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1 Introduction

Time variation in second and higher-order moments is an important phenomenon for as-

sessing (tail) risk, constructing hedge strategies, and pricing assets. Exponentially Weighted

Moving Average (EWMA) methods have proved to be useful tools to capture such time vari-

ation in a parsimonious and effective way. Here, we develop a new empirical methodology

to extend and improve upon the standard EWMA approach. Our framework exploits the

higher-moment properties of the forecasting distribution to drive the dynamics of volatilities

and other time-varying parameters. By doing so, the new method is robust to outliers if

a non-normal forecasting distribution is used, which is typically the case when forecasting

financial asset returns. The new method is easy to implement and remains close in spirit to

the highly familiar EWMA approach of RiskMetricsTM.

The score-driven EWMA (SD-EWMA) model we propose builds on a new observation

driven methodology, namely the generalized autoregressive score (GAS) dynamics; see Creal

et al. (2011), Creal et al. (2013) and Harvey (2013). In particular, we consider an integrated

version of the score-driven dynamics. The analogy is simple: just as the standard EWMA

approach is a special case of the IGARCH(1,1) model of Engle (1982) and Bollerslev (1986),

the proposed SD-EWMA approach is a special cases of the IGAS(1,1) model of Creal et al.

(2013). Its key feature is that the time-varying parameter dynamics are driven by the

score of the forecasting distribution. Empirical evidence for the usefulness of score driven

dynamics is provided in for example Creal et al. (2014), Lucas et al. (2014), and Harvey and

Luati (2014), while Blasques et al. (2015) demonstrate the information-theoretic optimality

properties of score-driven updates.

The intuition for using the score is straightforward. As an example, consider forecasting a

time-varying variance of a fat-tailed distribution. If one uses the standard EWMA approach,

a large absolute return has a major impact on next period’s estimated variance due to the

use of squared returns in the variance updating equation. Given the integrated nature of the
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EWMA dynamics, this impact affects a large number of subsequent volatility estimates. If

one accounts for the fat-tailedness of the return distribution using a score-driven propagation

mechanism for the variances, the impact of incidental tail observations is substantially mit-

igated. This mitigation or robustifying mechanism is particularly important in our current

context with integrated (infinite memory) dynamics.

Our methodology is computationally simple and remains close in spirit to the standard

EWMA approach. We also show that the SD-EWMA approach encompasses other proposals

from the literature to model time-varying parameters, such as the normal based standard

EWMA, the robust EWMA of Guermat and Harris (2002) based on the Laplace distribution,

and the skewed EWMA of Gerlach et al. (2013) based on the asymmetric Laplace distribu-

tion. Given that we are interested in modeling the time variation in financial risk measures,

we explicitly develop an SD-EWMA model based on the fat-tailed skewed Student’s t distri-

bution; see for example Poon and Granger (2003) for stylized facts about financial returns.

It is clear, however, that the modeler can easily substitute his/her own favorite forecasting

distribution instead, such as the normal inverse Gaussian (NIG) or the generalized hyperbolic

(GH) distribution. We illustrate this by also making the skewness and degrees of freedom

parameter of a skewed Student’s t forecasting distribution time-varying.

We apply our approach to forecasting Value-at-Risk (VaR) for individual stock returns

and foreign exchange rate returns. It turns out that the (skewed) Student’s t based SD-

EWMA schemes work better for most of the series considered. All SD-EWMA methods

improve uniformly on the normal based EWMA method. We show that both the shape

of the conditional distribution and the score-driven updates can be helpful to improve the

value-at-risk forecasting performance.

Compared to previous methods, such as Jensen and Lunde (2001) and Wilhelmsson

(2009), the SD-EWMA approach has the distinct advantage that it provides a unifying

framework that embeds previous proposals from the literature, such as Guermat and Harris
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(2002) and Gerlach et al. (2013). In addition, the generality of the SD-EWMA approach

also allows for a straightforward generalization to higher dimensions, estimating score-driven

versions of both volatilities, covariances and correlations, and other higher-order moments.

The remainder of the paper is set up as follows. In Section 2, we introduce the basic

methodology and convey the main intuition using the Student’s t distribution as a leading

example. Next, we extend the framework to forecasting distributions with time varying

skewness and/or kurtosis. In Section 3, we briefly review the tests used in our forecasting

experiment to assess the performance of quantile forecasts. In Section 4, we provide our

empirical application to Value-at-Risk forecasting. Section 5 concludes.

2 Score Driven Exponentially Weighted Moving Aver-

ages

2.1 Standard Gaussian EWMA approach

Consider a time series yt ∈ R observed over the sample period t = 1, . . . , T . In our setting,

yt typically holds financial returns, such as stock returns or foreign exchange rate returns.

We assume that yt has a time-varying conditional distribution p(yt|Ft−1; ft, θ), where Ft−1

is the information set available at time t−1, ft is a vector of time-varying parameters, and θ

is a vector of static parameters. For example, Ft−1 may include lags of yt and of exogenous

variables, and ft may include time-varying means and/or volatilities, while θ may hold the

remaining parameters characterizing the distribution, such as skewness and excess kurtosis

parameters.

The standard RiskMetricsTM approach sets ft = σ2
t and uses the exponentially weighted

moving average (EWMA) scheme

σ2
t+1 = λσ2

t + (1− λ)y2t , 0 < λ < 1. (1)
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The EWMA scheme in (1) corresponds to a zero-intercept IGARCH model,

σ2
t+1 = ω + αy2t + βσ2

t = ω + α(y2t − σ2
t ) + (α + β)σ2

t , (2)

with ω = 0, β = λ, and α = 1−β, such that α+β = 1. The volatility is thus a weighted sum

of past squared observations. In particular the term (y2t − σ2
t ) is directly proportional to the

score of the normal distribution with respect to σ2
t . If the observations yt are conditionally

fat-tailed, using squared observations in (2) may not be optimal as large realizations of

yt may occur regularly even if the variance has not changed substantially. If not properly

accounted for, such large realizations may bias the estimates of the true underlying volatility.

