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1 Introduction

About one in every five jobs are either created or destroyed every year (Davis, Faberman

and Haltiwanger, 2006). The bulk of this firm-level labor adjustment is truly idiosyncratic

as firms operating in the same sector and area shrink and grow side-by-side. Hence, jobs

are rapidly created and destroyed, even in sectors with stable net employment. Following

the seminal work of Davis, Haltiwanger and Schuh (1996), the importance and magnitude

of these labor flows has been documented for a large number of countries.1 However, while

the empirical regularities of job and worker flows have been abundantly documented, little

is known about the structural determinants of these flows.2

This paper presents novel evidence on how firms adjust employment through hires

and separations when their positions in the performance distribution change. We de-

rive empirical measures of permanent idiosyncratic firm-level shocks to analyze how firms

adjust their labor when their relative performance has been altered beyond simple transi-

tory fluctuations.3 By analyzing the direct impact of idiosyncratic shocks, we concentrate

on employment adjustments in a stable market environment, effectively abstracting from

feedback effects through changes in market wages or aggregate unemployment. Using the

terminology of Foster, Haltiwanger, and Syverson (2008) we define technology shocks as

shifts in the firm-level physical production function (i.e., the ability to produce at a given

level of inputs) and demand shocks as shifts in the firm-level demand curve (i.e., the ability

to sell at a given price).4 We present direct evidence on how the magnitudes and signs

of permanent changes in these key determinants of firm performance affect firms’ labor

adjustments along different margins. Our empirical analysis relies on a unique data base

that links measures of firm-level input, output, and prices to individual worker-flow data

for Swedish manufacturing firms.

The analysis adds to a vibrant empirical literature, surveyed in Syverson (2011), that

documents the distinct impacts of firm-level technology and demand shocks on productivity

1See Davis, Faberman, and Haltiwanger (2012) for an overview. For evidence from Sweden, which is the
empirical subject of this paper, see Andersson (2003).

2A small macro-oriented literature aims to identify the employment responses to technology-driven
changes in firm-level productivity, see e.g., Carlsson and Smedsaas (2007) and Marchetti and Nucci (2005).
The macro literature also contains a number of related studies, e.g., Galí (1999) and Michelacci and Lopez-
Salido (2007), the latter of which distinguished between neutral technology shocks and investment-specific
technology shocks and derived the consequences for job reallocation.

3 In an extension, we also provide an analysis of firms’responses to transitory shocks.
4 Importantly, these shocks are defined according to their effects on firm-level optimization, not according

to their origins.
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and other firm-level outcomes. Most notably, Foster et al. (2008) shows that firm closures

are driven primarily by changes in idiosyncratic demand and only to a lesser extent by

changes in idiosyncratic physical productivity. Recent evidence in Foster, Haltiwanger, and

Syverson (2012) suggests that the growth of young firms in the US is due to a shrinking

product-demand gap relative to incumbents. Pozzi and Schivardi (2012) shows similar

results using Italian data. In addition, Carlsson, Messina, and Nordström-Skans (2014)

shows that firm-level technology shocks affect workers’wages, using Swedish data.

This paper is, however, the first to detail how firm-level technology and demand shocks

affect firms’ labor adjustments through hires and separations, a question that speaks to

a huge body of theoretical research regarding the relationship between firm-level revenue

productivity and labor adjustments (Bentolila and Bertola, 1990; Davis and Haltiwanger,

1992; Hopenhayn and Rogerson, 1993; Mortensen and Pissarides, 1994; and more recently

Cahuc, Postel-Vinay, and Robin, 2006; and Lise, Meghir, and Robin, 2013). The focus

of this paper is to disentangle the separate roles in labor adjustments of two fundamental

drivers of firm-level revenue productivity fluctuations: demand and technology shocks.

Our analysis departs from a simple model of monopolistic competition that motivates

a set of restrictions on the long-run relationship between firms’fundamentals and shocks.

In the spirit of Franco and Philippon (2007), we then impose these long-run restrictions

in a structural vector autoregression (SVAR) setting to filter out our empirical measures

of permanent idiosyncratic demand and technology shocks. This allows us to derive the

shocks without imposing any restrictions on the firms’short-run behavior.

The most important restriction we rely on is the notion that the physical gross Solow

residual is independent of all shocks except the technology shock in the long run. To

translate this prediction to the data, we benefit from a firm-specific price index. Using a

strategy similar to Eslava et al. (2004) and Smeets and Warzynski (2013), we deflate the

(nominal) firm-level output series with firm-level price indices to derive measures of firm-

level real output volumes. Importantly, the fact that we filter out the technology shocks

using long-run restrictions implies that other shocks, or changes in factor utilization or

inventories, are allowed to have a transitory impact on the physical Solow residual without

affecting the measured technology shocks.

Our model also allows us to derive suffi cient restrictions to identify permanent demand

shocks, again without imposing any restrictions on the nature of short-run shocks or dy-

namics. Since we use data from a small, open economy, our system also explicitly allows
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for permanent sector-level shocks to factor prices.5

When implementing the SVAR, we use a strategy that differs from standard time-

series applications such as Blanchard and Quah (1989) and Franco and Philippon (2007).

Because we depart from a broad cross-sectional panel of firms, we estimate the reduced-

form equations using dynamic panel data methods building on Arellano and Bond (1991).

This allows us to estimate both the parameters and the covariance matrix of the error terms

with considerable precision, thereby avoiding standard macro-data concerns regarding the

practical implementation of SVARs.

Before moving to the main analysis we corroborate the interpretation of the idiosyn-

cratic firm-level technology and demand shocks by showing that prices and output respond

as theorized: Idiosyncratic output increases in response to positive shocks to both demand

and technology. But firm-level prices decrease only in response to firm-level technology

shocks, whereas they remain largely unaffected when demand shifts.

Turning to our key research questions, we start by showing that, despite being crucial

for both firm-level prices and output, firm-level technology shocks have a relatively limited

effect on labor inputs. In contrast, product demand is a key driving force behind firm-

level labor adjustments. An idiosyncratic demand shock of 1 standard deviation increases

employment by 6 percentage points. The employment change is fast and appears to be

relatively unconstrained. Most of this adjustment takes place within a year. These results

are robust to a wide range of variations in measures and specifications.

The strong impact of product demand changes on employment offers a natural in-

strument to analyze the dynamics of hirings and separations. Our analysis proceeds in

the spirit of Abowd, Corbel, and Kramarz (1999) and Davis, Faberman, and Haltiwanger

(2012), which decompose positive and negative changes in net employment into job and

worker flows in France and the United States, respectively. Interestingly, these studies

show that French firms reduce employment primarily by reducing hirings, whereas U.S.

firms behave much more symmetrically by adjusting hirings and separations in similar pro-

portions. In contrast to these decomposition exercises, we analyze hirings and separations

in response to net employment changes pushed by a well-identified shock: permanent shifts

in firms’product demand schedules. This allows us to abstract from other shifts in labor

demand, e.g., worker attrition, that can alter hiring and separation policies.

Our findings are, however, well in line with the descriptive evidence from the United

5 In addition, the system allows for a (transitory) residual shock component to soak up any remaining
short-run dynamics, including mean-reverting shocks to purely idiosyncratic factor prices.
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States. The employment adjustment induced by permanent demand shocks is both rapid

and symmetric across hirings and separations. On average, Swedish manufacturing firms

adjust employment almost as much through changes in the separation rate as through

changes in the hiring rate. This result suggests that both margins should be treated as

endogenous when modelling labor adjustments at the firm level. Although we find that

the average firm reduces hires in response to negative shocks, it also continues to recruit

workers even when forced to reduce employment substantially. Thus, the firms are far from

exploiting the full potential of downsizing through reduced hirings. We also show that, in

the face of negative shocks, only half of the adjustment through separations is related to

short-tenured workers.

Overall, the speed of adjustment, the symmetry between hires and separations as ad-

justment margins, the rapid separation of long-tenured workers, and the continued recruit-

ment of workers in the face of negative shocks jointly suggest that Swedish firms facing

permanent idiosyncratic demand shocks do adjust their labor flexibly. This may appear

surprising considering the slightly above-average levels of employment protection in Swe-

den relative to OECD countries in general (OECD, 2014), which should impose non-trivial

employment adjustment costs.

To investigate this further, we extend the model to include the labor effects of transitory

demand shocks. The firms’responses to transitory demand shocks is heavily muted, sug-

gesting that they adjust employment only in response to long-lasting shocks. The results

are thus consistent with a framework in which firms hoard labor when hit by temporary

disturbances, but release workers rapidly when hit by a permanent reduction in their prod-

uct demand. This implies that both the origin and the time-series properties of the shocks

are crucial for the degree of labor adjustments.6

The paper is organized as follows: Section 2 outlines a simple model that motivates

the long-run restrictions needed to extract our permanent demand and technology shocks.

Section 3 introduces the main characteristics of the firm-level data used in the analysis

and discusses the empirical implementation of the SVAR and the validation of the shocks.

Section 4 reports the main results, distinguishing employment, hiring, and separation mar-

gins in response to technology and demand shocks. Section 5 presents extensions of the

basic model, including a discussion of (i) the role of worker heterogeneity, and (ii) how

temporary demand shocks affect employment adjustment. Finally, section 6 summarizes

6See also Guiso, Schivardi, and Pistaferri (2005), which shows that the time-series properties of shocks
to firm-level value added have a crucial impact on workers’wages.
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our results and findings.

2 Model and Empirical Strategy

2.1 Shocks to Idiosyncratic Production Functions and Demand Curves

The purpose of the paper is to document how firms adjust labor in response to “structural”

shocks– processes that involve changes in key elements of the firms’profit functions. We

focus on two such processes: The first process captures shifts in the firm-specific physical

production function; we label these shifts technology shocks. The second process captures

shifts in the firm-specific demand curve; we label these shifts demand shocks.

The key distinction between a technology shock and a demand shock lies in how the

shock affects the producing firm, not in the origin of the shock. We therefore refrain from

modeling the origins. This approach, which is consistent with the existing (micro) literature

(such as Foster et al., 2008, and Syverson, 2011), implies that we do not distinguish between

shifts in the firm-specific demand curve that arise from changing preferences among final

consumers, those that arise from increased demand among downstream firms, and those

that arise from quality changes that increase product demand at a given price.7

To identify firm-level structural shocks, we need to make assumptions about the tech-

nology and market conditions faced by the firm. Our setup follows Eslava et al. (2004),

Foster et al. (2008, 2012) closely, by using a first-order approximation of both production

technologies and product market demand and by modeling the key technology and demand

shocks as neutral shifters of the production function and the demand curve respectively.

Thus, the firm-level production function is approximated by:

Yjt = AjtN
α
jtK

β
jtM

1−α−β
jt and α, β ∈ (0, 1), (1)

where physical gross output Yjt in firm j at time t is produced using technology indexed

by Ajt and combining labor input Njt, capital input Kjt, and intermediate production

factors (including energy) Mjt. Importantly, our data allow us to account for idiosyncratic

7Note that the firm-level price index we use is based on unit prices for very detailed product codes
(8/9-digit Harmonized System/Combined Nomenclature codes), which limits the scope for quality changes
to be the key component in our demand shock. However, it is straightforward to show that if we added a
quality shock to the system developed below (through a wedge between the measured firm-level price, based
on unit values, and the quality-adjusted price), it would enter the system symmetrically to the demand
shock.
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price differences across firms, so that our measure of technology (the Solow residual, Ajt)

refers to physical total factor productivity (TFPQ), rather than to revenue total factor

productivity (TFPR) in the terminology of Foster et al. (2008). Equation 1 presupposes a

constant-returns technology, which is an assumption we maintain in our main specification,

but we also present robustness exercises where we relax this assumption.

