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Abstract

Electricity markets are becoming more integrated around the world. However, the
knowledge of the effects of different auction formats on suppliers’ strategies in the
presence of transmission constraints and transmission costs is still very limited. In
this paper, I analyze the performance of uniform and discriminatory price auctions
in the presence of transmission constraints and transmission costs. When the trans-
mission capacity is binding, the discriminatory price auction could outperform the
uniform price auction, minimizing the equilibrium price and the transmission costs.
Moreover, when the transmission capacity is binding, an increase in transmission
costs could be pro-competitive when the auction is discriminatory, but not when the
auction is uniform.

KEYWORDS: electricity auctions, transmission constraint, transmission costs, mar-
ket design.
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1 Introduction

Electricity markets are becoming more integrated around the world. In such a context,
transmission capacities and transmission tariffs play a crucial role in determining equi-
librium market allocations. However, the knowledge of the effects of different auction
formats on suppliers’ strategies in the presence of transmission constraints and transmis-
sion costs is still very limited. In this paper, I analyze the performance of the uniform and
the discriminatory price auction in the presence of transmission constraints and transmis-
sion costs.

The analysis employs a simple duopoly model similar to that in Fabra et al. (2006).
In the basic set up, the two suppliers have symmetric production capacities and marginal
costs, but are located in two different markets ("North" and "South") that are connected
through a transmission line with a limited transmission capacity.1 The equilibrium price
is the same in both markets even when the transmission line is congested. Electricity
markets with this price structure are very common (e.g., Spain and France); moreover,
this price structure also appears in nodal electricity markets where the transmission line is
congested within a node (e.g., Italy). Each supplier faces a perfectly inelastic demand in
each market that is known with certainty when suppliers submit their offer prices. Each
supplier must submit a single price offer for its entire capacity.2 When the auction is
discriminatory, the suppliers dispatched receive their own bid; when the auction is uni-
form, the suppliers dispatched receive the maximum bid accepted in the auction. The
assumption of price-inelastic demand can be justified by the fact that the vast majority of
consumers purchase electricity under regulated tariffs that are independent of the prices
set in the wholesale market, at least in the short run. The assumption that suppliers
have perfect information concerning market demand is reasonable when applied to mar-
kets where offers are "short lived", such as in Spain, where there are 24 hourly day-ahead
markets each day.

Suppliers pay a monetary charge (tariff) to the network owner when using the grid.
The charge is linear and it depends on how much power they inject into the grid (point
of connection tariff ) or transmit through the grid (transmission tariff ). The majority of
European countries (ENTSO-E, 2013) have point of connection tariffs. With the point of
connection tariffs scheme, suppliers pay a linear tariff for the electricity injected into the
grid, i.e., the one sold in their own market and the one sold in the other market. From
the suppliers’ point of view, a connection tariff is equivalent to an increase in generation
costs. Given that electricity demand is very inelastic, an increase in generation costs is
passed through to consumers that face an increase in equilibrium prices in both markets.
This is in line with the pass-through literature (Marion and Muehlegger 2011; Fabra and
Reguant 2014). For transmission tariffs, electricity suppliers would only pay a linear tariff
for the electricity sold to the other market. Hence, similar to a trade model, firms only pay
a transport cost for the goods sold in the other market. As has been shown in Blázquez
(2015), transmission tariffs are better than point of connection tariffs from the consumers’
perspective. Therefore, in this paper, I restrict the analysis to transmission tariffs.

1 The term "transmission capacity constraint" is used throughout this article in the electrical engi-
neering sense: a transmission line is constrained when the flow of power is equal to the capacity of the
line, as determined by engineering standards.

2Fabra et al. (2006) show that the equilibrium outcome allocation does not change when suppliers
submit single price offers for their entire capacity and when they submit a set of price-quantity offers.
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When there are constraints on the possibility to export electricity to another mar-
ket, the effective size of the market differs for the suppliers. The supplier located in the
high-demand market faces a higher residual demand, while the supplier located in the
low-demand market cannot sell its entire generation capacity. Therefore, the supplier
located in the high-demand market has incentives to submit higher bids than the sup-
plier located in the low-demand market (size effect). Transmission costs also introduce
an asymmetry. The supplier located in the low-demand market has to sell a large part
of its generation capacity into the other market and thus, it faces a high transmission
cost and it has incentives to increase its bid. The transmission cost makes the supplier in
the high-demand market more efficient in relative terms. In order to exploit its efficiency
rent, it has incentives to submit lower bids and, for a sufficiently high transmission cost,
the efficient supplier will even try to undercut the exporting supplier (cost effect). The
equilibrium outcome allocation in both types of auctions is determined by the dominating
effect.

When the transmission costs are low and the transmission capacity is binding, the dis-
criminatory price auction outperforms the uniform price auction in terms of equilibrium
price and transmission cost minimization; when the transmission capacity is not binding,
the discriminatory price auction generates a lower equilibrium price, but the performance
in terms of transmission cost minimization depends on the equilibrium played in the uni-
form price auction. When the transmission costs are high and the transmission capacity
is binding, the equilibrium outcome allocations are the same for both types of auctions;
when the transmission capacity is not binding, the discriminatory price auction generates
a lower equilibrium price, but the performance in terms of transmission cost minimization
depends on the equilibrium played in the uniform price auction. Hence, due to the struc-
ture of the model (transmission constraints and costs), the discriminatory price auction
outperforms the uniform price auction even when the suppliers are symmetric in pro-
duction capacity and production costs. This is in contrast to the previous results in the
literature (Fabra et al., 2006), where the performance of both types of auctions crucially
depends on the parameter assumptions.

Due to the transmission constraint, the supplier located in the high-demand market
faces a large residual demand and it has incentives to increase its bid. Moreover, due to
the asymmetry on demand realization, an increase in transmission costs induces differ-
ent changes in suppliers’ costs. The supplier located in the low-demand market faces a
large increase in transmission costs and it has incentives to increase its bid to compen-
sate for the increase in costs. The supplier located in the high-demand market faces a
low increase in transmission costs and it has incentives to decrease its bid to extract the
efficiency rents. The discriminatory price auction captures the changes in the incentives
induced by an increase in transmission costs in a very exact way: the supplier located in
the high-demand market decreases its bids to be dispatched first and the supplier located
in the low-demand market increases its bid to compensate for the increase in costs. The
average effect is a decrease in the equilibrium price; i.e., an increase in the transmission
cost is pro-competitive. In contrast, the uniform price auction is not that flexible and
an increase in transmission costs does not change suppliers’ strategies and thus, the price
does not change.
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Transmission constraints have been considered in different types of oligopoly models.
Borenstein et al. (2000) characterize the equilibrium in an electricity network where sup-
pliers compete in quantities as in a Cournot game. Holmberg and Philpott (2012) solve for
symmetric supply function equilibria in electricity networks when demand is uncertain ex-
ante, but they do not consider any transmission costs. Escobar and Jofré (2010) analyze
the effect of transmission losses, a transmission cost, on equilibrium outcome allocations,
but they neglect transmission constraints. However, none of these models consider the
effect that the type of auction could have by determining equilibrium outcome allocations.

Fabra et al. (2006) extend the seminal papers of Bertrand competition with capac-
ity constrained production (Kreps and Scheinkman, 1983; Osborne and Pitchik, 1986;
Deneckere and Kovenock, 1996) to include asymmetries in generation capacity and pro-
duction costs. Moreover, the paper also characterizes the equilibrium when the auction
is uniform and compares the performance of both types of auctions. However, the results
presented in Fabra et al. (2006) the "size" and "cost" effects induced by the asymmetries
in production capacity and production costs work in the same direction. In contrast,
in this paper both effects work in the opposite direction and the characterization of the
equilibrium and the comparative static are different that the one presented in Fabra et
al. (2006). Moreover, in the annex I extend the results presented in Fabra et al. (2006)
providing a general characterization of the equilibrium that does not depend on the pa-
rameter specification.

Fabra et al. (2006) analyze the performance of the uniform and the discriminatory
price auctions in a context of perfect information. Holmberg and Wolak (2015) extend
the analysis to a context of imperfect information and find that the uniform price auc-
tion outperforms the discriminatory price auction by generating a lower equilibrium price.
However, neither of these papers analyzes the performance of both types of auctions when
the suppliers face economic incentives (cost and size effect) that work in the opposite di-
rection.

The article proceeds as follows. Section 2 describes the model. Section 3 characterizes
the equilibrium and analyzes the performance of both types of auctions in the presence
of transmission capacity constraints and zero transmission costs. Section 4 characterizes
the equilibrium and analyzes the performance of both types of auctions in the presence
of transmission capacity constraints and positive transmission costs. Section 5 concludes
the paper. The extension of Fabra’s paper and the proofs are located in the Appendix.

2 The model

Set up of the model. There exist two electricity markets, market North and market
South, that are connected by a transmission line with capacity T . When firms transmit
electricity through the grid from one market to the other, they face a symmetric linear3
transmission tariff t. In order to reduce transmission losses,4 the transmission tariffs in

3The transmission tariffs are linear in electricity markets. However, the model can be modified to as-
sume convex costs. When the transmission costs are convex, the existence of the equilibrium is guaranteed
by Dixon (1984).

4Electricity suppliers pay a linear tariff that depends on the location and the season/period-of-day.
The locational component of the tariff component of the tariff penalizes the injection of electricity in
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the majority of European countries have a locational and a seasonal component.5

There exist two duopolists with capacities kn and ks, where subscript n means that the
supplier is located in market North and subscript s means that the supplier is located in
market South. The suppliers’ marginal costs of production are cn and cs. In this paper,
I analyze the effect of transmission capacity constraints and transmission costs on the
equilibrium. In order to focus on this effect, I assume that suppliers are symmetric in
capacity kn = ks = k > 0 and symmetric in costs cn = cs = c = 0. The level of demand in
any period, θn in market North and θs in market South, is a random variable uniformly
distributed that is independent across markets6 and independent of the market price, i.e.,
perfectly inelastic. In particular, θi ∈ [θi, θi] ⊆ [0, k + T ] is distributed according to some
known distribution function G(θi), i = n, s, i 6= j.

The capacity of the transmission line can be lower than the installed capacity in each
market T ≤ k, i.e. the transmission line could be congested for some realization of de-
mands (θs, θn).

Timing of the game. Having observed the realization of demands θ ≡ (θs, θn), each
supplier simultaneously and independently submits a bid specifying the minimum price
at which it is willing to supply up to its capacity, bi ≤ P , i = n, s, where P denotes
the "market reserve price", possibly determined by regulation.7 Let b ≡ (bs, bn) denote
a bid profile. On basis of this profile, the auctioneer calls suppliers into operation. If
suppliers submit different bids, the capacity of the lower-bidding supplier is dispatched
first. Without lost of generality, assume that bn < bs. If the capacity of supplier n is
not sufficient to satisfy total demand (θs + θn) in the case of the transmission line not
being congested, or (θn + T ) in the case of the transmission line being congested,8 the
higher-bidding supplier’s capacity, supplier s, is then dispatched to serve residual demand,
(θs + θn − k) if the transmission line is not congested, or (θs − T ) if the transmission line
is congested. If the two suppliers submit equal bids, then supplier i is ranked first with

probability ρi, where ρn + ρs = 1, ρi = 1 if θi > θj, and ρi =
1

2
if θi = θj, i = n, s, i 6= j.