Due to the long memory of the integrated GARCH model (2), the bias may persist for a

long time and affect a large number of subsequent volatility estimates.

2.2 Score Driven EWMA

To account for the shape of the conditional forecasting distribution in constructing an EWMA

scheme, we use the generalized autoregressive score (GAS) framework of Creal et al. (2011)

and Creal et al. (2013), see also Harvey (2013). Blasques et al. (2015) show that updating the

time-varying parameters by the score of the forecasting distribution always locally improves

the Kullback-Leibler divergence between the model and the true, unknown data generating

process. The GAS(1,1) dynamics for the time-varying parameter ft are given by

ft+1 = ω + Ast +Bft, st = St · ∂`t/∂ft, `t = lnp(yt|Ft−1; ft, θ), (3)

where St = S(ft,Ft−1; θ) is an Ft−1-measurable scaling function. Note that the scaled score

st is a function of yt, ft, and Ft−1. The time-varying parameter ft as specified in (3) is

thus observation driven in the classification of Cox (1981). More complicated dynamics

than the ones specified in equation (3) can be added to the specification; see for example
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Janus et al. (2011) for fractionally integrated dynamics, Creal et al. (2013) for higher-order

dynamics, and Harvey and Luati (2014) for higher order dynamics as well as structural time

series dynamics. For our current purposes, however, the GAS(1,1) dynamics suffice. For

the scaling matrix St, we propose the inverse diagonal of the Fisher conditional information

matrix,

St = diag(It|t−1)−1 = diag (Et−1 [ (`t/∂ft) (`t/∂ft)
′ ])
−1
.

This form of scaling accounts for the local curvature of each of the score elements and embeds

the standard GARCH dynamics as a special case; see Creal et al. (2013) for more details.

In contrast to Creal et al. (2013) we use only the diagonal (rather than the full) information

matrix for scaling. The advantage of this is that each parameter only feeds directly on its

own score, rather than on a mix of scores for different parameters. This may be an advantage

in the current EWMA setting, where parameter dynamics are typically considered parameter

by parameter. We also found that a diagonal scaling matrix increases the stability of the

EWMA procedure, particularly if we consider time-varying volatility, skewness, and degrees

of freedom parameters jointly, for instance in the case of our skewed Student’s t distribution.

Scaling by the inverse (diagonal) information matrix enables us to construct a Score

Driven EWMA (SD-EWMA) scheme by building on the analogy of the EWMA scheme in

equation (1) and the IGARCH specification in (2). In particular, similar to (2) our SD-

EWMA uses the integrated GAS dynamics

ft+1 = Ast + ft, (4)

also labeled a Newton score step in Blasques et al. (2015). This corresponds to an inte-

grated GAS specification by setting ω = 0 and B = 1 in equation (3). For example, if

p(yt|Ft−1; ft, θ) is the Gaussian distribution with zero mean and variance ft = σ2
t , Creal

et al. (2013) show that (4) reduces precisely to the standard EWMA scheme in (1) if we set

5



A = 1− λ.

There is, however, no particular need to restrict oneself to the normal distribution. As it

is well established that financial returns are typically fat-tailed, it makes much more sense

to use an SD-EWMA scheme based upon a fat-tailed distribution. In this paper we follow

Creal et al. (2011), Creal et al. (2013) and Harvey (2013) and use the Student’s t (and later

also the skewed Student’s t) distribution with ν degrees of freedom,

p(yt|Ft−1; ft, θ) =
Γ(ν+1

2
)

Γ(ν
2
)
√

(ν − 2)πσ2
t

(
1 +

y2t
(ν − 2)σ2

t

)− ν+1
2

, (5)

with ft = σ2
t and θ = ν > 2. The corresponding SD-EWMA scheme is given by

σ2
t+1 = σ2

t +A · (1+3ν−1) ·
(

ν + 1

ν − 2 + y2t /ft
· y2t − ft

)
= (1−λ)σ2

t +λ · ν + 1

ν − 2 + y2t /ft
·y2t , (6)

with λ = A·(1+3ν−1). One can either fix ν at a predetermined value such as 5 for robustness

purposes, or estimate it using an initial estimation sample.

As discussed in Creal et al. (2013) and Harvey (2013), the weight factor in front of y2t

in equation (6) has a robustifying effect on the volatility dynamics. If yt lies in the tails of

the conditional distribution at time t, the volatility is increased, but not by the full y2t . Part

of the effect is attributed to the fat-tailedness of the Student’s t distribution as can be seen

from the division by (ν − 2 + y2t /σ
2
t ). As the SD-EWMA scheme has the same integrated

dynamics as the original EWMA scheme, a more robust estimate of the volatility at time t

has a persistent effect on subsequent volatility estimates as well.

Though the SD-EWMA approach adapts itself to any parametric distribution, there is

a trade-off to be considered. If the conditional distribution depends on more parameters

than the time-varying parameter ft only, e.g., the degrees of freedom parameter ν, these

parameters need to be estimated before the SD-EWMA scheme can be operationalized. An

attractive feature of the EWMA approach for volatility filtering and forecasting is precisely
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that no off-line estimation is needed. One way to achieve this is to estimate the auxiliary

parameters on an estimation sample and to update them only infrequently. For the Student’s

t SD-EWMA scheme this approach works well and better than a number of competing

schemes for a range of foreign exchange rate and stock returns; see the application in Section

4. For other distributions, however, more care may be needed.

2.3 The Skewed Student’s t distribution with time varying higher-

order moments

We note the flexibility of the SD-EWMA approach to account for other dynamic parameters

beyond the volatility context. For example, the model can easily be extended to handle both

volatilities and covariances, or volatilities and correlations, using the recursions in Creal et al.