The firm-level demand curve is approximated by a constant-elastic function according

to

Yjt =

(
Pjt
Pt

)−σ
YtΩjt and σ > 1, (2)

where Pjt/Pt is the firm’s relative price, Yt denotes aggregate market demand, and Ωjt is

a firm-specific demand shifter. σ denotes the elasticity of substitution between different

competing goods and hence captures the demand elasticity for each firm in the economy.

Following Guiso et al. (2008) and Franco and Philippon (2007) we model the key

shocks as permanent shifters. More precisely, we specify the evolution of the demand and

technology shifters as in Franco and Philippon (2007):

Ajt = Ajt−1e
µaj+Φaj (L)ηajt , (3)

Ωjt = Ωjt−1e
µωj +Φωj (L)ηωjt , (4)

where µaj and µ
ω
j are constant drifts, and Φa

j (L) and Φω
j (L) are polynomials in the lag

operator, L. The white-noise idiosyncratic technology and demand shocks are denoted by

ηajt and η
ω
jt. The assumed functional form implies that the shocks’ lag polynomials are

linearly related to the log differences of Ajt and Ωjt, respectively.8 As is evident from the

formulation, our focus is on permanent shocks, but in a variation of the model we also

explicitly analyze the role of transitory disturbances (see section 5.2).

Our model also allows for sectoral shocks to factor prices other than labor. This is

useful in the Swedish setting of a small open economy where factor prices are likely to

vary across sectors and time (due to exchange-rate volatility, for example). To simplify

the notation, we next define a price index (consistent with cost minimization) for input

factors other than labor in sector s, PFst =
(
PKst /β

)β (
PMst / (1− α− β)

)1−α−β
, where PKst

is the capital price and PMst is the price of intermediate materials in sector s at time t. As

for technology and demand, PFst evolves according to P
F
st = PFst−1e

µ
f
s+Φfs (L)ηfst , where µfs

8This, in turn, provides a convenient moving average (MA) representation of the VAR specified below
(see appendix C for details).
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is a constant drift, Φf
j (L) is a polynomial in the lag operator, L, and ηfst is a white-noise,

sector-specific factor-price shock.

The specified shocks (together with aggregate conditions) are taken as state variables

during firm-level wage determination. In addition, we assume cost minimization and that

the firms have the right-to-manage so that factor choices are made taking wages as given.

2.2 Long-Run Restrictions

We rely on the stylized model presented above to derive a set of long-run restrictions that

allow us to filter out the structural shocks of interest (ηa and ηω). Table 1 summarizes

the set of equations that motivate our restrictions, and appendix A presents details and

derivations. The second column of the table denotes variables that can all be constructed

from our firm-level data as long as we have an estimate of the demand elasticity σ (as

detailed in the next section).

The third column summarizes the three key predictions that we rely on for identifica-

tion:

1. The measured physical Solow residual (TFPQ in the terminology of Foster et al.

2008) is equal to A and hence independent of both demand (Ω) and factor prices

(PF ).

2. The “wage-neutral”unit labor costs (WNULC), as defined in the second row, is a

function of both A and PF .

3. The “wage-neutral”demand (WND), as defined in the third row, is a function of A,

Ω, and PF .

We use the modifier “wage-neutral”to highlight that the measures are defined to neu-

tralize the impact of potential wage shocks.

These three predictions motivate the recursive sequence of restrictions highlighted in

the fourth column: The Solow residual is independent of the innovations ηω and ηf , and

WNULC is independent of ηω. If invoked in the long run, these restrictions are suffi cient to

identify a VAR model in these variables using standard structural VAR (SVAR) techniques.

In practice, we will also include a fourth residual variable in the system that will soak up all

remaining transitory dynamics in the system. We impose that this variable has no long-run

impact on the three measures within our core system, but we return to this below.

7



Table 1: The Core Structural VAR Equations

Variable: Measured in data as: Model expression: Long-run restrictions:

Solow Yjt

(
Nα
jtK

β
jtM

1−α−β
jt

)−1
= Ajt Independent of ηω and ηf

WNULC
(
WjtNjt/Y jt

)
W−αjt = α1−αA−1

jt P
F
jt , Independent of ηω

WND YjtW
σα
jt = ψY tP

σ
t A

σ
jt

(
PFjt

)−σ
Ωjt —

Note: Solow is the physical Solow residual (TFPQ), WNULC is wage-neutral unit labor cost and WND

is wage-neutral demand. ψ is a constant such that ψ ≡
(
1
α

)−σα ( σ
σ−1

)−σ
.

What is important to note at this stage is that we only need to impose the zero-

impact restrictions of the last column in the long run. Hence, we do not impose any other

elements of the model, and we do not make assumptions regarding the short-run dynamics.

Our identification of the technology shocks (ηa) are therefore consistent with changes in

inventories, factor utilization, markups, or idiosyncratic input prices altering the Solow

residual as long as these changes are mean reverting, i.e., as long as they do not affect the

Solow residual in the long run.

The key assumption for distinguishing technology shocks from demand shocks is that

technology shocks alter the physical Solow residual in the long run, whereas other shocks

do not. This assumption implies that changes in the scale of operation are not allowed

to permanently alter the effi ciency of production. The most straightforward reason why

this assumption may prove invalid is that firms might use a production technology with

non-constant returns to scale. For this reason, we also provide results from variations of

the model where we assume that the production functions exhibit increasing or decreasing

returns. Details regarding the modifications are found in appendix A.

3 Data and Estimation of the Shocks

3.1 Data and Measurement

Our primary data source is the Swedish Industry Statistics Survey (IS). It contains annual

information on inputs, outputs, and firm-specific producer prices for all Swedish manufac-

turing plants with 10 employees or more from 1990 through 2002. We perform our analysis

at the plant level, but because about 72 percent of the observations in our sample pertain
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to plants that are also firms, we refer to the plants as firms.

In our model, the technology shock ηa is the only shock that affects the Solow residual

in the long run. This assumption is only credible if the Solow residual is calculated from

a measure of real output where nominal output has been deflated by firm-specific prices.

This is important because gross output deflated by sector-level price deflators (a measure

often used in empirical analyses) will be a function of firm-specific idiosyncratic prices,

which themselves are likely to depend on shocks other than technology (see Carlsson and

Nordström-Skans 2012 for direct evidence). As our data-set contains a firm-specific price

index built from plant-specific unit price changes,9 we can derive a measure of gross output

that is robust to changes in relative prices across firms, see Eslava et al. (2004) and Smeets

and Warzynski (2013) for a similar strategy.

To take our model to the data, we rely on gross output throughout. We first compute

a measure of firm-level changes in the physical Solow residual for firm j at time t. Letting

lowercase letters denote logs, we use

∆ajt = ∆yjt −∆zjt, (5)

where ∆yjt is the growth rate of real gross output, and ∆zjt is a cost-share-weighted input

index defined as CK∆kjt+CN∆njt+CM∆mjt where ∆kjt is the growth rate of the capital

stock (see details in appendix B), ∆njt is the growth rate of labor input, and ∆mjt is the

growth rate of intermediate materials and energy. CJ terms are the cost shares of factor J

in total costs. We measure the cost shares as time-constant averages by two-digit industry

code.

Using data on factor compensations, changes in output, and changes in inputs, we can

thus calculate the residual ∆ajt, which provides an estimate of changes in the physical

Solow residual. As argued above, this might not accurately measure technology shocks

(ηa) due to varying factor utilization, inventories, or truly idiosyncratic factor prices, but

the SVAR will filter out true technology shocks from eq. (5) as long as ηa is the only factor

that permanently shifts Ajt. Material inputs are deflated using three-digit sectoral price

indices, which implies that our model allows not only for an arbitrary set of transitory

9The index uses Paasche-type links. In cases where a plant-specific unit-value price is missing (e.g.,
when the firm introduces a new good), Statistics Sweden uses a price index for similar goods defined at
the minimal level of aggregation (starting at the four-digit goods-code level). The disaggregated sectoral
producer-price indices are only used when a plausible goods-price index is not available. Our identification
is fully resilient to transitory errors in measured prices.
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factor price shocks but also for permanent sectoral input price shocks at the three-digit

level. However, our model cannot (for data reasons) account for truly idiosyncratic input

price shocks if these are permanent.

We next compute ∆wnulcjt and ∆wndjt. Relying on cost minimization, we use CN as

the estimate of α and thus let it vary by two-digit industry. The rest of the components of

∆wnulcjt are directly observed in the firm-level data. However, to compute wage-neutral

demand (∆wndjt) we also need an estimate of the demand elasticity σ. We obtain this by

estimating the demand equation (2) while instrumenting the firm idiosyncratic price using

the Solow residual, as in Foster et al. (2008). The instrument is consistent with our initial

assumptions, because the Solow residual is expected to affect firm-level sales only through

firm-level prices. The results of this procedure suggest an elasticity of substitution equal

to 3.306 (se 0.075), which we use when computing ∆wndjt. The σ estimate is well in line

with standard calibration exercises (see e.g., Erceg, Henderson, and Levin, 2000) as well

as recent Swedish micro-evidence provided by Heyman, Svaleryd, and Vlachos (2008). As

robustness checks, we also show that the main results are robust to using sector-specific

estimates of σ and to using a very wide span of assumed values of σ.

We extract our baseline shocks by estimating a VAR on a sample of 6, 137 firms and

53, 379 firm/year observations (see appendix B for additional details on the data and for

details on the construction of the final sample). Since the model uses lags, we can extract

structural shocks for 41, 105 firm/years.

To analyze the impact of the shocks on the use of labor and the flows into and out of

the firms, we link a longitudinal employer-employee data base (Statistics Sweden’s register-

based labor market statistics, or RAMS) to the firm-level data. These data are based on

tax records and include the identity of all employees within the plants at the end of the

year (November). We restrict the analysis to full-time employees within their main jobs.

In the end, we are able to match shocks and labor flows for 40, 451 firm/year observations

in 6, 125 firms. The final sample covers nearly two-thirds of all manufacturing employees.

3.2 Estimation

To derive the shocks of interest, we estimate a SVAR on the three variables defined in Table

1: ∆ajt, ∆wnulcjt,∆wndjt, and a fourth residual variable, which will be output (∆yjt)

unless otherwise noted. In practice, we first estimate four reduced-form equations where

∆ajt, ∆wnulcjt,∆wndjt, and the residual variable are explained by two lags of all four
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variables. We then invoke the long-run restrictions (including the long-run independence

of the core system to the fourth residual shock) to derive the impulse responses of the

structural shocks. Details regarding identification and estimation are found in appendix

C.