The tie breaking rule implemented is such that if the bids of both suppliers are equal and

points of the grid that generate high flows of electricity. The seasonal/period-of-day component of the
tariff penalizes the transmission of electricity when the losses are larger. For a complete analysis of losses
in Europe and a complete description of the algorithm implemented to work out power losses, consult
the document "ENTSO-E ITC Transit Losses Data Report 2013".

5The locational and seasonal component implies that suppliers face asymmetric linear tariffs. However,
the model can easily be modified to introduce this type of asymmetries. For a comparison of European
tariff systems, check out the document "ENTSO-E Overview of transmission tariffs in Europe: Synthesis
2014".

6In the majority of electricity markets, demand in one market is higher than demand in the other
market. Moreover, there exists the possibility of some type of correlation between demands across mar-
kets. In this paper, I assume uniform distribution and independence of demand. However, the model
can easily be modified to introduce different distributions of demand and correlation between demands
across markets.

7P can be interpreted as the price at which all consumers are indifferent between consuming and not
consuming, or a price cap imposed by the regulatory authorities. See von der Fehr and Harbord (1993,
1998).

8When demand in market South is larger than the transmission line capacity θs > T , supplier n can
only satisfy the demand in its own region and T units of demand in region South (θn + T ). Below in
this section, I explain in detail the total demand and the residual demand that can be satisfied by each
supplier.
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demand in market i is larger than demand in region j, the auctioneer first dispatches the
supplier located in market i.

The output allocated to supplier i, i = n, s, denoted by qi(θ, b), is given by

qi(b; θ, T ) =


min {θi + θj, θi + T, ki} if bi < bj

ρimin {θi + θj, θi + T, ki}+
[1− ρi]max {0, θi − T, θi + θj − kj} if bi = bj

max {0, θi − T, θi + θj − kj} if bi > bj

(1)

The output function has an important role in determining the equilibrium and thus,
this is explained in detail. Below, I describe the construction of supplier n’s output func-
tion; the one for supplier s is symmetric.

The total demand that can be satisfied by supplier n when it submits the lower bid
(bn < bs) is defined by min {θn + θs, θn + T, k}. The realization of (θs, θn) determines
three different areas (left-hand panel in figure 1).

min {θn + θs, θn + T, k} =


θs + θn if θn ≤ k − θs and θs < T

θn + T if θn < k − T and θs > T

k if θn > k − θs; θs ∈ [0, T ]

or if θn > k − T ; θs ∈ [T, k + T ]

When demand in both markets is low, supplier n can satisfy total demand (θs+θn). If
the demand in market South is larger than the transmission capacity θs > T , supplier n
cannot satisfy the demand in market South, even when it has enough generation capacity
for this; therefore, the total demand that supplier n can satisfy is (θn+T ). Finally, if the
demand is large enough, the total demand that supplier n can satisfy is its own generation
capacity.

The residual demand that supplier n satisfies when it submits the higher bid (bn > bs)
is defined by max {0, θn − T, θs + θn − k}. The realization of (θs, θn) determines three
different cases (right-hand panel in figure 1).

max {0, θn − T, θs + θn − k} =


0 if θn < T ; θs ∈ [0, k − T ]

or θn < k − θs; θs ∈ [k − T, k]
θn − T if θn > T and θs ∈ [0, k − T ]
θs + θn − k if θn > k − θs; θs ∈ [k − T, T + k]

When demand in both markets is low, supplier s satisfies total demand and therefore,
the residual demand that remains for supplier n is zero. Due to the transmission con-
straint, the total demand that supplier s can satisfy diminishes. As soon as the demand
in market North is larger than the transmission capacity (θn > T ), it cannot be satisfied
by supplier s and thus, some residual demand (θn − T ) remains for supplier n. When
total demand is large enough, supplier s cannot satisfy total demand and some residual
demand (θs + θn − k) remains for supplier n.

Finally, the payments are worked out by the auctioneer. When the auctioneer runs
a discriminatory price auction, the price received by a supplier for any positive quantity

6



Figure 1: Output function for supplier n. (kn = ks = 60, T = 40)
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dispatched by the auctioneer is equal to its own bid. Hence, for a given realization of
θ ≡ (θj, θi) and a bid profile b ≡ (bj, bi), supplier i’s profits can be expressed as

πd
i (b; θ, T, t) =


(bi − ci)min {θi + θj, θi + T, k}−
tmax {0,min {θj, T, k − θi}} if bi ≤ bj and θi > θj

(bi − ci)max {0, θi − T, θi + θj − k}−
tmax {0, θj − k} otherwise

The payoff function has an important role in determining the equilibrium and thus, it
is explained in detail. Below, I describe the construction of supplier n’s payoff function;
the one for supplier s is symmetric. If bn ≤ bs and θn ≥ θs, supplier n’s payoff function is
πd
n(b; θ, T ) = (bn − cn) min {θn + θs, θn + T, k}. In addition to this expression, supplier n

is charged a transmission cost t for the power sold in market South due to the transmission
costs. The transmission costs have four different possible values: tθs when the realization
of demand in market North is low and the transmission line is not congested; tT when the
realization of demand in market North is low and the transmission line is congested; when
the realization of demand in market North is high but lower than its generation capacity,
the transmission costs are t(k− θn); finally, when demand in market North is larger than
the generation capacity k, supplier n cannot sell any electricity in market South and the
transmission costs are zero. Hence, after adding the transmission costs, supplier n’s payoff
is equal to πd

n(b; θ, T, t) = (bn−cn)min {θn + θs, θn + T, k}− tmax {0,min {θs, T, k − θn}}
(left-hand panel, figure 2).

In the rest of the cases, supplier n is dispatched last and satisfies the residual de-
mand. Supplier n’s payoff function is πd

n(b; θ, T, t) = (bn−cn)max {0, θn − T, θs + θn − k}.
In addition to this expression, due to the transmission costs, supplier n is charged a
transmission cost t for the residual demand satisfied in market South. Therefore, af-
ter adding the transmission costs, supplier n’s payoff is equal to πd

n(b; θ, T ) = (bn −
cn)max {0, θn − T, θs + θn − k} − tmax {0, k − θn} (right-hand panel, figure 2).

When the auctioneer runs a uniform price auction, the price received by a supplier for
any positive quantity dispatched by the auctioneer is equal to the higher bid accepted in
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Figure 2: Profit function for supplier n. (kn = ks = 60, T = 40, t > 0)
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the auction. Hence, for a given realization of θ ≡ (θj, θi) and a bid profile b ≡ (bj, bi),
supplier i’s profits can be expressed as

πu
i (b; θ, T, t) =



(bi − ci)(θi + θj)− tθj if bi ≤ bj and θj ≤ T and θi + θj ≤ k

(bj − ci)min {θi + T, k}−
tmin {T, k − θi} if bi ≤ bj and θj > T or θi + θj > k

(bi − ci)max {0, θi − T, θi + θj − k}−
tmax {0, θj − k} if bi > bj

As in the discriminatory price auction, I describe the construction of supplier n’s payoff
function; the payoff function for supplier s is symmetric. If bn ≤ bs, θs ≤ T and θs+θn ≤ k,
supplier n submits the lower bid in the auction, the transmission line is not congested
and supplier n has enough capacity to satisfy total demand. Therefore, supplier n sets
the price and satisfies total demand. When bn ≤ bs, θs > T or θs + θn > k, supplier n
submits the lower bid in the auction, the transmission line is congested or supplier n does
not have enough capacity to satisfy total demand, then supplier s is called into operation
and sets the price. Hence, supplier n sells its generation capacity (up to the transmission
line capacity) at the price set by supplier s. If supplier n submits the higher bid, it sets
the price and satisfies the residual demand. Therefore, supplier n’s profit is the same as
when the auction is discriminatory.

3 Auction performance in the presence of transmission constraints

In the presence of transmission capacity constraints, the size of the market differs for
both suppliers. The supplier located in the high-demand market faces higher residual de-
mand and the supplier located in the low-demand market cannot sell its entire generation
capacity. In this section, I characterize the equilibrium in the presence of transmission
capacity constraints and zero transmission costs and I analyze the performance of both
auctions based on equilibrium prices and transmission losses. I also analyze the effect of
an increase in demand in each of the markets on equilibrium market outcomes.
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Lemma 1. When the realization of demands (θj, θi) is low (area A), the equilibrium is
in pure strategies for both types of auctions. When the realization of demands (θj, θi) is
intermediate (areas A1, B1) or high (area B2), a multiplicity of pure strategy equilibria
exists when the auction is uniform, but a pure strategies equilibrium does not exist when
the auction is discriminatory (figure 3).

Proof. When the realization of demands (θj, θi) is low (area A), both suppliers have
enough capacity to satisfy total demand in both markets and the transmission line is not
congested. Therefore, they compete fiercely to be dispatched first in the auction. Hence,
the equilibrium is the typical Bertrand equilibrium where both suppliers submit bids equal
to their marginal cost.

When the realization of demands (θj, θi) is intermediate (areas A1, B1) or high (area
B2) and the auction is uniform, a multiplicity of pure strategy equilibria exists. When
the realization of demands (θj, θi) belongs to area A1, only the supplier located in the
high-demand market (supplier i) can satisfy total demand. Therefore, a multiplicity of
equilibria exists where supplier i submits the maximum bid allowed by the auctioneer and
supplier j submits a bid that makes supplier i indifferent between submitting the max-
imum bid and satisfying the residual demand or undercutting supplier j and satisfying
total demand. When the realization of demands (θj, θi) belongs to areas B1 or B2, both
suppliers face a positive residual demand. Therefore, a multiplicity of equilibria exists
where one of the suppliers submits the maximum bid allowed by the auctioneer and the
other submits a bid that makes undercutting unprofitable.

When the realization of demands (θj, θi) is intermediate (areas A1, B1) or high (area
B2) and the auction is discriminatory, a pure strategy equilibrium does not exist. First,
an equilibrium such that bi = bj = c does not exist because at least one supplier has an
incentive to increase its bid and satisfy the residual demand. Second, an equilibrium such
that bi = bj > c does not exist because at least one supplier has the incentive to undercut
the other to be dispatched first. Finally, an equilibrium such that bj > bi > c does not
exist because supplier i has the incentive to shade the bid submitted by supplier j.

When the auction is discriminatory and the realization of demands (θj, θi) is interme-
diate or high, a pure strategy equilibrium does not exist. However, the model satisfies
the properties9 established by Dasgupta and Maskin (1986) which guarantee that a mixed
strategies equilibrium exists.

Lemma 2. In the presence of transmission constraints. In a mixed strategy equilib-
rium, no supplier submits a bid lower than bid (bi) such that bimin {θi + θj, θi + T, k} =
Pmax {0, θi − T, θi + θj − k}. Moreover, the support of the mixed strategy equilibrium
for both suppliers is S =

[
max

{
bi, bj

}
, P
]
.

Proof. Each supplier can guarantee for itself the payoff Pmax {0, θi − T, θi + θj − k}, be-
cause each supplier can always submit the highest bid and satisfy the residual demand.
Therefore, in a mixed strategy equilibrium, no supplier submits a bid that generates a pay-
off equilibrium lower than Pmax {0, θi − T, θi + θj − k}. Hence, no supplier submits a bid

9In annex one, proposition one, I prove that the model satisfies the properties established by Dasgupta
and Maskin which guarantee that a mixed strategy equilibrium exists.
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Figure 3: Equilibrium areas. (ki = kj = k = 60, c = 0, T = 40, t = 0)
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lower than bi, where bi solves bimin {θi + θj, θi + T, k} = Pmax {0, θi − T, θi + θj − k}.