(2011) and the integrated GAS(1,1) specification in (4). In addition, the approach can be

further generalized to handle time variation in higher-order moments, such as skewness and

kurtosis, by putting the appropriate parameters into ft rather than θ. An example that we

use in our subsequent empirical analysis is a new SD-EWMA model with a time-varying

degrees of freedom parameter. For this, consider the likelihood in equation (5) and set

f ′t = (f1,t, f2,t) with σ2
t = f1,t and νt = 2 + exp(f2,t). Using inverse Fisher information

scaling, we obtain the following recursion for νt,

f2,t+1 = f2,t − Aν
2

νt − 2

[
γ′′
(
νt + 1

2

)
− γ′′

(νt
2

)
+

2(νt + 4)(νt − 3)

(νt + 1)(νt + 3)(νt − 2)2

]−1
[
γ′
(
νt + 1

2

)
− γ′

(νt
2

)
− 1

νt − 2
− ln

(
1 +

y2t
(νt − 2)σ2

t

)

+
νt + 1

νt − 2
· y2t

(νt − 2)σ2
t + y2t

]
, (7)

where Aν > 0 is a scalar tuning parameter similar to the parameter A used for the volatility

dynamics in (6), and γ′(·) and γ′′(·) are the first and second order derivatives of γ(·) = ln Γ(·).
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The derivation of this result follows by using results in for example Gómez et al. (2007),

accounting for the fact that we model the variance of the Student’s t distribution, rather

than the scale parameter; see the online appendix for further details. The reparameterization

νt = 2 + exp(f2,t) automatically ensures that the degrees of freedom parameter νt is always

larger than 2, such that the variance of the Student’s t distribution always exists. The score

based recursions automatically account for this reparameterization via the chain rule used

in the score calculations.

Though the shape of the recursion for νt in (7) may look complicated at first sight, it is

actually easy to implement. Interestingly, it does not directly use fourth order moments as

one may have expected for the dynamics of a tail-shape parameter. Rather, it only uses a

logarithmic moment, combined with the explicit information embedded in the tail shape of

the Student’s t distribution. An advantage of using the recursion in (7) is that it typically

results in a much more stable path of the degrees of freedom parameter. Fourth order

moments of the data, by contrast, are notoriously unstable. The composition of squared data

and the gamma functions and their derivatives in (7) circumvent this problem of instability.

We provide some typical shapes of the news impact curves related to equation (7) for several

values of νt in Figure 1. The curves are re-centered and re-scaled to be comparable within

one figure. We also plot a fourth order polynomial −z4t as a benchmark.

Figure 1 shows that large values of |zt| result in a downward adjustment of νt+1 for

all curves considered. This is intuitive, as large values of |zt| can be associated with tails

being fat. The decline in (7) for large values of zt is comparable for different values of νt.

Interestingly, the sensitivity of the GAS based news impact curves for νt+1 is much lower

than that of the fourth order polynomial curve −z4t . This provides the SD-EWMA recursion

for νt with its robustness feature. Also note that for fatter tailed distributions such as

νt = 3, values zt near zero also result in smaller values of νt+1. This is a consequence of

the fact that fat-tails for the Student’s t distribution go hand in hand with leptokurtosis,
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Figure 1: News impact curves for the time-varying degrees of freedom recursion

Scaled and recentered news impact curves (7) as a function of zt = y2
t /((νt − 2)σ2

t ) for different values of
νt. The (rescaled and recentered) curve of fourth order powers −z4

t is also shown as a benchmark.

i.e., ‘peaked-ness’ at the center of the distribution. The less leptokurtic the distribution,

the smaller the downward effect of observations near zero compared to near, say, −1 or −2.

The informativeness of observations in the center compared to tail observations only really

becomes clear if the distribution is already fat-tailed, i.e., if νt is low. For higher values of

νt, downward signals for νt+1 predominantly must come from tail observations.

We note that the smoothing parameter Aν for the νt recursion is typically smaller than

that of the volatility recursion. Starting values for the estimation of Aν for empirical data in

the range of 0.001 work quite well. The low values of Aν underline the stable path dynamics

for νt described by (7). We show in Section 4 that allowing for a time-varying degrees of

freedom parameter helps to further improve the accuracy of tail probability estimates for

fat-tailed data.

Finally, the SD-EWMA also allows us to combine time-varying skewness and kurtosis, if

so desired. One way forward is to use the skewed Student’s t distribution with associated

score and information matrix expressions as derived in for example Gómez et al. (2007) and
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discussed in the score-driven setting by Harvey (2013). The density of the skewed Student’s

t distribution is given by

p(yt|Ft−1; ft, θ) =
Γ(νt+1

2
)

Γ(νt
2

)
√

(νt − 2)πσ̄2
t

(
1 +

y2t
(1− ε · sign(yt − µ̄t))(νt − 2)σ̄2

t

)− νt+1
2

, (8)

where −1 < εt < 1 is the skewness parameter, and µ̄t and σ̄t are the location and scale

parameter, respectively. We can use the expressions for the mean µt and variance σ2
t of

yt as given in Gómez et al. (2007) to model the mean and time-varying variance rather

than the location m̄t and time-varying scale σ̄t. The precise equations are presented in the

online appendix to this paper. The skewed Student’s t model also allows us to illustrate

the flexibility of the SD-EWMA approach to parameterize the model in such a way as to

ensure proper parameter values for all values of ft. For example, to ensure positive σ2
t ,

−1 < εt < 1, and 2 < νt < 100, we can for instance choose σ2
t = exp(f1,t), εt = tanh(f2,t),

and νt = 51 + 49 tanh(f3,t). This reparameterization only causes slightly more involved

expressions for the score, but leaves the rest of the SD-EWMA procedure untouched. Further

details can be found in the online appendix.