The model also allows for firm-specific fixed effects to capture the drift terms of equa-

tions (3) and (4) as well as year dummies to capture aggregate shocks shared by different

firms within the manufacturing sector, hence allowing us to concentrate on idiosyncratic

disturbances. As a robustness check, we also estimate models accounting for sector-specific

year dummies.

We use dynamic panel data methods building on Arellano and Bond (1991) for es-

timation because the asymptotic properties of the estimator rely on the cross-sectional

dimension. This is a very useful feature in the current context of a large N (6, 137 firms),

but short T (12 years) panel because the identification of structural shocks with long-run

restrictions crucially hinges on the quality of the estimated reduced-form coeffi cients and

covariance matrix.

Table 2 shows descriptive statistics of the structural shocks derived for our baseline

sample and model. The standard deviation of the demand shock is about 35 percent larger

than the technology shock (16.02 and 11.1, respectively). Appendix C depicts the shock

distributions in graphs and also shows impulse responses and variance decompositions

related to the main SVAR model. In addition, the appendix discusses specification tests.

Two particular results are relevant for the analysis ahead. First, we find a fairly limited

amount of dynamics, in particular in the Solow residual. The main reason for this finding

is that the Solow residual is defined in physical gross terms and much of the dynamics in

standard measures of Solow residuals appear to be due to the dynamics of idiosyncratic

prices (see Carlsson and Nordström-Skans 2012, for direct evidence on relative-price dy-

namics). Second, shocks to the residual fourth variable explain little of the variance in our

key variables at all horizons. Since the model is estimated conditional on time dummies,

this finding is in line with the result of Franco and Philippon (2007), which shows that

transitory shocks, although highly correlated across firms (and therefore of macroeconomic

importance), matter only marginally at the firm level.
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Table 2: Demand and Technology Shocks

(1) (2) (3) (4) (5) (6)
Mean sd p(25) p(75) Firms Observations

Technology (ηa) — 0.101 -0.056 0.058 6,137 41,105
Demand (ηω) — 0.162 -0.086 0.085 6,137 41,105

Note: p(N) denotes the Nth percentile of the data.

3.3 Validation

Because the shocks we are analyzing are idiosyncratic, we cannot use correlations with

known aggregate shocks such as oil-price or exchange-rate movements to cross-validate their

interpretation, at least not without strong priors regarding differences between firms in the

sensitivity to these aggregate shocks. Instead, we perform two alternative corroboration

exercises.

A first piece of evidence supporting our interpretation of the shocks is presented in

appendix C, which shows theory-consistent impulse responses for the three unrestricted

responses within the VAR system: The estimated response of ∆wnulcjt to a technology

shock is negative, as predicted from the theoretical model. Similarly, the estimated re-

sponses from both technology shocks and factor prices on ∆wndjt are negative.

A second piece of evidence comes from relating the structural shocks to the firm-specific

price index and to output. It should be clear from the model presented in section 2 that a

positive technology shock can affect sales only if prices go down (since the demand curve is

fixed). In contrast, demand shocks, defined as shifts in the firm-specific demand curve, allow

the firm to sell more at a given price. This suggests that prices should remain unchanged

in the response to a demand shock unless (i) the firm’s technology features non-constant

returns to scale, (ii) input prices change when the scale of production is altered.

Hence, theory suggests that technology and demand shocks should affect output, whereas

prices should primarily respond when technology changes. To assess these predictions, we

reestimate the SVAR and compare responses of output and prices to the two shocks (using

output and prices, in turn, as the fourth variable in the SVAR system).

Figure 1 shows the impulse responses of output and idiosyncratic prices to technology

and demand shocks– indicating that both types of shocks are important for firm-level

aggregates. The figure also clearly validates the theoretical predictions discussed above: A

1 standard deviation (sd) technology shock increases output by 6 percent in the long run.
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In the case of a 1 sd demand shock, output rises by 10 percent. Moreover, as expected,

prices go down in the case of a technology shock, but prices change very little when the

demand curve shifts. That the demand shock permanently changes output without altering

relative prices strongly supports the interpretation of the demand shock as an idiosyncratic

shift in the demand curve. Note that these results are not imposed from the construction

of our variables: in particular, prices could well (from a pure measurement standpoint)

respond in either direction to structural innovations in technology and demand.

Figure 1: Output and Price Responses
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Note: Inpulse responses are expressed in percentage points. Lines depict the mean of the bootstrap
distributions. Shaded areas depict the bootstrapped 95-percent confidence intervals calculated from 1000
replications.
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4 Results

4.1 Idiosyncratic Shocks and Employment Adjustment

A first objective of our analysis is to illustrate how firm-level employment responds to

permanent shifts in idiosyncratic production functions and demand curves. Figure 2 shows

impulse responses of log employment with bootstrapped confidence bands. The responses

are derived from our SVAR system, using employment as the fourth variable.

The figure shows that idiosyncratic demand shocks have substantially more impact than

the corresponding technology shocks on firm-level labor adjustments. A positive demand

shock of 1 sd increases employment by slightly more than 6 percentage points, whereas the

impact of an equivalent technology shock raises employment by only 0.5 percentage points.

It is also evident from figure 2 that the dynamics of labor adjustments are fairly limited.

More than 90 percent of the long-run adjustments in response to the permanent shocks

occur within the first year.

Figure 2: Employment Responses
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Note: Inpulse responses are expressed in percentage points. Lines depict the mean of the bootstrap
distributions. Shaded areas depict the bootstrapped 95 percent confidence intervals calculated from 1,000
replications.

Much of the analysis that follows below relies on exploring non-linear responses to the

estimated shocks. To this end, we proceed in three steps: We (i) estimate the SVAR, (ii)
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extract the ensuing measures of structural shocks, and (iii) relate the structural shocks to

different outcomes in a standard regression framework.10 This gives us additional flexibility

in the specifications, which will be exploited in the next sections to assess potential asym-

metries and non-linearities in the labor adjustment responses and allows us to present the

results in a more compact table format. Empirically, we estimate the following equation

in the baseline specification:

Outcomejt = ηajtδ1 + ηωjtδ2 + ρtβρ + µj + ξjt, (6)

where Outcome denotes employment (or hirings and separations in the following sections)

for firm j at time t. The coeffi cients δ1 and δ2 capture the impact of the firm-level struc-

tural shocks on the outcomes. Moreover, we include time, ρt, and firm-fixed effects, µj ,

in line with the SVAR formulation above. This ensures that identification is driven by

idiosyncratic, rather than aggregate, shocks.11 Equation (6) shows the short-run impact of

the shocks. We also present the long-run impact, measured as the sum of the contemporary

effect and the impact of the first lag in the shock series.

Our baseline specification, following equation (6) is presented in the first column of

table 3, and as is evident (and expected), the results closely mimic the impulse responses

presented in figure 2: In the short run, employment increases by 6 percentage points in

response to a positive demand shock of 1 sd. The coeffi cient of an equivalent technology

shock is 0.15, and is non-statistically different from 0. If we add one lag of the shocks to

the regression and calculate the long-run employment responses (column 4), the technology

shock becomes somewhat larger and also statistically significant. However, long- and short-

run responses are of a fairly similar magnitude, which corroborates our findings of limited

dynamics in the labor adjustment. As before, firms’demand shocks continue to be the main

driver of employment adjustments: A positive 1 sd shock to the demand curve increases

employment in the long run in 6.4 percentage points, while the equivalent technology shock

increases employment by 0.5 percentage points.

The constant returns to scale (RTS) assumption used in the empirical model and in the

construction of the Solow residual is potentially controversial. In Carlsson, Messina, and

10Formally, this model is exposed to a potential generated regressor bias, but we show that all key results
hold when either estimating them internally in the VAR or when relying on an IV-strategy (see below),
both of which are insensitive to generated regressor biases.
11Since the shocks are identified as structural orthogonal innovations, they are uncorrelated with each

other conditional on the year and firm-fixed effects of the SVAR.
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Table 3: Contemporaneous and Long-Run Effect on Log Employment under Different
Returns to Scale Assumptions

SHORT RUN LONG RUN
(1) (2) (3) (4) (5) (6)

RTS=1 RTS=0.9 RTS = 1.1 RTS=1 RTS=0.9 RTS = 1.1
Technology (ηa) 0.153 0.955** -0.492** 0.504* 1.378** -0.244

(0.159) (0.161) (0.149) (0.214) (0.211) (0.232)
Demand (ηω) 5.986** 6.149** 5.541** 6.357** 6.313** 5.978**

(0.233) (0.233) (0.223) (0.310) (0.310) (0.301)

Observations 40,451 41,132 39,788 34,414 35,031 33,811
Firms 6,125 6,193 6,065 6,116 6,184 6,055
Sd. ηa 10.06 10.04 10.37 10.06 10.04 10.37
Sd. ηω 16.18 18.74 13.45 16.18 18.74 13.45

Note: Effect of one s.d. shock. Robust standard errors in parenthesis. Regression includes firm fixed
effects and time dummies. Long-run estimates are obtained by adding the contemporaneous impact and
one lag. ** and * denote statistical significance at the 1 and 5 percent levels, respectively.

Nordström-Skans (2014), we estimate RTS separately for the durables and non-durables

sectors among Swedish manufacturing firms, obtaining 0.98 for non-durables and 0.9 for

durables. In both cases we cannot reject the null of constant RTS, but there is some

uncertainty in particular for sectors producing durable goods.

The model can be altered to accommodate increasing or decreasing RTS. Changing the

assumed RTS affects the measures that are fed into the SVAR (for details, see appendix A)

and hence also the estimated magnitudes of employment adjustments. However, the main

message remains robust throughout. Column 2 in table 3 reestimates the model, imposing

0.9 in the construction of the Solow residual. A positive technology shock of 1 sd raises

employment now by 1 percentage point in the short run (1.4 in the long run, see column

5). But this estimate still remains far below the estimated impact of a demand shock: an

increase of 6.1 percentage points in the short run and 6.3 in the long run. If instead we

impose an RTS coeffi cient of 1.1, the results change in the other direction (the impact of

technology turns negative), but the main message regarding the strong relative importance

of demand remains unaltered.
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4.2 Robustness

We proceed by carrying out a battery of checks to assess the robustness of our first set

of findings– namely, that (i) firm-level demand shocks are more important in the deter-

mination of labor adjustments than firm-level technology shocks, and (ii) employment

adjustment to the permanent shocks is very rapid, exhibiting limited short-term dynamics.

In all cases we use the specification presented in equation (6). We discuss the main findings

here, but present the regression tables in appendix D to conserve space.

Demand elasticity. The baseline model uses an estimated demand elasticity of 3.3. As

a robustness check we have allowed for industry-specific estimates of the demand elasticity.

As appendix’s table D1 shows (column 2), this does not alter the results. The main results

also remain unaltered if we instead replace the year dummies for industry-by-year dummies,

which controls for different employment trends across sectors (column 3). In addition, we

have verified that our key results are robust to demand elasticities that vary within what

we believe to be the full range of plausible values (from 1.1 to 10); the results in table D1

(columns 4 and 5) show that the estimated coeffi cients of technology and demand shocks

are fairly stable despite this large interval of demand elasticities. The main reason for the

low sensitivity of the estimated employment adjustment to alternative calibrations of the

demand elasticity is that the latter enters the system with a weight equal to the labor share

in gross production, which is fairly low (around 0.25 on average).

