)P�
1� (1 + � � �F�) �

: (19)

Alternatively, we seek a characterization of the Fed�s policy rate such
that it is a linear function of the two other variables in order to remain in
the stable invariant subspace of dimension two of the Hamiltonian system,
with the optimal rule parameters F�;C and Fz;C solution of the discounted
augmented linear quadratic regulator. They depend on the monetary policy
transmission mechanism (�; �; �) and on the Fed�s preferences (R;Q�z):

it = F�;C�t + Fz;Czt (20)

F�;C

�
�
�
; R
�

�
=
�P� + �

2P�
R + �2P�

=
1
�
+ 1

1 + R
�2P�

> 1 (21)

Fz;C

�
�
�
; R
�
; �
�
; Q�z
+

�
=

1
�
+ �P�z

�P�

1 + R
�2P�

: (22)
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The rule parameters F�;C and Fz;C and the Lagrange multiplier (and op-
timal value function) parameters P� and P�z do not depend on the variance
covariance of normal additive shocks (Simon (1956) certainty equivalence).
They do not depend on the initial conditions of in�ation �0 and of the forc-
ing variable z0. Hence, these optimal parameters F�;C , Fz;C ; P�; P�z do not
change if the initial condition of in�ation is predetermined at the value �0
(old Keynesian optimal policy) or if in�ation is a forward variable to be op-
timally anchored at the value ��0 6= �0 (optimal policy under commitment).
Hence, old Keynesian optimal policy rule parameters F�;C , Fz;C ; P�; P�z are
identical to the ones of optimal policy under commitment. Hence, Taylor
principles de�ning sets of feasible values of the in�ation rule parameter are
the same, if in�ation is predetermined or if in�ation is forward-looking.
Optimal policy under commitment di¤ers from old Keynesian optimal

policy with respect to the initial value of in�ation, which is no longer given.
The optimal initial anchor (or jump) of in�ation on the forcing variable is
found minimizing the policy maker�s loss function, with the Lagrange multi-
plier of in�ation �0 predetermined to the value zero:

�0 = P��0 + P�zz0 = 0) ��0 = �
P�z
P�
z0: (23)

Alternatively, the value of the policy rate i�1 =
��2

R
�0 = 0 is predeter-

mined at zero at the date before the optimization. This models a structural
break of the Fed�s credible commitment to a new sequence of future interest
rates on date zero. There is no past promises to keep on the previously an-
nounced sequence of policy rate. The value of the policy rate i0 at the date
of the optimization is given by:

i0 = F�;C

�
�P�z
P�

�
z0 + Fz;Cz0: (24)

The Lagrange multiplier of in�ation is predetermined at zero at the date
t = 0 of optimization, the interest rate is predetermined at zero at the date
t = �1 before the start of the Fed�s credible commitment to a new sequence
of interest rates. Both players, including the private sector, know that the
Lagrange multiplier of in�ation (or the policy interest rate) is predetermined,
because it is the costate of a forward variable (in�ation) for which an optimal
initial anchor has to be decided using a transversality condition. The Fed is
assumed not to optimize again using t > 0 initial transversality condition,
which would break the announced sequence of interest rates at date t = 0.
On future periods, the Lagrange multiplier of in�ation is usually di¤erent
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from zero:

�t = P��t + P�zzt 6= 0) �t 6= �
P�z
P�
zt: (25)

However, the particular case of a zero interest rate at date zero and all
future dates it = 0 is obtained for Fed�s maximal inertia preference (R !
+1), with �P�z

P�
= �Fz;C

F�;C
= N 6= 0, where N is the value of the laissez-faire

jump (see laissez-faire section and appendix). In this case, the optimal jump
is identical to the laissez-faire jump, but both negative feedback policy rule
parameters are di¤erent from zero: F�;C = �N � Fz;C 6= 0. The Lagrange
multiplier of in�ation is zero at all dates, so that maximal inertia monetary
policy is always time-consistent.

�t =

�
P�

�
�P�z
P�

�
+ P�z

�
zt = 0 (26)

A representation of optimal policy under commitment dynamics is given
by the private sector law of motion (1,2), the optimal policy rule which
is the substitute of the Fed�s Euler interest rate once the in�nite horizon
transversality condition (7) has been taken into account and the optimal
initial anchor of in�ation (23):

(S�)

8>>>>>><>>>>>>:

zt = �zt�1 + "t
Et�t+1 = (1 + �)�t � �it + zt

it = F�;C�t + Fz;Czt
��0 = �P�z

P�
z0 with z0 given

�t = �P��t � P�zzt
for all dates t � 0:

, (S�)

8>>>>>>>>>>>><>>>>>>>>>>>>:

zt = �zt�1 + "t
Et(�P�1� �t+1 � P�1� P�zzt+1) =

(1 + �) (�P�1� �t � P�1� P�zzt)� �it + zt
it = �F�;CP�1� �t + (Fz;C � F�;CP�1� P�z)zt

with F� = �F�;CP�1�
with Fz;� = Fz;C � F�;CP�1� P�z

�0 = �P��0 � P�zz0 = 0 with z0 given
�t = �P�1� �t � P�1� P�zzt

for all dates t � 0:
(27)

Ljungqvist and Sargent (2012, chapter 19) begin with the system (S�)
and �nally use the mathematically equivalent system (S�) for optimal pol-
icy. They found the system (S�) after linear substitution of in�ation by
its Lagrange multiplier and the forcing variable using the linear equation
�t = �P�1� �t�P�1� P�zzt in all the equations of the system (S�). The system
of equations (S�) with a policy rule function of private sectors of private sec-
tor�s predetermined and forward variables (zt,�t) and the system of equations
(S�) with a policy rule function of predetermined variables (zt,�t) are mathe-
matically and observationally equivalent. The initial transversality condition
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�0 = �P��0 � P�zz0 = 0 with P� 6= 0 in the system (S�) is mathematically
and observationally equivalent to ��0 = �P�z

P�
z0 in the system (S�).

For the Fed, an implementable policy rule is the one described in system
(S�) because Fed�s interest rate depends on in�ation �t, for which o¢ cial
measures are available in national accounts. The rule in system (S�) is not
implementable by the Fed, because Fed�s interest rate depends on Fed�s La-
grange multiplier of in�ation, for which o¢ cial measures are not available in
national accounts. This rule has no clear interpretation because the interest
rate it depends on the Lagrange multiplier of in�ation �t, but the Lagrange
multiplier �t is also a substitute of the interest rate it (cf. equations 16).
Because of the mathematical equivalence between both systems of equa-

tions, it is impossible to prove mathematically that the representation of
the policy rule in the system (S�) cannot be implemented whereas, simul-
taneously, the representation of the policy rule in the system (S�) can be
implemented. Violating this mathematical equivalence amounts to assume
that economic agents participating to this Stackelberg dynamic game en-
dorse mathematical illiteracy.
If one intends to prove the existence of multiple initial conditions of

forward variables (sunspots) with the representation of the optimal pol-
icy rule it = F�;C�t + Fz;Czt and simultaneously the uniqueness of initial
conditions (no sunspots) with the representation of the optimal policy rule
it = F��t + Fz;�zt, one is forced to assume the following statement which
is mathematically inconsistent: "For optimal policy under commitment, the
equation ��0 = �P�1� P�zz0 should be excluded in system (S�) and the math-
ematically equivalent equation �0 = �P��0 � P�zz0 = 0 with P� invertible
should be included in the system (S�)".
Ljungqvist and Sargent (2012, chapter 19), following von zur Muehlen�s

suggestion, computed an observationally equivalent rule equation which in-
cludes a lagged dependent instrument. They use linear substitutions of the
in�ation Lagrange multiplier by a lagged interest rate and a lagged forcing
variable within the system of equations (S�) in this alternative representation
of the policy rule to be included in the system (S�) or (S�):

it = Fi(�1);Cit�1 + Fz;i(�1);Czt + Fz(�1);i(�1);Czt�1: (28)

There are three rule parameters in this representation of the rule. By
contrast, the mathematically and observationally equivalent rules in (S�)
or (S�) include only two rule parameters. This suggests an identi�cation
restriction such that the lagged interest rate rule parameter Fi(�1);C is a
function of two other rule parameters Fz;i(�1);C and Fz(�1);i(�1);C . A rise in
interest rate persistence due to an increase of the cost of changing the policy
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rate (R) leads to a non-linear decline of the "long run" policy rule parameters
F�;C and Fz;C in (S�). Simulations detail this result in the following sections.
For these reasons, we set aside this "short run" representation of the policy
rule as a function of the lagged value of the interest rate and of the lagged
value of the forcing variable.
The recursive dynamics after substitution of the optimal policy rule func-

tion of the initial conditions is given by:�
Etzt+1
Et�t+1

�
=

 
1

1��Fz;C
��(1+���F�;C)

!
�tz0

+

�
0
1

�
(1 + � � �F�;C)t

�
�P�z
P�
z0 �

1� �Fz;C
�� (1 + � � �F�;C)

z0

�
| {z }
6=0 but tends to zero when R!+1 or R!0

(29)

The optimal in�ation rule parameter F�;C

�
�
�
; R
�

�
decreases with the

monetary transmission parameter � and with the Fed�s relative weight R
on the volatility of the policy rate. When varying the Fed�s preference
0 < R < +1 for a given monetary policy transmission parameter � > 0,

the in�ation rule parameter F�;C

�
�
�
; R
�

�
varies within the following "Taylor

principle" set ]1+ 1
1+�
; 1+ 1

�
[ : the in�ation rule parameter is larger than one.