2.4 Extensions: other forecasting distributions

Interestingly, the SD-EWMA approach also encompasses previous adaptations of the EWMA

scheme proposed in the literature. For example, Guermat and Harris (2002) introduce a

robust-EWMA scheme

σt+1 = λσt + (1− λ)
√

2|yt|, (9)

which is driven by absolute rather than squared observations. The authors relate their model

to the GARCH type models of Taylor (1986) and Schwert (1990). However, (9) can also be

seen as a special case of the SD-EWMA scheme in (4). To see this, consider the Laplace
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density

p(yt|Ft−1; ft, θ) =
1√
2σt

exp(−
√

2 |yt|/σt). (10)

As for the standard EWMA, we set ft = σ2
t . The IGAS(1,1) for the Laplace distribution is

ft+1 = ω + 2A ·
√

2|yt|σt + (B − 2A)ft ⇔ σ2
t+1 = λσ2

t + σt · (1− λ)
√

2|yt|, (11)

if we set ω = 0, A = (1 − λ)/2, and B = 1. Except for the multiplication by σt, which

is due to the parameterization ft = σ2
t rather than ft = σt, (11) is the same as (9). The

robust-EWMA or Laplace based SD-EWMA model produces a modest increase in volatility

for large values of |yt| compared to the standard EWMA (1). The derivation above reveals

that the scheme can be motivated as a score-driven approach based on the heavy-tailed

Laplace distribution rather than the fat-tailed Student’s t distribution in (6).

The SD-EWMA scheme introduced in Section 2.2 is very flexible. We can use it to ac-

commodate the forecaster’s favorite conditional distribution p(yt|Ft−1; ft, θ). As long as the

conditional density has a parametric1form, we can compute the score and construct the SD-

EWMA scheme. The scheme also works for asymmetric distributions. For example, Gerlach

et al. (2013) introduces an EWMA scheme based on the asymmetric Laplace distribution

p(yt|Ft−1; ft, θ) =
kt
σt

exp

(
−
(

1

1− pt
1[yt > 0] +

1

pt
1[yt < 0]

)
kt |yt|
σt

)
, (12)

with ft = (σt, pt), and kt = (p2t + (1− pt)2)1/2. Gerlach et al. (2013) introduce EWMA type

1See Blasques et al. (2015) for an extension to a non-parametric density setting.
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time variation in both σt and pt, specified by the recursions

σt+1 = λσt + (1− λ)

(
kt

1− pt
1[yt > 0] +

kt
pt
1[yt < 0]

)
|yt|, (13)

ut+1 = βuut + (1− βu)|yt|1[yt > 0],

vt+1 = βvvt + (1− βv)|yt|1[yt < 0],

pt+1 =
(

1 +
√
ut+1/vt+1

)−1
. (14)

We can also derive the IGAS(1,1) dynamics for σ2
t using ft = σ2

t directly from (12) and

obtain

σ2
t+1 = λσ2

t + σt · (1− λ)

(
kt

1− pt
1[yt > 0] +

kt
pt
1[yt < 0]

)
|yt|, (15)

with λ = 1−2A. Again we notice from (15) that the original robust and asymmetric EWMA

scheme of Gerlach et al. (2013) can be interpreted as an SD-EWMA update if we set ft = σt

rather than ft = σ2
t as in the original EWMA.

3 Value-at-Risk and backtesting

We evaluate the performance of the SD-EWMA scheme for forecasting Value-at-Risk (VaR).

We define the VaR = −Ya at confidence level (1− a) as

Ya = sup
{
Y ∗
∣∣ P[Y < Y ∗] ≤ a

}
.

The value of Ya hinges tightly together with the distributional assumptions for Y ; see Chen

and Lu (2012) for a recent survey. There is a trade-off between the fat-tailedness of the

distribution of Y , and the transition dynamics of the volatility updating mechanism. In

the Student’s t based SD-EWMA framework, the volatility updates are less responsive to

extreme realized returns compared to the standard Gaussian EWMA scheme. This makes

the computed VaR less responsive to abrupt volatility changes. By contrast, if there are
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incidental tail observations, the Student’s t based SD-EWMA scheme provides a much better

and robust estimate of the volatility at time t. Moreover, the fat-tailedness of the conditional

Student’s t distribution pushes the VaR levels farther out into the tails compared to the

Gaussian distribution for a fixed confidence level (1 − a). The trade-off between all these

forces results in the relative performance of the different methods for forecasting, which

can only be investigated empirically across different confidence levels (1 − a) and different

datasets.

To assess the performance of alternative (SD)-EWMA methods, we consider a number of

standard tests for the quality of tail probability forecasts: the Unconditional Coverage test,

the Independence test, the Conditional Coverage test, and the tail shape test of Berkowitz

(2001). All these tests are Likelihood Ratio (LR) based tests. A good VaR model should be

consistent in that the fraction of VaR violations, i.e. events {yt < −V aRt}, should equal a

in large samples. Define the violation indicator

It = 1{yt < −V aRt},

and the number of violation N =
∑T

t=1 It out of T time periods. Following Christoffersen

(1998), good VaR models produce serially independent Its. Our backtesting methods are all

related to good coverage, serial independence, or both.