No supplier can rationalize to submit a bid lower than bi, i = n, s. In the case when
bi = bj, the mixed strategy equilibrium and the support are symmetric. In the case when
bi < bj, supplier i knows that supplier j never submits a bid lower than bj. Therefore,
in a mixed strategy equilibrium, supplier i never submits a bid bi such that bi ∈

(
bi, bj

)
,

because supplier i can increase its expected payoff choosing a bid bi such that bi ∈
[
bj, P

]
.

Hence, the equilibrium strategy support for both suppliers is S =
[
max

{
bi, bj

}
, P
]

Using Lemmas one and two, I characterize the equilibrium.

Proposition 1. In the presence of transmission constraints, the characterization of the
equilibrium falls into one of the next two categories.

i Low demand (area A). The equilibrium strategy pair is in pure strategies for both
types of auctions.

ii Intermediate demand (areas A1, B1) and high demand (area B2). The equilib-
rium strategy pair is in pure strategies for the uniform price auction and in mixed
strategies for the discriminatory price auction.

When the realization of demands (θj, θi) is low (area A), both suppliers have enough ca-
pacity to satisfy total demand in both markets and the transmission line is not congested.
Therefore, the equilibrium is the typical Bertrand equilibrium where both suppliers sub-
mit bids equal to their marginal cost. Hence, each supplier satisfies the demand in its
own market and no electricity flows through the grid.

When the realization of demands (θj, θi) is intermediate (area A1), due to the trans-
mission constraint, only the supplier located in the high-demand market can satisfy total

10



demand. When the auction is uniform, multiplicity of equilibria exist where the supplier
located in the high-demand market (supplier i) submits the maximum bid allowed by the
auctioneer and the supplier located in the low-demand market (supplier j) submits a bid
that makes supplier i indifferent between submitting the maximum bid and satisfying the
residual demand or undercutting supplier j and satisfying total demand. Therefore, the
equilibrium price in both markets is the maximum price allowed by the auctioneer and
electricity flows from the low-demand market to the high-demand market, i.e., the elec-
tricity flow is maximized. In contrast, when the auction is discriminatory, the equilibrium
price is lower than the maximum bid allowed by the auctioneer and electricity flows from
the high-demand market to the low-demand market with a positive probability, i.e., the
electricity flow is lower than in the uniform price auction. Hence, the discriminatory price
auction performs better than the uniform price auction in terms of equilibrium price and
electricity flow minimization.

When the realization of demands (θj, θi) is intermediate (area B1) or high (area B2),
due to the transmission or the generation constraint, both suppliers face a positive resid-
ual demand. When the auction is uniform, a multiplicity of equilibria exists where one
supplier submits the maximum bid allowed by the auctioneer and the other supplier sub-
mits a bid that makes undercutting unprofitable. Therefore, the equilibrium price in both
markets is the maximum price allowed by the auctioneer. Electricity flows from one mar-
ket to the other, depending on the equilibrium played by the suppliers. In contrast, when
the auction is discriminatory, the equilibrium price is lower than the maximum bid al-
lowed by the auctioneer and electricity flows in expectation from the low-demand market
to the high-demand market. Hence, the uniform price auction performs worse than the
discriminatory price auction in terms of equilibrium price, but the performance in terms
of electricity flow minimization depends on the equilibrium played in the uniform price
auction.

In the rest of this section, I analyze the effect of an increase in the realization of the
demand on equilibrium market outcomes.

Corollary 1. The effects of an increase in the realization of the demand in the high-
demand market when the realization of demands (θj, θi) belongs to areas A,A1 and B1
can be summarized as follow.10

• When the auction is uniform, an increase in the realization of demand in the high-
demand market does not change the equilibrium price and increases the profit of
the firm dispatched last in the auction.

• When the auction is discriminatory, an increase in the realization of demand in the
high-demand market increases the lower bound of the support (bj, bi), the expected
bids (Ej(b), Ei(b)) and the expected profits (πj, πi) of both suppliers. Figure 4
summarizes the effect of an increase in demand (from area A to area B1) in the
high-demand market (market North, θn) when the demand in market South remains
fixed and equal to θs = 5.

10The effect of an increase in demand in the high-demand market depends crucially on the realization
of demands (θj , θi). To make the corollary easier to follow, I restrict the analysis to areas A,A1 and B1.
However, in the appendix, I present a complete analysis for the rest of the areas (B2). I follow the same
approach in all corollaries: I restrict the analysis to some relevant areas in the corollaries and I complete
the analysis in the annex.
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Figure 4: Increase θn. (θs = 5, kn = ks = k = 60, c = 0, T = 40, t = 0)
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When the realization of demands (θj, θi) belongs to area A, both suppliers can satisfy
total demand and the equilibrium pair strategies is in pure strategies where both suppli-
ers submit a bid equal to their marginal cost. Therefore, an increase in the realization of
demand in the high-demand market does not change the equilibrium outcome. However,
when the transmission or the generation capacity is binding (areas A1 or B1), at least
one of the suppliers faces a positive residual demand and the equilibrium pair strategies
differ for both types of auctions. Hence, an increase in demand induces different changes
in outcome allocations depending on the type of auction.

When the auction is uniform, as soon as one supplier faces a positive residual de-
mand, it has incentives to submit the maximum bid allowed by the auctioneer and the
equilibrium price in both markets is high. Therefore, an increase in the realization of the
demand in the high-demand market does not modify the equilibrium price. An increase
in the realization of demand in the high-demand market increases the residual demand
and so does the profit of the supplier dispatched last in the auction.

When the auction is discriminatory, an increase in the realization of demand in the
high-demand market increases the residual demand for both suppliers and according to
lemma two, the lower bound of the support increases (left-hand panel, figure 4). Due
to the increase in the lower bound of the support, both suppliers randomize submitting
larger bids and the expected equilibrium bids increase (central panel, figure 4). Finally,
due to the increase in the residual demand and the expected bids, there is an increase in
the expected profits (right-hand panel, figure 4).

Corollary 2. The effects of an increase in the realization of the demand in the low-
demand market when the realization of demands (θj, θi) belongs to areas B1 and B2 can
be summarized as follow.

• When the auction is uniform, an increase in the realization of demand in the low-
demand market does not change the equilibrium price and increases the profit of
the firm dispatched last in the auction.

• When the auction is discriminatory and the transmission capacity is binding (area
B1), an increase in the realization of the demand in the low-demand market increases

12



Figure 5: Increase θs. (θn = 60, kn = ks = k = 60, c = 0, T = 40, t = 0)
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the lower bound of the support of the supplier located in the low-demand market
(bj) and does not change the lower bound of the support of the supplier located
in the high-demand market (bi); the expected bid of the supplier located in the
low-demand market (Ej(b)) does not change and the expected bid of the supplier
located in the high-demand market (Ei(b)) decreases; finally, the expected profit
of the supplier located in the low-demand market (πj) increases and the expected
profit of the supplier located in the high-demand market (πi) does not change.

• When the auction is discriminatory and the generation capacity is binding (area B2),
an increase in the realization of the demand in the low-demand market increases the
lower bound of the support (bj, bi), the expected bids (Ej(b), Ei(b)) and the expected
profits (πj, πi) of both suppliers. Figure 5 summarizes the effect of an increase in
demand (from area B1 to area B2) in the low-demand market (market South, θs)
when the demand in market North remains fixed and equal to θn = 60.

When the auction is uniform, the same logic that I have presented in corollary one
applies and an increase in the demand in the low-demand market generates the same
effects as an increase in the demand in the high-demand market.

When the auction is discriminatory, things are slightly more elaborated and crucially
depend on the congestion of the transmission line. When the transmission capacity is not
binding (area B2), both suppliers face the same residual and total demand and the lower
bound of the support, the expected bids and profits are the same for both suppliers. In
contrast, when the transmission capacity is binding (area B1), the supplier located in the
high-demand market faces a larger residual demand and the lower bound of the support,
the expected bid and the profit are larger. An increase in the demand in the low-demand
market closes the gap between the total and the residual demand of both suppliers and
the lower bound, the expected bid and the profit converge (area B1 in figure 5). When
the transmission capacity is not binding (area B2), an increase in the demand in the
low-demand market increases the residual demand for both suppliers as does the lower
bound, the expected bid and the profit (area B2 in figure 5).
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4 Auction performance in the presence of transmission constraints
and transmission costs

In the presence of transmission capacity constraints, the size of the market differs for
both suppliers. In the presence of transmission costs, the transmission cost differs for
both suppliers depending on the realization of the demand. The supplier located in the
low-demand market has to sell a large part of its generation capacity to the other market;
thus, it faces a higher transmission cost than the supplier located in the high-demand
market. In this section, I characterize the equilibrium in the presence of transmission ca-
pacity constraints and positive transmission costs and I analyze the performance of both
auctions based on equilibrium prices and transmission losses. I also analyze the effect of
an increase in the transmission cost on the main variables of the model. I conclude the
section by analyzing the effect of an increase in demand in each market on equilibrium
market outcomes.

Lemma 3. When the realization of demands (θj, θi) is low (area A), the equilibrium is
in pure strategies for both types of auctions. When the realization of demands (θj, θi) is
intermediate (area A1) and the transmission costs are high, a pure strategies equilibrium
exists for both types of auctions. In the rest of the cases, a multiplicity of pure strategy
equilibria exists when the auction is uniform, but not when it is discriminatory (figure
6). Moreover, due to the presence of transmission costs, the pure strategy equilibria are
asymmetric.

Proof. When the realization of demands (θj, θi) is low (area A), both suppliers have enough
capacity to satisfy total demand and the transmission line is not congested. Therefore,
the competition for being dispatched first is fierce. Moreover, the supplier located in the
high-demand market (supplier i) faces lower transmission costs. Hence, the equilibrium
is the typical Bertrand equilibrium with asymmetries in "costs", 11 where the supplier
located in the high-demand market undercuts the supplier located in the low-demand
market to extract the efficiency rents and the electricity flows from the high-demand mar-
ket to the low-demand market (the electricity flow is minimized).

When the demand belongs to area A1, the transmission constraint binds for the sup-
plier located in the low-demand market (supplier j). Therefore, only the supplier located
in the high-demand market can satisfy total demand. The supplier located in that market
prefers to submit a low bid and extract the efficiency rent instead of submitting a high
bid and satisfy the residual demand only if the transmission cost is high enough. In such
a case, the equilibrium is in pure strategies and electricity flows from the high-demand
market to the low-demand market.

In the rest of the cases, a pure strategies equilibrium exists for the uniform price auc-
tion, but it does not exist for the discriminatory price auction and the proof proceeds as
in lemma one

When the realization of demands (θj, θi) is intermediate or high and the auction is
discriminatory, a pure strategy equilibrium does not exist. However, the model satisfies

11It is important to emphasize that the generation costs are symmetric and equal to zero. In this
model, the asymmetries in costs are due to the transmission costs.
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Figure 6: Equilibrium areas. (kn = ks = k = 60, c = 0, T = 40, t > 0)
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the properties established by Dasgupta and Maskin (1986) which guarantee that a mixed
strategy equilibrium exists.