The in�ation growth factor �� is a linear decreasing function of the in�ation
rule parameter F�;C . It varies between zero (for the relative cost of changing
the interest rate tending to zero: R! 0) and the inverse of the laissez-faire
growth factor 1+� (for the relative cost of changing the interest rate tending
to in�nity: R! +1):

0 < R < +1 and � > 0) 1 +
1

1 + �
< F�;C < 1 +

1

�

) 0 < �� = 1 + � � �F�;C <
1

1 + �
< 1:

There are two stable eigenvalues � and �� = 1 + � � �F�;C . Expected
in�ation and the expected forcing variable (�t; zt) dynamics of optimal pol-
icy under commitment is a converging sink with an initial optimal anchor
(jump) of in�ation. The number of stable roots (two) for the saddle point
equilibrium of this Hamiltonian system is equal to the number (two) of prede-
termined variables: (zt; �t) or (zt; it) in the three dimensions space (�t; zt; �t)
or (�t; zt; it).
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Both players, including the private sector, know that the Lagrange mul-
tiplier of in�ation (or the policy interest rate) is predetermined, because it is
the costate of a forward variable (in�ation). The Hamiltonian system with
boundary conditions (S�) including the representation of the feedback rule
it = F�;C�t + Fz;Czt satis�es Blanchard and Kahn (1980) determinacy con-
dition. The number of stable roots (two) for the saddle point equilibrium
of this Hamiltonian system which is equal to the number (two) of predeter-
mined variables: (zt; �t) or (zt; it) in the three dimensions space (�t; zt; �t) or
(�t; zt; it).

3.2 Time Consistent Discretionary policy

Oudiz and Sachs�s (1985) time consistent discretionary policy model as-
sumes that the private sector does not believe in the policy maker�s com-
mitment. Both the private sector and the policy maker know that their best
response rules only depend on predetermined variable at all periods with
time-invariant rule parameters ND and Fz;D to be chosen:

�t = NDzt (30)

it = Fz;Dzt: (31)

Substituting the private sector�s in�ation rule (8) and policy rule (9) in
the in�ation law of motion (1) and comparing it with the forcing variable
law of motion (2) leads to the following relation between ND and Fz;D:

Etzt+1 =
1

ND
(zt + (1 + �)NDzt � �Fz;Dzt) =

�
1 + � +

1� �Fz;D
ND

�
zt = �zt

) ND = N �N�Fz;D with N =
1

�� (1 + �) : (32)

Substituting the private sector�s in�ation rule (8) and policy rule (9) in
the loss function (3) leads to the optimal program:

max
fFz ;NDg

� 1
2

�
N2
z;D + 2Q�zND +RF

2
z;D

� 1

1� ��2 z
2
0 (33)

ND = N �N�Fz;D with N =
�1

(1 + �)� � (34)
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with solutions:

0 < R < +1) (35)

0 < Fz;D =
1

�

1 + Q�z
N

1 + R
�2N2

<
1 + Q�z

N

�
(36)

�Q�z < ND = N �N
1 + Q�z

N

1 + R
�2N2

< N: (37)

Discretionary policy for all dates t > 0 has the two following representa-
tions related to two mathematically and observationally equivalent systems
of equations:

(SD;z)

8>>>><>>>>:
zt = �zt�1 + "t
�t = NDzt
ND =

1��Fz;D
��(1+�)

it = Fz;Dzt
z0 given

() (SD;�)

8>>>>><>>>>>:

�t = ��t�1 +ND"t
zt =

1
ND
�t

ND =
�1

(1+���F�;D)��

it = F�;D�t with F�;D =
Fz;D
ND

z0 given
(38)

Discretionary policy in�ation �t is exactly negatively correlated with the
auto-regressive forcing variable zt (ND < 0), with a coe¢ cient of determina-
tion equal to one. The policy rate it is exactly negatively correlated with in-
�ation �t (F�;D < 0) or exactly positively correlated with the auto-regressive
forcing variable zt (Fz;D > 0) with coe¢ cients of determination equal to one.
For the Fed, an implementable policy rule is the one described in system

(SD;�) because Fed�s interest rate it depends on in�ation �t, for which o¢ cial
measures are available in national accounts. The rule in system (SD;z) is not
implementable by the Fed, because Fed�s interest rate depends on an auto-
regressive cost�push shock zt for which o¢ cial measures are not available in
national accounts, as this residual variable zt changes with the speci�cation
of the model of the private sector.
Because of the mathematical equivalence between both systems of equa-

tions, it is impossible to prove mathematically that the representation of the
policy rule in the system (SD;�) cannot be implemented whereas, simultane-
ously, the representation of the policy rule in the system (SD;z) can be im-
plemented. Violating this mathematical equivalence amounts to assume that
economic agents participating to this Nash dynamic game endorse mathe-
matical illiteracy.
The discretionary in�ation rule parameter F�;D varies in the following

"Taylor principle set" which is strictly negative:
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0 < R < +1) 1

�N

�
� N

Q�z
� 1
�
< F�;D =

1

N

Fz;D
1� �Fz;D

< 0: (39)

The discretionary Taylor principle is such that the in�ation parameter of
discretionary policy is strictly negative when varying the Fed�s preferences
(R) for the relative cost of changing the policy rate:8>><>>:

F�;D 2 ]�1; 0[
� > 0

0 < ND < N
0 < R < +1

()

8>><>>:
��;D = 1 + � � �F�;D 2 ]1 + �;+1[

� > 0
0 < ND < N
0 < R < +1

(40)

In the time-consistent equilibrium, the eigenvalues are ordered as follows:

0 < � < 1 < 1 + � � ��;D = 1 + � � �F�;D: (41)

In the time-consistent equilibrium, a lower cost R of changing the policy
interest rate implies an increase of positive feedback with a larger in�ation
rule parameter F�;D. This increases the unstable eigenvalue ��;D and this
increases the interest rate it. This decreases in�ation through its negative
e¤ect on the slope �1

��;D�� of the eigenvectors of the stable eigenvalue �. This
slope is a negative function of the unstable eigenvalue ��;D. It is not simple
to explain these linear algebra mechanics using economic intuition. Because
of the negative correlation between the interest rate and in�ation predicted
by the model, naive researchers may be tempted to cut a long story short and
describe this operation of monetary policy as negative feedback. Such reason-
ing may face a strong charge because it involves a serious misanderstanding
of the causal logic of the system (SD;�). The in�ation rule parameter F�;D
tends to minus in�nity, in�ation �t decreases to zero:�

Etzt+1
Et�t+1

�
=

 
1
�1

(1+���F�;D)��

!
�tz0

+

�
0
1

�
(1 + � � �F�;D)t

�
1

(1 + � � �F�;D)� �
z0 + �0

�
| {z }

=0

The counter-cyclical positive feedback e¤ect of the in�ation rule parame-
ter F�;D leads to an explosive eigenvalue ��;D = 1 + � � �F�;D without any
e¤ect on equilibrium in�ation. Because the private sector�s agents do not
trust policy maker�s commitment to a sequence of future interest rates, they
force the initial in�ation jump �0 = �1

(1+���F�;D)��
z0 which is surrounded by

out-of-equilibrium explosive in�ationary or de�ationary paths.
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3.3 Simple rule

