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ABSTRACT. The computing time for Markov Chain Monte Carlo (MCMC) algorithms can
be prohibitively large for datasets with many observations, especially when the data density
for each observation is costly to evaluate. We propose a framework where the likelihood func-
tion is estimated from a random subset of the data, resulting in substantially fewer density
evaluations. The data subsets are selected using an efficient Probability Proportional-to-Size
(PPS) sampling scheme, where the inclusion probability of an observation is proportional to
an approximation of its contribution to the log-likelihood function. Three broad classes of
approximations are presented. The proposed algorithm is shown to sample from a distribu-
tion that is within O(m_%) of the true posterior, where m is the subsample size. Moreover,
the constant in the O(m*%) error bound of the likelihood is shown to be small and the
approximation error is demonstrated to be negligible even for a small m in our applications.
We propose a simple way to adaptively choose the sample size m during the MCMC to
optimize sampling efficiency for a fixed computational budget. The method is applied to
a bivariate probit model on a data set with half a million observations, and on a Weibull
regression model with random effects for discrete-time survival data.
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1. INTRODUCTION

Markov Chain Monte Carlo (MCMC) methods have been the workhorse for sampling from
the posterior distribution in Bayesian models since their introduction in statistics in the early
90’s by Gelfand and Smith (1990). MCMC methods are desirable as they return the full
posterior distribution without approximations. Furthermore, model diagnostics, model se-
lection, and model regularization through variable selection, etc. may be obtained within a
single run of the sampler. Models with costly likelihood evaluations pose a great challenge
for MCMC algorithms, however, because of their demanding computing time. This is es-
pecially true for large datasets which are becoming increasingly more common in practical
work. Because of this caveat, researchers tend to approach such problems using approximate
methods such as Approximate Bayesian Computations (ABC) (Marin et al., 2012), Varia-
tional Bayes (VB) (Ormerod and Wand, 2010) or optimization techniques, e.g. stochastic
approximation (Spall, 2005). However, the great drawback of these three approaches is that
there are currently no theoretical results to assess the errors in the approximate posterior
produced, nor even tell empirically if these errors are too large to be acceptable. If MCMC is
the choice for inference in computationally demanding models, it is often via data augmenta-
tion through the Gibbs sampler, an approach which is well known to increase the inefficiency
of the sampler, see e.g. Liu et al. (1994).

Our article presents a Metropolis-Hastings framework where the likelihood is estimated
from a small random subset of the data. The data subsets are obtained by highly efficient
probability proportional-to-size (PPS) sampling schemes. We show that the sampling design
is absolutely crucial for the success of data subsampling in an MCMC context, which explains
the poorly mixing MCMC chain based on the simple random sampling (SI) design found by
Korattikara et al. (2013). PPS is many orders of magnitude more efficient than SI, leading
to an MCMC chain with many more efficient draws for a given time budget compared to a
regular MCMC on the full dataset, especially when the proposal is poor.

Beaumont (2003) introduces a Metropolis-Hastings algorithm based on an unbiased es-

timator of the likelihood. Andrieu and Roberts (2009) and Andrieu et al. (2010) prove
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that such Pseudo-marginal MCMC (PMCMC) algorithms do indeed sample from the target
posterior if the likelihood estimator is unbiased, regardless of the estimator variance. We
note here that PMCMC is still valid even when the likelihood estimator is biased, but then
samples from a perturbed target posterior. We exploit this and propose efficient estima-
tors of the log-likelihood which are subsequently corrected to achieve near-unbiasedness for
the likelihood. We prove that the distribution targeted by our sampling scheme is within
O(m_%) of the true posterior, where m is the subsample size. Moreover, it is also shown
that the constant of proportionality in the O(m_%) bound of the likelihood approximation is
relatively small and that highly accurate results can therefore be obtained already for very
small m. This accuracy is also verified in our two applications where the approximation
errors are shown to be negligible. Focusing the estimation effort on the log-likelihood has
several advantages. First, it makes it possible to adopt well-studied methods for estimating
a finite population total (a sum) from the survey sampling field. Second, it allows us to
use the simple rules in Pitt et al. (2012) and Doucet et al. (2015) to choose the optimal
subsample size. Third, it enables us to choose m adaptively in each MCMC iteration which
helps to control the variance of the log-likelihood estimator and therefore improve MCMC
efficiency for a given computational budget.

The paper is organized as follows. Section 2 introduces our MCMC algorithm for sampling
from the posterior distribution using random subsets of the data and proves some important
properties of the method. Section 3 proposes a framework for estimating the likelihood by
PPS sampling of data subsets with efficient sampling inclusion probabilities based on ap-
proximations of the data distribution. Section 4 evaluates the performance of the proposed
methodology in two empirical applications. Section 5 concludes and discusses further re-
search. Appendix A and B contain some implementation details and the proof of the main

results, respectively.
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2. MCMC WITH SAMPLING-BASED LIKELIHOOD ESTIMATORS

2.1. Theory. Lety = (y1,...,%,)" denote the vector of observed data and let § be the vector
of parameters. Potential dependence on covariates is suppressed in this section for notational
clarity. Denote the likelihood by p(y|@), and let p(f) and 7(0) = p(A|y) denote the prior and
the posterior for 0, respectively. Let u be a vector of auxiliary variables corresponding to the
subset of observations to include when estimating p(y|6). In our framework, the distribution
of u is dependent on the data and the parameter, i.e. p(ulf,y). Let p,,(y|0,u), for a fixed

m, be a possibly biased estimator of p(y|f) with expectation

(2.1) Pm(l0) = / D516, 0)p(ulf, ).
Define
(22)  Fnl6w) = (16, Wp(ul6, y)p(6) [ (), With pun(y) = / P(y16)p(6)d,

on the augmented space (0, u). The marginal density for 6 given by

Pm(y|6)p(6)
pm(y) .

Tm(0) = /frm(&u)du—

Informally, we note that for m = oo,

pm(l0) = p(yl0), pm(y) =p(y) and 7, (0) = 7(0).

Draws from the joint posterior 7,,(0,u) are obtained by the M-H algorithm as follows. Move
the Markov chain from the current state (6., u.) to (6,,u,) by proposing 6, ~ ¢(6|6.) and

u, ~ p(ulf,,y) and accept with probability

Pm (Y10, Up)p(Qp)/Q(ech))
P (y]0c; ue)p(0e) [a(0c|0p) )

(2.3) a = min (1,

If the draw is rejected then (6,,u,) = (6., u.). We note that u ~ p(u|f,y) is an auxiliary
variable that arises when estimating p(y|6). We can therefore regard u as being proposed from

p(ulf,y), i.e. q(u|d,y) = p(uld,y), so that it always cancel in the M-H ratio in Equation (2.3).
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Moreover, this choice of ¢ implies that p(u|6,y) can be intractable as it is never evaluated,
we only need to simulate from it.