Lemma 4. In the presence of transmission constraints and positive transmission costs. In
a mixed strategy equilibrium, no supplier submits a bid lower than bid (bi) such that

bimin {θi + θj, θi + T, k} − tmax {0,min {θj, T, k − θi}} =
Pmax {0, θi − T, θi + θj − k} − tmax {0, θj − k} .

Moreover, the support for the mixed strategy equilibrium for both suppliers is S =[
max

{
bi, bj

}
, P
]
.

Proof. The proof proceeds as in lemma two.

Using lemmas three and four, I characterize the equilibrium.

Proposition 2. In the presence of transmission constraints and positive transmission costs,
the characterization of the equilibrium falls into one of the next three categories.

i Low demand (area A). The equilibrium strategy pair is in pure strategies for both
types of auctions.

ii Intermediate demand (area A1). When the transmission cost is high, the equilibrium
strategy pair is in pure strategies for both types of auctions. In contrast, when the
transmission cost is low, the equilibrium strategy pair is in pure strategies when the
auction is uniform and in mixed strategies when it is discriminatory.

iii Intermediate demand (areas B1a, B1b) and high demand (areas B2a, B2b). The
equilibrium strategy pair is in pure strategies when the auction is uniform and in
mixed strategies when it is discriminatory.
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When the realization of demands (θj, θi) is low (area A), both suppliers have enough ca-
pacity to satisfy total demand in both markets and the transmission line is not congested.
Moreover, the supplier located in the high-demand market faces lower transmission costs.
Therefore, the equilibrium is the typical Bertrand equilibrium where the supplier located
in the high-demand market submits a bid equal to the marginal cost of the supplier located
in the low-demand market when it sells an extra unit of electricity into the high-demand
market. Hence, the supplier located in the high-demand market satisfies the demand in
both markets and the flow of electricity is minimized.

When the realization of demands (θj, θi) is intermediate (area A1), due to the trans-
mission constraint, the supplier located in the high-demand market is the unique supplier
that can satisfy total demand. When the transmission cost is high, the supplier located in
the high-demand market faces a lower transmission cost than the one located in the low-
demand market and it is profitable to undercut it to extract the efficiency rent. In such
a case, the equilibrium pair strategies are in pure strategies for both types of auctions.
In contrast, when the transmission cost is low, the supplier located in the high-demand
market prefers to submit a high bid and satisfy the residual demand. In such a case,
a multiplicity of pure strategies equilibria exists where the supplier located in the high-
demand market submits the maximum bid allowed by the auctioneer and the supplier
located in the low-demand market submits a bid that makes undercutting unprofitable.
When the auction is discriminatory, the equilibrium is in mixed strategies. Hence, when
the transmission cost is low, the discriminatory price auction performs better in terms of
equilibrium price and electricity flow minimization.

When the realization of demands (θj, θi) is intermediate (areas B1a, B1b) or high (ar-
eas B2a, B2b), the same logic that I have introduced in proposition one applies and the
uniform price auction performs worse than the discriminatory price auction in terms of
equilibrium price, but the performance in terms of a minimization of the electricity flow
depends on the equilibrium played in the uniform price auction.

The outperformance of the discriminatory price auction in the presence of a transmis-
sion constraint and transmission costs is in contrast to the previous results in the literature
where the uniform price auction can perform better than the discriminatory price auction
in terms of equilibrium prices, but worse in efficiency terms. In models with an uncon-
gested transmission line and zero transmission costs but with asymmetries in generation
capacities and costs as the model presented in Fabra et al. (2006), the performance of
both types of auctions crucially depends on that type of asymmetries; for some parameter
specifications, the uniform price auction performs better than the discriminatory price
auction in terms of efficiency, but worse for other parameter specifications.12 In contrast,
in the presence of transmission constraints and costs, the discriminatory price auction
outperforms the uniform price auction when the suppliers are symmetric in generation
capacity and costs.

The main results presented in proposition two crucially depend on the value of the
transmission cost (low or high). Due to the importance of the transmission cost for the
results of the model, I analyze the effect of on increase in transmission costs on equilib-

12In the annex, I present a complete analysis of the performance of both types of auctions when the
suppliers are asymmetric in generation capacities and costs.
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Figure 7: Increase t. CDF
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rium market outcomes.

Proposition 3. The effects of an increase in transmission costs when the realization of
demands (θj, θi) belongs to area A1 can be summarized as follow.

• When the transmission costs are low, an increase in transmission costs does not
modify the equilibrium price when the auction is uniform, but reduces it when the
auction is discriminatory (an increase in transmission costs is pro-competitive).

• When the transmission costs are high, an increase in transmission costs increases
the equilibrium price for both types of auctions (an increase in transmission costs
is anti-competitive).

Due to the transmission constraint, when the realization of demands (θj, θi) belongs
to area A1, the supplier located in the high-demand market (supplier i) faces a high resid-
ual demand and it has incentives to increase its bid. Moreover, due to the asymmetry
on demand realization, the transmission costs are different for both suppliers. However,
when the transmission cost is low, that difference is small. In such a case, the supplier
located in the high-demand market prefers to submit a high bid and satisfy the residual
demand. When the auction is uniform, the equilibrium is in pure strategies where the
supplier located in the high-demand market submits the maximum bid allowed by the
auctioneer. When the auction is discriminatory, the equilibrium is in mixed strategies
where the supplier located in the high-demand market randomizes submitting higher bids
than the one located in the low-demand market, i.e., the cumulative distribution function
of the supplier located in the high-demand stochastically dominates that of the supplier
located in the low-demand market (left-hand panel, figure 7).

When there is an increase in the transmission costs, the gap between the costs for
both suppliers increases and submitting a low bid to extract the efficiency rent becomes
more attractive for the supplier located in the high-demand market. The discriminatory
price auction captures this effect in a very exact way: the supplier located in the high-
demand market randomizes assigning a larger probability to low bids and the supplier
located in the low-demand market randomizes assigning a larger probability to high bids
and no cumulative distribution function stochastically dominates the other (central panel,
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Figure 8: Increase t | θs = 5, θn = 55, ks = kn = k = 60, c = 0, T = 40
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figure 7). Hence, the expected bid of the supplier located in the high-demand market de-
creases and the expected bid of the supplier located in the low-demand market increases
(central panel, figure 8). Moreover, given that the mass of consumers is located in the
high-demand market, there is an increase in aggregate consumers’ welfare. In contrast,
the uniform price auction is less flexible and does not capture changes in incentives and
the supplier located in the high-demand market submits the maximum bid allowed by the
auctioneer and satisfies the residual demand. Hence, an increase in the transmission cost
is pro-competitive when the auction is discriminatory and does not modify the equilib-
rium prices when it is uniform.

If the transmission costs continue to increase, the supplier located in the low-demand
market faces a large increase in transmission costs and the supplier located in the high-
demand market has incentives to undercut it to extract the efficiency rents. Therefore,
the equilibrium pair is in pure strategies for both types of auctions where both suppliers
submit the same bid. Hence, when the transmission cost is sufficiently high, an increase
in the transmission cost is anti-competitive.

In the rest of this section, I analyze the effect of an increase in the realization of de-
mand on equilibrium market outcomes.

Corollary 3. The effects of an increase in the realization of the demand in the high-demand
market in the presence of transmission constraints and high transmission costs when the
realization of demands (θj, θi) belongs to areas A,A1, B1a and B1b can be summarized
as follow.

• When the auction is uniform and the generation capacity is not binding (areas
A, A1), an increase in the realization of the demand in the high-demand market
increases the equilibrium price and the profit of the supplier located in the high-
demand market and does not change the profit of the supplier located in the low-
demand market. When the generation capacity is binding (areas B1a, B1b), an
increase in the realization of the demand in the high-demand market does not change
the equilibrium price and increases the profit of the supplier dispatched last in the
auction.
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Figure 9: Increase θn | θs = 5, ks = kn = k = 60, c = 0, T = 40, t = 2.4
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• When the auction is discriminatory and the generation capacity is not binding (areas
A, A1), an increase in the realization of the demand in the high-demand market
increases the equilibrium price and the profit of the supplier located in the high-
demand market and does not change the profit of the supplier located in the low-
demand market. When the generation capacity is binding (areas B1a and B1b), an
increase in the realization of the demand in the high-demand market increases the
lower bound of the support (bj, bi), the expected bids (Ej(b), Ei(b)) and the expected
profits (πj, πi) of both suppliers. Figure 9 summarizes the effect of an increase in
the demand in market North (from area A to area B1b) when the demand in market
South remains fixed and equal to θs = 5.

When the auction is uniform and the generation capacity is not binding (areas A,
A1), an increase in the realization of the demand in the high-demand market induces an
increase in the transmission costs for the supplier located in the low-demand market. The
supplier located in the high-demand market extracts the efficiency rent rising its bid, but
still undercutting the supplier located in the low-demand market. Therefore, the equi-
librium price and the profit of the supplier located in the high-demand market increase;
in contrast, the residual demand of the supplier located in the low-demand is nil and so
are its profits. When the generation capacity is binding (areas B1a, B1b), both suppliers
face a positive residual demand and the equilibrium price is the maximum bid allowed
by the auctioneer. An increase in the realization of demand in the high-demand market
increases the residual demand of the supplier dispatched last and thus, its profit increases.

When the auction is discriminatory and the generation capacity is not binding (areas
A, A1) and the transmission cost is high, as I have proved in lemma three, the equi-
librium is the same for both types of auctions. Therefore, an increase in demand in
the high-demand market induces the same changes in the variables as when the auction
is uniform. When the generation capacity is binding (areas B1a, B1b), an increase in
the realization of demand in the high-demand market increases the residual demand for
both suppliers and does not modify the transmission costs (the transmission line is at its
maximum capacity); therefore, according to lemma two, the lower bound of the support
increases (left-hand panel, figure 9). Due to the increase in the lower bound of the sup-
port, both suppliers randomize submitting larger bids and the expected equilibrium bids
increase (central panel, figure 9). Finally, due to the increase in the residual demand and
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Figure 10: Increase θs | θn = 60, ks = kn = k = 60, c = 0, T = 40, t = 2.4
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the expected bids, the expected profits increase (right-hand panel, figure 9)

Corollary 4. The effects of an increase in the realization of the demand in the low-demand
market in the presence of transmission constraints and high transmission costs when the
realization of demands (θj, θi) belongs to areas B1a and B2a can be summarized as follow.

• When the auction is uniform, an increase in the realization of demand in the high-
demand market does not change the equilibrium price and increases the profit of
the supplier dispatched last in the auction.

• When the auction is discriminatory and the transmission capacity is binding (area
B1a), an increase in the realization of the demand in the low-demand market in-
creases the lower bound of the support of the supplier located in the low-demand
market (bj) and does not change the lower bound of the support of the supplier
located in the high-demand market (bi); the expected bids (Ej(b), Ei(b)) and the
expected profits (πj, πi) of both suppliers increase. When the generation capacity
is binding (area B2a), an increase in the realization of the demand in the low-
demand market increases the lower bound of the support (bj, bi), the expected bids
(Ej(b), Ei(b)) and the expected profits (πj, πi) of both suppliers. Figure 10 summa-
rizes the effect of an increase in the demand (from area B1a to area B2a) in market
South (θs) when the demand in market North remains fixed and equal to θn = 60.