Simple rule with forward variables models assume that the private sector does
not believe in the policy maker�s commitment. The private sector policy rule
depends only on predetermined variables at all periods as in Oudiz and Sachs
(1985) discretionary policy (equation (8)):

�t = NSzt: (42)

The policy maker is myopic: she does not notice that her commitment is
not credible for the private sector. Her simple policy rule depends on forward
and predetermined variables:

it = Fz;Szt + F�;S�t: (43)

Combining private sector�s rule with policy maker�s simple rule implies
that the policy maker�s policy rule is observationally equivalent to repre-
sentations of the policy rule which depends only on a number of variables
equal to the number of predetermined variables (equal to one in this model).
The policy maker is not credible to commit to a sequence of future interest
rates modifying recursively the sequence of the expectations of in�ation. The
policy maker is not credible to expand the number of linearly independent
stationary variables in the economy using a negative feedback policy rule:

�
�t = NSzt

it = Fz;Szt + F�;S�t
()

�
�t = NSzt

it = (Fz;S + F�;SNS) zt
(44)

()
(

zt = N
�1
S �t

it =
�
Fz;S
NS

+ F�;S

�
�t:

(45)

A non-optimal simple rule equilibrium consists of equations (1,2,4,5,8,10).
The combination of the private sector�s in�ation rule as a linear function of
the forcing variable (8) and of a policy interest rule function of two variables
implies a linear identi�cation restriction on the interest policy rule, which
can be written as a function of only one variable. For the Taylor principle,
the usual practice is to consider the policy representation as a function of
in�ation (identi�cation restriction Fz;S = 0):

it = F�;S�t: (46)

There is one predetermined variable zt and two forward variables: in�a-
tion �t and the policy interest rate it. The policy rate is no longer a prede-
termined variable, as it is in optimal policy, because the initial transversality
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condition onf in�ation (equation 6) has been eliminated by the private sector
in�ation rule (equation 8).
There is one stable eigenvalue (�) related to the predetermined exogenous

forcing variable zt. Then, the second eigenvalue should be unstable 0 < � <
1 < j1 + � � �F�j according to Blanchard and Kahn�s (1980) determinacy
condition for rational expectations ad hoc linear system of equations. This
implies the following Taylor principle set:

j��;Sj = j1 + � � �F�;Sj > 1, F�;S 2]�1; 1[[]1 +
2

�
;+1[: (47)

Depending on the identifying restrictions on policy rule parameters, we
have the following representation SS;z or SS;� of the rational expectations
simple rule unique solution with the policy rule and the vector auto-regressive
of order one (VAR(1)) function of the forcing variable zt or of in�ation �t:

(SS;z)

8>>>><>>>>:
zt = �zt�1 + �""t
�t = NSzt
NS =

1��Fz;S
��(1+�)

it = Fz;szt
z0 given

() (SS;�)

8>>>>><>>>>>:

�t = ��t�1 +NS�""t
zt = N

�1
S �t

NS =
�1

(1+���F�;S)��
it = F�;S�t
z0 given.

(48)

3.4 Laissez-faire equilibrium

Laissez-faire equilibrium is a simple rule equilibrium assuming the simple
rule in�ation parameter F�;S is zero:

it = F�;S�t = 0 with F�;S = 0: (49)

The optimal laissez-faire rational expectations equilibrium path can be
written for all dates t > 0 with the two following representations related to
two mathematically and observationally equivalent systems of equations:8>>>><>>>>:

zt+1 = �zt + "t+1
�t = Nzt

N = �1
(1+�)�� < 0

it = 0
z0 given

()

8>>>><>>>>:
�t+1 = ��t +N"t+1

zt = N
�1�t

N = �1
(1+�)�� < 0

it = 0
z0 given

(50)

with the following constraint on the private sector�s in�ation rule para-
meter N :
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0 < � < 1 and � > 0) � 1
�
< N =

�1
(1 + �)� � <

�1
1 + �

< 0:

Laissez-faire in�ation �t is exactly negatively correlated with the auto-
regressive forcing variable zt (N < 0), with a coe¢ cient of determination
equal to one. The slope N (�; �) of the eigenvector of the stable exogenous
eigenvalue � parameter decreases with the auto-correlation parameter � of the
forcing variable. It increases with the (out of equilibrium) expected in�ation
growth rate � > 0. One estimates the parameter � of an AR(1) model of
in�ation and the variance of the residuals N2�2" increases with �

2
" and with

� and decreases with �. If the forcing variable zt is not observable, then one
cannot regress �t = Nzt and estimate directly the reduced form parameter
N and the structural parameter �. Then identifying �2" and � requires an
identi�cation restriction.

4 Comparison of the di¤erent models

4.1 Taylor principles

Table 1 sums up distinct Taylor principles. To have a countercyclical nega-
tive feedback in�ation Taylor rule parameter F�, two predetermined variables
are needed. Besides the forcing variable, either in�ation is predetermined or
in�ation is forward and the Lagrange multiplier of in�ation is predetermined
(alternatively the policy interest rate) for optimal policy. Optimal policy un-
der commitment is an active (or reactive) policy, with countercyclical credible
anchor and the monitoring of private sector expectations dynamics. To have
a pro-cyclical positive feedback in�ation Taylor rule parameter, only one pre-
determined variable is required. This is the case of discretionary policy and
of simple rule. Because the private sector does not believe that the policy
maker is credible for not reneging commitment, the policy maker is unable to
monitor private sector�s in�ation expectations. For this reason, a pro-cyclical
positive feedback Taylor rule parameter is a passive discretionary monetary
policy. The controllable eigenvalue �� linearly decreases with the in�ation
rule parameter: �� = 1 + � � �F�.
There is a large gap between the largest value of the in�ation rule para-

meter F� with discretionary policy (zero) to its smallest value with optimal
policy strictly larger than one: 1 + 1

1+�
. It is not feasible to have a con-

tinuous shift of the in�ation parameter F� of the policy interest rule from
time-consistent discretionary policy to optimal policy under commitment.
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Figure 1 represents the relation between the eigenvalue �� and the in�ation
rule parameter F� for each policy.
Table 1: Taylor principles

Policy Predetermined in�ation �t Forward in�ation �t

Optimal

2 predetermined: zt; �t
1 forward: it
R 2 ]0;+1[
F� 2

�
1 + 1

1+�
; 1 + 1

�

�
�� 2

�
0; 1

1+�

�
countercyclical
active policy

2 predetermined: zt; it or �t
1 forward: �t
R 2 ]0;+1[
F�;C 2

�
1 + 1

1+�
; 1 + 1

�

�
��;C 2

�
0; 1

1+�

�
countercyclical
active policy

Discretionary

2 predetermined: zt; �t
1 forward: it
R 2 ]0;+1[
F� 2

�
1 + 1

1+�
; 1 + 1

�

�
�� 2

�
0; 1

1+�

�
countercyclical
active policy

1 predetermined: zt
2 forward: �t; it
R 2 ]0;+1[
F�;D 2 ]�1; 0[ ; Fz = 0
��;D 2 ]1 + �;+1[
pro-cyclical
passive policy

Simple rule

2 predetermined: zt; �t
1 forward: it
�� 2 ]�1; 1[
F� 2

�
1; 1 + 2

�

�
countercyclical
active policy

1 predetermined: zt
2 forward: �t; it
��;S 2 ]1;+1[ [ ]�1;�1[
F�;S 2 ]�1; 1[ [

�
1 + 2

�
;+1

�
Fz;S = 0
pro-cyclical
passive policy

4.2 Simple Rule as Reduced Form of Discretionary
Policy

In table 2, numerical simulations track the relation between policy rules and
the Fed�s relative cost of changing the policy rate. A striking result is that
a simple rule may correspond to the reduced form of a discretionary policy
and allows to infer Fed�s preference parameters under certain conditions.
In the simulations, the transmission mechanism parameters correspond

to the large persistence usually found for in�ation � = 0:9 and a modest mar-
ginal e¤ect of the user cost channel of monetary policy: a rise of nominal pol-
icy rate of 1% leads to a modest fall of next period in�ation ��% = �0:1%.
The initial negative shock z0 = �10% remains in the range of assuming that
the private sector�s transmission mechanism equations (1 and 2) are a linear
approximation of non-linear models. The shock is chosen to be negative in
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order to check when the nominal interest rate crosses the zero lower bound
constraint set at �2% for a long run equilibrium in�ation target set at 2%.
More precisely, the response of in�ation is positive. The negative correlation
comes from the sign of the initial anchor of in�ation on the forcing variable
which is the sign of N = �1

(1+�)�� = �5 < 0. Then, the feedback response of
the policy rate is negative. The laissez-faire equilibrium leads to a very large
initial jump of in�ation �0 = �1

(1+�)��z0 = 50%. For example, the initial jump
could be reduced to the value �0 = 25% in setting z0 = �5% or in decreasing
the in�ation persistence � = 0:8 and in increasing the marginal e¤ect of the
policy rate on future in�ation to � = 0:2 .
The policy preference includes a zero discount rate and a discount factor

equal to one: � = 1, a relative weight of in�ation variance standardized to
one: Q�� = 1, a modest relative weight on the covariance of in�ation with
the forcing variable Q�z = 10% of the weight on in�ation variance, and the
relative weight of policy rate variance measuring Fed�s inertia varies in the
range R 2 ]0;+1[.
Table 2: Di¤erences between optimal policy, discretionary policy and

simple rule: � = 0:1, � = 0:9, � = 1, Q�� = 1, Q�z = 0:1 for an initial
negative shock z0 = �0:1.