Sectoral heterogeneity. The dynamic panel approach used for estimation took advan-

tage of our large-N small-T panel setting to estimate the VAR system with considerable

precision. This is a key advantage relative to standard SVAR estimations in the macro

literature. A potential cost, however, is that the underlying dynamic processes are assumed

to be equal across different firm types. To address this concern, we have reestimated the

model to allow for separate dynamics for each two-digit industry, and the employment

adjustment results remain unchanged (see column 6 in appendix’s table D1).

Sample selection. The data appendix (appendix B) explains that the output allocation

across plants within (the relatively few) multi-plant firms after 1996 is imputed in the IS

data set. We have therefore redone the analysis for the single-plant firms in the sample

(column 2 of appendix table D2), as well as for a mixed sample including multi-plant

firms until 1996, but not thereafter (column 3 of table D2). The results are robust in

these alternative samples which is unsurprising since the bulk of the original sample is
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unaffected.12 The results are also unchanged when the shock distribution is truncated into

the Lester range of −2 to 2 sd (see column 4 of table D2).

Alternative fourth variable in the SVAR. We have varied our model to ensure that the

limited dynamics in the employment adjustments we find is not due to the specific way we

handle the residual dynamics in the system. In particular, we have used value added per

worker, output, and employment from our two data sources (RAMS and IS) as alternative

fourth variables. Table D3 shows that these variations only have minor impacts on both

the estimated dynamics and the long-run adjustments.13

Firm exit. Finally, a possible concern with the analysis is that we disregard the firm exit

process. Firms are likely to exit in response to severe negative demand or technology shocks,

and this process may impact labor dynamics. To address this concern, we have analyzed the

relationship between the shocks and the probability of exit from the sample using a kernel-

weighted local polynomial regression. The results are shown in figure 3. As is evident, the

main driver of firm exit is large negative demand shocks.14 That demand shocks are more

important for firm exits than technology shocks is well in line with results for the United

States in Foster et al. (2008). To determine whether this finding has any bearing on the

results regarding employment adjustments, we have analyzed the employment impact of the

shocks using a two-periods model instead of the one-period baseline (see appendix’s table

D4). In practice, this implies that we relate the shock to the net employment growth across

two years, defined as the change in employment divided by the average employment in the

two years as in Davis et al. (1996). Since the labor flows are defined even if all workers

exit the year after the shock, we can calculate the impact of the shocks while excluding

or including the firms that exit. Reassuringly, the results are insensitive to whether we

include or exclude exiting firms.15

Overall, our findings strongly suggest that (i) permanent shifts in firms’idiosyncratic

demand curves are a key determinant of firms’idiosyncratic net employment adjustments,

and (ii) the pace of labor adjustment is relatively fast. In contrast, permanent shifts in

12As explained in Section 3, 72 percent of plants are in single-plant firms and the imputation only affect
the later half of the sample.
13That the fourth variable plays a negligible role in employment adjustment is also suggested in the

variance decomposition shown in appendix C.
14Note that large positive shocks are also associated with firms’exit, although to a lesser extent. This

indicates that firms facing large positive shocks are more likely to be absorbed by other companies through
mergers and acquisitions.
15Note that our sample excludes new establishments because of the dynamic identification strategy, which

requires a firm to be observed at least five consecutive years to be included in the estimation. Therefore,
the mean exit rate is somewhat lower than in the full sample.
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Figure 3: Firms’Exit
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Note: Sample exit probability as a (non-linear) function of an x sd lagged technology or demand shock.
Shaded areas depict 95 percent confidence intervals.

firms’physical production functions (i.e., technology shocks) appear to play a much more

limited role in firms’labor adjustment, despite being crucial to the evolution of both output

and relative prices.

4.3 Idiosyncratic Shocks, Hires, and Separations

To analyze which margins firms use when hit by permanent idiosyncratic demand and

technology shocks, we relate our measures of shocks to firm-level measures of worker flows

(i.e., hires and separations). Using annual individual-level employment data on end-of-the-

year employment that are matched to our firm-level data, we compute measures of job and

worker flows using the metrics proposed by Davis et al. (1996).

Net employment growth is defined as the change in employment relative to the preceding

year, divided by the average employment during the two years. Similarly, we define the

hiring (separation) rate as the number of new (separated) employees between t and t− 1,

divided by the average number of employees during the two years. With these definitions,

net employment growth will be the difference between the hiring rate and the separation

rate, and the timing of the flows are defined such that the flow equation of employment
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holds.16

We also calculate a measure of the short-tenured (< 3 years) separation rate using the

same denominator as for the other rates. All in all, we can match these flow measures

to 6, 130 firms in the firm data (described above). Table 4 displays descriptive statistics

of these measures for the sample in which structural shocks can be constructed (40, 451

observations). The average hiring rate during the observation period is 15 percent, and

the average separation rate is 14 percent, whereof slightly less than half (6 percent) are

separations of short-tenured workers.

We proceed analogously to the employment analysis of the preceding section. Hence,

we follow equation (6) for hirings and separations, separately. Table 5 present the effects

of a 1 sd technology and demand shocks in both the short and long run, as well as the

corresponding elasticities (see appendix C regarding the computation of the elasticities). A

normal demand shock is estimated to increase the hiring rate by 2.9 percentage points and

reduce the separation rate by 2.7 percentage points in the short run (slightly more in the

long run).17 These numbers should be compared with average hiring and separation rates

of about 14 to 15 percent each, as shown in table 4 above. The estimates imply that, on

average, 52 percent of the net employment adjustment is obtained using the hiring margin,

and 48 percent using the separation margin. Firms thus, on average, rely as much on

variations in separations as on variations in hires when responding to the shocks.18

The results also imply that the low response of net employment to technology shocks

does not mask any substantive counteracting responses in terms of gross flows. Rather,

idiosyncratic technology shocks appear to have a limited impact on both hiring and separa-

tion rates in both the short run and the long run. As a final result, we see that separations

of short-tenured workers make up slightly more than one-third of the total short-run sep-

aration response to demand shocks, but a lower fraction of the longer-run responses.19

16That is, Employmentt = Employmentt−1 +Hirest − Separationst.
17Note that the difference in the estimated coeffi cients of the hiring and separation rate result in the

impact of the shocks on the net employment change (not reported in the table). However, there is a
marginal difference between the implied results on employment changes presented here and those reported
in columns 1 and 4 of Table 3. This arises because we here follow the metric proposed by Davis, Haltiwanger,
and Schuh (1996) to measure net employment changes, instead of the log differences we relied on in the
previous subsection. The differences are, however, far from altering our main conclusions.
18This result is also interesting in the light of the literature on labor flows and the business cycles (see

Shimer, 2012; and Fujita and Ramey, 2009). It suggests that any quantitatively important asymmetries
between hiring and separations over the business cycles should be explained by asymmetries in the market
responses, and not as asymmetries in firm-level labor adjustment behavior.
19The lower relative contribution of short-tenured separations in the long run is consistent with a reduction

in contemporary hirings, which reduces the number of short-tenured workers who can be released in the
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Table 4: Summary Statistics. Worker’s data

(1) (2) (3) (4) (5) (6)
Category Mean sd p(25) p(75) Firms Observations

Net Employment Rate overall 0.012 0.208 -0.062 0.089 6,125 40,451
within 0.195

Hiring Rate overall 0.150 0.151 0.063 0.200 6,125 40,451
within 0.127

Separation Rate overall 0.138 0.152 0.061 0.174 6,125 40,451
within 0.131

ST Separation Rate overall 0.061 0.082 0 0.083 6,125 40,451
within 0.065

Note: The“within”rows show the dispersion within establishments. p(N) denotes the Nth percentile of the
data.

Table 5: Permanent demand and technology shocks, hirings, and separations

SHORT RUN LONG RUN
(1) (2) (3) (4) (5) (6)

Hiring Rt. Sep. Rt. ST Sep Rt. Hiring Rt. Sep. Rt. ST Sep Rt.
A) 1 sd shock:

Technology (ηa) -0.050 -0.165* -0.117** -0.093 -0.504** -0.177**
(0.075) (0.078) (0.038) (0.116) (0.128) (0.066)

Demand (ηω) 2.906** -2.703** -1.010** 3.125** -2.884** -0.416**
(0.096) (0.120) (0.052) (0.156) (0.186) (0.076)

B) Elasticities:

Technology (ηa) -0.005 -0.016* -0.012** -0.009 -0.050∗∗ -0.018∗∗

(0.007) (0.008) (0.004) (0.011) (0.013) (0.007)
Demand (ηω) 0.180** -0.167** -0.062** 0.193∗∗ -0.178∗∗ -0.026∗∗

(0.006) (0.007) (0.003) (0.010) (0.012) (0.005)

Observations 40,451 40,451 40,451 34,414 34,414 34,414

Note: Robust standard errors in parenthesis. Hiring Rt: Hiring rate; Sep. Rt: Separation rate; ST Sep.
Rt.: Short-tenured separation rate. Hiring and separation rates are measured as the flow between the
end points of two years divided by the average employment across these two points in time. ST Sep.
Rt. is measured as the number of separations of short-tenured (< 3 years) workers divided by the same
denominator as the other rates. Regressions include time dummies and firm fixed effects. The long-run
impact is based on the sum of the contemporary effect and the effect of the first lag. ** and * denote
statistical significance at the 1 and 5 percent levels, respectively.
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4.4 Asymmetry and Non-Linearity

To examine potential non-linearities in the hiring and separation responses depending on

the signs and magnitudes of the shocks, we extend the model presented in equation (6)

by allowing for separate second-order polynomials above and below zero. Because the

dynamics add few insights, we focus on the short-run impact.

Figure 4 shows how firms adjust hirings in response to positive and negative shocks

of different magnitudes. To facilitate the interpretation, the graphs show the sum of the

average hiring rate among firms that do not adjust employment (about 10 percent) and

the predicted estimates for various deviations from a zero-shock state. For completeness,

we show the responses to both technology and demand shocks, but we focus our attention

toward the demand-shock responses. (Throughout, we find limited adjustments in response

to technology shocks, as expected from the previous subsections.)

Two patterns are particularly noteworthy: First, the hiring response is considerably

smaller if the shocks are negative. Second, the impact of a 2 sd positive shock is exactly

twice that of a 1 sd positive shock, suggesting that the costs of increasing hirings are a

linear function of the magnitude of the adjustment.

Figure 5 shows the corresponding patterns for separations. The shapes and magnitudes

(again focusing on the demand shocks) are not far from mirror images of the impact on

hirings. Thus, separations primarily respond to negative shocks. Although separations do

go down somewhat when shocks are positive, this impact is even smaller than the hiring

cuts in response to negative demand shocks. Symmetrically to the hiring response, the

estimates imply that a 2 sd negative shock causes a separation response that is exactly

twice as large as the response to a 1 sd negative shock, which suggests that the costs of

increasing separations are approximately linear on average. Notably, the results of figures

4 and 5 imply that firms primarily use separations when responding to permanent negative

demand shocks, an issue to which we return to below.

Finally, figure 6 shows the impact on net employment and, as could be imagined from

the combination of figure 4 and figure 5, these effects add up to a fairly linear relationship.