When the auction is uniform, the same logic that I have presented in previous corol-
laries applies and an increase in the demand in the low-demand market induces the same
effects as previously presented.

When the auction is discriminatory and the transmission capacity is binding (area
B1a), an increase in the demand in the low-demand market increases the residual demand
of the supplier located in that market and thus, its lower bound of the support; in contrast,
the residual demand for the supplier located in the high-demand market is determined by
the realization of the demand in its own market; therefore, an increase in the realization of
the demand in the low-demand market does not change its residual demand and thus, the
lower bound of the support does not change (left-hand panel, figure 9). Due to the increase
in the lower bound of the support, the expected bids increase for both suppliers (central
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panel, figure 9). Finally, due to the increase in the expected bid, the expected profits
increase for both suppliers (right-hand panel, figure 9). When the transmission capacity
is not binding (area B1b), an increase in the demand in the low-demand market increases
the residual demand and so does the lower bound of the support and the expected bids
(left-hand and central panel, figure 9); the expected profit increases due to the increase
in residual demand and the expected bids (right-hand panel, figure 9).

5 Conclusion

Electricity markets are becoming more integrated around the world. In this paper I have
analyzed the performance of uniform and discriminatory price auctions in the presence of
transmission constraints and transmission costs.

When the transmission capacity is binding, the discriminatory price auction could
outperform the uniform price auction, minimizing the equilibrium price and the trans-
mission cost. Moreover, an increase in transmission costs could be pro-competitive when
the auction is discriminatory, but not when the auction is uniform.

Fabra et al. (2006) analyze the performance of uniform and discriminatory price auc-
tions when information is perfect and the suppliers are asymmetric in generation capacity
and generation cost. Holmberg and Wolak (2015) extend the analysis to the case of im-
perfect information. However, neither of these models takes into account the effect of
transmission constraints and transmission costs on equilibrium market allocations. The
presence of transmission constraints and costs introduces changes in suppliers’ strategies
that cannot be captured with the previous models. Hence, my analysis provides useful
insights for evaluating the performance of uniform and discriminatory price auctions in
economic contexts similar to the one presented in this paper; i.e., where the firms face
economic incentives that work in the opposite direction.

In the presence of transmission constraints and transmission costs, when the auction
is uniform, a multiplicity of equilibria exists. In such a case, the uniform price auction
presents the same structure as a Battle of Sexes with a continuous set of strategies. It
is well know in the literature (Motta et al., 2000) that a non-equilibrium perfection ap-
proach can be used to disentangle which equilibrium is more plausible in that game. Some
notable exceptions are the tracing procedure introduced by Harsanyi and Selten (1988),
the robustness to strategic uncertainty method proposed by Andersson et al. (2012) and
the quantal response method presented by McKelvey and Palfrey (1995). Given the im-
portance of the equilibrium played by the suppliers to determine the minimization of
transmission flows, more study is required to apply these approaches to analyze which
equilibrium is selected in a uniform price auction in the presence of transmission con-
straints and transmission costs.
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Annex 1. The effect of transmission capacity constraints

Proposition 1.

When the auction is uniform. Using lemma one, the proof is straight forward.

When the demand is low (area A, figure 3): bn = bs = c = 0. The equilibrium payoff is
zero for both firms. No electricity flows through the grid.

When the demand is intermediate (areas A1 and B1, figure 3):

The pure strategies equilibrium is defined by

bs ∈
[
0,
P (θn − T )
θs + θn

]
; bn = P

The equilibrium price is P .

The payoff function is defined by

πs = P (θs + T ); πn = P (θn − T )

The electricity flows from the low-demand market to the high-demand market.

When the demand is high (area B2, figure 3):

The pure strategies equilibrium is defined by

bi = P ; bj ∈
[
0,
Pmax {θi − T, θj + θi − k}

min {θi + T, k}

]
∀i, j = s, n

The equilibrium price is P .

The payoff function is defined by either

πi = Pmax {θi − T, θj + θi − k} ; πj = Pk ∀i, j = s, n

The electricity flows from market to the other depending of which type of equilibrium
emerge.

When the auction is discriminatory.

When demand is low (area A, figure 3): bn = bs = c = 0, the equilibrium profit is zero for
both firms. No electricity flows through the grid.

When demand is intermediate (areas A1 and B1, figure 3) or high (area B2, figure 3).
As I have proved in lemma one, a pure strategies equilibrium does not exist; however,
the model presented in section two satisfies the properties established by Dasgupta and
Maskin (1986) which guarantee that a mixed strategy equilibrium exists. In particular,
the discontinuities of πi,∀i, j are restricted to the strategies such that bi = bj. Further-
more, it is simple to confirm that by reducing its price from a position where bi = bj,
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a firm discontinuously increases its profit. Therefore, πi(bi, bj) is everywhere left lower
semi-continuous in bi and hence, weakly lower semi-continuous. Obviously, πi(bi, bj) is
bounded. Finally, πi(bi, bj) + πj(bi, bj) is continuous because discontinuous shifts in clien-
tele from one firm to another only occur where both firms derive the same profit per
customer. Therefore, theorem five in Dasgupta and Maskin (1986) applies and hence, a
mixed strategy equilibrium exists.

The existence of the equilibrium is guaranteed by Dasgupta and Maskin (1986). How-
ever, they did not provide an algorithm to work out the equilibrium. Nevertheless, using
the approach proposed by Karlin (1959), Shapley (1957), Shilony (1977), Varian (1980),
Deneckere and Kovenock (1986), Osborne and Pitchik (1986) and Fabra et al. (2006), the
equilibrium characterization is guaranteed by construction. I use the approach proposed
by this branch of the literature to work out the mixed strategy equilibrium. In particular:
first, I work out the general formulas of the lower bound of the support, the cumulative
distribution function, the probability distribution function, the expected equilibrium price
and the expected profit ; second, I work out the particular formulas associated with each
single area13 in figure 3.

Lower Bound of the Support. The lower bound of the support is defined according to
lemma two.

Cumulative Distribution Function.

In the first step, the payoff function for any firm is:

πi(b) = b [Fj(b)max {0, θi − T, θi + θj − k}+ (1− Fj(b))min {θi + θj, θi + T, k}] =
= −bFj(b) [min {θi + θj, θi + T, k} −max {0, θi − T, θi + θj − k}] + (2)

bmin {θi + θj, θi + T, k}

In the second step, πi(b) = πi∀b ∈ Si, i = n, s, where Si is the support of the mixed
strategies. Then,

πi = −bFj(b) [min {θi + θj, θi + T, k} −max {0, θi − T, θi + θj − k}] +
bmin {θi + θj, θi + T, k} ⇒

Fj(b) =
bmin {θi + θj, θi + T, k} − πi

b [min {θi + θj, θi + T, k} −max {0, θi − T, θi + θj − k}]
(3)

The third step, at b, Fi(b) = 0∀i = n, s. Then,

πi = bmin {θi + θj, θi + T, k} (4)

In the fourth step, plugging 4 into 3, I obtain the mixed strategies for both firms.
13The general formulas that I will introduce below fully characterize the equilibrium. However, the

equilibrium presents specific characteristics in each single area. In order to fully characterize the equilib-
rium, I have decided to write down the formulas for each single area.
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Fj(b) =
bmin {θi + θj, θi + T, k} − bmin {θi + θj, θi + T, k}

b [min {θi + θj, θi + T, k} −max {0, θi − T, θi + θj − k}]
=

=
min {θi + θj, θi + T, k}

min {θi + θj, θi + T, k} −max {0, θi − T, θi + θj − k}
b− b
b
∀i = n, s (5)

For further reference:
Li(b) = bmin {θi + θj, θi + T, k} and
Hi(b) = bmax {0, θi − T, θi + θj − k}.

It is easy to verify that equation Fj(b)∀i, j is indeed a cumulative distribution function.
First, in the third step, I have established that Fj(b) = 0. Second, Fj(b) is an increasing

function in b. At b, Li(b) = Hi(b), for any b > b, Li(b) < Hi(b); moreover,
∂Li(b)

∂b
> 0,

∂Li(b)

∂b
= 0 and

∂Hi(b)

∂b
> 0 , therefore,

∂ (Li(b)− Li(b))

∂b
>

∂ (Li(b)−Hi(b))

∂b
. Third,

Fj(b) ≤ 1∀b ∈ Si. Finally, Fj(b) is continuous in the support because Li(b) − Li(b) and
Li(b)−Hi(b) are continuous functions in the support.

Probability Distribution Function.

fj(b) =
∂Fj(b)

∂b

=
min {θi + θj, θi + T, k} b (min {θi + θj, θi + T, k} −max {0, θi − T, θi + θj − k})

b2 (min {θi + θj, θi + T, k} −max {0, θi − T, θi + θj − k})2

=
min {θi + θj, θi + T, k} b

b2 (min {θi + θj, θi + T, k} −max {0, θi − T, θi + θj − k})
∀i = n, s (6)

Expected Equilibrium Bid.

Ej(b) =

∫ P

b

bfj(b)∂b

=

∫ P

b

bmin {θi + θj, θi + T, k} b
b2 (min {θi + θj, θi + T, k} −max {0, θi − T, θi + θj − k})

∂b

+P (1− Fj(P ))

=
min {θi + θj, θi + T, k} b

min {θi + θj, θi + T, k} −max {0, θi − T, θi + θj − k}
[ln(b)]Pb

+P (1− Fj(P )) ∀i = n, s (7)

where (1− Fj(P )) in equation 7 is the probability assigned by firm j to the maximum
price allowed by the auctioneer.14

14When the transmission line is congested, the mixed strategy equilibrium is asymmetric. In such
an equilibrium, the cumulative distribution function for the firm located in the low-demand market is
continuous in the upper bound of the support. In contrast, the cumulative distribution function of
the firm located in the high-demand region is discontinuous, which means that the firm located in the
high-demand market submits the maximum bid allowed by the auctioneer with a positive probability
(1− Fj(P )). Hence, in order to work out the expected value, in addition to the integral, it is necessary
to add the term P (1− Fj(P )).
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Expected Profit. The expected profit is defined by equation 4 and is equal to πi =
bmin {θi + θj, θi + T, k}.

In the rest of the proof, I will work out the lower bound of the support, the cumulative
distribution function, the probability distribution function, the expected equilibrium price
and the expected profit for the different possible realization of demands (θs, θn).

Area A1.

First, I work out the lower bound of the support on the border between areas B1 and
B2, θs = k−T . On the border, bn solves bnmin {θn + θs, θn + T, k} = Pmax {0, θn − T, θs + θn − k},

therefore bn =
P (θn − T )

k
and bs solves bsmin {θn + θs, θs + T, k} = Pmax {0, θs − T, θs + θn − k},

therefore bs =
P (θn + θs − k)

θs + T
. Plugging the value of θs on the border between these areas

into bs formula, I obtain bs =
P (θn + k − T − k)

k − T + T
=
P (θn − T )

k
= bn. Therefore, on the

border between these areas, bs = bn =
P (θn − T )

k
.

In areasA1 andB1, bn > bs. In areaA1, taking partial derivatives
∂bn
∂θs

=
−P (θn − T )
(θn + θs)2

<

0 and
∂bs
∂θs

=
P (k + T − θn)

(θs + T )2
> 0. In area B1, taking partial derivatives

∂bn
∂θs

= 0

and
∂bs
∂θs

=
P (k + T − θn)

(θs + T )2
> 0. Therefore, in areas A1 and B1, bn > bs. Hence,

S = [max {bn, bs} , P ] = [bn, P ]. In particular, in area A1, S =

[
P (θn − T )
(θn + θs)

, P

]
and

in area B1, S =

[
P (θn − T )

k
, P

]
.