Kupiec (1995) tests the Unconditional Coverage (UC) of the VaR model using

LRu = 2(lnLN − lnLα) ∼ χ2(1), T →∞; (16)

where LN = (1−N/T )T−N(N/T )N , and Lα = (1−α)T−NαN . Christoffersen (1998) proposes

the Independence (IN) test for the VaR violation indicators It. The transition matrix of the
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corresponding first-order Markov Chain is

Π =

π00 π01

π10 π11

 , πij = P (It = j | It−1 = i) = Tij/(Ti0 + Ti1),

with Tij recording the times of transition from state i to j, where i, j ∈ {0, 1}. The LR test

for independence is

LRin = 2(lnLA − lnL0) ∼ χ2(1), T →∞, (17)

where LA = πT0000 π
T01
01 π

T10
10 π

T11
11 and Lα = (1 − α)T01+T11αT00+T10 . The simultaneous test for

Unconditional Coverage and Independence, namely the correct Conditional Coverage (CC)

test, is

LRc = LRu + LRin ∼ χ2(2), T →∞. (18)

In practice, risk managers are not only concerned with the number of VaR failures, but

also with the accuracy of the model for the tail shape beyond the VaR. This is relevant for

assessing the potential magnitude of losses in the tail, and relates to the general shift in the

industry and in regulation from VaR to Expected Loss (or Conditional VaR) computations.

To test for the general tail shape, we adopt the test proposed by Berkowitz (2001). The test

operates on an inverse standard normal transformation of the probability integral transforms

of the data, i.e.,

zt = Φ−1
(
F̂t(yt)

)
, (19)

where F̂t(·) denotes the estimated cumulative distribution function applicable at time t using

the postulated VaR model, such as the Laplace, Asymmetric Laplace, or (skewed) Student’s

t distribution, and Φ−1(·) denotes the inverse standard normal distribution function. The

variable of interest is constructed by truncating the variable zt at the threshold Φ−1(a) =

−VaR, such that zt = −VaR if zt ≥ −VaR. Estimating the mean and variance for a censored

14



normal random variable can be achieved by maximizing the likelihood function

L(µ, σ2) =
∑

zt<−VaR

(
−1

2
ln(2πσ2)− 1

2σ2
(zt − µ)2

)
+

∑
zt≥−VaR

ln

(
1− Φ

(
−VaR− µ

σ

))
.

(20)

The Berkowitz (2001) test uses the maximum likelihood estimates to compute a likelihood

ratio (LR) test for the null hypothesis µ = 0 and σ2 = 1. The corresponding LR test is

LR = −2(L(0, 1)− L(µ̂, σ̂2)),

which is asymptotically χ2(2) distributed.

4 Empirical results

4.1 Data and descriptive statistics

In this section, we compare the performance of different SD-EWMA schemes. Note that

for the normal distribution, the SD-EWMA scheme coincides with the standard EWMA for

volatility modeling. As explained in Section 2, the SD-EWMA updating schemes (11) and

(15) based on the Laplace and asymmetric Laplace distribution, respectively, are very close

to the robust EWMA scheme (9) of Guermat and Harris (2002), and the skewed EWMA

scheme(13) of Gerlach et al. (2013), respectively. For the dynamic asymmetric Laplace, we

use the same dynamics for pt in (14) as used in Gerlach et al. (2013). As Gerlach et al. (2013)

show that the GARCH and GJR-GARCH based on a normal or Student’s t distribution do

not outperform the skewed EWMA models, we do not include them in our current study.

We also benchmark our results against a standard EWMA scheme for the variance, while

using a Student’s t distribution to compute the relevant VaR and associated statistics.

We use 12 daily financial time series over the period January 5, 1999 to February 6,

2015. The dataset contains 6 exchange rate log returns and 6 equity log returns with slightly
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Table 1: Summary Statistics
The descriptive statistics present the centered moments of the financial time series considered. The sample

period is January 5, 1999 to February 6, 2015. We split the sample into an in-sample estimation period and

out-of-sample forecasting period. The sample mean is multiplied with 100. A standard deviation (SD) of

1.28 denotes 1.28% per day. SK and EKS denote skewness and excess kurtosis, respectively.

Data In-sample: 1999-2006 Out-of-sample: 2007-2015
Mean SD SK EKS Mean SD SK EKS

exchange rate returns
GBP 0.008 0.51 -0.02 0.57 -0.012 0.64 -0.40 6.94
AUD 0.012 0.68 -0.50 1.98 0.000 0.97 -0.71 12.83
JPY 0.003 0.63 -0.23 2.04 0.000 0.69 -0.26 5.07

CAD -0.013 0.45 0.00 0.66 0.004 0.67 -0.08 5.98
SEK -0.008 0.65 0.08 0.65 0.010 0.88 -0.20 4.14
EUR 0.006 0.61 0.02 0.73 -0.008 0.65 0.19 3.41

equity returns
AA 0.032 2.34 0.22 2.63 -0.023 3.03 -0.34 6.95
BA 0.056 2.07 -0.38 5.76 0.035 1.90 -0.02 4.21
GE 0.014 1.86 0.05 4.12 -0.006 2.14 -0.06 9.87

IBM 0.006 2.08 -0.09 8.08 0.031 1.46 -0.07 5.49
KO -0.009 1.61 -0.06 4.92 0.038 1.21 0.08 6.87

T -0.004 2.04 -0.09 3.19 0.020 1.49 0.80 14.99

over 4,000 observations per series. The exchange rates are always vis-à-vis the US Dollar

and are taken from the database of the Federal Reserve St. Louiss (FRED). We consider

the Australian Dollar, the Canadian Dollar, the Euro, British Pound, Japanese Yen, and

Swedish Kroner, denoted as AUD, CAD, EUR, GBP, JPY, and SEK, respectively. The

stocks considered represent different industries and are all listed at the New York Stock

Exchange: Alcoa Inc., Boeing Co., General Electric, IBM, Coca-Cola and AT&T, denoted

as AA, BA, GE, IBM, KO, and T. Stock data are taken from Datastream.

From the descriptive statistics in Table 1, it is obvious that all series exhibit non-normal

features such as non-zero skewness and excess kurtosis, particularly over the more recent

sample period. We thus expect the Laplace based SD-EWMA and Student’s t SD-EWMA

schemes to provide particular advantages compared to the standard EWMA scheme. We use
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the same distributional assumptions to set up the SD-EWMA recursions and to compute

the VaR.