By the results in Andrieu and Roberts (2009), the draws of 6 obtained by this M-H
algorithm has m,,(#) as invariant distribution regardless of the variance of the likelihood
estimator; the efficiency of the scheme depends crucially on this variance however, as dis-
cussed in Section 3.1. It is clear that if p,,(y|f,u) is an unbiased estimator of p(y|6), then
the marginal of the augmented MCMC scheme above has 7(6) as invariant distribution, but
it is important to realize that it is still a valid sampler also when p,,(y|0, ) is biased, but
then targets the distribution ,,(0).

Let {yx, 1 },_, denote the data, where y is a potentially multivariate response vector and
x is a vector of covariates. Given conditionally independent observations we have the usual

decomposition of the log-likelihood
(2.4) 1(0) = I(0),
k=1

where [;,(0) = log p(yx|0, xx) is the log-likelihood contribution of the kth observation. The
log-likelihood is a sum and estimation of the log-likelihood is therefore equivalent to the
classical survey sampling problem of estimating a finite population total from a subsample
of the data observations (see Sirndal et al. (2003) for an introduction). Note that the same is
true for any problem where the log-likelihood decomposes as a sum of terms where each term
depends on a unique piece of data information. The most obvious example are longitudinal
problems where [(0) is the log joint density of all measurements on the kth subject, and
we sample subjects rather than individual observations. Similarly, it also applies to certain
time-series problems with Markov dependence such as autoregressive processes. We consider

estimators of the likelihood from a data subsample of size m of the following form

(2.5) D910, 1) = exp (1 (0) — 52(6) /2)
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where [,,,(0) is the Hansen-Hurwitz estimator (Hansen and Hurwitz, 1943) of the log-likelihood

1 — Ly
26 - — 17 h i = )
(2.6) — Z where (; = P

u; are sampling indicator variables such that u; = k means that observation k£ was selected

at the ith draw with replacement, with probability

Pi(0) = Pr(u; = k) = Pr(G = 1(0)/pr(0)).
It is easy to see that [,,(6) is unbiased for (). Also, z = I,,(8) — I(0) denotes the estimation
error, 02 = Var(z) and

2.7) 52 = ﬁ f; (M - Zm(0)>2

Pu;

is an unbiased estimator of o2. The selection probabilities pi(f) are determined by the
sampling design and are discussed later. To motivate the form of p,,(y|f,u) in Equation
(2.5), consider the case when 2~N(0,02) and o2 is known. It is then easy to see that
exp (lAm(H) — 03(9)/2> is an unbiased estimator of the likelihood and the MCMC scheme
above will sample from the target posterior m(). When z is not Gaussian and o2 is unknown,
Theorem 1 below proves that the distribution targeted by the MCMC algorithm is within
O(m_%) of the true posterior, as are the posterior moments.

Theorem 1 is based on Assumption 1. Define

E(GO) -0

704(6> = ) )
(03)"

2
where oF =V ((;) = >, <— — ) pr so that o2 = o¢/m. We often omit dependence on ¢

Pk

to simplify notation.

Assumption 1. We assume that the following results hold uniformly for 6 where \ is a

constant.

i. There exists a K > 0 such that v4(0) < K.
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ii.

iii.

. o (M) RO s

v. The prior density p(0) is proper.
Remark. Part (i) and (iv) in Assumption 1 can be easily verified in a given example by

directly computing

n

ElgQ] = > gll/pe)ps-

k=1

Part (iii) can be verified by simulation.

We now motivate part (ii)-(iv) of Assumption 1.

Part (ii): By a third order Taylor series expansion with remainder,

-0\ _ o, N NS G-1\" G

where |A({| < |A((1 —{)|. The assumption means that

(410; l)4exp (A%)] is o(1).

Part (iii): Define vy, = (I, — )2 — 02. We can show that

1
E

vm

(02)°

Evn) =0 and Vy,] =

- (74 + 2m — 3).

Hence, by a second order Taylor series with remainder,

el ()] = e e e ()
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where [Av].| < [Av,,|. The assumption means that

1 /
—F |:V21 exp ()\mvm 1)} is o(1).

m—1

Part (iv): Define ¢y = ((G —1)* — o) /m. We can check that
Efr] =0 and V] = (02)" (= 1).

Therefore, a second order Taylor series with remainder,

E[exp (A 2 )] = 1+ andil + X E[@bfexp (A—lﬂ

m—1 2(m—1)2  6(m—1)3 m—1

where | A} | < |A)1|. The assumption states that

ﬁE [w?exp (/\ i )] is o(1).

m—1

Theorem 1. The following results hold subject to Assumption 1:

i. For any 0,
pul) WD) _ 1 0 o
p(yl6) vm
where C,, > 0 is bounded. See the proof of Theorem 1 in Appendix B for the expression
of C,,.

ii.

pm(y) — W) _ 1 O, (6)

< sup
p(y) Vm g
with C,, as above.
iii. For any 6,
[mm(0) —7(0)] _ 1
< D
@ v

with C,, as above.
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iv. Suppose that h(0) is a function such that [ |h(6)|p(0)dd < co. Then

‘/ )T (8)dO — / d9'<—D/\h )lp(6)do

where D = supy Dy, (6) with D, as above. In particular

1
— < —D.
/]Wm 0)| do < NG

The proof of Theorem 1 is given in Appendix B. The constant C,, is illustrated to be
relatively small (in comparison to y/m) in our applications in Section 4. This results in

highly accurate posterior approximations, even for relatively small values of m.

2.2. The trade-off between efficiency and computing time. Our PMCMC algorithm is
faster but less efficient per iteration than a regular MCMC chain using all data observations
because it uses a noisy likelihood based on a subsample. Increasing the noise results in
reduced computing time per iteration, but reduces the efficiency of the Markov Chain, and
vice versa. A measure that balances computing time and efficiency is Efficient Draws Per

Minute (EDPM)

N

EDPM =
IF xt

where N = number of iterations, ¢ = execution time and IF is the inefficiency factor, esti-

mated by

L
= 142> 7,
=1

where p; is the sample autocorrelation at the [th lag of the chain and L is an upper limit such
that p; &~ 0 when [ > L. The inefficiency factor, also called the integrated autocorrelation
time, measures the number of MCMC draws that are equivalent to a single draw obtained
using a sampler that produces independent draws. IF-values near 1 therefore suggest a very

efficient algorithm.
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In Section 4 we measure the performance of PMCMC vs MCMC by the Relative Efficient
Draws Per Minute (REDPM) which is defined as

EDPMP]\/[C]WC

REDPM = — oo oo

2.3. Choosing the optimal sampling fraction. Pitt et al. (2012) and Doucet et al. (2015)

define the computational time of the PMCMC as

FP]\IC]MC(UQ)
z

(2.8) CT(c?) =11z

z o,

i.e. the computing time is assumed to be inversely proportional to the variance of the

estimator. To find an optimal value of o2, Pitt et al. (2012) assume that the proposal for

2

4

0 is perfect, i.e. it is the target posterior distribution. They find that o2 around 1 is the
optimal value, with a fairly benign region around 1. Doucet et al. (2015) allow for general
proposals and obtain bounds for the optimal o2. Assuming that z is normal and that o2 is
independent of 0, they show that the optimal value of o2 lies in the interval [1.0,3.2]. In
general, the less efficient the proposal in the exact likelihood setting, the higher the optimal
value of o2. Sherlock et al. (2015) show (under different assumptions) that V[I(0)] = 3.283
is optimal. Our view is that it is prudent to take o2 ~ 1, which is the conservative choice,
and avoid the risk of obtaining a value of o2 that is catastrophically high.