The somewhat more curved pattern on the positive side arises because the kink at zero is

more pronounced for hires than for separations. This difference in curvature is statistically

significant, but the magnitude is fairly small: The net employment changes in response to

a 2 sd positive demand shock (9 percentage points) is reasonably close to the response to

next period.
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Figure 4: Shocks and the Hiring Rate
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Note: Each line represents the sum of the average hiring rate among firms that do not adjust employment
(10 percent) and the response of the hiring rate in percentage units as a (non-linear) function of an x sd
of technology and demand shocks. Shaded areas depict 95 percent confidence intervals.

Figure 5: Shocks and the Separation Rate
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Note: Each line represents the sum of the average separation rate among firms that do not adjust employ-
ment (10 percent) and the response of the separation rate in percentage units as a (non-linear) function
of an x sd of technology and demand shocks. Shaded areas depict 95 percent confidence intervals.
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Figure 6: Shocks and the Net Employment Rate
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Note: Each line represents the response of the net employment rate in percentage units as a (non-linear)
function of an x standard deviation of technology and demand shocks. Shaded areas depict 95 percent
confidence intervals.

a 2 sd negative shock (−13 percentage points) in absolute values.

4.5 Decomposing Net Employment Adjustment in Response to Perma-
nent Demand Shocks

This subsection provides an explicit decomposition of firm-level net employment adjust-

ments in response to permanent demand shocks.20 This analysis is similar in spirit to

Abowd et al. (1999), and Davis et al. (2012), which provide decomposition exercises of

the relative contribution of various worker flows to the observed employment changes in

French and U.S. firms, respectively. In contrast to these previous studies, however, we

analyze changes in hires and separations induced by employment adjustments due to a

demand shock. This allows us to obtain a causal correspondent to the decompositions in

the earlier literature. In our case, demand shocks drive the changes in employment, and we

can therefore abstract from, for example, possible exogenous separations which may affect

firms’employment levels in the short run.

20We focus on permanent demand shocks because technology shocks are found to have negligible impacts
on net employment.
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In practice, we characterize labor adjustments by two second-order polynomials, one

for positive values and one for negative values. We then instrument this adjustment by a

similarly constructed set of polynomials in the demand shock. We use the hiring rate as

our outcome, but since net employment adjustment is identical to the difference between

hirings and separations, the impact on separations is easily deduced.21

Figure 7: The Hiring Rate and Net Employment Changes. IV Results
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Note: Left-side panel: Contemporaneous hiring rate in percentage units as a (non-linear) function of em-
ployment adjustment in percentage units. Employment adjustments are instrumented by demand shocks.
The model imposes a separate quadratic polynomial above and below zero for both employment adjustment
and the instrument. Shaded areas depicts 95 percent confidence intervals. Right-side panel: Implied frac-
tion of employment adjustment achieved through changes in hirings as a function of the size and magnitude
of the employment adjustment.

The results are presented in the left-hand panel of figure 7. They imply a strong and

linear relationship between net employment adjustments and hires when the employment

adjustments are positive, but a very modest relationship when the employment adjustments

are negative. The right-hand panel of figure 7 shows the share of employment adjustment

through hires as a function of demand-induced net employment changes. This share jumps

from 20 percent to 95 percent when employment adjustments become positive instead of

negative.22

Figure 7 also suggests that firms are relatively unconstrained in their use of separa-

21The instrumental variable (IV) strategy essentially implies that we scale the shock impact on hirings
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Figure 8: Actual (IV) and Simulated Hiring Responses to Employment Changes
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ment adjustments achieved through changes in hirings. Employment adjustments are instrumented by
demand shocks.“Hypothetical homogenous”assumes that the same fraction of workers always leaves the
firm.“Hypothetical heterogenous”imposes a random individual quit rate on the actual firm-size distribu-
tion.

tions, since they rely on increased separations even when they could have adjusted through

reduced hires. To make this point precise, figure 8 repeats the patterns shown in the right-

hand panel of figure 7 but focuses on negative values. As benchmarks illustrating what

the firms could have done, the figure also depicts two hypothetical adjustment curves. The

first, denoted “hypothetical homogeneous,” assumes homogenous firms and imposes the

empirical steady-state (i.e., without employment changes) separation rate of 10 percent on

all the firms. In this case, as long as the need for adjustment is 10 percent or less, reduced

hires could fully accommodate the necessary adjustments. If the shock is 20 (30) percent

instead, the firm could instead accommodate half (one-third) of the adjustment through

reduced hires. Notably, this curve assumes that 10 percent of employees leave each firm

every year, which clearly cannot be the case.

presented in figure 4 above with the first stage, which corresponds to figure 6.
22Note that, in contrast to figures 4 and 5 (where the zeros refer to the absence of an idiosyncratic

shock), zero here refers to the state when net employment adjustment is predicted to be zero based on
the full first stage (i.e., based on the combination of the shock polynomials, the year dummies, and the
firm-fixed effects).
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We therefore also provide a second benchmark, assuming instead that the individual

probability of leaving a firm is 10 percent. By randomly allocating quits across the workers

in our full sample and then aggregating to the firm level, we get the firm-level distribu-

tion of quit rates. With this distribution, which naturally widens if firms are small, some

firms will not experience any quits at all, which means that they cannot accommodate

even the smallest employment adjustment through reduced hires, whereas other firms will

experience many random separations, allowing them to accommodate large employment

reductions through reduced hires. The curve denoted “hypothetical heterogeneous” dis-

plays the simulated frontier of adjustments with random individual quits using our actual

distribution of firm sizes.

The logic behind the hypothetical curves is that they provide a baseline indicating

how firms would behave in a completely rigid world where firing is prohibitively costly

as long as firms are hiring someone. In this case firms would always adjust according to

the hypothetical heterogeneous curve in figure 8. As is evident, the observed employment

adjustments are far from this rigidity benchmark. The actual share of adjustment through

reduced hires is much lower than the hypothetical reliance on separations would allow for.

The shaded area between the heterogeneous hypothetical curve and the actual behavior

of the firm could be interpreted as a region of flexibility because it depicts the amount

of negative labor adjustments through induced separations (i.e., separations above the

random rate) which could have been accomplished through reduced hires instead.

One reason for the observed patterns may be that firms adjust by releasing marginal,

short-tenured workers who are more likely to be on temporary contracts. Sweden is a

country with slightly above-average levels of employment protection (OECD, 2014). The

use of temporary contracts is flexible, whereas protection for workers with open-ended

contracts remains restrictive. It is thus possible that the labor market responses studied

here may hide important heterogeneity across workers, depending on their contract type

and tenure with the firm.

We do not observe the contract type in the data, but in order to explore the role played

by the (potential) flexibility provided by marginal workers, we have estimated the IV model

using the following outcome variable: separation of short-tenured (less than three years)

workers divided by average employment across the two years. The results, shown in figure

9, suggest that about half of the response to negative shocks come through reductions of

short-tenured workers.

We have also repeated the simulation exercise presented in figure 8 above, but instead
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Figure 9: The Hiring Rate of Short-Tenured Workers and Net Employment Changes. IV
Results
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contrasting the actual combined adjustment of reduced hirings and increased separations of

short-tenured workers with the maximum possible adjustment levels The results, presented

in figure 10, show that firms are far from using the flexibility provided by these two margins.

The substantial shaded area in the figure implies that firms rely much more on separations

of long-tenured workers than they would have needed to in order to achieve the same level

of net employment reduction.

5 Extensions

The results presented above suggest that labor adjustments in response to positive and

negative demand shocks are fast and that separations are a flexible margin of adjustment

when employment reductions are needed. This section provides two extensions that we

believe shed light on the process.

We first explore, in subsection 5.1, the hypothesis that our results are driven by within-
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Figure 10: Actual (IV) and Simulated Hiring plus Short-Tenured Separation Responses
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firm heterogeneity in worker skills, which may create imbalances between the skills of those

workers who quit at random and the optimal skill mix within the firm.

Thereafter, we note that if adjustments were costly, firms would be expected to hoard

labor and/or refrain from hiring when shocks are perceived as temporary. The focus of the

analysis so far, however, has been on how firms adjust employment, hirings, and separations

when hit by permanent idiosyncratic shocks. As a contrast, subsection 5.2 analyzes the

role of transitory shocks to demand.

5.1 Firm-Level Heterogeneity

Taken at face value, our results imply that firms either bear few costs to separate long-

tenured workers, or rely heavily on a well-defined mix of worker types that is hard to change

when demand changes. If the latter is true, it is more than likely that the workers who

leave, or who are on temporary contracts, differ from the types of workers that the firms

29



would like to separate from. Hence, it is not possible for the firm to fully exploit worker

attrition or their pool of short-tenured workers to adjust to the shock.

To explore this further, we have reestimated our models separately for firms with a ho-

mogenous workforce in terms of field and education level and for firms with a heterogeneous

workforce in the same dimensions. The idea is that firms with a more homogenous set of

employees should care less about whom they separate from and thus rely more on attrition

and the separation of short-tenured workers when adjusting their net employment.

Figure 11: The Hiring Rate and Net Employment Changes: Firm Size and Worker Het-
erogeneity. IV Results
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Note: Contemporaneous hiring rates in percentage units as a (non-linear) function of an x sd demand shock
in subsamples defined by employee heterogeneity (lower graphs) and firm size (higher graphs). Employment
adjustments are instrumented by demand shocks. Low (high) similarity firms are those with a similarity
index (described in the text) below (above) the median. Small (large) firms are those with fewer (more)
than 20 employees. Shaded areas depicts 95 percent confidence intervals.

In practice, we calculate the fraction of coworkers (to each worker in the data) that has

the exact same type of education (three-digit field and two-digit level) and take the average
of this share for each firm. This gives an index of the average worker’s exposure to similarly

trained workers within the firm. This procedure is a straightforward implementation of
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standard practices used for measuring segregation (see, e.g., Åslund and Nordström Skans

2009). In a second step, we split our firm-level data across the median of this index and

analyze the two samples separately.

Figure 11 presents the results for the two samples, i.e., for firms with high versus

low degrees of educational similarity among workers. As before, we characterize labor

adjustments by two second-order polynomials, one for positive values and one for negative

values. We then instrument this adjustment by a similarly constructed set of polynomials

in the demand shock.

Quite surprisingly, we find little support for the notion that within-firm heterogeneity

is an important explanation for the low reliance on separations when firms are hit by

negative demand shocks. We would, however, like to acknowledge that our measures of

staff heterogeneity may well be too crude to capture the role of firm-level heterogeneity in

the adjustment patterns.

Figure 11 also shows results separately by firm size (more than 20 employees or fewer

than 20 employees). The idea is again that if worker heterogeneity is important for the

results, smaller firms are more likely to have diffi culties using attrition and separation of

short-tenured workers to adjust their staffs. The results, however, are very similar across

the two size classes, displaying as before little signs of systematic heterogeneity.

5.2 Transitory Idiosyncratic Shocks

To derive a measure of transitory demand shocks, we follow the strategy used for the

estimation of the demand elasticity σ. Hence, we use the Solow residual as an instrument

for prices in an estimation of a log-linearized version of the demand equation (2), where

time dummies control for aggregate shocks and firm fixed effects eliminate beteween-firm

permanent heterogeneity. Since the ensuing residuals of the estimated equation represent

changes in sales without price adjustments, they serve as a measure of demand shocks. This

strategy is similar in spirit to the approach followed by Foster, Haltiwanger, and Syverson

(2008). Thus, we label these shocks “FHS demand”.