F�;S R F�;D F�;C ��;S ��;D ��;C Fz;C
�1 ! 0 �1 11 +1 +1 0 0:99 � F�;C
�81:7 10�3 �81:7 10:09 9:267 9:267 0:091 10:8
�4:67 0:1 �4:67 3:70 1:567 1:567 0:730 9:98
�0:49 1 �0:49 2:26 1:149 1:149 0:874 9:66
�0:05 10 �0:05 1:95 1:105 1:105 0:905 9:56
0 ! +1 0 1:91 1:1 1:1 0:905 5 � F�;C
1 simple non-D - - 1 - - -
21 simple non-D - - �1 - - -
+1 simple non-D - - �1 - - -
Figure 2 plots rule parameters F�;C , F�;D, Fz;C as non-linear functions of

the relative cost of changing the policy rate R. Figure 3 plots eigenvalues
��;C and ��;D as non-linear functions of the relative cost of changing the
policy rate R.
As seen in table 1, for optimal policy under commitment, the in�ation rule

parameter is larger than one, positive and bounded F�;C 2
�
1 + 1

1+�
; 1 + 1

�

�
=

]1:91; 11[. When the cost of changing the policy rate R increases from zero to
in�nity, optimal monetary policy is less reactive: the in�ation rule parameter
decreases from 11 to 1:91. The relation between the controllable eigenvalue
and the in�ation in�ation rule parameter is �� = 1+���F�. The eigenvalue
�� increases from zero (fastest convergence) to the slowest optimal conver-
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gence with the inverse �� = 1
1+�

= 0:905 of the laissez-faire value of �� equal
to 1 + �.
For discretionary policy, the in�ation rule parameter F�;D is negative.

When the cost of changing the policy rate R increases from zero to in�nity,
the in�ation rule monetary policy increases from minus in�nity to zero. The
eigenvalue �� is always larger than one. It increases from 1 + � (laissez-faire
equilibrium) to in�nity. The eigenvalue �� has only an impact on the paths
which are out of discretionary equilibrium, with faster divergence when there
is a smaller jump of in�ation in the discretionary equilibrium.
Finally, there is always a second rule parameter for optimal policy under

commitment Fz;C which is strictly di¤erent from zero, with rule parameters
decreasing from 11 to 9:56 when the cost of changing the policy rate R
increases from zero to in�nity.
The simulation allows to revisit the comparison between optimal policy,

time-consistent policy and simple rule:
(1) For given policy transmission mechanism parameters (�,�), a given

simple rule with negative in�ation rule parameter F�;S 2 ]�1; 0[ is always
the reduced form of the rule of discretionary policy with in�ation parame-
ter F�;D with a unique Fed�s preference parameter for the relative cost of
changing the policy rate R = R (F�;S). This result holds here because the
simple rule includes a number of parameters which is equal to the number of
identi�ed parameters in a policy rule of discretionary policy, which is exactly
the number of predetermined variables.
(2) Simple rules with forward in�ation, such that their in�ation rule para-

meter is strictly positive: (F�;S 2 ]0; 1[[
�
1 + 2

�
;+1

�
) are never the reduced

form of a rule of discretionary policy (rows "simple non-D" in table 2). As
seen in table 3: F�;S 2 ]0; 1[ increases in�ation initial jump with respect to
laissez-faire, as far as doubling the initial in�ation jump. This set of simple
rule parameter values does not avoid "disasters" whereas discretionary policy
and optimal policy under commitment avoid them.
(3) Simple rules with forward in�ation are never a reduced form of an

optimal policy under commitment with counter-cyclical in�ation rule para-
meter F�;S 2

�
1 + 1

1+�
; 1 + 1

�

�
. The private sector never believes that the Fed

is credible to commit to an optimal policy. Hence, the sequence of interest
rates is based on a procyclical positive feedback simple rule.
(4) The relation between the Fed�s preference parameter for inertia (rel-

ative cost of changing the policy rate R) and the Taylor rule parameter
is highly non-linear with two asymptotes. It also depends on transmission
mechanism parameters (�,�). Announcing the Fed�s preferences and rule
parameters is useful.
These results suggest that the comparison between simple rule and time-
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consistent policy is not relevant when a simple rule corresponds to the re-
duced form of a discretionary policy rule with corresponding Fed�s preferences
parameters. This occurs under three conditions: (A) the monetary transmis-
sion channel and the Fed�s preferences parameters do not change during the
period under study, (B) the number of identi�ed parameters of a simple rule
(taking into account identi�cation restrictions) is exactly equal to the num-
ber of predetermined variables, (C) the simple rule parameters belongs to
the feasible set of rule parameters of discretionary policy when varying the
Fed�s preferences.

4.3 Conditions for a Negligible Cost of Time Inconsis-
tency

For large or small Fed�s preferences for inertia (R), in particular, for the
observed high inertia of the Fed with tiny variations of the nominal policy
rate within the range [0%,4%] during the great moderation, the cost of time-
inconsistency and, hence, the requirement of commitment are negligible (or
of a second order of magnitude) for optimal policy. Optimal policy is then
a near-time-consistent policy. A near-time-consistent optimal policy and a
time-consistent sub-optimal discretionary policy are to be chosen by policy
makers. Their key di¤erence is opposite countercyclical versus pro-cyclical
in�ation rule parameters and the size of the stable subspace of the economy.
Table 3 presents welfare, initial in�ation and policy rate values for optimal

policy under commitment, discretionary policy and simple rules, when vary-
ing the relative cost of changing the interest rate in the range R 2 ]0;+1[.
Figures represent welfare (�gure 4), initial in�ation (�gure 5) and initial in-
terest rate and zero lower bound constraints (�gure 6) as function of the
relative cost of changing the policy interest rate R.
Table 3: Optimal policy, discretionary policy and simple rule: transmis-

sion mechanism: � = 0:1, � = 0:9, Preferences: � = 1, Q�� = 1, Q�z = 0:1
for z0 = �10%.

23



F�;S R
v�D
v�LF

v�C
v�LF

��0;;D;S
��0;LF

��0;C
��0;LF

i0;D;S
z0

i0;C
z0

�1 ! 0 0 0 0 0 10 = 1
�

10 = 1
�

�81:7 10�3 0:03 0:03 0:02 0:04 9:76 8:81
�4:67 0:1 0:28 0:23 0:30 0:44 7 4:27
�0:49 1 0:78 0:70 0:80 0:82 1:96 1:26
�0:05 10 0:98 0:98 0:98 0:98 0:24 0:17
0 ! +1 1 1 1 1 0 0
1 simple - - 2 - 10 = 1

�
-

21 simple - - �0:1 - 11:05 -
+1 simple - - 0 - 10 = 1

�
-

The third and fourth column present the Fed�s loss function for commit-
ment v�C and for discretion v

�
D divided by the laissez-faire loss function v

�
LF .