Assuming that m is large enough our estimator is approximately unbiased. Furthermore,
for each 6 we can tune the sample size m to achieve a constant variance (independently of 6,

see Section 2.4). We can therefore conveniently tune the subsample size following the simple

rule of choosing m such that o2 =~ 1.

2.4. Adaptive sampling fraction. It is possible to adapt the sampling fraction f = m/n
in a given MCMC iteration if the variance is too large. The adaptation adds observations
to reduce the variance of the log-likelihood estimator in Equation (2.6) at a given iteration.
We now propose a fast and simple simulation of u such that V[Z(@)] < Upaz Where v,,q. 1S
the user specified maximum variance tolerated in the log-likelihood estimate. In any given

iteration, while V[I(0)] > Uymaq, simply increase m. Equation (2.7) can be iterated to compute
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an accurate guess of the new sample size needed to bring the variance of the estimator down
t0 Upmas:

(2.9) PR S (M—Z<9))2.

Umaz(m — 1) 4

1=

3. PROBABILITY PROPORTIONAL-TO-SIZE SAMPLING (PPS)

This section discusses the importance of efficient subsampling of data subsets in PMCMC
and proposes a particularly attractive sampling scheme based on probability proportional-

to-size sampling of the data.

3.1. Sampling variability and PMCMUC efficiency. PMCMC using the estimator in
Equation (2.5) is theoretically guaranteed to converge to the posterior m,,(6), but the effi-
ciency of the sampling scheme depends crucially on the variance of the estimator. A large
estimator variance can easily produce extreme over-estimates of the likelihood and cause the
PMCMC chain to get stuck for long spells.

It is therefore crucial to use a combination of a sampling design and estimator that keeps
the variance of the log-likelihood estimator around one (Pitt et al., 2012; Doucet et al., 2015)
also for small subsample sizes m. As an example of design-estimator pairs that produces too
much variability in the estimated likelihood, we consider simple random sampling without

replacement (SI) and the usual unbiased estimator of the log-likelihood
> n
lsi(0) = — > (0
s1(0) - > l(0),

where S is the set of sampled observations. The SI scheme assigns equal inclusion probability
to every observation. To illustrate the variability in ZAS[(G) we consider the simple model
yr ~ N(0,0.1?). Figure 1 shows 6, = {V[Zg;(@)]}lﬂ for different choices of n and m. A large
sampling fraction f = m/n is needed to reduce the variance and this fraction increases as a
function of the size of the data set. It seems impossible to achieve the optimal V [lg;(6)] ~ 1
with this sampling scheme, which explains why PMCMC based on the SI design does not

work.
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FIGURE 1. Estimated standard deviation of 251(9) on log-scale for the simple
model y, ~ N(6,0.1%), for n = 10,000 (upper panel) and n = 100,000 (lower
panel). The bars represent different sampling fractions, f = ™.

3.2. PPS. The reason why equal-probability designs, such as SI, perform extremely poorly
is because they treat all log-likelihood contributions lx(6) symmetrically. In practice, the log-
likelihood contributions of some observations are much larger than others, and the sample
should include those observations with higher probability. This is what the probability
proportional-to-size (PPS) design achieves by sampling the kth unit with replacement with
an inclusion probability p, proportional to some measure of the unit’s size.

We will use PPS sampling together with the Hansen-Hurwitz estimator in Equation (2.6).
The choice of py, is crucial for the variance of the estimator. Suppose we can choose sampling
probabilities py o< [;(6), so that [(0)/pr = c for all k € F where F is the index set of
all observation and ¢ is a constant. Then, in Equation (2.7), I(§) = ¢ is constant and
consequently V[I(#)] = 0. This ideal estimator requires knowledge of I;(6) for all k € F, in
which case [(6) is known so there is no point in subsampling. However, if we can construct
sampling weights wy, > 0 so that [;(0)/wy ~ ¢ for all k € F and set py o wy, then the
ratio I;(0)/px will be approximately constant with small V[I(6)]. It is evident that w;, must

resemble the log-likelihood contribution /i (6); see below for some ways to achieve this.
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FIGURE 2. Comparing estimator standard deviation for 7PS and PPS for
different sampling fractions.

We will now compare the efficiency when probability proportional-to-size is instead im-
plemented without replacement, which is called 7PS sampling. Obtaining a single sample
of size m = 1,000 from a population with n = 10,000, and subsequently estimating the
variance takes 0.0009 sec for PPS compared to 65.1007 sec for m7PS. Figure 2 shows the
standard deviation of PPS vs 7#PS for the same simple model as in Figure 1. 7PS is only
marginally more efficient than PPS. Furthermore, by comparing Figure 1 and Figure 2 we
see that both PPS and 7PS are many orders of magnitude more efficient than SI.

We note that in our examples and for a number of other models, [;(#) is of the same
sign for all k£ for a given 0, in which case we choose the sampling probabilities as above.
More generally, [;(f) may take both positive and negative values so that it is impossible to
construct py > 0 such that [(0)/pr =~ c for all k. However, for many such models we can
write [x(0) = [;(0) + d(f) where [}(0) has the same sign for all k& for a given 6, and d(6)
does not depend on k. In this case we construct the sampling weights py based on [}(6). For

example, consider the simple normal model with y; ~ N(u,02) and 0 = (u, o). Then

1 1 o 1 1
—QT‘Q(y—,u)2 ~3 log(2m0?), with [}(0) = —=—(y — u)* and d(f) = —3 log(2mo?).

b(0) = 202
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3.3. Efficient PPS weights. A crucial part of our PPS approach is the construction of
the size weights, wy. Since wy, > 0, let wy, = |Ix(#)| where [x(#) is a proxy for the log-
likelihood contribution log p(yx|0, x). Note also that the goal is to reduce computing time
so the construction of wy needs to be fast. We now discuss three general ways to obtain the
sampling weights.