Second, I work out the cumulative distribution function.

Fs(b) =


0 if b < b
θn + θs
θs + T

b− b
b

if b ∈ (b, P )

1 if b = P

Fn(b) =


0 if b < b
θs + T

θs + T

b− b
b

if b ∈ (b, P )

1 if b = P

Moreover,

Fs(P ) =
θn + θs
θs + T

P − P (θn − T )
θn + θs
P

= 1

Fn(P ) =
θs + T

θs + T

P − P (θn − T )
θn + θs
P

=
(θs + T )

(θn + θs)
< 1

25



Third, the probability distribution function is equal to:

fs(b) =
∂Fs(b)

∂b
=
θn + θs
θs + T

b

b2

fn(b) =
∂Fn(b)

∂b
=
θs + T

θs + T

b

b2

Fourth, the expected bid is determined by:

Es(b) =

∫ P

b

bfs(bs)∂b =

∫ P

b

θn + θs
θs + T

b

b
∂b =

θn + θs
θs + T

b [ln(b)]Pb

En(b) =

∫ P

b

bfn(bn)∂b =

∫ P

b

b

b2
∂b =

θs + T

θs + T
b [ln(b)]Pb + (1− Fn(P ))P

Fifth, the expected profit is defined by equation 4 and is equal to πn = b(θs + θn) and
πs = b(θs + T ).

Area B1.

First, the lower bound of the support is S =

[
P (θn − T )

k
, P

]
.

Second, I work out the cumulative distribution function.

Fs(b) =


0 if b < b

k

T + k − θn
b− b
b

if b ∈ (b, P )

1 if b = P

Fn(b) =


0 if b < b
θs + T

T + k − θn
b− b
b

if b ∈ (b, P )

1 if b = P

Moreover,

Fs(P ) =
k

T + k − θn

P − P (θn − T )
k

P
= 1

Fn(P ) =
θs + T

T + k − θn

P − P (θn − T )
k

P
=
θs + T

k
< 1

Third, the probability distribution function is equal to:

fs(b) =
∂Fs(b)

∂b
=

k

T + k − θn
b

b2

fn(b) =
∂Fn(b)

∂b
=

θs + T

T + k − θn
b

b2
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Fourth, the expected bid is determined by:

Es(b) =

∫ P

b

bfs(bs)∂b =

∫ P

b

k

T + k − θn
b

b
∂b =

k

T + k − θn
b [ln(b)]Pb

En(b) =

∫ P

b

bfn(bn)∂b =

∫ P

b

θs + T

T + k − θn
b

b
∂b+ (1− Fn(P ))P

=
θs + T

T + k − θn
b [ln(b)]Pb + (1− Fn(P ))P

Fifth, the expected profit is defined by equation 4 and is equal to πn = bk and
πs = b(θs + T ).

Area B2.

First, the lower bound of the support is S = [max {bn, bs} , P ] =
[
P (θs + θn − k)

k
, P

]
.

Second, I work out the cumulative distribution function.

Fi(b) =


0 if b < b

k

2k − θi − θj
b− b
b

if b ∈ (b, P ) ∀i = s, n

1 if b = P

Third, the probability distribution function is equal to:

fi(b) =
∂Fi(b)

∂b
=

k

2k − θi − θj
b

b2
∀i = s, n

Fourth, the expected bid is determined by:

Ei(b) =

∫ P

b

bfi(bi)∂b =

∫ P

b

k

2k − θn − θs
b

b
∂b =

k

2k − θn − θs
b [ln(b)]Pb ∀i = s, n

Fifth, the expected profit is defined by equation 4 and is equal to πn = πs = bk.

Corollary 1. Area A1

∂b

∂θn
=

P (θs + T )

(θn + θs)2
> 0

∂Fn(P )

∂θn
=
− [(k + T − θn)− (θn + θs)]

[(θn + θs)(k + T − θn)]2

=
2θn + θs − k − T

[(θn + θs)(k + T − θn)]2
> 0⇐⇒ θn >

k + T − θs
2
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∂E(bn)

∂θn
=

θs + T

(k + T − θn)2
bln

(
P

b

)
+

θs + T

k + T − θn
∂b

∂θn
ln

(
P

b

)
+

θs + T

k + T − θn
b
b

P

∂b

∂θn
− ∂Fn(P )

∂θn
> 0

Where all the elements are positive and −∂Fn(P )

∂θn
> 0 when θn <

k + T − θs
2

.

∂E(bs)

∂θn
=

1

(T + θs)
bln

(
P

b

)
+

1

(T + θs)

∂b

∂θn
ln

(
P

b

)
+

1

(T + θs)
b
b

P

∂b

∂θn
> 0

∂πn

∂θn
= P > 0

∂πs

∂θn
=

P

k
(θs + T ) > 0

Area B1

∂b

∂θn
=

P

k
> 0

∂Fn(P )

∂θn
= 0

∂E(bn)

∂θn
=

θs + T

(k + T − θn)2
bln

(
P

b

)
+

θs + T

k + T − θn
∂b

∂θn
ln

(
P

b

)
+

θs + T

k + T − θn
b
b

P

∂b

∂θn
> 0

∂E(bs)

∂θn
=

k

(k + T − θn)2
bln

(
P

b

)
+

k

k + T − θn
∂b

∂θn
ln

(
P

b

)
+

k

k + T − θn
b
b

P

∂b

∂θn
> 0
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∂πn

∂θn
= P > 0

∂πs

∂θn
=

P

k
(θs + T ) > 0

Corollary 2. Area A1.

∂b

∂θs
=
−P (θn − T )
(θn + θs)2

< 0

∂Fn(P )

∂θs
=

2(θs + T ) [(θn + θs)(k + T − θn)]− (θs + T )2 [k + T − θn]
[(θn + θs)(k + T − θn)]2

=
(θs + T )(k + T − θn)(2θn + θs − T )

[(θn + θs)(k + T − θn)]2
> 0

∂E(bn)

∂θs
=

1

k + T − θn
bln

(
P

b

)
+

θs + T

k + T − θn
∂b

∂θs
ln

(
P

b

)
θs + T

k + T − θn
b
b

P

∂b

∂θs
− ∂Fn(P )

∂θs
< 0

Where,
θs + T

k + T − θn
∂b

∂θs
ln

(
P

b

)
,

θs + T

k + T − θn
b
b

P

∂b

∂θs
and

∂Fn(P )

∂θs
are negative and

1

k + T − θn
bln

(
P

b

)
is positive.

∂E(bs)

∂θs
=

T − θn
(T + θs)2

bln

(
P

b

)
+

θs + θn
T + θs

∂b

∂θs
ln

(
P

b

)
θs + θn
T + θs

b
b

P

∂b

∂θs
< 0

∂πn

∂θs
= 0

∂πs

∂θs
=
−P (θn − T )
(θn + θs)2

(θs + T ) +
−P (θn − T )
(θn + θs)

> 0

Area B1.
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∂b

∂θs
= 0

∂Fn(P )

∂θs
=

1

k
> 0

∂E(bn)

∂θs
=

1

k + T − θn
P (θn − T )

k
ln

(
P

b

)
− P

k
> 0⇔

(θn − T )
k + T − θn

ln

(
P

b

)
> 1

∂E(bs)

∂θs
= 0

∂πn

∂θs
= 0

∂πs

∂θs
= b > 0

Annex 2. The effect of transmission capacity constraints and trans-
mission costs

Proposition 2.

When the auction is uniform. Using lemma three, the proof is straight forward.

When the demand is low (area A, figure 6).

The pure strategies equilibrium is defined by

bs = bn =
tθn

θs + θn

The equilibrium price is
tθn

θs + θn
.

The equilibrium profit is:

πn = (θs + θn)
tθn

θs + θn
− tθs = t(θn − θs); πs = (θs + θn)

tθn
θs + θn

− tθn = 0

The electricity flows from the low-demand market into the high-demand market.
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When the demand is intermediate (area A1, figure 6). There exist two possible types
of equilibria. When the transmission cost is low, multiplicity of equilibria exist where
the supplier located in the high-demand market satisfy the residual demand. When the
transmission cost is high, the equilibrium is unique and the supplier located in the high-
demand market satisfy the demand in both markets.

When the transmission cost is low, the pure strategies equilibrium is defined by

bs = bn =
tT

θs + T

The equilibrium price is
tT

θs + T

The equilibrium profit is:

πn = (θs + θn)
tT

θs + T
− tθs > 0; πs = (θs + T )

tT

θs + T
− tT = 0

The electricity flows from the high-demand market to the low-demand market.

When the transmission cost is high, multiplicity of pure strategies equilibria exist where
the strategies are defined by

bn = P ; bs ∈
[
0,
P (θn − T ) + tθs

θs + θn

]
The equilibrium price is P

The equilibrium profit is:

πn = P (θn − T ); πs = P (θs + T )− tT
The electricity flows from the low-demand market to the high-demand market.

When the demand is intermediate (area B1a, figure 6) multiplicity of pure strategies equi-
libria exist.

The pure strategies equilibrium in the first type of equilibrium is defined by

bn = P ; bs ∈
[
0,
P (θn − T ) + t(k − θn)

k

]
The equilibrium price is P

The equilibrium profit is:

πn = P (θn − T ); πs = P (θs + T )− tT
The electricity flows from the low-demand market to the high-demand market.

The pure strategies equilibrium in the second type of equilibrium is defined by

bn ∈
[
0,
P (θs + θn − k) + tT

θs + T

]
; bs = P
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The equilibrium price is P

The equilibrium profit is:

πn = Pk − t(k − θn); πs = P (θs + θn − k)
The electricity flows from the high-demand market to the low-demand market.

When the demand is intermediate (area B1b, figure 6) multiplicity of pure strategies equi-
libria exist.

The pure strategies equilibrium in the first type of equilibrium is defined by

bn = P ; bs ∈
[
0,
P (θn − T )

k

]
The equilibrium price is P

The equilibrium profit is:

πn = P (θn − T ); πs = P (θs + T )− tT
The electricity flows from the low-demand market to the high-demand market.

The pure strategies equilibrium in the second type of equilibrium is defined by

bn ∈
[
0,
P (θs + θn − k) + tT

θs + T

]
; bs = P

The equilibrium price is P

The equilibrium profit is:

πn = Pk; πs = P (θs + θn − k)
The electricity flows from the high-demand market to the low-demand market.

When the demand is intermediate (area B2a, figure 6) multiplicity of pure strategies equi-
libria exist.

The pure strategies equilibrium is defined by

bi = P ; bj ∈
[
0,
P (θj + θi − k) + t(k − θi)

k

]
The equilibrium price is P

The equilibrium profit is:

πi = P (θj + θi − k); πj = Pk − t(k − θj)
When the demand is intermediate (area B2b, figure 6) multiplicity of pure strategies equi-
libria exist.
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The pure strategies equilibrium in the first type of equilibrium is defined by

bi = P ; bj ∈
[
0,
P (θj + θi − k)

k

]
The equilibrium price is P

The equilibrium profit is:

πi = P (θj + θi − k); πj = Pk − t(k − θj)

The pure strategies equilibrium in the second type of equilibrium is defined by

bi ∈
[
0,
P (θj + θi − k) + t(k − θj)

k

]
; bj = P

The equilibrium price is P

The equilibrium profit is:

πi = Pk; πj = P (θj + θi − k)

When the auction is discriminatory.