An increase of the relative cost R of changing the policy interest rate im-
plies a decrease of welfare (�gure 4), an increase of initial in�ation (�gure
5) and a decrease of initial interest rate (�gure 5) for commitment and for
discretion. For intermediate values of Fed�s relative cost R of changing the
policy interest rate, welfare and initial in�ation are higher for commitment
as compared to discretion. Initial interest rate is lower for commitment as
compared to discretion. For very low or very high Fed�s inertia (R ! 0 or
R! +1), welfare and the initial values of in�ation and of the interest rate
are identical for commitment and for discretion.
The zero lower bound variations of interest rate within the range [0%,4%]

for shocks as high as 10% on the forcing variable z0 are related to values
of R larger than 1 for optimal policy and values of R larger than 5 for
discretionary policy. The zero lower bound constraint with a low long-run
in�ation target at 2% implies Fed�s preferences with a high inertia of the
policy rate. Proponents of sub-optimal time-consistent policy satisfying the
zero lower bound constraint notice that, for R larger than 5, the di¤erence
between optimal welfare and discretionary welfare is negligible (�gure 4).
Restricting very small shocks to at most 1% deviations of the forcing variable
z0 increases the range of values of interest rate and of the relative cost R of
changing the policy rate compatible with the zero lower bound constraint
(�gure 6). Considering only these tiny shocks decreases by 10 the di¤erence
between the loss function of commitment and of discretion, which remains
negligible.
The path of optimal policy under commitment evolves in a two-dimensional

stable subspace of stationary variables (�gure 8, phase diagram). The opti-
mal anchor of in�ation on the forcing variable z0 at the initial date selects
one of the stable paths in the two-dimensional stable subspace. Negative
feedback stabilizes the eigenvalue �� which can be lower than the eigenvalue
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� related to the forcing variable. In this case, after identical initial jumps of
in�ation, optimal policy accelerates the decrease of in�ation as compared to
a path constrained to remain on a straight line, declining at the rate �, in
the phase diagram and converging to the long run equilibrium, at the origin
of the phase diagram. This is re�ected in the curvature of the optimal path
in �gure 8.
Discretionary policy path evolves on a straight line, in a one-dimensional

stable subspace of stationary variables. This reduction of dimensions is due to
the Fed�s lack of credibility, so that the private sector defends itself in forcing
the Fed to use positive feedback rules. This is re�ected in the proportional
anchor of forward in�ation on the predetermined forcing variable zt at all
dates. For given Fed�s preferences, a path of time-consistent discretionary
policy is an approximation in a stable subspace of dimension one (a straight
line) of the path of optimal policy evolving in a stable subspace of dimension
two (a plane). Optimal policy declining rate is a linear combination of two
eigenvalues ��;C < � < 1. This implies a faster convergence to equilibrium
than discretionary policy declining rate which is � < 1. Discretionary policy
implies a lower initial jump of in�ation than optimal policy, knowing the
optimal policy outperforms discretionary policy during future periods. This
is shown in the impulse responses over time (�gure 7). As both paths have
to satisfy long-term �nal transversality conditions, both of them end in the
origin.
This is matched with a higher interest rate at the beginning of the period

for discretionary policy as compared to optimal policy. It is tempting to
attribute to negative feedback the negative correlation of a fall of in�ation
along with a rise of interest rate. But the underlying mechanism is based
on positive feedback, with very poor economic insight. This fall of in�ation
is explained by a smaller slope (in absolute value) of the eigenvectors of the
stable eigenvalue � < 1. This slope �1

��;D�� is equal to the inverse of the
di¤erence between the stable and the unstable eigenvalues: � < 1 < ��;D .
A decrease of in�ation corresponds to a smaller slope in absolute value. This
occurs for an increase of the unstable eigenvalue ��;D corresponding to an
increase of the positive feedback e¤ect. This positive feedback e¤ect is caused
by a decrease of the negative value of the in�ation rule parameter F�;D.
Phase diagram 9 compares old Keynesian optimal policy to optimal policy

under commitment. Both optimal policies share identical policy rule para-
meters. They di¤er with respect to initial in�ation which is predetermined
for the old Keynesian model and optimally decided using initial transversal-
ity condition for optimal policy under commitment. In phase diagram 9, for
the old Keynesian model, a predetermined in�ation is chosen arbitrarily to
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be the same value than in laissez-faire equilibrium: �0 = 50%. The optimal
initial jump allows to decrease in�ation below 50%. This increases the speed
of convergence of in�ation and increases welfare.
The initial in�ation jump �0 (�gure 10) and the eigenvalue �� (�gure 1)

are plotted as a function of the in�ation rule parameters F�. These three
variables depend on the cost of changing the policy rate R. Correlations
between the in�ation rule parameter and the in�ation initial jump have op-
posite signs for optimal policy under commitment and for time-consistent
discretionary policy.
- An increase of the in�ation rule parameter of optimal policy under

commitment from 1.9 to 11 leads to a decrease of the initial in�ation jump
from the initial value of in�ation of laissez-faire to instantaneous adjustment
of in�ation. Phase diagrams of �gures 11,12,13 also plots two of the out-
of-equilibrium paths that may be chosen by an evil agent in robust control
(Hansen and Sargent (2008) and section 5.3) with initial deviation from the
initial in�ation jump of �5%. These paths are converging faster and faster
to the optimal path when decreasing the cost of changing the policy interest
rate. This suggests an decrease of the costs of misspeci�cation chosen by an
evil agent.
- A decrease of the in�ation rule parameter of discretionary policy from

zero to minus in�nity leads to a decrease of the jump from the value of laissez-
faire to instantaneous adjustment of in�ation. Phase diagrams of �gures
14,15,16 also plots two of the out-of-equilibrium paths that may be chosen
by an evil agent in robust control (Hansen and Sargent (2008) and section
5.3) with initial deviation from the initial in�ation jump of �5%. These
paths are diverging faster and faster to the optimal path when decreasing
the cost of changing the policy interest rate. This suggests an increase of the
costs of misspeci�cation chosen by an evil agent.
- In�ation simple rule parameters between zero and one overshoot in�a-

tion up to doubling the value of the initial shock when reaching one. In�ation
simple rule parameters over 21 overshoot in�ation down with an opposite sign
of the jump with respect to Laissez-faire. This overshooting is also seen in
impulses response functions (�gure 8) and phase diagram (�gure 9).
- With old Keynesian models, there is no jump. But only a subset of

stabilizing values of the rule parameters are optimal (between 1.95 and 11),
the remaining values between 1 and 1.95 and between 11 and 21 could only be
used in simple rule old Keynesian models with in�ation as a predetermined
variable (Taylor (1999)).
- Timeless perspective assumes that the optimal jump occurred for ex-

ample 20 periods before, even if the shock z0 occurs now. This is equivalent
to consider as the current in�ation jump the value of in�ation 20 periods
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ahead. In�ation jump is minimal and very close to the long run value of
in�ation. Timeless perspective optimal policy is equivalent to optimal policy
with a very low cost R of changing the policy rate and maximal volatility
of the policy rate. In this case, optimal policy and discretionary policy are
equivalent, so time-consistency does not matter. There is no cost of reneging
commitment. A main issue is that timeless perspective may be applied to
high cost R of changing the policy rate, which is also time-consistent with
minimal volatility of the policy rate. With optimal policy under commitment,
a minimal volatility of the policy rate is not compatible with a minimal initial
jump of in�ation. With ad hoc timeless perspective hypothesis, it is possible.
Phase diagrams in �gures 17, 18, 19 is another way to visualize how the

time-inconsistency problem turn to be negligible for large or close to zero
relative cost of changing the policy interest rate. Figures 17,18,19 plot phase
diagrams of t = 0 optimal policy under commitment, t = 3 optimal policy
under commitment in the plane with in�ation and the forcing variable.
(1) For intermediate values of the cost of changing the policy rate (�gure

18),the straight line joining the optimal jump to the origin would be the path
chosen if the policy maker optimizes again at each period and if nonetheless
the private sector believes the policy maker is credible. It is de�ned as
�t = �P�zP�1� zt. This straight line is not equal to the discretionary path,
because the discretionary path leads to another value of the initial jump
�t = Nz;Dzt. A second curve corresponds to the t = 3-optimal policy. The
policy maker will anchor initially in�ation at �3 = �P�zP�1� z3 and renege
her commitment from the path of t = 0 optimal policy. After several periods,
the t = 3-optimal policy path joins the t = 0-optimal policy path.
(2) For very large of very small cost of changing the policy rate (R = 10,

�gure 17, or R = 10�3, �gure 19), t = 0 optimal policy and t = 3 optimal
policy follows nearly the same straight line, so that reneging commitment
implies negligible or second order cost of time inconsistency. The paths of
optimal policy under commitment and of discretionary policy are the same,
but their rule countercyclical versus pro-cyclical rule parameters are di¤erent.