A common approach for inference in models with computationally costly data density
evaluations is to replace the model with an approximate surrogate model which is cheaper
to evaluate. The choice of surrogate model depends on features of the original model, but
may, for example, come from a low order Taylor series approximation of some aspect of the
model or some other shortcut that makes the model easier to solve. The analysis is then
performed as if the surrogate model is the true model. Our subsampling MCMC approach
can instead use such a surrogate model in forming the weights w, while still sampling from
the correct posterior of the parameters in the true model. We refer to this as the surrogate
method to obtain sampling weights.

Many models require time-consuming evaluations of [;(f) because some aspect of the
model needs to be solved numerically. For example, an intractable integral may be approx-
imated by Gaussian quadrature, a differential equation can be solved by the Runge-Kutta
method, an optimum is found by Newton’s method. Any numerical method depends on
tuning parameters which control the accuracy of the solution. The sampling weights in our
methodology can be computed from tuning parameters that give cruder, but much faster,
evaluations of [ (f) (a coarse grid in numerical integration and in solving differential equa-
tions, a small number of Newton steps for optimization). The log-likelihood contributions
for the sampled subset of observations are computed based on tuning parameters that give
very accurate evaluations. We refer to these approaches as numerical methods for obtaining
sampling weights.

Our final proposed approach is based on approximating the map (surface) (z,y) —
lk(0;y,z) at each iteration in the MCMC and then use this approximation to predict the

log-likelihood contribution of all the other observations. The approximation is constructed
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from a small number of observations for which the exact log-likelihood contribution has been
computed. Since the predictions need to be performed at every MCMC iteration, great care
is needed however to control the computational complexity of the surface fit. We discuss
Gaussian processes (GP) and thin-plate splines in detail in Appendix A, but other surface fit-
ting methods may also be used. A key feature of our approach is that hyperparameters such
as covariance kernel parameters in the GP are determined before the MCMC. This allows
us to compute the log-likelihood predictions in each MCMC iteration by fast matrix-vector
multiplication. Appendix A also proposes a surface fitting approach for high-dimensional

data.

4. APPLICATIONS

4.1. Bivariate probit model. Our first application illustrates how to use the surface esti-

mation method to construct the sampling weights.

Data. Our data set contains annual observations for Swedish firms in the time period 1991-
2008. We have in total 500,000 firm-year observations from 56,257 firms. This data set is
analyzed in a different setting by Jacobson et al. (2013), Giordani et al. (2013) and Quiroz
and Villani (2013), using bankruptcy as the dependent variable. The present paper uses a
bivariate model to analyze the endogenous treatment effect of holding cash on bankruptcy
while controlling for other variables. The cash ratio variable has many severe outliers and
we therefore choose to use the binary variable excess cash, which is set to one at a given

time period if the firm has more cash than the median firm, and zero otherwise.

Model. We use a bivariate probit model to model the data. Multivariate probit models
can be analyzed using data augmentation via the Gibbs sampler as in Chib and Greenberg
(1998), but for illustration purposes we will demonstrate our approach by evaluating the

likelihood directly with bivariate normal integrals. The bivariate probit model is

y1 =1(y7 > 0) with yi = Bio+ Sz + Pfreze + ays + €

(4.1) yo = I(y5 > 0) with y5 = Ba0 + Borx1 + Poowz + Pazxs + €2
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where y; = Bankrupt, y» = Excess Cash and x; = Earnings, o = Leverage, x5 = Tangible,
x4 = Size (log Sales). All variables except size are scaled with respect to total assets. The

errors €; and e, are standard Gaussian with correlation p.

Estimation. We estimate the model with M-H using a single block of parameters. We sample
11,000 draws from the posterior and discard the first 1000 draws as burn-in. We use the
1+p

Fisher transformation p = %log (H) for p. Let

0 = (o, b1, iz, a, Pao, a1, Boz, Bos, p)”

and set the prior to p(#) = N(0,10 - I) for simplicity. Two different samplers are considered
for both MCMC and PMCMC: the Random walk Metropolis (RWM) and the Independent
M-H (IMH). The RWM uses the Hessian H(0*) of p(f]y) evaluated at the posterior mode
6* obtained from numerical optimization and sets ¢(6,|0.) = N(0.,cxH '(6*)). The IMH
uses ¢(0,) = t,(6*, H1(6*)), where t, is the multivariate Student-t distribution with v = 10
degrees of freedom.

For PMCMC, the approximate log-likelihood contributions are obtained using the thin-
plate spline approach in Appendix A, with a probit link for each of the four response outcomes
separately. We use |V| = 25,000 and put more knots in responses with more observations.

We note that [;(0) < 0 for all £ and 6 in both this example and the next one.

Results. Table 1 shows the number of Efficient Draws Per Minute (EDPM) and the relative
EDPM (REDPM) for PMCMC vs MCMC for the two different proposals, IMH and RWM.
The targeted variance is 1 for both IMH and RWM. PMCMC gives more efficient draws per
minute than regular MCMC, especially for the RWM algorithm. Both cases use around 8%
of the data to estimate the likelihood (plus another 5% for training the thin-plate spline)
so we should expect PMCMC to be around 7.69 times faster (given no overhead costs). In
this application the overhead costs are expensive because the data set is very large. Besides
the cost associated with the thin-plate spline at each iteration, there is a one time cost

for initializing PMCMC (determine V', estimate A, etc). This needs to be done only once
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for a given data set and the results can be stored for future use. The fraction of this cost
decreases as more posterior samples are desired. The overhead cost from the PPS sampling
at each iteration is negligible in comparison to obtaining the approximate log-likelihood
contributions. The mean Relative Inefficiency Factors (RIF) for RWM and IMH are 1.20
and 2.60, respectively. This confirms the result in Doucet et al. (2015) that RIF decreases

as the proposal deteriorates.

TABLE 1. Bivariate probit example. Efficient draws per minute for PMCMC
vs MCMC and relative efficient draws per minute (REDPM). The table also
shows the acceptance probability Pr(Acc) and the scaling ¢y used for the RWM
proposal. U is the maximum variance allowed in the estimator. V[I(6,)] is

the mean of the estimated variance (< vy,4,) at the proposed 0 values. f is
the mean sampling fraction.