Proposition 2. Characterization of the equilibrium in the presence of transmission con-
straints and transmission costs.

For further reference:

Hi(θ, P, T, t) = max {0, θi − T, θj + θi − k}
Hti(θ, P, T, t) = max {0, θj − k}
Li(θ, P, T, t) = min {θi + θj, θi + T, k}
Lti(θ, P, T, t) = max {0,min {θi, T, k − θi}}

I proceed as in proposition one: first, I work out the general formulas of the lower bound
of the support, the cumulative distribution function, the probability distribution function,
the expected equilibrium price and the expected profit ; second, I work out the particular
formulas associated with each single area in figure 6.

Lower Bound of the Support. The lower bound of the support is defined according to
lemma four.

Cumulative Distribution Function.

In the first step, the payoff function for any firm is:

πi(b) = Fj(b) [b (Hi(θ, P, T, t))− t (Hti(θ, P, T, t))] +
(1− Fj(b)) [b (Li(θ, P, T, t))− t (Lti(θ, P, T, t))] =

= −Fj(b) [b (Li(θ, P, T, t))− t (Lti(θ, P, T, t))− b (Hi(θ, P, T, t)) + t (Hti(θ, P, T, t))]

b (Li(θ, P, T, t))− t (Lti(θ, P, T, t)) (8)
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In the second step, πi(b) = πi∀b ∈ Si, i = n, s, where Si is the support of the mixed
strategy. Then,

= −Fj(b) [b (Li(θ, P, T, t))− t (Lti(θ, P, T, t))− b (Hi(θ, P, T, t)) + t (Hti(θ, P, T, t))]

b (Li(θ, P, T, t))− t (Lti(θ, P, T, t))⇒

Fj(b) =
b (Li(θ, P, T, t))− t (Lti(θ, P, T, t))− πi

b [Li(θ, P, T, t)−Hi(θ, P, T, t)]− t [Lti(θ, P, T, t)−Hti(θ, P, T, t)]
(9)

In the third step, at b, Fi(b) = 0∀i = n, s. Then,

πi = b (Li(θ, P, T, t))− t (Lti(θ, P, T, t)) (10)

Fourth step, plugging 10 into 9, I obtain the mixed strategies for both firms.

Fj(b) =
(b− b)Li(θ, P, T, t)

b [Li(θ, P, T, t)−Hi(θ, P, T, t)]− t [Lti(θ, P, T, t)−Hti(θ, P, T, t)]
=

∀i = n, s (11)

Probability Distribution Function.

fj(b) =
∂Fj(b)

∂b

=
Li(·) [b [Li(θ, P, T, t)−Hi(θ, P, T, t)]− t [Lti(θ, P, T, t)−Hti(θ, P, T, t)]]
[b [Li(θ, P, T, t)−Hi(θ, P, T, t)]− t [Lti(θ, P, T, t)−Hti(θ, P, T, t)]]2

∀i = n, s (12)

For further reference:

n(·) = Li(·) [b [Li(θ, P, T, t)−Hi(θ, P, T, t)]− t [Lti(θ, P, T, t)−Hti(θ, P, T, t)]]
d1(·) = [Li(θ, P, T, t)−Hi(θ, P, T, t)]

d2(·) = [Lti(θ, P, T, t)−Hti(θ, P, T, t)]

Expected Equilibrium Bid.

Ej(b) =

∫ P

b

bfj(b)∂b

=

∫ P

b

b (n(·))
[b (d1(·))− t (d2(·))]2

∂b+ P (1− Fj(P )) ∀i = n, s

I solve this equation by substitution of variables. In particular:

U = [b (d1(·))− t (d2(·))]⇒ b =
U + t (d2(·))

d1(·)
∂U

∂b
= d1 ⇒ ∂b =

∂U

∂d1
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Therefore:

Ej(b) =

∫ P

b

(
U + t (d2(·))

d1(·)

)
n(·)

U2

∂U

d1(·)
+ P (1− Fj(P ))

=
n(·)
d1(·)

[∫ P

b

U∂U

U2
+

∫ P

b

t (d2(·)) ∂U
U2

]
+ P (1− Fj(P ))

=
n(·)
d1(·)2

[
ln(U)− t (d2(·))

U

]P
b

+ P (1− Fj(P ))

Substituting again:

Ej(b) =
n(·)
d1(·)2[
ln

(
P (d1(·))− t (d2(·))
b (d1(·))− t (d2(·))

)
− t (d2(·))
P (d1(·))− t (d2(·))

+
t (d2(·))

b (d1(·))− t (d2(·))

]
+P (1− Fj(P )) (13)

In the rest of the proof, I will work out the lower bound of the support, the cumulative
distribution function, the probability distribution function, the expected equilibrium price
and the expected profit for the different possible realizations of demands (θs, θn) (figure
6).

Area A1.

First, the lower bound of the support is:

bnθn + bnθs − tθs = P (θn − T )⇒ bn =
P (θn − T ) + tθs

θn + θs

bsθs + bsT − tT = 0⇒ bs =
tT

θs + T

Second, I work out the cumulative distribution function.

Fs(b) =


0 if b < b

(b− b)(θn + θs)

b [(θs + θn)− (θn − T )]− tmin {θs, k − θn}
if b ∈ (b, P )

1 if b = P

Fn(b) =


0 if b < b
(b− b)(θs + T )

b(θs + T )− tT
if b ∈ (b, P )

1 if b = P

Moreover,
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If bn ≥ bs ⇒ Fs(P ) = 1

Fn(P ) =
(P (θs + T )− tθs)(θs + T )

(P (θs + T )− tT )(θs + θn)

If bn < bs ⇒ Fs(P ) =
(P (θs + T )− tT )(θs + θn)

(P (θs + T )− tθs)(θs + T )

Fn(P ) = 1

Third, the probability distribution function is equal to:

fs(b) =
∂Fs(b)

∂b
=

(θn + θs)(b(θs + T )− tθs)
(b(θs + T )− tθs)2

fn(b) =
∂Fn(b)

∂b
=

(θs + T )(b(θs + T )− tT )
(b(θs + T )− tT )2

Fourth, the expected bid is determined by:

Es(b) =

∫ P

b

bfs(bs)∂b =

∫ P

b

b
(θn + θs)(b(θs + T )− tθs)

(b(θs + T )− tθs)2
+ (1− Fs(P ))P

=
(θn + θs)(b(θs + T )− tθs)

(θs + T )2[
ln

(
P (θs + T )− tθs
b(θs + T )− tθs

)
− tθs
P (θs + T )− tθs

+
tθs

b(θs + T )− tθs

]
+(1− Fs(P ))P

En(b) =

∫ P

b

bfn(bs)∂b =

∫ P

b

b
(θs + T )(b(θs + T )− tT )

(b(θs + T )− tT )2
+ (1− Fn(P ))P

=
(b(θs + T )− tT )

(θs + T )[
ln

(
P (θs + T )− tT
b(θs + T )− tT

)
− tT

P (θs + T )− tT
+

tT

b(θs + T )− tT

]
+(1− Fn(P ))P (14)

In equation 14, I have solved by substituting variables:

U = b(θs + T )− tθs ⇒ b =
U + tθs
θs + T

∂U

∂b
= θs + T ⇒ ∂b =

∂U

θs + T
and

U = b(θs + T )− tT ⇒ b =
U + tT

θs + T
∂U

∂b
= θs + T ⇒ ∂b =

∂U

θs + T

36



Fifth, the expected profit is defined by equation 10 and is equal to πn = b(θs+θn)−tθs
and πs = b(θs + T )− tT .

Area B1a.

First, the lower bound of the support is:

bnθn + bn(k − θn)− t(k − θn) = P (θn − T )⇒ bn =
P (θn − T ) + t(k − θn)

k

bsθs + bsT − tT = P (θs + θn − k)⇒ bs =
P (θs + θn − k) + tT

θs + T

Second, I work out the cumulative distribution function.

Fs(b) =


0 if b < b

(b− b)k
b(k + T − θn)− t(k − θn)

if b ∈ (b, P )

1 if b = P

Fn(b) =


0 if b < b
(b− b)(θs + T )

b(k + T − θn)− tT
if b ∈ (b, P )

1 if b = P

Moreover,

If bn ≥ bs ⇒ Fs(P ) = 1

Fn(P ) =
(P (k + T − θn)− t(k − θn))(θs + T )

(P (k + T − θn)− tT )k

If bn < bs ⇒ Fs(P ) =
(P (k + T − θn)− tT )k

(P (k + T − θn)− t(k − θn))(θs + T )

Fn(P ) = 1

Third, the probability distribution function is equal to:

fs(b) =
∂Fs(b)

∂b
=
k(b(k + T − θn)− t(k − θn))
(b(k + T − θn)− t(k − θn))2

fn(b) =
∂Fn(b)

∂b
=

(θs + T )(b(θs + T )− tT )
(b(θs + T )− tT )2

Fourth, the expected bid is determined by:
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Es(b) =

∫ P

b

bfs(bs)∂b =

∫ P

b

b
k(b(k + T − θn)− t(k − θn))
(b(k + T − θn)− t(k − θn))2

+ (1− Fs(P ))P

=
k(b(k + T − θn)− t(k − θn))

(k + T − θn)2[
ln

(
P (k + T − θn)− t(k − θn)
b(k + T − θn)− t(k − θn)

)]
[
− t(k − θn)
P (k + T − θn)− t(k − θn)

+
t(k − θn)

b(k + T − θn)− t(k − θn)

]
+(1− Fs(P ))P

En(b) =

∫ P

b

bfn(bs)∂b =

∫ P

b

b
(θs + T )(b(k + T − θn)− tT )

(b(k + T − θn)− tT )2
+ (1− Fn(P ))P

=
(θs + T )(b(k + T − θn)− tT )

(k + T − θn)2[
ln

(
P (k + T − θn)− tT
b(k + T − θn)− tT

)
− tT

P (k + T − θn)− tT
+

tT

b(k + T − θn)− tT

]
+(1− Fn(P ))P (15)

In equations 15, I have solved by substituting variables:

U = b(k + T − θn)− t(k − θn)⇒ b =
U + t(k − θn)
k + T − θn

∂U

∂b
= k + T − θn ⇒ ∂b =

∂U

k + T − θn
and

U = b(k + T − θn)− tT ⇒ b =
U + tT

k + T − θn
∂U

∂b
= k + T − θn ⇒ ∂b =

∂U

k + T − θn

Fifth, the expected profit is defined by equation 10 and is equal to πn = bk− t(k− θn)
and πs = b(θs + T )− tT .

Area B1b.