5 Extensions

This section discusses how this paper�s methods and results may be extended
in certain areas by many researchers. The method uses comparable represen-
tations of policy rules functions of the current variables of the private sector,
chosen among the in�nite set of mathematically and observationally equiv-
alent rules of a given dynamic equilibrium. An algorithm to solve optimal
policy under commitment with mathematically and observationnaly equiva-
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lent solutions than existing algorithm can also be used (Chatelain and Ralf
(2016)). Beyond Taylor�s (1999) speci�c model, these methods and results
may be extended to any micro-founded dynamic stochastic general equilib-
rium (DSGE) model, with welfare derived from private sector�s agents�sum
of utilities, with a linear quadratic approximation.

5.1 Counter-cyclical versus Pro-cyclical Rules Para-
meters: General Case

The opposite result of countercyclical rule parameters with optimal policy
under commitment versus pro-cyclical rule parameters are not at all speci�c
to Taylor�s (1999) model. This result is at the root of the strictly larger
dimension of the invariant stable subspace of the Hamiltonian system of op-
timal policy with respect to the one of time-consistent discretionary policy.
This result also applies to any linear recursive system of the private sector
with quadratic preferences of the policy maker. This is a general result for
any linear quadratic Stackelberg game versus time-consistent Nash dynamic
game. This result applies to models with micro-foundations of the private
sector, such as the new-Keynesian model (Chatelain and Ralf (2016)). This
result applies to models with a policy maker�s quadratic loss function approx-
imated from the private sector�s non-quadratic utilities. This result applies to
policy maker�s loss function including not only in�ation but also output gap
and �nancial instability indicators, as in macro-prudential DSGE models.
Proposition: When varying policy maker�s preferences Q and R in the

sets such that Q � 0 and R > 0, the global set of policy rule parameters
FC for the representation of the rule function of current controllable pri-
vate sectors variables (case when all forcing exogenous variables are initially
set to zero) for optimal policy under commitment (with stable subspace of
dimension equal to the number of private sector�s predetermined and for-
ward variables) versus FD for discretionary policy (with stable subspace of
dimension equal to the number of private sector�s predetermined variables)
are always distinct.
Proof. This is a corollary of Wonham (1967) pole placement theorem for

a controllable system. Assuming that the pair (A;B) is controllable, there
exist a feedback matrix F such as the eigenvalues of the matrix A+BF can
be placed in arbitrary locations (Wonham (1967)). Assume there are n pre-
determined variables and m forward variables, and A is a square transition
matrix of dimension n + m. The feedback matrices FC of optimal policy
under commitment which places n +m (stable) eigenvalues in the unit disk
of the complex plane are never equal to the feedback matrices FD of dis-
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cretionary policy which places n (stable) eigenvalues in the unit disk of the
complex plane and m (unstable) eigenvalues in the unit disk complement of
the complex plane. Figure 1 is a scalar example of this result.

5.2 Multiple Taylor principle sets

The sets of values of the in�ation rule parameter (Taylor principles) with
Taylor�s (1999) model cannot be robust to changes of the private sector�s
model nor to distinct de�nitions of policy maker and private sector dynamic
game equilibra. Alternative sets of values of the in�ation rule parameter are
found for:
(1) Di¤erent private sector�s monetary policy transmission mechanisms,

in particular with opposite signs of the e¤ects of current policy instruments
on future periods policy targets.
(2) Di¤erent dynamic game equilibrium de�nitions, leading either to pro-

cyclical policy rule parameters (simple rule with forward variables, discre-
tionary policy) or countercyclical policy rule parameters (old Keynesian sim-
ple and optimal policy without forward variables, optimal policy under com-
mitment).

5.3 Robustness and the heterogeneity of beliefs

Giordani and Söderlind (2004, appendix D, proposition 1) demonstrated that
the simple rule equilibrium is not robust to misspeci�cation, using the Hansen
and Sargent (2008) de�nition of robust control. "An evil agent who is able to
commit will choose a non-stationary (ever increasing or decreasing) "non zero
deviation" in the law of motion, which makes the loss function unbounded...
The misspeci�cation feared is then a trend increase (or decrease) of in�ation"
[p.2388]. Not only the policy maker who commits to a simple rule is not
credible to monitor expectations, but also, he is "defenceless against the evil
agent" when fearing misspeci�cation of the monetary policy transmission
channel.
Another de�nition of robustness is to search for a simple instrument rule

that performs at least moderately well (avoiding disasters) in a variety of
models. But simulations using a variety of forward-looking models are al-
ways solved such that an evil agent never selects an out-of-equilibrium trend
increase of in�ation (disasters). As mentioned by Giordani and Söderlind
(2004), the alternative de�nition of robustness across a variety of existing
models may be sometimes less robust than Hansen and Sargent�s (2008)
de�nition of robust control.
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Giordani and Söderlind (2004) proposed a robust discretionary equilib-
rium. It is based on the assumption that the evil agent excludes the possibil-
ity that there are heterogeneous beliefs on the credibility of policy makers.
Matthes (2015) estimates such a proportion for the U.S. before and after
Volcker was Chairman of the Fed. If ever there is at least a small propor-
tion of private sectors� agents who believe in the credibility of the policy
maker, their in�ation rule may depend on past or future values of in�ation:
�t = NSzt�1+M�t�1. In this case, it is likely that the aggregate evil agent is
able to commit and to choose a non-stationary trend increase of in�ation. In
this case, the policy maker�s robust control response is to shift from Giordani
and Söderlind (2004) robust discretionary policy to Giordani and Söderlind
(2004) robust optimal policy under commitment.
Robust optimal control assumes that the policy maker minimizes its loss

function taking into account the worst of misspeci�cation chosen by an evil
agent (cf. advocatus diaboli in Catholic church) de�ned in a given set. Simple
rules with forward variables and discretionary equilibrium are not robust
by design and by default of policy maker�s credibility, unless the given set
of misspeci�cations chosen by an evil agent faces large restrictions. This
may explain why cautious real world policy maker are reluctant to follow
the procyclical positive feedback rule parameters argument, advocated by
academics without skin in the game.

5.4 Multiple Time-Consistent Equilibria versus Unique
Optimal Policy

In this paper, discretionary policy has a unique equilibrium because there
is no endogenous and controllable predetermined variable. As soon as there
is at least one endogenous predetermined variable (the stock of savings in-
vested in public debt) and one forward variable (in�ation) which are both
controllable by one or two instrument (interest rate and/or taxes), there are
multiple equilibria when varying policy rule parameters for simple rules and
for discretionary policy (Leeper (1991), Leeper and Leith (2016)). There are
at least two distinct eigenvalues under control of the policy makers. One
of them should be stable and the other one unstable, because there is one
predetermined variable and one forward variable.
For example, in Leeper (1991), either the "in�ation eigenvalue" is unsta-

ble and the "public debt eigenvalue" is stable or there is the �scal theory of
the price level: the "in�ation eigenvalue" is stable and the "public debt eigen-
value" is unstable. This corresponds to two distinct one-dimensional stable
subspaces related to two distinct non-collinear eigenvectors. This corresponds
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to multiple solutions of Riccati equation which also corresponds to sunspots
multiple equilibria when varying rule parameters F. If all eigenvalues are
distinct, the number of equilibria is equal to the number of combinations�
np
nc

�
of selecting np stable eigenvalues (for n predetermined variables) in

a larger set of the total number nc > np endogenous and controllable prede-
termined and forward variables (Freiling (2002), p.253, remark b).
By contrast, with optimal policy under commitment, setting aside exoge-

nous predetermined variables and their eigenvalues, the remaining number of
stable eigenvalues is exactly equal to number of the private sector�s control-
lable predetermined and forward variables. The number of equilibria is equal
to the number of combinations for selecting nc stable eigenvalue in a set of

nc potentially stable eigenvalue:
�
nc
nc

�
= 1 when varying rule parameters

F. There are no multiple equilibria à la Leeper (1991) when varying policy
rule parameters F for optimal policy under commitment. With the assump-
tions for the controllable part of the economy that policymaker�s preferences
are such that Q � 0, R > 0 and of in�nite horizon transversality condition,
Kalman (1960) demonstrated the uniqueness of the rule parameters F of the
linear quadratic regulator, for a representation of the rule which depends on
the current values of the private sector�s variables.
If there is a unique equilibrium of optimal policy under commitment at

date t = 0, there is another unique optimal equilibrium of optimal policy
under commitment for each future date t > 0. Simaan and Cruz�s (1973) and
Kydland and Prescott�s (1980) time-inconsistency corresponds to multiple
equilibria over time. When the cost of changing the policy instruments R
tends to zero or tends to in�nity, these distinct equilibria over time tend to be
all identical. Simaan and Cruz�s (1973 ) and Kydland and Prescott�s (1980)
time inconsistency tends to be a second order or negligible issue.