IMH RWM

MCMC PMCMC REDPM  MCMC PMCMC REDPM

B 5.780 8.892 1.538 0.310 1.064 3.432

B2 6.523 8.487 1.301 0.382 1.133 2.966

Bz 6.300 8.807 1.398 0.371 1.149 3.097

a 6177 9.159 1.483 0.281 0.816 2.904

B21 5.633 8.733 1.550 0.372 1.186 3.188

B22  6.687 8.248 1.233 0.435 1.400 3.218

Ba3 7.073 7.863 1.112 0.468 1.169 2.498

B2a  5.076 9.730 1.917 0.267 1.203 4.506

p 6.008 9.040 1.505 0.283 0.871 3.078
Pr(Acc) 0.752 0.478 0.253 0.195
cx n/a n/a 0.680 0.680
Umnax n/a 1 n/a 1
V1i(6,)] n/a 0.995 n/a 0.995
f 1 0.080 1 0.081

For both proposals, we experimented with increasing the targeted variance for the log-
likelihood estimator. The case V[I(A)] ~ 3.283 is of particular interest for the RWM, but
also Pr(Acc) =~ 0.07 and ¢, = 2.562/+/d = 0.854 (Sherlock et al., 2015). Table 2 presents the
results for the RWM proposal and shows that V[I(#)] ~ 1 (Doucet et al., 2015) is optimal
for our application. The same conclusion is reached for the IMH proposal (not reported),

i.e. increasing the targeted variance results in fewer efficient draws per minute.
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TABLE 2. Bivariate probit example. Inefficiency factors (IF) and relative effi-
cient draws per minute (REDPM) for three different PMCMC with RWM for
different values of v,,,, and ¢y as indicated in the table. v,,,, 1S the maximum
variance allowed in the estimator and c) is the scaling used for the RWM pro-
posal. The table also shows the acceptance probability Pr(Acc), the mean of
the estimated variance at the proposed 6 values V[I(6,)] (< Umaz). [ is the
mean sampling fraction.

PMCMC1 PMCMC(C2 PMCMC3

IF REPDM IF REPDM IF REPDM

Bi1 36.605  3.432 60.296  2.777 43.013  3.890

Bz 34359  2.966 45.612  2.979 53.249  2.550

Bz 33879  3.097 45.114  3.102 60.412  2.315

a 47.702  2.904 58.642  3.149 49.495  3.730

Ba1 32.827  3.188 64.909  2.151 55.411  2.516

Boo  27.82 3.218 63.283  1.885 55.031  2.168

B2z 33.326  2.498 50.276  2.207 62.273  1.780

Bos 32376 4.506 43.499 4472 58.335  3.330

p 44695  3.078 50.725  3.618 48.682  3.763
Pr(Acc) 0.195 0.125 0.085
cx 0.680 0.854 1
Vmag 1 3.283 3.283
V[i(6,)] 0.995 3.248 3.247
f 0.081 0.025 0.024

The marginal posteriors from the MCMC and PMCMC algorithms are nearly indistin-
guishable (not shown here). Figure 3 explores the upper bound of the fractional error in the
likelihood approximation in part (i) of Theorem 1. The figure is created using 1000 values

of 6, and for each 6 the subsample m is adapted (if needed) such that o2 < 1.

4.2. Weibull survival model with random effects. Our second application models the
bankruptcy response in the previous section as discrete-time survival data. In particular, we
extend the discrete-time Weibull survival model in Quiroz and Villani (2013) with random
effects. This example illustrates how the numerical method for constructing the sampling

weights is used within our PMCMC framework.

Data and likelihood. The data for each firm is recorded as a sequence {y;;, v4;};~,, where

y;; = 1 if firm 7 experiences the non-repeatable event bankruptcy at period j. The covariate
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C,, (0)/v m(0)

0.045

FIGURE 3. The bound for part (i) of Theorem 1 for the bivariate probit exam-
ple. The figure shows the upper bound for the fractional error in the likelihood
approximation computed over 1000 draws from the posterior. The subsample
size m(0) is chosen so that o2 < 1, on average m = 40,000 (8% of the full

z
sample size) and o2 = 0.95 on average.

1 5

vector is xz; = (1,2, .. ,xij)T where x! - earnings before interest and taxes over total assets

3 _ cash and liquid

(earnings ratio), 2 - total liabilities over total assets (leverage ratio),
assets over total liabilities (cash ratio), z* - logarithm of (deflated) total sales (size) and x°
- logarithm of firm age in years. We consider a data set with 2,000 individual firms and

14,663 firm-year observations.

The hazard probability, Pr(default at time ¢|non-default at time ¢ — 1), is modeled as

hi(zij) = 1—exp <_)‘ (tfj N tip(ﬂ'*l)>> '

where
(4.2) log(A) = 7; + x;x and log(p) = z;,,, with ; %j N(0,7%).

The density of observations y; for firm ¢, conditional on the random effect ~;, is

ng

p(yilﬁwﬁpa %’) = H(l — h(xij))lfyijh(xij)yij’

j=1



SPEEDING UP MCMC 20

with y; = (Yi1, - - - Yin,). The log-likelihood is obtained by integrating out ~; for each firm so
that

(4.3) logp(ylBy, B,) = Zlog (/p(in'wﬁpv%‘)p<%)d%) :

Estimation. We estimate the model with M-H using a single block of parameters. We sample
11,000 draws from the posterior and discard the first 1000 draws as burn-in. For the variance
parameter in the random effect we use 72 = log(7?). Let 8 = (8, 3,,7%)" and set the prior
p(0) = N(0,10 - I) for simplicity. We use the same RWM and IMH proposal as in Section
4.1 to sample the posterior (but with v = 5).

The integrals in Equation (4.3) are computed using the trapezoidal rule, where the tuning
parameter is the step-size h. The value h = 0.01 is considered to give the “true value” of the
integral and is determined by computing the log-likelihood evaluated at the posterior mode
on a grid of h, and then choose the point where the difference in log-likelihood between two
consecutive points is of the order 107!°. This is a reasonable level of accuracy in the vast
majority of numerical applications.

PMCMC uses a larger step-size to approximate the integral expression for . (6) in the PPS-
weights. It is important to understand the effect of increasing h. There are regions of the
parameter space where a larger h still gives a good approximation of the integral. However,
for other regions it can have a detrimental effect on the variance as Figure 4 illustrates for

h =1.25.

Results. Table 3 shows the relative efficient draws per minute for MCMC vs three different
PMCMC (varying the step-size of the trapezoidal method in the approximate [;(0)) using
the RWM to propose . Many more efficient draws per minute are obtained with PMCMC
and this is particularly true for the step-sizes h = 0.50 and h = 1.25. The decrease in
REDPM with h = 1.50 is due to bad approximations over large regions of the parameter
space so that the algorithm enters the adaptive phase too often, which results in increased
computational time. It is difficult to obtain V[Z(Gp)] ~ 1 and still be efficient with respect to

computational time. This is because there is a sharp jump from a good approximation (low
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FIGURE 4. Sampling fraction and estimator variance at proposed point (be-
fore adaptation) against PMCMC iterations. The figure shows the adapted
sampling fraction f, which is set to 0.01 at start (blue solid line and left y-

axis), and the corresponding V[I(0)] (red dashed line and right y-axis) for some
iterations in the PMCMC. The upper panel shows the sampler with a RWM
proposal exploring an area of the parameter space where the log-likelihood
approximation is accurate. The lower panel (with a logarithmic right y-axis)
shows the same example but when the approximation is poor.

variance) and a bad approximation (high variance) and therefore we have to set h so that
V[I(6,)] > 1 for any iteration and then bring it down to 1 by adapting the sampling fraction.