We split the sample into two subsamples. We use the sample from January 5, 1999 to

December 29, 2006 (in-sample) to start off the estimation of the static parameters. In par-

ticular, for all models we estimate the optimal smoothing parameter A using the estimation

sample. We also estimate any remaining static parameters needed, such as the degrees of

freedom parameter ν for the Student’s t distribution, or the skewness parameters p and ε

for the asymmetric Laplace and skewed Student’s t distribution, respectively. For the asym-

metric Laplace or skewed Student’s t with time-varying skewness, we estimate additional

separate smoothing parameters for pt, εt, and/or νt. In all cases, the estimated parameters

are kept fixed over the entire forecasting period. This results in a computationally fast pro-

cedure. As in practice parameters are unlikely to be kept fixed for the entire out-of-sample

period of more than 8 years, we also carry an analysis where all tuning parameters are re-

cursively updated on a daily basis over the entire forecasting sample; see the discussion in

Ardia and Hoogerheide (2014) for the potential benefits of such an approach.

4.2 Full results for the Euro-Dollar rate

For the Euro-Dollar exchange rate, we report the full results for all tests in Table 2. As

usual, the normal based standard EWMA scheme performs badly deeper into the tails

(α = 1%, 0.5%). If we consider the hit rates (HR), we see that the normal and Student’s

t based approaches typically result in more VaR violations compared to the nominal level,

whereas the Laplace based models have fewer VaR violations. Considering the conditional

and unconditional coverage tests (CC, UC), the under-rejection for the Laplace is significant

in several cases, whereas the over-rejection for the Student’s t setting is never significant.

If we proceed by considering the tail shape beyond the VaR level using the Berkowitz test,

we see that the Student’s t based models perform better than both the normal and Laplace
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Table 2: Full SD-EWMA Results for the Euro-Dollar Exchange Rate
The test statistics correspond to the unconditional coverage (UC) test of Kupiec (1995), the independence

(ID) and Conditional Coverage (CC) test of Christoffersen (1998), and the Berkowitz (2001) test (BE). We

use a confidence level for the VaR equal to 1−a = 0.995/0.99/0.95. Critical values (χ2
cv) at a 1% significance

level are also displayed, as are the Hit Rate (HR) N/T of N VaR violations out of T observations, multiplied

with 100. Static parameters are estimated over Jan 5, 1999 to Dec 29, 2006, and held fixed over the forecast

evaluation period Jan 3, 2007 to Feb 6, 2015. The SD-EWMA schemes use the normal distribution (N),

Laplace distribution (L) with skewness parameter 0.5, p, or pt, the Student’s (T) and skewed Student’s t

(ST) distribution with degrees of freedom parameter ν, νt, and skewness parameter ε or εt. We separate the

results for models with and without updated parameters in two different panels.

No parameter updating With parameter updating
CC UC IN HR BE CC UC IN HR BE

a = 0.5%
N 18.0 17.3 0.7 1.28 29.9 19.9 19.2 0.7 1.33 29.8

T(ν) 3.1 2.9 0.3 0.79 0.1 2.2 2.0 0.2 0.74 0.2
T(νt) 0.5 0.3 0.1 0.59 2.7 0.9 0.7 0.2 0.64 0.5

ST(ε, νt) 4.1 3.8 0.3 0.84 0.2 0.9 0.7 0.2 0.64 1.4
ST(εt, ν) 0.9 0.7 0.2 0.64 0.0 0.1 0.0 0.1 0.49 0.9
ST(εt, νt) 0.9 0.7 0.2 0.64 0.0 0.5 0.3 0.1 0.59 0.8
T(ν)-RM 3.1 2.9 0.3 0.79 0.4 3.1 2.9 0.3 0.79 0.2

L(0.5) 7.0 7.0 0.0 0.15 19.8 7.0 7.0 0.0 0.15 20.0
L(p) 7.0 7.0 0.0 0.15 16.7 9.9 9.9 0.0 0.10 24.2
L(pt) 7.0 7.0 0.0 0.15 19.6 4.9 4.9 0.0 0.20 16.6

a = 1%
N 12.5 11.1 1.4 1.82 29.4 12.5 11.1 1.4 1.82 29.3

T(ν) 5.0 4.1 0.9 1.48 1.0 5.0 4.1 0.9 1.48 1.0
T(νt) 2.7 2.0 0.7 1.33 3.4 2.7 2.0 0.7 1.33 0.6

ST(ε, νt) 5.0 4.1 0.9 1.48 1.3 4.1 3.3 0.8 1.43 3.4
ST(εt, ν) 2.1 1.5 0.7 1.28 0.1 2.7 2.0 0.7 1.33 1.9
ST(εt, νt) 2.1 1.5 0.7 1.28 0.1 2.7 2.0 0.7 1.33 1.9
T(ν)-RM 4.1 3.3 0.8 1.43 1.0 4.1 3.3 0.8 1.43 0.8

L(0.5) 6.6 6.5 0.1 0.49 24.2 5.3 5.2 0.1 0.54 22.3
L(p) 9.9 9.8 0.1 0.39 30.6 6.6 6.5 0.1 0.49 23.9
L(pt) 3.2 3.1 0.2 0.64 19.3 5.3 5.2 0.1 0.54 19.5

a = 5%
N 5.0 4.0 1.0 6.00 29.0 6.1 4.4 1.7 6.05 28.9

T(ν) 13.8 9.3 4.5 6.54 5.8 9.0 7.2 1.8 6.35 4.6
T(νt) 10.4 7.7 2.7 6.39 6.0 9.3 7.7 1.7 6.39 5.0