5.5 Optimal Policy Requires Identi�cation Restrictions
of Autoregressive Components of Shocks

Optimal policy under commitment and discretionary policy under commit-
ment have often been estimated (see Matthes (2015) for the most recent es-
timates). Both policies di¤er with respect to the identi�cation and the parsi-
mony of assumptions of auto-regressive moving average (ARMA) components
in shocks added for estimating DSGE models. The number of endogenous
stationary variables is equal to the number of predetermined variables in dis-
cretionary policy and simple rule. It is equal to the number of predetermined
and forward variables in optimal policy under commitment. This increases
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the dimension of the minimal size vector auto-regressive (VAR) component
of the rational expectations system to estimate.
With optimal policy under commitment, it is necessary to add identi�-

cation restrictions on auto-regressive components in shocks for each of the
forward variables. The number of variables with a recursive relation is equal
to the number of variables which are all stationary. For example, expected
in�ation depends on lagged in�ation and other variables, because of the Fed�s
credible commitment to a sequence of interest rate. The lagged dependent
variable (in�ation) and the auto-regressive component in the cost-push shock
face an identi�cation issue, as they both intend to �t persistence of the in�a-
tion time series. This identi�cation issue is identical to the one put forward
on the estimation of Taylor rules by Feve, Matheron and Poilly (2007). It is
an option to restrict the auto-regressive component of shocks to be equal to
zero.
Discretionary policy and simple rule with forward variables models pre-

dict that there is a smaller number of linearly independent time series (equal
to the number of predetermined variables) than the observed number of time
series. Perfect linear correlations of forward prices and �ows of quantities
with endogenous predetermined stocks (wealth, capital, debt) are unlikely.
Auto-regressive and moving average exogenous components are added in
shocks for each of the forward variables in order to �t the data while saving
the theoretical model from being rejected by statistical tests of goodness of
�t. It is no longer an option to restrict the auto-regressive component of
shocks to be equal to zero.
Finally, both commitment and discretionary policy predict that all macro-

economic time series involved in the model are stationary. U.S. in�ation from
1973 to 1980, U.S. housing prices from 2001 to 2007, U.S. public debt over
GDP ratio from 1980 to now were likely to be non-stationary.

6 Conclusion

The main results of this paper are:
(1) There are distinct Taylor principles for optimal policy under commit-

ment with negative feedback policy rule parameters and discretionary policy
with positive feedback policy rule parameters.
(2) Time-inconsistency turns to be a negligible issue when Central Banks�

preferences imply a low volatility of policy instruments.
(3) Under certain conditions, a simple rule corresponds to the reduced

form of a discretionary policy for the corresponding policy maker�s prefer-
ences.
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Although the paths of both policies and hence the welfare are nearly identi-
cal for very inertial or very reactive interest rate volatility of the Central Bank
(large or negligible relative cost of changing the interest rate with respect to
the cost of deviating from in�ation target), the policy rule recommendations
are the opposite: pro-cyclical rule parameters with discretionary policy and
counter-cyclical rule parameters with optimal policy under commitment.
These results stimulate further research for �nding distinct sets of policy

rule parameters functions of the private sector�s variables for optimal pol-
icy under commitment and for discretionary policy for any DSGE model of
the private sector, for the evaluation of the costs of time-inconsistency, and
for comparing the policy recommandations of simple-rule, discretionary and
optimal policy.
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7 Appendix: Augmented Linear Quadratic
Regulator

For the augmented discounted quadratic regulator, write the system in matrix
form:

�
zt+1
�t+1

�
=

�
� 0
1 1 + �

��
zt
�t

�
+

�
0
��

�
it +

�
�"
0

�
"t (51)

To match Anderson et al. (1996) notations, de�ne elements of matrices
A and B as:

�
� 0
1 1 + �

�
=

�
Azz 0
A�z A��

�
;

�
0
B�

�
=

�
0
��

�
(52)

Azz = �;A�z = 1; A�� = 1 + �;B� = �� (53)
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In section 3, optimal rule parameters F� and Fz and weights P� and Pz
of the optimal value of the loss function are found using linear substitutions
in the Hamiltonian system (Anderson et al. (1996)) leading to there formulas
for the augmented linear quadratic regulator (we assume � = 1):

P� = Q�� + �A
0

��P�A�� � �A
0

��P�B�

�
R+ �B

0

�P�B�

��1
�B

0

�P�A��

(54)

F�;C =
�
R+ �B

0

�P�B�

��1
�B

0

�P�A�� (55)

Pz = Q�z + � (A�� +B�F�;C)
0P�A�z + � (A�� +B�F�;C)

0PzAzz (56)

Fz;C =
�
R+ �B

0

�P�B�

��1
�B

0

� (P�A�� +PzAzz) (57)

In what follows, it is shown that the Hamiltonian system includes a stable
subspace of dimension 2 in a three dimension space de�ned by the three
variables (zt; �t; �t). The Fed�s Lagrangian system includes stationary auto-
regressive forcing shock law of motion, expected in�ation law of motion (the
two equations describing the private sector) and the �rst order condition on
Fed�s interest rate (or on Fed�s Lagrange multiplier on in�ation) linking its
current optimal value to its next period optimal value (the Euler equation of
Fed�s interest rate):

0@ 1 0 0

0 1 � �
2

R

0 0 � (1 + �)

1A0@ zt+1
�t+1
�t+1

1A =

0@ � 0 0
1 1 + � 0

�Q�z �1 1

1A0@ zt
�t
�t

1A)

0@ zt+1
�t+1
�t+1

1A =

0B@ � 0 0

1 + �2

R(1+�)
Q�z 1 + � + �2

R(1+�)
� �2

R(1+�)

� 1
�(1+�)

Q�z � 1
�(1+�)

1
�(1+�)

1CA
| {z }

=Ma

0@ zt
�t
�t

1A

Using the in�nite horizon transversality conditions, the relevant solution
is the one that stabilizes the state-costate vector for any initialization of in-
�ation �0 and of the exogenous shock z0 in a stable subspace of dimension
two within a space of dimension three (�t; �t; zt) of the Lagrange system (An-
derson et al. (1996)). We seek a characterization of the Lagrange multiplier
�t on in�ation minimizing the optimal value function v(�t; zt) at all date t
of the form:
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v(�t; zt) = �
1

2

�
P��

2
t + 2P�z�tzt

�
with P� 6= 0 (58)

@v(�t; zt)

@�t
= �P��t � P�zzt = �t (59)

such that the resulting sequence (zt; �t; �t) is in the stable subspace of the
augmented matrixMa. When the forcing sequence is initialized at zero z0 =
0, the matrix P� is such that all vectors of the stable subspace of the matrixM
related to the controllable part of the system can be represented as (�t; P��t)
. First, consider the solution when the forcing sequence is initialized at zero
z0 = 0 in order to �nd the policy instrument optimal response parameter F�
to the endogenous variable. Second, compute the policy instrument optimal
response parameter Fz to the non-controllable forcing variable. For the �rst
step, the optimal system is not augmented:�

�t+1
�t+1

�
=

 
1 + � + �2

R(1+�)
� �2

R(1+�)

� 1
�(1+�)

1
�(1+�)

!
| {z }

=M

�
�t
�t

�

The Fed�s Lagrange system includes one eigenvalue �1 with absolute value
below one and the other eigenvalue is such that �2 = 1=�1 because the matrix
M is symplectic (Anderson et al. (1996)). The Jordan transform and the
transversality condition at the �nal date leads to Blanchard and Kahn�s
(1980) unique stable solution (P��11 is the slope of the eigenvectors of the
unstable eigenvalue 1=�1):�

�t+1
�t+1

�
=

�
1
P�

�
�t1

 
�0 � P��11 �0
P� � P��11

!
+

�
1
P��11

�
��t1

 
P��0 � �0
P� � P��11

!
(60)

lim
t!+1

�t+1�t+1 = 0, transversality condition for t! +1. (61)�
�t+1
�t+1

�
=

�
1
P�

�
(1 + � � �F�)t �0 with �t = P��t for all t 2 N.