The PMCMC implementation with the IMH proposal was successful. This is in contrast
to regular MCMC on the full data set that got stuck for very long periods and produced
unacceptably large IFs.

Figure 5 compares the marginal posteriors of 8y and 72 in Equation (4.2), obtained from
MCMC (h = 0.01) and PMCMC (h = 0.5) with a RWM proposal. The PMCMC uses only
1% of the data (m =20 firms) and obtains very accurate posteriors. Furthermore, Figure 6
explores the bound for the fractional error in the likelihood approximation in Theorem 1.
The bound is extremely small, which explains the accurate approximation of the marginal

posteriors in Figure 5.



SPEEDING UP MCMC 22

TABLE 3. Survival Weibull example. Relative efficient draws per minute for
PMCMC (h = 0.50, 1.25,1.50) with a RWM proposal. The MCMC is carried
out with h = 0.01 and Pr(Acc) = 0.237. The table also shows the acceptance
probability Pr(Acc) and the scaling ¢, used for the RWM for PMCMC. v,,,4,
is the maximum variance allowed in the estimator. V[I(6,)] is the mean of
the estimated variance at the proposed 6 values. fqq,¢ is the initial sampling
fraction set in the algorithm, which is then increased if V[I(6,)] > 1. f is the
mean sampling fraction.

REDPM

h = 0.50 h =1.25 h = 1.50

B 3.980 4.848 2.746

Bz 6.883 7.648 6.580

B3 3.208 3.651 2.521

Bra 3.863 5.532 3.169

Bxs 3.138 2.557 1.953

Bxé 4.965 5.358 2.543

Bo1 5.424 4.359 3.657

Bp2 4.224 3.829 4.854

Bp3 5.465 5.998 4.338

Boa 4.385 3.705 3.419

Bos 3.248 3.478 2.400

Bos 6.268 6.898 4.221

72 5.068 5.996 4.241
Pr(Acc) 0.237 0.240 0.215
o\ 0.416 0.416 0.404

Umaaz 1 1 1
V[i6,)]  0.188x1073 0.156 0.415
fstart 0.010 0.010 0.030
f 0.010 0.011 0.078

It should be noted that while a cruder numerical integration works well for obtaining the
PPS-weights, it cannot be used to speed up regular MCMC on the full data set. The reason
is that there are regions of the parameter space where a crude numerical integration gives
a very misleading likelihood value, see Figure 4 for an example, and the MCMC will then
sample from the wrong posterior.

Note that while the REDPM values are already large in this example with a univariate
random effect, it is clear that increasing the dimension of the random effects would lead to

even larger relative efficiency gains. It should also be noted that the numerical integration
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FIGURE 5. Marginal posterior distributions for MCMC (solid blue line) vs
PMCMC (dashed red line) using a RWM proposal.
algorithm used here is highly vectorized and the computational cost decreases rather slowly
with increased step sizes. Other numerical methods have a computational cost which is linear
in the tuning parameter, and for such problems our subsampling method with PPS-weights
based on a relaxed tuning parameter would be dramatically better than MCMC on the full

sample.

5. CONCLUSIONS AND FUTURE RESEARCH

We propose a new framework for speeding up MCMC on models with time-consuming
likelihood functions. The algorithms use efficient subsampling of the data and an estimator
of the likelihood in a PMCMC scheme that is shown to sample from a posterior which is
within O(m_%) of the true posterior, where m is the subsample size. Moreover, the constant

of proportionality in the error bound of the likelihood is shown to be small and our empirical
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FIGURE 6. The bound for part (i) of Theorem 1 for the Weibull survival

example. The figure shows the upper bound for the (log) fractional error in

the likelihood approximation computed over 1000 draws from the posterior.

The subsample size m(#) is chosen so that o2 < 1, on average m ~ 20 (1% of

the full sample size) and ¢ = 0.015 on average.
applications clearly illustrate the accuracy of our approach. We demonstrate why simple
schemes such as SI will not work, and how Probability Proportional-to-Size (PPS) sampling
can reduce the variance of the likelihood estimator by many orders of magnitude by assigning
higher sampling inclusion probabilities to observations that make a larger contribution to
the likelihood. We propose three different strategies for obtaining efficient PPS sampling
probabilities.

We argue that the assumptions in Doucet et al. (2015) are satisfied, and the sample size can
therefore be conveniently tuned to target a variance of the log-likelihood estimator of around
1 for an optimal trade-off between efficiency and computing time. This choice is conservative
and thus minimizes the risk of the PMCMC chain getting stuck, which is also evident in
our applications. We propose an adaptive strategy for setting the sampling fraction so that
the variance of the estimator is around 1 with a tight lower bound, hence avoiding including
unnecessarily many observations for computing the likelihood.

The proposed algorithm is evaluated in two examples. The first example is a bivariate

probit model with 500,000 observations. The second example is a discrete time Weibull
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model with random effects. In both examples we find that the proposed algorithm generates
more efficient posterior sample draws per minute than the corresponding MCMC on the full
data set. This is true in particular for weaker proposals, a result consistent with previous
literature.

The use of efficient sampling schemes for subsampling data in PMCMC opens up many
interesting directions for future research, including the development of alternative sampling
designs and more efficient likelihood estimators. It is our hope that the proposed framework
will motivate researchers in survey sampling to contribute to this important area of improving

the speed and efficiency of MCMC methods for complex problems.
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APPENDIX A. PPS WEIGHTS FROM SURFACE FITTING

Let d = (27,y")T and assume that we have computed the log-likelihood contribution
[(0;d) for all d in a small fixed subset V of the full dataset for the # in the current MCMC
iteration. Let Iy (6) collect these |V| values, and let V¢ be the complement of V, i.e. the
remaining observations. Given that [(0;d) is known for all d € V| the population total can

be decomposed as

(0) = Y Ub;d)+ ) U6;d),

dev deve
where the first term is known. Our sample is therefore only drawn from the observations in
Ve. A natural way to approximate [(0;d) at any d € V¢ is by a noise-free Gaussian Process
(GP); see Rasmussen and Williams (2006) for an introduction to GPs. That is, we use a
GP prior I(0;d) ~ GP [0, k(d,d")], where k(d,d') is a positive definite covariance kernel, and
update it to a GP posterior using the exact data density evaluations for the observations
in V. The zero mean in the GP prior can be replaced by any crude surrogate model, if
available. The predicted log-likelihood contributions for the observations d € V¢ are given
by
lye(0) = K (dye, dy) K (dv, dy) 1y (6),

where d4 is the vector of data points in set A, K (dy-., dy) is the |V¢| x |V| covariance matrix
between dy. and dy based on the covariance kernel k(d,d’), and K(dy,dy) is the |V| x |V|

covariance matrix of dy .
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A commonly used kernel function is the squared exponential kernel

1
k(d,d') = 0% exp (—ﬁ |d — d'H?) .