In contrast to the SVAR filter, however, this procedure does not differentiate between

permanent and transitory shocks.23 The correlation between FHS demand and our SVAR

demand shocks is 0.538 (see table 6) and the standard deviation is considerably higher for

23 In addition, these alternative series are not necessarily uncorrelated with other shocks, and the processes
do not account for factor price shocks.
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the FHS demand shocks (0.24 versus 0.16). Thus, the two demand-shock series appear to

contain a common component without being identical.

Table 6: Baseline Estimates vs. Solow Residuals and FHS Demand Shocks

SHORT RUN LONG RUN
(1) (2) (3) (4)

Baseline FHS Baseline FHS
A) 1 sd shock
Technology (ηa) 0.153 0.333* 0.504* 0.993**

(0.159) (0.168) (0.214) (0.250)
Demand (ηω) 5.986** 3.406** 6.357** 4.061**

(0.233) (0.183) (0.310) (0.252)

Observations 40,451 40,451 34,414 34,414
Firms 6,125 6,125 6,116 6,116

Note: In the FHS column the technology shock is the Solow residual, and the demand shock is FHS
demand, as defined in the main text. Robust standard errors in parentheses. Regression includes time
dummies and firm fixed effects. Long-run impact is based on the sum of the contemporary effect and
the effect of the first lag. Regression sample limited to observations where the absolute value of both the
technology and the demand shock is less than or equal to two sd. ** and * denote statistical significance
at the 1 and 5 percent levels, respectively.

We estimate the impact on employment of FHS demand and the Solow residual as

measures of shocks (see column 2 of table 6). To facilitate the comparison, estimates

with our SVAR shocks are presented in column 1. The impact of the technology shock is

somewhat larger using the Solow residual, and the estimated impact of demand shocks is

about half as large when using FHS demand than when using the SVAR demand shock.

However, the main message still holds. According to the estimates in column 2, the short-

run impact of demand shocks is 10 times that of the technology shock in the short run

(about 5 times the impact in the long run, as shown in column 4).

As noted above, FHS demand includes both transitory and permanent shocks. To

ascertain whether the impact of demand shocks differs depending on the time-series prop-

erties of the shock, we have decomposed the FHS demand into permanent and transitory

components. Running a regression with FHS demand as the dependent variable and the

SVAR demand shocks as a regressor, we use the residual as a measure of transitory demand

shocks. Because this residual is measured in the same units, we can directly compare its

impact on employment adjustments with the SVAR demand shock, which represent per-
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Figure 12: Net Employment, Permanent and Transitory Demand Shocks
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Note: Contemporaneous net employment rate in percentage units as a (non-linear) function of an x sd of
the permanent and transitory (residual component of FHS demand) demand shocks. Shaded areas depict
95 percent confidence intervals.

manent shocks.24

In Figure 12 we analyze the impact of temporary and permanent shifts in product

demand on net employment changes. As before, we allow for second-order polynomials

of negative and positive shocks, respectively. The results show that the impact of the

transitory shocks is substantially lower than the impact of the permanent shocks, and, for

most magnitudes of the shock, is not statistically different from zero.

These results mirror those of Guiso et al. (2005), which shows that wages respond to

permanent shocks but not to transitory shocks. In turn, this implies that firms’employment

adjustment crucially depends on the time-series properties of the shocks. This is important

because the welfare consequences of firms’lack of adjustment are likely to crucially depend

on these properties. Labor hoarding in the face of temporary shocks may be welfare-

enhancing in the presence of uninsurable labor market risk (Bertola, 2004). However, the

24The decomposition resembles Guiso et al. (2005), which extracts the permanent component of firm-level
value added using high-order polynomials of lags as instruments. Although the mechanics of the methods
differ, the underlying logic is similar. Because the bulk of the technology shock process is persistent enough
to show up as permanent in our analysis (the correlation between the two shocks is 0.98), we do not perform
a corresponding analysis for the technology shock.
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inability of firms to structurally adjust to permanent shocks is much more likely to be

welfare-reducing through allocative ineffi ciencies.

6 Conclusions

This paper has analyzed how firms adjust their labor inputs in response to permanent idio-

syncratic firm-level shocks to technology and demand. We identify the shocks by imposing

a set of long-run restrictions in an SVAR estimated on firm-level data. The restrictions are

derived from a simple model using a first-order approximation of the firm that features

constant cost shares and isoelastic demand. The SVAR is estimated using dynamic panel-

data methods, allowing us to identify the parameters of the reduced form with considerable

precision. To estimate the model, we rely on a unique data-set that merges information

about inputs, outputs, and prices of Swedish manufacturing firms with a linked employer-

employee data-set.

The shocks derived from the SVAR impact output and prices in a theory-consistent

manner, which lends support to their interpretation as demand and technology distur-

bances. Firm-level output responds vigorously to both technology and demand shocks. In

contrast, firm-level prices fall in response to positive technology shocks, but they remain

independent of product demand innovations.

Our labor-adjustment results show that both the nature and the time-series properties

of the shocks matter. Permanent demand shocks, which affect output but not relative

prices, have a pronounced impact on employment. Technology shocks, on the other hand,

have much more limited employment effects despite affecting both output and relative

prices. Similarly, temporary demand shocks have little effect on employment adjustments.

Further results suggest that employment adjustments in response to permanent shifts in

the product demand curve are fast and symmetric. By far the largest part of employment

adjustment takes place within a year. Almost as much of the employment adjustments are

through changes in the separation rates as through changes in the hiring rates, suggesting

that both margins should be considered endogenous at the firm-level. Moreover, there

are no signs of non-linear responses in hires or separations. Finally, the sign of the shock

determines the primary margin of adjustment: firms primarily adjust through separations

if shocks are negative and primarily though hires if shocks are positive.

The speed of adjustment, the symmetry between hires and separations as adjustment

margins, and the continued recruitment of workers in the face of negative shocks jointly
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suggest that labor market rigidities play a very limited role in hampering firm-level labor

adjustments in the face of permanent idiosyncratic demand shocks. However, the adjust-

ments with respect to temporary shocks are heavily muted. Considering that OECD ranks

Sweden slightly above the average country in terms of institutional labor market rigidi-

ties, this suggests that such levels of employment protection may provide enough flexibility

for firms to accommodate the impact of permanent shocks, while pushing them toward

hoarding labor when hit by temporary innovations.

A possible limitation of our study is the focus on the manufacturing sector, the sector for

which technology shocks can be reasonably approximated. However, it seems likely that the

overwhelming force of idiosyncratic demand shocks as a source of employment adjustments

in manufacturing firms should provide a lower bound for the importance of demand within

other sectors. In service sectors where product differentiation is arguably more important

than in manufacturing, demand is likely to play an even more important role for reallocation

than in manufacturing, where downstream firms are the primary customers.

Overall, our results imply that cross-country comparisons of labor flows need to be

careful in accounting for the types of the shocks that hit these economies, because responses

depend not only on the nature of the shocks (technology versus demand) but also on the

time-series properties of these shocks: Labor market adjustments differ depending on the

prevalence of permanent versus transitory components within the shock distribution.

Building on this notion, our empirical approach also suggests a route forward in trying

to understand the forces behind the declining rates of labor adjustments observed in the

United States in particular. Essentially, our empirical approach provides a tool for assessing

whether this development is due to a changing nature of firm-level shocks or due to a

reduced impact of these shocks on labor reallocation. Although this question is beyond the

scope of this paper, it serves as a good example of the questions that future research can

answer by combining data on labor flows and estimated firm-level shocks.
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Appendices

A Derivation of Long-Run Restrictions

A.1 Baseline Model

We use the stylized model presented in the paper to filter out shocks that permanently shift

the firms’production functions and demand curves. To filter out the shocks of interest, we

first note that the assumptions of the model ensure that the only shock that can affect the

physical gross output Solow residual (A) is the technology shock. Since we only impose

this restriction in the long run, we can allow for temporary variations in factor utilization

and inventories.

Further, we use the standard result that a firm’s optimal pricing rule under these

conditions is to set the price, Pjt, as a constant markup σ/(σ − 1) over marginal cost,

MCjt. Marginal cost is, in optimum, equal to

MCjt = A−1
jt

(
Wjt

α

)α
PFst . (A1)

Using (A1) and that MCjt = (WjtNjt) /(αYjt) in optimum to get

(WjtNjt/Yjt)W
−α
jt = α1−αA−1

jt P
F
st . (A2)

Thus, expression (A2) will be affected by technology and factor-price shocks but not

demand shocks. It is also worth noting that any direct shocks to the firm-level wage-setting

relationship (such as changes in the degree of competition over similar types of labor) will

not drive this expression. Essentially, expression (A2) is a measure of unit labor cost

(WjtNjt/Yjt ) net of wage-setting disturbances.25 We therefore refer to the variable as

wage-neutral labor cost (WNULCjt).

Using the demand equation (2) and expression (A1), we arrive at

YjtW
σα
jt = ψYtP

σ
t A

σ
jt

(
PFjt
)−σ

Ωjt, (A3)

where ψ =
(

1
α

)−σα ( σ
σ−1

)−σ
. Thus, expression (A3) will be driven by shocks to technol-

ogy, factor prices other than labor, and demand (apart from aggregate factors that will

25Note also that unit labor cost is proportional to marginal cost.
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be captured by time dummies in the empirical implementation of the model). In effect,

expression (A3) is demand adjusted for wage-setting disturbances. Thus, we refer to it as

wage-neutral demand (WNDjt) in the text.

A.2 Non-Constant Returns to Scale

Define the overall returns to scale as λ = α+β+γ. Notice that under non-constant returns

to scale, it is straightforward to show that the measurement of the variables in the system

of equations needs to be changed to those of table A1 to retain the recursive form of the

long-run impact of the structural shocks. Also note that the cost share of a factor will

equal the output elasticity divided by the overall returns to scale in optimum, which we

use in the empirical implementation provided in columns 2 and 3 of table 3 in the main

text.

Table A1: Summary of Structural System (Non-Constant Returns)

Variables: Measured as:

Solow : Yjt

(
Nα
jtK

β
jtM

γ
jt

)−1

WNULC :
(
WjtNjt/Y jt

)
W
−α
λ

jt Y
(1− 1

λ)
jt

WND : Y
(1+σ( 1λ−1))

jt W
σ α
λ

jt

B Data

The firm data-set we use is primarily drawn from Sweden’s Industry Statistics Survey

(IS) and contains annual information for the years 1990—2002 on inputs and output for all

Swedish manufacturing plants with 10 employees or more and a sample of smaller plants.

Here we focus on firms that have at least 10 employees and that we observe in a spell with

at least five observations (the minimum panel dimension required for the SVAR to pass

diagnostic tests).

Our measure of real output, Yjt, is the value of total sales taken from the IS deflated

by a firm-specific producer-price index. The firm-specific price index is a chained index

with Paasche-type links that combines plant-specific unit values and detailed disaggregated

producer-price indices (either at the goods level, when available, or at the most disaggre-
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gated sectoral level available). Note that when a plant-specific unit-value price is missing

(e.g., when the firm introduces a new good), Statistics Sweden tries to find a price index for

similar goods defined at the minimal level of aggregation (starting at four-digit goods-code

level). The disaggregated sectoral producer-price indices are only used when a plausible

goods-price index is unavailable.