The policy maker�s transversality condition at the �nal date (in�nite hori-
zon) rules out diverging paths driven by the unstable eigenvalue ��11 . Hence,
the optimal path is of dimension one, driven by converging powers of the
unique stable eigenvalue �t1, along the stable arm of the two dimensions sad-
dle point equilibrium.
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Finally, one obtains stable dynamics function of initial conditions with
the representation using these two private sector�s variables (zt; �t) among
the set of three variables (zt; �t; it) or (zt; �t; �t):�
Etzt+1
Et�t+1

�
=

��
� 0
1 1 + �

�
+

�
0
��

��
F �z F ��

��� zt
�t

�
(62)�
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E�t+1

�
=

�
� 0

1� �F �z 1 + � � �F ��

��
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�t

�
(63)�
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1 0
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1
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� 0
0 1 + � � �F ��

� 
1 0

� 1��F �z
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1

!�
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�t

�
(64)�

Etzt+1
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�
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1 0

1��F �z
��(1+���F �� )

1

!�
�t 0

0 (1 + � � �F �� )
t

� 
1 0

� 1��F �z
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1

!�
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�
(65)�

Etzt+1
Et�t+1

�
=

 
1

1��F �z
��(1+���F �� )

!
�tz0 +

�
0
1

�
(1 + � � �F �� )

t

�
� 1� �F �z
�� (1 + � � �F �� )

z0 + �0

�
(66)

Properties of Fed�s Maximal Inertia (minimum energy optimal
control in linear quadratic framework):
It corresponds to a relative cost of changing the interest rate tending to

in�nity, which is equivalent to set the weight of the variance of in�ation and
of the covariance of in�ation with the forcing variable to zero (Q = 0) and
set R = 1 (or any strictly positive value R > 0):

L = �
+1X
t=0

�t
�

i2t
+2��t+1 [(1 + �)�t + zt � �it � �t+1]

�
(67)

The �rst order conditions are with respect to the Fed�s target (forward
in�ation �t+1) is decoupled from in�ation and with respect to the Fed�s in-
strument (policy interest rate it):

@L
@�t

= 0) � (1 + �)�t+1 = �t (68)

@L
@it

= 0) � (��)�t+1 = �it (69)

The Fed�s interest rate Euler equation links recursively the future value
of Fed�s interest rate to its current value, because of the Fed�s relative costs
of changing interest rate R = 1 in its loss function:
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@L
@�t

= 0)
�
1 +

1

�

�
it =

1

��
it�1 (70)

The Hamiltonian system and its boundary conditions can be alternatively
written the Euler equation including the policy rate or with the Euler equa-
tion with the Lagrange multiplier on in�ation (setting � = 1):

8>>>>>>>><>>>>>>>>:

zt = �zt�1 + "t
Et�t+1 = (1 + �)�t � �it + zt
it =

1
�(1+�)

it�1 =
�

1
�(1+�)

�t
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�t+1 =
1
��
it

0 = lim
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�t�t
@L�

@�0
= 0 = �0 and z0 given

,

8>>>>>>>><>>>>>>>>:

zt = �zt�1 + "t
Et�t+1 = (1 + �)�t � ��2

R
�t+1 + zt

�t+1 =
1

�(1+�)
�t =

�
1

�(1+�)

�t+1
�0

it = ���t+1
0 = lim

t!+1
�t�t

@L�

@�0
= 0 = �0 and z0 given

(71)
Because of the initial transversality condition and because the Lagrange

multiplier is decoupled from in�ation and the forcing variable, �t = 0 = it at
all dates. For zt = 0 and setting � = 1, one has:�

�t+1
�t+1

�
=

�
1 + � � �2

1+�

0 1
1+�

�
| {z }

=M

�
�t
�t

�

There is one stable eigenvalue 1
1+�

and one unstable eigenvalue 1 + � in
M. The eigenvalues 1

1+�
and � and related eigenvectors are kept to de�ne

the stable subspace after control. For the representation of the dynamics in
the stable subspace using in�ation and forcing variable as basis vectors (62),
the resulting eigenvalue �� = 1 + � � �F�;C after control is equal to 1

1+�
.

lim
R!+1

�� =
1

1 + �
= lim

R!+1
1 + � � �F�;C (72)

First, this implies that the rule parameter is above one and tends to:

lim
R!+1

F� = 1 +
1

1 + �

Second, this implies that the optimal jump is equal to laissez-faire jump
(remind that Q�z = 0 for maximal inertia):

lim
R!+1

�P�z
P�

=
1

�� 1
1+���F�

=
1

�� (1 + �) = N (73)

39



Third, this implies again that the initial interest rate is zero, because
the optimal jump is equal to Laissez-faire jump (where i0 = 0), this implies
that the initial interest rate is equal to zero (this was noticed from Fed�s
Euler equation and the initial transversality condition). This implies that
the forcing variable rule parameter is equal to the opposite of the Laissez-
faire jump times the in�ation rule parameter:

i0 =

�
F�;C

�
�P�z
P�

�
+ Fz;C

�
z0 = 0 )

�Fz;C
F�;C

=
�P�z
P�

= N )

Fz;C = �NF�;C (74)

Fourth, one checks that the Lagrange multiplier of in�ation is zero at all
dates, so that maximal inertia monetary policy is always time-consistent.

�t =

�
P�

�
�P�z
P�

�
+ P�z

�
zt = 0 � zt = 0 (75)

40



Figure 1: “Inflation” eigenvalue (vertical axis) function of inflation rule parameter (horizontal axis). 

 

Figure 2: Optimal and discretionary policy rule parameters function of the relative cost of changing policy rate R 

 

Figure 3: Optimal and discretionary eigenvalue function of the relative cost of changing policy rate R 
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Figure 4: Welfare gains in percentage of laissez-faire welfare as a function of the relative cost of changing policy rate R: 

 

Figure 5: Initial inflation jump function / laissez faire jump, function of the relative cost of changing policy interest rate R 

 

Figure 6: Initial interest rate/initial forcing variable function of the relative cost of changing policy interest rate R 
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Figure 7: Inflation (vertical axis) impulse response function after -10% shock on forcing variable (time: horizontal axis). 

 

Figure 8: Phase diagrams: inflation (vertical axis) after -10% shock on forcing variable (horizontal axis). 

 

Figure 9: Inflation function of forcing variable: old Keynesian initial predetermined inflation 50% vs Commitment optimal 

jump of initial inflation for different relative cost of changing the policy rate R. 
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Figure 10: Initial inflation jump π0 function of the inflation rule parameter Fπ 
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Optimal policy: Expected inflation πt (vertical axis) following a -10% autoregressive (0.9) shock zt (horizontal axis). 

Figure 11. Maximal cost of changing interest rate R=10. Rule: inflation Fπ=1.95, shock: Fz= 9.56, Initial inflation π0= 0.49. 

 

Figure 12 Moderate cost of changing interest rate R=0.1. Rule: inflation Fπ= 3.7, shock: Fz= 9;98. Initial inflation π0= 0.21. 

 

Figure 13 Negligible cost of changing interest rate R=0.001. Rule: inflation Fπ=10.09, shock: Fz= 10.8. Initial inflation 0.02. 
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Discretionary policy: Expected inflation (vertical axis), -10% shock with autoregressive (0.9) shock (horizontal axis),  

Figure 14. Very large cost R=10. Rule: inflation Fπ,D=-0.05, shock: Fz,D= 0. Initial inflation 0.49. 

 

Figure 15. Moderate cost R=0.1. Rule: inflation Fπ,D=-4.7, shock: Fz,D= 0. Initial inflation 0.15. 

 

Figure 16. Negligible cost R=0.001. Rule: inflation Fπ,D=-81.7, shock: Fz,D= 0. Initial inflation 0.012. 
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Optimal policy: Expected inflation πt (vertical axis) following a -10% autoregressive (0.9) shock zt (horizontal axis). 

Figure 17. Maximal cost of changing interest rate R=10. Rule: inflation Fπ=1.95, shock: Fz= 9.56, Initial inflation π0= 0.49. 

 

Figure 18 Moderate cost of changing interest rate R=0.1. Rule: inflation Fπ= 3.7, shock: Fz= 9;98. Initial inflation π0= 0.21. 

 

Figure 19 Negligible cost of changing interest rate R=0.001 Rule: inflation Fπ=10.09, shock: Fz= 10.8. Initial inflation 0.02. 
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