The three-parameter Matefn kernel or the ARD kernel are also attractive choices (Rasmussen
and Williams, 2006). The hyperparameters oy and ¢ can be set before the MCMC by
minimizing the prediction errors Hlvc(é) - Zv(é)” at some estimate 6, e.g. the mode of
the likelihood obtained by Newton’s method. Since the subset V' is fixed throughout the
MCMC and the hyperparameters optimized before the MCMC, the matrix K (dy, dy)~! does
not change over the MCMC iterations. Computing the predictions ly<(f) therefore involves
only the matrix-vector multiplication a = K(dy,dy) 1y (6) followed by the matrix-vector
multiplication K (dy.,dy)a. This is typically fast compared to computing ly(f) which can
be prohibitively expensive for complex density evaluations. The experimental designs in
Sacks et al. (1989) and Santner et al. (2003) can be used to select the subset of observations
in V optimally. The computations for the GP can nevertheless be costly on large datasets
(but see the approximate GP methods in Rasmussen and Williams 2006, Ch. 8) and we now
propose an alternative approximation based on spline regression.

Spline surfaces with thin-plate radial basis functions can be used to approximate the
log-likelihood contributions. As before, define d = (z7,4%)T and denote the thin-plate
spline approximation by g(d;~y) = Z%zl YmGm(d) where g, : RI™D — R is g, (d) =
I|d — &2 1log(]|d — &.]]) and &, is the mth knot. The knot locations are chosen with the
k-means algorithm on the data space d before running the MCMC algorithm. The training
set V must give good coverage of the data space in general, and the boundary in particular,
as it is used to predict ly<(#).

The predicted log-likelihood contributions are
ly<(0) = By<(B{By + A)"' B ly(6),

where By denotes the basis-expanded matrix from M knots for the observations in V', and

A > 0 is a shrinkage factor. Analogously to the GP case, A is set before the MCMC to
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,and V, By, Byc and \ are

the value that minimizes the prediction errors Hlvc(é) —Iy(0)
fixed throughout the MCMC. When M < |V| the computational complexity of the thin-
plate spline is much lower than that of the GP, and is therefore likely to be the preferred
method on large datasets.

The error in ZVC(Q) resulting from A being evaluated at  rather than 6 can be reduced as
follows. We can adjust the predicted ZA(H; d) at any data point d € V¢ by using the known
prediction error 1(6; d,) — lA(H; d,) for the observation d, € V which is closest to d € V¢. This
refinement will work well when the paired observation are close (V' is a good coverage of the
data space) and the log-likelihood contribution does not change drastically between these
points.

For some models, it is convenient to transform Iy (6) with a link function before regressing
on data space. One example is dose-response models where, e.g., the logit-link is suitable for
transforming p(yi|xy, ) € [0,1]. In models with categorical response we can run separate
regressions for each of the categories (i.e. d = x). In the presence of many categories, spline
regression with categorical predictors as in Ma et al. (2011) can be applied.

Local approximations such as the thin-plate spline are likely to give poorly estimated
sampling weights for high dimensional data. In this case we suggest a dimension reduction
of the data space as follows. Suppose the model has P features, i.e. model parameters linked
to covariates. Each feature is a function of 6, where x,, and 6, denote the covariates and
the parameter for the pth feature, respectively. Let czp = xg be the data corresponding
to the pth feature. In some cases it is also connected to the response in the log-density
and then d, = (z),y")". Define the mapping h, : Rém@d) _y R with inputs d, and 6,
The reduced data is now d = (hy,...,hp)T with P << d (in practice often P < 2), and
I (0) is parametrized in terms of d. We proceed as before, but since the data changes the
basis expanded matrix B is recomputed in each MCMC iteration. This approach works
well when the computational cost of the complex model dominates the relatively cheap cost
of computing the surface fit. All quantities that were previously fixed can be determined

similarly by using dp evaluated at the posterior mode.
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APPENDIX B. PROOF OF THEOREM 1

Our proof of Theorem 1 makes use of the following lemmas.

Lemma 1. Suppose that by, and b, are bounded sequences. Then

m3/2 T p3/2 mi2z o2

(14—%—1— b —i—o(l))m/exp(x) = 1+ bm —|—O(1)

il.

(1+—2+0(m )) = 1+m 14—0(m ).
Proof. The proof of both (i) and (ii) is a straightforward application of a first order Taylor

series with remainder. O

Lemma 2. Suppose that X and Y are two random variables with E[X] =0 and E[Y] = 0.
Then,

[NIES
[NIES

0< Elexp(X +Y)]—1<(Elexp(2X)] —1)2 (E[exp(2Y)] — 1)

+ (Efexp(X)] = 1) + (Eexp(Y)] - 1).

ii.

N|=
[NIES

0 < Elexp(X) (exp(Y) = 1] < (Efexp(2X)])? (E[exp(2Y)] - 1)*.

Proof. To prove (i), note that for any r.v £, with E[{] = 0, we can show that Elexp(§)] > 1.

Now,

exp(X+Y)—1 = (exp(X)—1)(exp(Y)—1)+exp(X)—1+exp(Y)—1,
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and by Cauchy-Schwartz

N

0< Ef(exp(X)—1) (exp(Y)—1)] < (E [(exp(X) — 1)2}) (E [(exp(Y) — 1)2})

The proof is completed by noting that

=

(B.1) E [(exp(X) — 1)2} = Flexp(2X)]—1—-2(E[exp(X)] —1) < Elexp(2X)] — 1,

and similarly for Y.

To prove (ii), by Cauchy-Schwartz

N|=
SIS

0 < E [exp(X) (exp(Y) — 1)] < (E[expX)))? (E [(exp(Y) — 1)*]),

and applying Equation (B.1) for Y completes the result.
Lemma 3. Suppose that \ is a constant. Then the following results hold

~ )\2 bm /1%) A\
Sl (1) e (3) = 1o 0

where

b = (02)*%73/6  and  AD(\) = o(1)

can be computed from Equation (B.4) by direct evaluation for any 6.

ii.