To compute the input index (∆zjt), which is necessary for the computation of the

Solow residual (∆ajt), real intermediate inputs (Mjt) are measured as the sum of costs

for intermediate goods and services (including energy) collected from the IS deflated by a

three-digit (SNI92/NACE) producer-price index collected by Statistics Sweden. The real

capital stock (Kjt) is computed using a variation of the perpetual inventory method. In

the first step, we calculate the forward recursion

Kjt = max((1− δ)Kjt−1 + Ijt, BookV aluejt), (B1)

where δ is sector-specific depreciation rate (two-digit SNI92/NACE) and is computed as

an asset-share-weighted average between the machinery and buildings depreciation rates

(collected from Melander (2009), table 2); Ijt is real net investments in fixed tangible as-

sets (computed using a two-digit SNI92/NACE sector-specific investment deflator collected

from Statistics Sweden); and BookV aluejt is the book value of fixed tangible assets taken

from the Firm Statistics data base maintained by Statistics Sweden, deflated using the

same deflator as for investment. Moreover, Kj0 is set to zero if the initial book value is

missing in the data. Since, for tax reasons. the firms want to keep the book values low,

we use the book values as a lower bound of the capital stock. In a second step, we then

calculate the backward recursion

Kjt−1 =
Kjt − Ijt
(1− δ) , (B2)

where the ending point of the first recursion, KjT , is used as the starting point for the

second backward recursion. This is done to maximize the quality of the capital-stock series

given that we lack a perfectly reliable starting point and the time dimension is small. The

labor input (i.e., number of employees) is taken from the IS. To compute the cost shares, we

also need a measure of the firms’labor cost, which is defined as total labor cost (including

payroll taxes) in the IS.

When computing ∆ajt, we take an approach akin to the strategy outlined by Basu,
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Fernald, and Shapiro (2001). Thus, the CJ (i.e., the output elasticities) are treated as

constants. Second, the cost shares are estimated as the time average of the cost shares for

the two-digit industry to which the firm belongs (SNI92/NACE).26 Third, to calculate the

cost shares, we take total costs as approximately equal to total revenues.27 The cost share

of capital is then given by one minus the sum of the cost shares for all other factors.

Since 1996, Statistics Sweden has imputed the allocation of production across different

plants within multi-plant firms. For this reason, we have explored various cuts of the data

either focusing on single-plant firms throughout or use multi-plant firms before 1996 but

only single-plant firms thereafter. The results are shown in Table D2 in appendix D and

discussed in the robustness section of the paper.

When computing ∆wnulcjt and ∆wndjt, we use CN as the estimate of α and the

measure of the firms’labor costs together with the measure of real output and labor input

(all discussed above). Also, when computing ∆wndjt, we set σ equal to our estimate

of 3.306. Finally, we remove 2 percent of the observations in each tail for each of the

distributions of ∆ajt, ∆wnulcjt, ∆wndjt, and ∆yjt. This has little effect on estimated

coeffi cients, but it ensures that the SVAR passes diagnostic tests. We finally require the

firm to be observed in spells of at least five years (because we are interested in the within-

firm dynamics when estimating the SVAR).

In the end, we construct series for ∆ajt, ∆wnulcjt, ∆wndjt, and ∆yjt for 7, 940 ongoing

firms (observed at least during five consecutive years), over the 1991−2002 period. All in all,

this amounts to 70, 077 firm/year observations. Removing extreme tail events reduces the

sample to 6, 137 firms and 53, 379 firm/year observations (in the specification with output

growth as the fourth variable). For these firms we can compute the structural shocks for

41, 105 firm/years (due to lags in the model). Finally, we can match on labor flows from

RAMS for 6, 125 firms and 40, 451 firm/year observations. Note that the procedure outlined

above implies that changing the fourth variable in the VAR introduces small changes in

the sample size.

26 In the calculation we drop firm/year observations in which the (residual) capital share is below −25
percent of sales. This procedure generates reasonable aggregate cost shares, and ensures that the cost shares
in all industries are positive.
27Using the data underlying Carlsson (2003), and relying on a no-arbitrage condition from neoclassical

investment theory (also taking the tax system into account) to calculate the user cost of capital, we find
that the time average (1968− 1993) for the share of economic profits in aggregate Swedish manufacturing
revenues is about −0.001, thus supporting the the approximation of cost shares by revenue shares.
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C The SVAR

C.1 Identification

The model outlined in the paper and presented in detail in appendix A provides a set

of three equations that depend on the three structural shocks (i.e., demand, technology,

and intermediate inputs). The left-hand-side variables in these equations can all be con-

structed from our firm-level data, and the model motivates a recursive sequence of long-run

restrictions regarding the impact of the structural shocks on these variables. To extract

the shocks of interest from the system, we estimate a VAR and proceed along the lines of

Blanchard and Quah (1989).

Since we are interested in how other variables (such as output, prices, and employment)

respond to structural shocks, we start by including these other variables as fourth variables

in the system, allowing each to have a long-run effect on itself but not on the other variables

in the system. These variables will thus also soak up all remaining transitory dynamics.

In practice, we rotate across these variables while keeping the core system of the first

three equations intact as in Ramey (2011). Parts of our analysis rely on extracting the
technology and demand shocks from the system. In these exercises we use output as the

fourth variable, but we also present several robustness checks showing that the results

are insensitive to this choice. The VAR system, a fully interacted dynamic system of the

variables, can, under standard regularity conditions, be written in a vector moving average

(MA) form. Using lowercase letters for logarithms and denoting the fourth variable by θ,

the MA representation of the system follows:28


∆ajt

∆wnulcjt
∆wndjt

∆θjt

 =


C11(L) C12(L) C13(L) C14(L)

C21(L) C22(L) C23(L) C24(L)

C31(L) C32(L) C33(L) C34(L)

C41(L) C42(L) C43(L) C44(L)



ηajt
ηfjt
ηωjt
ηθjt

 . (C1)

We assume that the shocks ([ηajt, η
f
jt, η

ω
jt, η

θ
jt]) are structural innovations and hence mutually

orthogonal and serially uncorrelated. Because the shock associated with the fourth variable

lacks a theoretical interpretation, we refer to it as the “residual” shock in what follows.

The terms Crc(L) are polynomials in the lag operator, L, with coeffi cients crc(k)Lk at each

lag k. The shocks are orthogonal, and using a standard normalization we get Eηt́ηt = It,

28Note that the assumed functional form of the processes for demand and technology shifters specified in
equations (3) and (4) directly leads to equation (C1).
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where ηt = [ηajt, η
f
jt, η

ω
jt, η

θ
jt]
′.

Following standard practice, we denote the elements of the matrix of long-run multipli-

ers corresponding to (C1) as Crc(1). Relying on the model outlined above, we know that

the technology shock, ηajt, is the only shock with a long-run impact on ajt, so C12(1) =

C13(1) = C14(1) = 0 in the matrix of long-run multipliers.29 Similarly, only the technology

and the factor-price shocks have a long-run effect on wnulcjt, so C23(1) = C24(1) = 0.

Finally, since the residual shock has no long-run effects on wage-neutral demand, it follows

that C34(1) = 0.

Given these assumptions, we can recover the time series of the firm’s structural shocks

ηjt from an estimate of the VAR(p) formulation of the system (C1), i.e., from

∆xt =
∑P

1 Ap∆xt−p + et, (C2)

where Ap denotes the matrices with coeffi cients, ∆xt = [∆ajt,∆wnulcjt,∆wndjt,∆θjt]
′,

et is a vector of reduced-form disturbances, and we have suppressed constants to save on

notation.

Under standard regularity conditions, there exists a VAR representation of the MA

representation (C1) of the form

xt = A(L)Lxt + et, (C3)

where xt = [∆ait, ∆wnulcjt, ∆wndjt,∆θjt], Arc(L) =
∑∞

k=0 arc(k)Lk and et is a vector of

reduced-form errors. Since the errors in the VAR, et, are one-step-ahead forecast errors,

we will have that

et = c(0)ηt, (C4)

where c(0) is the matrix of crc(0) coeffi cients from the MA representation and ηt =

[ηajt, η
f
jt, η

ω
jt, η

θ
jt]
′. Thus, if the 16 coeffi cients in c(0) were known, we could recover ηt.

In practice, we first use that Eηtη
′
t = It together with an estimate of Ω = Eet́et from

our estimates of equation (C3) to obtain 10 restrictions. In addition, we impose the 6

long-run restrictions. Finally, rewriting equation (C3), we can obtain the MA form by

29That is, the coeffi cients c12(k) are such that
∑∞
k=0 c12(k) = 0, and similarly for the coeffi cients c13(k)

and c14(k).
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using equation (C4) in terms of coeffi cients from equation (C3) and the c(0) coeffi cients as

xt = [I −A(L)L]−1c(0)ηt. (C5)

Then, our 6 long-run restrictions imply an equal number of restrictions on the matrix

[I −A(L)L]−1c(0), that together with an estimate of (C3) yields 6 additional restrictions

on c(0). Jointly, these 16 restrictions provide an estimate of the c(0) matrix, ĉ(0), and

using these we can solve for the structural shocks using equation (C4):

ĉ(0)−1êt = η̂t. (C6)

When deriving results in term of elasticities, and to obtain an estimate of the standard

deviation of the structural shocks, we use a re-normalized ĉ(0) where each element is

divided by its column diagonal element.

C.2 Impulse Responses, Variance Decompositions, and Tests

Relying on the Arellano and Bond (1991) autocorrelation test of the differenced residual,

two lags in the VAR are enough to remove any autocorrelation in the residuals in all four

equations. Here we rely on the two-step Arellano and Bond (1991) difference estimator,

using the second to the fourth lag levels as instruments. It is worth noting, though, that the

parameter estimates are not sensitive to the actual choice of where to cut the instrument

set. The results are also insensitive to the inclusion of more lags as instruments. As an

additional precaution, we collapse the instrument set to avoid overfitting. That is, we

impose the restriction that the relationships in the “first stage” are the same across all

time periods (see Roodman, 2006, for a discussion). For all specifications, the Hansen test

of the overidentifying restrictions cannot reject the null that the model is correctly specified

and the instruments are valid.

Figure C1 shows the impulse responses of each of the variables in the baseline VAR in

levels to each of the structural shocks. Since the estimated system converges fairly rapidly,

we only plot the initial five periods. All impulse responses are precisely estimated as

indicated by the tight (95 percent) confidence bands based on 1, 000 bootstrap replications.

The high level of precision is not surprising, given that we estimate the impulse responses

on a much larger sample than is common in macroeconomic applications.