ST(ε, νt) 13.5 8.8 4.7 6.49 5.5 6.4 4.8 1.6 6.10 5.6
ST(εt, ν) 11.8 5.3 6.5 6.15 2.8 5.0 4.0 1.0 6.00 3.9
ST(εt, νt) 11.8 5.3 6.5 6.15 2.8 5.0 4.0 1.0 6.00 4.0
T(ν)-RM 14.4 7.7 6.7 6.39 4.6 10.0 7.2 2.8 6.35 4.3

L(0.5) 1.6 0.0 1.6 5.02 26.2 1.3 0.1 1.2 5.16 29.0
L(p) 1.3 0.1 1.2 5.16 31.9 2.2 0.7 1.5 5.41 29.6
L(pt) 1.3 0.1 1.2 5.16 23.1 0.7 0.0 0.7 5.02 21.5

Critical values 9.2 6.6 6.6 — 9.2 9.2 6.6 6.6 — 9.2
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based approaches. We also note that a simple benchmark of standard Gaussian EWMA

dynamics with a Student’s t distribution for the VaR calculations also performs quite well

(T(ν)-RM). For the Euro-Dollar rate, its behavior is quite close to that of the other models

at VaR confidence levels of 1% and 0.5%. Less far out into the tails of the distribution,

the performance of this method drops somewhat compared to that of the other Student’s t

based methods. If, however, we consider the case where the tuning parameters are updated

recursively, we see that the performance of T(ν)-RM starts to lag more substantially com-

pared to that of the skewed Student’s t methods with time-varying parameters, particularly

in terms of conditional coverage (CC).

To get an impression about the shape of the time-varying parameters, we plot σ2
t , εt, and

νt for the skewed Student’s t model in Figure 2. We clearly see the increased volatility around

the time of the financial crisis, as well as the higher volatility level during the European

sovereign debt crisis (2010–2013). The skewness parameters indicates positive skewness at

the start of the sample. During the remainder of the sample period, the exchange rate returns

are repeatedly negatively skewed, and particularly so around the time of the financial and

European sovereign debt crises. The degrees of freedom parameter ranges from low values

around 3 near the end of the sample, to values of 15 in the period of the great moderation,

the financial crisis, and the European sovereign debt crisis.

We conclude that the skewed Student’s t models with SD-EWMA dynamics for either εt,

νt, or both, have the best overall performance in terms of coverage (CC, UC, IN) and tail

shape beyond the VaR (BE), especially if we regularly update the tuning parameters based

on the available data, as is commonly done in practice.

4.3 Full results: all series

To investigate the robustness of the results, we extend our analysis to other exchange rates

as well as to individual stock returns. To save space, we present the results graphically for all
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Figure 2: Time-varying variance (σ2
t ), skewness (εt), and degrees of freedom (νt)

for the Skewed Student’s t model for the Euro-Dollar rate

series, three different confidence levels, and for three tests: the conditional coverage test, the

Berkowitz test, and the hit rate (α̂/α− 1). As the setting with updated tuning parameters

is most relevant from a practical point of view, we only present those.

The results are shown in Figure 3. Each column of three panels presents the results for

the three different tests for a given VaR confidence level. The columns contain the results

for the three different VaR confidence levels, α = 0.005, 0.01, 0.05. Results for the exchange

rate series are indicated by circles, and those for the stock returns by inverted triangles.

Looking at the top row of graphs, we confirm the results from Table 2 concerning the

hit rates of the different methods. The normal and Student’s t based method typically

result in somewhat more VaR violations compared to the nominal level. The Laplace based

approaches, by contrast, result in a substantially lower number of VaR violations. The

further we go out into the tails, the worse the normal based approach works in terms of hit
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rate. We also see that across all series, the overall performance of the skewed Student’s t

based approaches in terms of hit rates is better than that of a standard RiskMetrics plus

Student’s t distribution approach (T(ν)-RM). This is particularly true for VaR confidence

levels of 95% and 99.5%.

The above results are confirmed when looking at the second row of graphs, which indicate

the significance of deviations from the nominal coverage combined with possible violations

of the independence assumption. Graphically, it is clear that across different time series, the

skewed Student’s t based approaches perform best. The differences between using a skewed

Student’s t distribution with either εt time-varying, νt, or both, appear to be much smaller.

If we consider the behavior of different approaches in capturing the tail shape beyond

the VaR, the bottom row of graphs in Figure 3 shows that the Laplace distribution is clearly

too thin-tailed to adequately describe the tail behavior of exchange rate and stock returns.

Note that the bottom row of graphs does not show the results for the normal distribution.

The Berkowitz test results for the normal are so high that they would completely distort the

picture for the other models. The graphs also reveal that for all VaR confidence levels the

polynomial tail shape of the (skewed or symmetric) Student’s t distribution typically captures

the stochastic behavior of extreme returns quite well. Note that across all series, the skewed

Student’s t SD-EWMA results with time-varying εt and/or νt appear less susceptible to

extreme outcomes for the tests than the other Student’s t based approaches. Overall, the

SD-EWMA approach on the time-varying skewed Student’s t appears to have the best and

most robust performance in our current volatility forecasting context.

5 Conclusion

We developed a range of simple EWMA refinements that build on the recent literature

on score-driven dynamics for time-varying parameters in non-normal models. We showed

that the standard EWMA and the robust Laplace based EWMA can all be seen as special
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cases of the new score-driven EWMA (SD-EWMA) approach. In particular, as financial

return series may typically be fat-tailed rather than heavy-tailed (such as Laplace), we

developed a score-driven EWMA scheme based on the symmetric and skewed Student’s t

distribution. As the score-driven approach is not limited to time variation in volatilities

only, we also developed a new SD-EWMA scheme for the simultaneous time series dynamics

of the volatility, the degrees of freedom, and possibly the skewness parameter in a (skewed)

Student’s t distribution. The new schemes exhibit interesting robustness features for the

time-varying parameter dynamics that make them particularly suited in a context with non-

Gaussian distributed observations.