(i —1)2 = 02 s b AR
B.2 E = -1 =
(B.2) exp()\ o] )\(m—l)2+ -
where
7 (03)2 (2)
by, = T (va+2m—3) and A7 (N) =o(1)

can be computed from Equation (B.2) by simulation for any 6.
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iii. Let
1 m
B.3 Y, = — L —1)? — o2
(B.3) m(m — 1) — (<< ) UC) 7
Then,
b* AP ()
E A, ) -1 = \2—m i
[exp(AY;)] s
where
2\2
b= T 00— 1) and A90) = o)

can be computed from Equation (B.7) by direct evaluation for any 6.

~

Proof. To prove (i) consider E [exp()\(lm - l))] with A(l,, — 1) = L3 MG —1). By part

(ii) of Assumption 1

—1 A2 A3b !
E {exp (AQ )} =1+—02+ —=+ “m
m m m

with
b = 73 (03)3/2 /6 and ¢, =o(1).

Because the (;’s are iid, and by part (i) of Lemma 1 (with z = ’\3203 and b, bounded),

B exp(\im —1)] = (E {exp (AClﬂ: l)DM

A2 b AY(N)
(B.4) = &Xp (?UZ) (1 + ml/2 + mi/2

and A (A) = o(1), which concludes (i).

Define v, = (I, — )2 — 0. The proof follows from part (iii) of Assumption 1

Ui A2 AP
(B5) E |:eXp ()\m — 1)} = 1+ mbm -+ 2
with
7 (03)2 (2)
b, = i (7a+2m—=3) and A (X)) =o0(1)
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Proof of part (iii). By part (iv) of Assumption 1,

(B.6) E {exp (Awﬂ U A

m(m — 1) (m—1)2  (m—1)2
where )
po= 2 (2%) (a—1) and &y = o(1).

The (;’s are iid, and by part (ii) of Lemma 1 (b, is bounded),
(G =0 =ad\T\"
E Y, = (F > 776
svorl = (sl (S )))
v AP
_|_
m — 1 m

(B.7) — 1+

and AS)(/\) = o(1) which concludes the proof. O

Lemma 4. Let by,, by, by, and AS}), A$3), AD be defined as in Lemma 3. Under Assumption
1:

~ 1 1
‘E {exp (lm — 505)] — exp(l)‘ = exp(l)ﬁ |An|  where Ay, = by, + A1)

and A, = O(1).

ii.
‘E {exp(im -

where By, = /mU;*Uy* = O(1),

ml/2 mi/2

(1)
Uy = exp(o?) <1 + 8 O + A (2)>
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~ 1/2 1/2
4b,, AP (9 Ab* AP (9
UF( LA >) ( wo, AV(2)

(m—1)2 m? m—1 m

Proof. By part (i) of Lemma 3 (with A = 1),

1, b | AW(1)
E {exp (lm - 5@)} —exp(l) = exp(l) (ml/g TR

and taking the absolute value proves (i).

To prove part (ii), note that

~

1 ~ 1 1
'E {exp(lm - 565)] - F [exp(lm - 503)} ‘ = exp (l - 503) X

(B.8) (E [exp(Vin) (exp(Win) — 1)])

By part (ii) of Lemma 2

0 < Eexp(V)(exp(W) = 1)] < (E [exp(2Vin)])? (E [exp(2W,,)] — 1)2 .

From part (i) of Lemma 3 (with A\ = 2)

mi/2 mi/2

1)
Elexp(2V,,)] = exp(20?) (1 +8 b + Am (2)>

and U; = exp (—02) E [exp(2V,,)] = O(1).
We now derive the upper bound U, of E [exp(2W,,,)] — 1. We can show that
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z

with X, = ((Zm —1)? - O'2> /(m —1) and Y,, as in Equation (B.3). By part (i) of Lemma 2

D=
[N

Elexp(2W,,)] — 1 = Elexp(X,, — V)] — 1 < (E [exp(2X,,)] — 1)2 (E [exp(—2Y;,)] — 1)

+ (B [exp(Xm)] = 1) + (B [exp(=Ym)] = 1)

For X, the expectations (with A = 1,2) follow from part (ii) of Lemma 3

b, A2 (2
+ (2).

Elexp(2X,,)] —1 = 4(m 1) -

Similarly for Y,, (with A = —1, —2), but using part (iii) of Lemma 3

b AP (—2
Elexp(=2Y,)] -1 = 4—"— + ( )
m—1 m

Since Uy = O(m™') we conclude that B,, = O(1). O
After the following important remark we are now ready to prove Theorem 1.

Remark. The proof of Theorem 1 involves integrating over #. To save space we have sup-
pressed the dependence of 6 everywhere and will continue to do so. However, we stress the
fact that this notation indeed makes all assumptions to hold for any value of 8. When 6
changes, the sampling weights change to fulfill the approximate proportionality assumption.
In practice this is done by recomputing the weights using any of the three methods proposed

in the paper.

Proof of Theorem 1. Proof of (i). Since

nol6) = p19) = B [oxplin — 52| = B [explin — 30 +

the proof follows directly from Lemma 4. It also follows that C,,(0) = |A,,(6)| + |Bn(0)] is
bounded.
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To prove part (ii), consider

() —p(y)| < /|pmy|e p(y10)| p(8)d8

From part (i),

[pm(316) — p(y160)] < p<y|e>%cm<e> < p<yw>¢% sup C,,(6)  uniformy for 0,

and since [ p(y|0)p(8)df = p(y) the result follows.

To prove part (iii), we note that

Tm(0) = 7(0) = pm(yl0)p(0)/Pm(y) — p(y|0)p(0)/p(Y)
p(0

~—

p(y

P(Y) Pm(y

]
—p(ylO)p(0) (@ - p:@) |

= (Pm(y10) = p(y]9))

By part (i),

7n(6) — 7(0)] < |pm<yre>—p<y|e>\pi<f;>+p<yre>p<e>’ (1)_pm1(y)‘

< plo) \/%Om(e)pff?y)) + p(y|0)p(0) ‘p (1y) _ pml(y) ‘ |
From part (ii),
‘p(ly) _pml(y)‘ - p(y);m(y) [Pm(y) = p(y)|
") 7 O
Hence
I (0) — 7(0)] < p(@)p(ylo) 1 0) p(y) ply) 1

ply)  Vm " pm(y) +p(0)p(y|0)p(y)pm(y) NI Cm6)
_ w(e)\/% ( p(y) o (6) + p(y) Sgpcm(g))

which proves part (iii). The expression between brackets is D,, and is clearly bounded
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Proof of part (iv). From part (iii)

1
7(0)—=sup D,,(0) uniformly for 6.

7 (0) = T (0)| < 7(0)—=Dyn(6) Jm

Therefore

\ / B(0) (mn(6) — (6))db] < Tlﬁsgp D(6) / I1(6) [p(6)do,

and the last statement follows by taking h(6) as the identity function.
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