Unfortunately, we have not been able to find any statistical tests of stationarity that
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Figure C1: Impulse Responses
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Note: Impulse responses of the Solow residual, wage neutral unit labor costs (wage neutral ULC), wage-
neutral demand and output in the baseline VAR in percentage points. Each line depicts the mean of the
bootstrap distributions. Shaded areas depict the bootstrapped 95 percent confidence intervals calculated
from 1,000 replications.
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Figure C2: Variance Decompositions
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demand. W-N ULC denotes wage-neutral unit labor costs.The left-most panel shows the percentage of the
forecast-error variance in the Solow residual that can be explained by each structural shock at different
horizons. Each line depicts the mean of the bootstrap distributions. Shaded areas depict the bootstrapped
95 percent confidence intervals calculated from 1,000 replications.
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Figure C3: The Distribution of Demand and Technology Shocks
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Note: Histograms of demand and technology shocks. Dashed lines depict a normal distribution.

are suitable for a setting with a short but wide panel. However, it should be clear from

figure C1 that this issue is of little importance in the current setting. Importantly, the

figure is expressed in log-levels, and the flat, non-zero-end-segments in the responses imply

that shocks do have permanent effects on the levels of the series (i.e., the levels are I(1))

and that the differenced series are stationary (I(0)).

The first row of figure C1 traces out the impulse responses of the Solow residual, the

wnulc, the wnd, and output to a 1 sd technology shock, ηajt. Technology shocks have a

positive permanent effect on the Solow residual: a “normal”(i.e., 1 sd) shock increases the

Solow residual slightly less than 10 percent in the long run. The estimated model does

not impose any restrictions on how technology shocks affect wnulc and wnd. However,

the results do concur with predictions from expression (A2) in the sense that wnulc falls

permanently in response to the (permanent) technology shock. Similarly, we find that a

permanent technology shock raises wnd, as predicted from expression (A3).

The second row in figure C1 reports the impulse responses to a 1 sd permanent factor-

price shock. A “normal” factor-price shock increases wnulc and lowers wnd permanently

(theoretically working through marginal cost, price setting, and demand). The latter result

is, again, an unconstrained result in line with predictions from expression (A2). By the
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Figure C4: Non-Linear Responses to a Technology Shock
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linear) function of an x sd of the technology and demand shocks. Shaded areas depict the 95 percent
confidence intervals.
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same logic, output also falls permanently in response to a factor-price shock. The Solow

residual is affected in the very short run by factor-price shocks but converges to the long-run

restriction fairly rapidly.

The impulse responses to a permanent demand shock are shown in the third row of

figure C1. In this case, wnd is permanently increased in response to a permanent demand

shock. In the short run, demand shocks increase the Solow residual and reduce wnulc. As

expected, a demand shock also has permanently positive effects on output. A “normal”

demand shock increases it by about 10 percent in the long run. For completeness, figure

C1 also reports the responses to the residual shock in the last row. A “normal” residual

shock raises output permanently by slightly more than 5 percent.

Figure C2 presents forecast error variance decompositions for each of the variables in

the VAR in levels, decomposing the movements of the three variables. Again, bootstrapped

confidence bands are extremely tight. Quantitatively, the Solow residual is solely driven by

technology shocks on all horizons. The wnulc is mostly driven by factor-price shocks (75

percent of the variation) and partly by technology shocks (25 percent). Demand shocks

explain about 65 percent of the movements in wnd, whereas factor-price shocks explain

about 20 percent. We also see in figure C2 that there is a role for technology shocks in

explaining wage-neutral demand movements, accounting for about 15 percent. For output,

we see that about 55 percent of the variation is driven by demand shocks, the rest being

explained by factor-price shocks (about 20 percent), technology (about 15 percent), and

the transitory shock (about 10 percent).

Overall though, we find the residual shock to be of little importance. Given that we

include time dummies in the VAR, this finding is in line with the results of Franco and

Philippon (2007), which finds that transitory shocks are not very important on the firm

level but account for most of the volatility of aggregates because they are correlated across

firms.

Figure C3 shows the distributions for extracted innovations to technology and demand.

As the two panels of the figure show, neither the demand nor the technology shock distri-

butions are particularly skewed (skewness coeffi cients of −0.02 and −0.14, respectively),

whereas both are leptokurtic (kurtosis coeffi cients of 5.85 and 4.25). This is also clearly

visible in the graphs where the dashed line depicts a normal distribution, and a standard

skewness/kurtosis test (D’Agostino, Belanger, and D’Agostino, 1990) rejects the null of

normality for both distributions (p-value of 0.00 in both cases). The shock distributions de-

picted in figure C3 are normalized to have a unit standard deviation. When re-normalizing
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the system (see appendix A), we find that the standard deviation of the demand shock is

about 35 percent larger than the technology shock (standard deviations of 16.02 and 11.86

percentage points, respectively).

A maintained assumption in the analysis is that the baseline VAR is linear in the struc-

tural shocks. In figure C4 we plot the predicted contemporaneous responses of the variables

included in the VAR as (possibly non-linear) functions of structural shocks (allowing for a

separate second-order polynomial above and below zero). As the graphs show, the results

do support the maintained linearity assumption.
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D Appendix Tables

Table D1: Contemporaneous and Long-Run Effect on Log Employment - Different Values
of σ and Sectoral Dynamics

(1) (2) (3) (4) (5) (6)
Baseline

(σ = 3.3)
σ by sector σ by sector σ = 1.1 σ = 10

Sectoral
Dynamics

SHORT RUN
ηa 0.153 0.192 0.147 0.207 0.259 0.126

(0.159) (0.161) (0.162) (0.158) (0.152) (0.162)
ηω 5.986** 5.693** 5.520** 6.591** 4.060** 5.506**

(0.233) (0.221) (0.222) (0.240) (0.198) (0.225)

Observations 40,451 40,214 39,580 41,046 39,207 39,580
Firms 6,125 6,102 5,997 6,189 5,998 5,997

LONG RUN
ηa 0.504* 0.599** 0.510* 0.512* 0.643** 0.490*

(0.214) (0.214) (0.217) (0.208) (0.220) (0.221)
ηω 6.357** 5.996** 5.811** 7.009** 4.267** 5.737**

(0.310) (0.302) (0.306) (0.312) 0.291 (0.302)

Observations 34,414 34,198 33,667 34,612 33,291 33,667
Firms 6,116 6,094 5,989 6,181 5,991 5,989
Firm Fixed Effects Yes Yes Yes Yes Yes Yes
Sectoral Sigma No Yes Yes No No Yes
Pooled Dynamics Yes Yes Yes Yes Yes No
Sector by Time FE No No Yes No No Yes
sd. ηa 10.06 10.03 9.94 10.16 9.98 9.88
sd. ηω 16.18 17.09 16.98 13.87 27.23 16.80

Note: Columns (2) and (3) allow for a sectoral σ. In column (4) we reestimate the entire SVAR for each
two-digit industry. This explains the small drop in the number of observations. The number of firms
in some industries is too small to get sectoral estimates. Columns (5) and (6) impose large variation in
values of σ. All estimates are the effect of a 1 sd shock. Robust standard errors in parentheses. Long-run
estimates are the sum of the contemporaneous impact and one lag. ** and * denote statistical significance
at the 1 and 5 percent levels, respectively.
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Table D2: Contemporaneous and Long-Run Effect on Log Employment - Sample Variations

(1) (2) (3) (4)
Sample Baseline Single Plant Always Single Plant After 1996 ≤ ±2 Sd. Shocks

SHORT RUN
ηa 0.153 0.421** 0.312* 0.040

(0.159) (0.158) (0.151) (0.164)
ηω 5.986** 5.500** 6.244** 6.317**

(0.233) (0.236) (0.238) (0.205)

Observations 40,451 20,877 30,234 36,072
Firms 6,125 3,246 5,259 6,111

LONG RUN
ηa 0.504* 0.534* 0.669** 0.336

(0.214) (0.233) (0.215) (0.234)
ηω 6.357** 5.715** 6.657** 6.397**

(0.310) (0.309) (0.326) (0.294)

Observations 34,414 17,638 25,040 30,693
Firms 6,116 3,246 5,250 6,066
sd. ηa 10.06 9.13 9.41 10.06
sd. ηω 16.18 15.07 14.79 16.18

Note: Column (2) restricts the sample to single-plant firms; column (3) includes a mixed sample with
multi-plant firms until 1996, but not thereafter; column (4) shows results for a trimmed sample where we
focus on shocks in the Lester range of ± 2 standard deviations. Estimates are the effects of a 1 sd shock.
Robust standard errors in parentheses. Regression includes firm fixed effects and time dummies. Long-run
estimates are the sum of the contemporaneous impact and one lag. ** and * denote statistical significance
at the 1 and 5 percent levels, respectively.
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Table D3: Contemporaneous and Long-Run Effect on Log Employment - Varying the
Fourth Variable in the VAR

(1) (2) (3) (4)
Fourth Variable of VAR: Output Sales per Worker Employment (IS) Employment (RAMS)

SHORT RUN
ηa 0.153 0.524** 0.263 0.499**

(0.159) (0.154) (0.143) (0.061)
ηω 5.986** 5.840** 5.261** 6.986**

(0.233) (0.234) (0.212) (0.086)

Observations 41, 105 40, 284 38, 213 37, 234
Firms 6, 125 6, 113 5, 879 5, 703

LONG RUN
ηa 0.504* 0.812** 0.644** 0.643**

(0.214) (0.218) (0.209) (0.097)
ηω 6.357** 6.134** 5.477** 7.514**

(0.310) (0.317) (0.266) (0.121)

Observations 34, 414 34, 260 32, 407 31, 531
Firms 6, 116 6, 102 5, 871 5, 703

sd. ηa 10.06 9.980 9.971 9.964
sd. ηω 16.18 16.39 15.35 15.13

Note: Column (2) derives shocks from a VAR in which the fourth variable is sales per worker; in column
(3) the fourth variable is annual employment measured in the IS data set; in column (4) the fourth variable
is end-of-the-year employment measured from the RAMS data-set.All estimates are the effect of a 1 sd
shock. Robust standard errors in parentheses. All regressions include time dummies and firm fixed effects.
Long-run estimates are the sum of the contemporaneous impact and one lag. ** and * denote statistical
significance at the 1 and 5 percent levels, respectively.
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Table D4: Contemporaneous and Long-Run Effect on Net Employment Growth - Two
Periods Models.

(1) (2) (3)
One Period —Baseline Two Period —Without Exits Two Period —With Exits

SHORT RUN
ηa 0.115 0.328* 0.278

(0.119) (0.153) (0.164)
ηω 5.609** 5.431** 5.749**

(0.173) (0.375) (0.376)

Observations 40,451 39,822 40,238
Firms 6,125 6,114 6,121

LONG RUN
ηa 0.412* 0.420 0.380

(0.163) (0.350) (0.368)
ηω 6.009** 4.112** 4.696**

(0.228) (0.391) (0.422)

Observations 34,414 33,830 34,243
Firms 6,116 6,099 6,110

Note: The dependent variable in column (1) is the employment change between t and t − 1 divided by
the average employment in the two years. In columns (2) and (3) the dependent variable is defined as the
employment change between t+1 and t−1 divided by the average employment in the two years. Columns
(1) and (2) exclude frims that exit the sample in the calculation of the flows, and column (3) includes them.
The reported coeffi cients are the effect of 1 sd shock. Robust standard errors in parentheses. Regression
includes firm fixed effects and time dummies. Long-run estimates are the sum of the contemporaneous
impact and one lag. ** and * denote statistical significance at the 1 and 5 levels, respectively.
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