We applied the new methods to forecast Value-at-Risk (VaR) for exchange rate and

stock return data. We found that the skewed Student’s t based SD-EWMA model with

time-varying volatility, degrees of freedom and/or skewness parameter had the best overall

performance for different series and different VaR confidence levels. The new score-driven

EWMA approach thus provides a unified and flexible tool for risk forecasting.

The score-driven EWMA approach can easily be adapted further to accommodate the

researcher’s preferred choice of forecasting distribution. For example, the ideas could be

generalized further to semi-parametric approaches, such as the Gram-Charlier expansion

of Gabrielsen et al. (2012). Also note that the SD-EWMA can be adapted to handle

multivariate observations; see for example Creal et al. (2011) and Lucas et al. (2014). Both

of these possible extensions open up an interesting avenue for further research.
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Gómez, H. W., F. J. Torres, and H. Bolfarine (2007). Large-sample inference for

the epsilon-skew-t distribution. Communications in Statistics — Theory and Meth-

ods 36 (1), 73–81.

Guermat, C. and R. D. Harris (2002). Robust conditional variance estimation and value-

at-risk. Journal of Risk 4, 25–42.

Harvey, A. C. (2013). Dynamic Models for Volatility and Heavy Tails. Cambridge Univer-

sity Press.

Harvey, A. C. and A. Luati (2014). Filtering with heavy tails. Journal of the American

Statistical Association 109, 1112–1122.

Janus, P., S. J. Koopman, and A. Lucas (2011). Long memory dynamics for multivariate

dependence under heavy tails. Tinbergen Institute Discussion Paper 11-175/2/DSF28 .

Jensen, M. B. and A. Lunde (2001). The NIG-S&ARCH model: a fat-tailed, stochas-

tic, and autoregressive conditional heteroskedastic volatility model. The Econometrics

Journal 4 (2), 319–342.

Kupiec, P. H. (1995). Techniques for verifying the accuracy of risk measurement models.

Journal of Derivatives 3 (2).

Lucas, A., B. Schwaab, and X. Zhang (2014). Conditional euro area sovereign default risk.

Journal of Business and Economic Statistics 32 (2), 271–284.

25



Poon, S.-H. and C. W. Granger (2003). Forecasting volatility in financial markets: A

review. Journal of Economic Literature 41 (2), 478–539.

Schwert, G. W. (1990). Stock volatility and the crash of ’87. Review of financial Stud-

ies 3 (1), 77–102.

Taylor, S. J. (1986). Modelling financial time series. Number 1st. Wiley.

Wilhelmsson, A. (2009). Value at risk with time varying variance, skewness and kurtosis:

the nig-acd model. The Econometrics Journal 12 (1), 82–104.

26



Online supplementary appendix

A.1 Symmetric Student’s t with time-varying νt

In this appendix we show the direct derivations needed for the symmetric Student’s t SD-EWMA scheme.

Alternatively, we could use the results from Gómez et al. (2007) concerning expressions for the score and

information matrix to arrive at the same result. In that case, however, one should make sure to account for

the fact that we model the variance rather than the scale parameter of the Student’s t distribution. As the

information matrix is non-diagonal between the scale parameter and the degrees of freedom parameter, and

the variance is a function of both the scale parameter and the degrees of freedom parameter, this affects the

precise form of the appropriate derivatives.

Define γ(x) = ln Γ(x), with first and second order derivatives γ′(x) and γ′′(x), respectively. Given the

density of the Student’s t distribution with variance σ2
t ,
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with E[∂`t(σ
2
t , νt)/∂νt] = 0. Taking further derivatives, we obtain
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Using the transformation of variables ν
1/2
t (νt − 2)−1/2yt/σt → yt, we have that for some a, b > 0
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We use the expression for q(a, b, νt) to rewrite
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Note that if we use the parameterization ν(ft) with first and second derivatives ν̇t = ν̇(ft) = ∂ν(ft)/∂ft

and ν̈t = ∂ν̇(ft)/∂ft, respectively, we have
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A.2 Skewed Student’s t with time-varying εt and νt

We make the following definitions. Let µ̄t and σ̄t denote the location and scale parameter of the skewed

Student’s t distribution with skewness parameter εt and degrees of freedom parameter νt. Let µt and σt

denote the mean and standard deviation of the Student’s t distribution, assuming νt > 2. Following Gómez

et al. (2007), we have
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h(νt) = 0.25 · (ψ′((νt + 1)/2)− ψ′(νt/2)),

c′(νt) = 0.5c(νt) · (ψ((νt + 1)/2)− ψ(νt/2)− ν−1
t ),

where ψ is the digamma function, and ψ′ the trigamma function. Define the transformations from the main

text,

σ2
t = exp(f1,t),

εt = tanh(f2,t),

νt = 51 + 49 tanh(f3,t),
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with ft = (f1,t, f2,t, f3,t)
′. We have
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and
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with ε̃(yt) = (1− sign(yt − µ̄t) · εt)2, and Y 2
t = (yt − µ̄t)2/(σ̄2

t νtε̃(yt)).

The score with respect to ft is now given by

∂ log p(yt|ft)
∂ft

= H ′2,tH
′
1,t∇t.

We scale each of these elements by the inverse diagonal elements of

H ′2,tH
′
1,tItH1,tH2,t

to obtain three univariate recursions.

If, for example, only σ2
t and εt follow an SD-EWMA scheme, while νt is constant, define the selection

matrix S such that

Sft = (f1,t, f2,t)
′.
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The two univariate recursions are then driven by

∂ log p(yt|ft)
∂(f1,t, f2,t)′

= SH ′2,tH
′
1,t∇t,

scaled by the inverse diagonal elements of

SH ′2,tH
′
1,tItH1,tH2,tS

′.

Similar formulas hold for other combinations of score-driven and fixed parameters.
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