First, the lower bound of the support is:

bnk = P (θn − T )⇒ bn =
P (θn − T )

k

bsθs + bsT − tT = P (θs + θn − k)− t(θn − k)⇒ bs =
P (θs + θn − k) + t(k + T − θn)

θs + T

Second, I work out the cumulative distribution function.
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Fs(b) =


0 if b < b

(b− b)k
b(k + T − θn)

if b ∈ (b, P )

1 if b = P

Fn(b) =


0 if b < b

(b− b)(θs + T )

b(k + T − θn)− t(T + k − θn)
if b ∈ (b, P )

1 if b = P

Moreover,

If bn ≥ bs ⇒ Fs(P ) = 1

Fn(P ) =
P (k + T − θn)(θs + T )

(P − t)(k + T − θn)k

If bn < bs ⇒ Fs(P ) =
(P − t)(k + T − θn)k
P (k + T − θn)(θs + T )

Fn(P ) = 1

Third, the probability distribution function is equal to:

fs(b) =
∂Fs(b)

∂b
=

bk

b2(k + T − θn)

fn(b) =
∂Fn(b)

∂b
=

(b− t)(θs + T )

(b− t)2(k + T − θn)

Fourth, the expected bid is determined by:

Es(b) =

∫ P

b

bfs(bs)∂b =

∫ P

b

b
bk

b2(k + T − θn)
+ (1− Fs(P ))P

=
bk

(k + T − θn)

[
ln

(
P

b

)]
+ (1− Fs(P ))P

En(b) =

∫ P

b

bfn(bs)∂b =

∫ P

b

b
(b− t)(θs + T )

(b− t)2(k + T − θn)
+ (1− Fn(P ))P

=
(b− t)(θs + T )

(k + T − θn)

[
ln

(
P − t
b− t

)
− t

P − t
+

t

b− t

]
+ (1− Fn(P ))P (16)

In equations 16, I have solved by substituting variables:

U = b− t⇒ b = U + t
∂U

∂b
= 1⇒ ∂b = ∂U
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Fifth, the expected profit is defined by equation 10 and is equal to πn = bk and
πs = b(θs + T )− tT .

Area B2a.

First, the lower bound of the support is:

bnθn + bn(k − θn)− t(k − θn) = P (θs + θn − k)⇒ bn =
P (θs + θn − k) + t(k − θn)

k

bsθs + bs(k − θs)− t(k − θs) = P (θs + θn − k)⇒ bs =
P (θs + θn − k) + t(k − θs)

k

Second, I work out the cumulative distribution function.

Fs(b) =


0 if b < b

(b− b)k
b(2k − θn − θs)− t(k − θn)

if b ∈ (b, P )

1 if b = P

Fn(b) =


0 if b < b

(b− b)k
b(2k − θn − θs)− t(k − θs)

if b ∈ (b, P )

1 if b = P

Moreover,

Fs(P ) =
P (2k − θn − θs)− t(k − θs)
P (2k − θn − θs)− t(k − θn)

Fn(P ) = 1

Third, the probability distribution is equal to:

fs(b) =
∂Fs(b)

∂b
=
k(b(2k − θn − θs)− t(k − θn))
(b(2k − θn − θs)− t(k − θn))2

fn(b) =
∂Fn(b)

∂b
=
k(b(2k − θn − θs)− t(k − θs))
(b(2k − θn − θs)− t(k − θs))2

Fourth, the expected bid is determined by:
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Es(b) =

∫ P

b

bfs(bs)∂b =

∫ P

b

b
k(b(2k − θn − θs)− t(k − θn))
(b(2k − θn − θs)− t(k − θn))2

+ (1− Fs(P ))P

=
k(b(2k − θn − θs)− t(k − θn))
(b(2k − θn − θs)− t(k − θn))2[
ln

(
P (2k − θn − θs)− t(k − θn)
b(2k − θn − θs)− t(k − θn)

)]
[
− t(k − θn)
P (k + T − θn)− t(k − θn)

+
t(k − θn)

b(2k − θn − θs)− t(k − θn)

]
+(1− Fs(P ))P

En(b) =

∫ P

b

bfn(bs)∂b =

∫ P

b

b
k(b(2k − θn − θs)− t(k − θs))
(b(2k − θn − θs)− t(k − θs))2

+ (1− Fn(P ))P

=
k(b(2k − θn − θs)− t(k − θs))
(b(2k − θn − θs)− t(k − θs))2[
ln

(
P (2k − θn − θs)− t(k − θs)
b(2k − θn − θs)− t(k − θs)

)]
[
− t(k − θs)
P (k + T − θn)− t(k − θs)

+
t(k − θs)

b(2k − θn − θs)− t(k − θs)

]
+(1− Fn(P ))P

(17)

where in equation 17, I have solved by substituting variables:

U = b(2k − θn − θs)− t(k − θn)⇒ b =
U + t(k − θn)
2k − θn − θs

∂U

∂b
= 2k − θn − θs ⇒ ∂b =

∂U

2k − θn − θs
and

U = b(2k − θn − θs)− t(k − θs)⇒ b =
U + t(k − θs)
2k − θn − θs

∂U

∂b
= 2k − θn − θs ⇒ ∂b =

∂U

2k − θn − θs
Fifth, the expected profit is defined by equation 10 and is equal to πn = bk− t(k− θn)

and πs = bk − t(k − θs).

Area B2b.

First, the lower bound of the support is:

bnk = P (θs + θn − k)⇒ bn =
P (θs + θn − k)

k
bsθs + bs(k − θs)− t(k − θs) =

P (θs + θn − k)− t(θn − k)⇒ bs =
P (θs + θn − k) + t(2k − θn − θs)

k

Second, I work out the cumulative distribution function.
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Fs(b) =


0 if b < b

(b− b)k
b(2k − θn − θs)

if b ∈ (b, P )

1 if b = P

Fn(b) =


0 if b < b

(b− b)k
(b− t)(2k − θn − θs)

if b ∈ (b, P )

1 if b = P

Moreover,

Fs(P ) =
P (2k − θn − θs)− t(2k − θn − θs)

P (2k − θn − θs)
Fn(P ) = 1

Third, the probability distribution function is equal to:

fs(b) =
∂Fs(b)

∂b
=

bk

b2(2k − θn − θs)

fn(b) =
∂Fn(b)

∂b
=

(b− t)k
(b− t)2(2k − θn − θs)

Fourth, the expected bid is determined by:

Es(b) =

∫ P

b

bfs(bs)∂b =

∫ P

b

b
bk

b2(2k − θn − θs)
+ (1− Fs(P ))P

=
bk

(2k − θn − θs)

[
ln

(
P

b

)]
+ (1− Fs(P ))P

En(b) =

∫ P

b

bfn(bs)∂b =

∫ P

b

b
(b− t)k

(b− t)2(2k − θn − θs)
+ (1− Fn(P ))P

=
(b− t)k

(2k − θn − θs)

[
ln

(
P − t
b− t

)
− t

P − t
+

t

b− t

]
+ (1− Fn(P ))P (18)

where in equations 18, I have solved by substituting variables:

U = b− t⇒ b = U + t
∂U

∂b
= 1⇒ ∂b = ∂U

Fifth, the expected profit is defined by equation 10 and is equal to πn = bk and
πs = bk − t(k − θs).

Proposition 3.
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Table 1: Increase in transmission costs 4t. Main variables. (θs = 5, θn = 55, k = 60,
T = 40, c = 0, P = 7)

t b πn πs En(b) Ana. En(b) Sim. Es(b) Ana. Es(b) Sim.

0 1.751 105.06 78.79 4.1768 4.1769 3.2359 3.2362
0.5 1.793 105.08 60.68 3.9247 3.9249 3.2660 3.2668
1 1.834 105.05 42.53 3.5971 3.5974 3.2955 3.2955
1.5 1.876 105.07 24.42 3.1477 3.1481 3.3255 3.3261
2 1.918 105.1 6.31 2.4232 2.4236 3.3555 3.3567
2.5 2.224 120.96 0 2.2332 2.2341 3.8482 3.8486

Here En(b) Ana. and Es(b) Ana. are the expected values obtained using the analytical expressions presented in

Proposition two and En(b) Sim. and Es(b) Sim. are the expected values obtained using the simulation explained

in detail in Annex 3.

In the presence of transmission constraints and transmission costs, the size and the
cost effects works in the opposite direction and as I have explained in the paper, this has
important implications determining equilibrium market allocations. Due to the size and
the cost effects, an increase in transmission costs induces non-monotonic changes in the
main variables of the model and none clear conclusions can be obtained with a direct
comparative static approach; i.e., using partial derivatives of the main variables of the
model.

A direct approach to work out relevant changes on the main variables of the model
is not afforded. However, proposition two provides a close form solution of the main
variables of the model. Therefore, those formulas can be used to analyze the effect that
a change in transmission costs have on the main variables of the model. Moreover, in
Annex 3, I have developed a numerical method to work out the main variables of the
model using the primitive cumulative distribution function. It can be checked in table 1
that both approaches generate the same results. Hence, an accurate numerical approach
can be used to do the comparative static analysis.

Corollaries 3 and 4. The same problem that the one presented in proposition three
appears and I have done the comparative static using the close form solutions presented
in proposition two and the numerical method explained in annex three.

Annex 3. Expected equilibrium price: Simulation

Propositions one and two fully characterize the equilibrium. However, due to the com-
plexity of calculations and to ensure that I did not make any algebra mistake, I work
out the expected bid for both firms using the algorithm presented in this annex. The
algorithm is based on the cumulative distribution function that is the mixed strategies
equilibrium from which the rest of the variables of the model are derived.

As can be observed in table 1, the differences between the expected bid using the
analytical formulas from propositions one and two and using the algorithm proposed here

43



are almost null.15

Figure 11: Expected bid. Simulation.
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Algorithm: (figure 11)

1. I split the support of the mixed strategies equilibrium into K grid values (where K
is a large number e.g., 5000 or 10000). I call each of these values bi(k) ∀i = s, n.

2. For each bi(k), I work out Fi(bi(k)) using the formulas obtained in propositions one
and two.

3. The probability assigned to pi(bi(k)) equals the difference in the cumulative distri-
bution function between two consecutive values Fi(bi(k+1))−Fi(bi(k)). Therefore,
p(bi(k)) = Fi(bi(k + 1))− Fi(bi(k)). It is important to remark that one observation
is lost during the process to work out the probabilities.

4. The expected value is the sum of each single bid multiplied by its probability:
Ei(b) =

∑K−1
k=0 bi(k)pi(bi(k)) ∀i = s, n

Annex 4. Equilibrium in the presence of asymmetries in generation
capacity and generation costs

In the paper, I have shown that in the presence of transmission constraints and transmis-
sion costs, the discriminatory price auction performs better than the uniform price auction
even when the suppliers are symmetric in generation capacity and generation costs. In
this annex, I extend the results presented in Fabra et al. (2006) to analyze the effect
that different types of asymmetries in generation capacity and generation costs have on
equilibrium outcome allocations. I show that the performance of both type of auctions
depends crucially on these parameters assumptions.

15I have applied this algorithm to work out the expected value for any realization of demand (all areas)
and I have compared this with the analytical values and the results are almost identical.
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Figure 12: Output function for supplier n. (kn = ks = 60, T = 60)
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The model

Set up of the model. There exist two electricity markets, market North and market
South, that are connected by a transmission line with capacity T .

There exist two duopolists with capacities kn and ks, where subscript n means that
the supplier is located in market North and subscript s means that the supplier is located
in market South. The suppliers’ marginal costs of production are cn and cs. The level
of demand in any period, θn in market North and θs in market South, is a random vari-
able uniformly distributed that is independent across markets and independent of market
price, i.e., perfectly inelastic. In particular, θi ∈ [θi, θi] ⊆ [0, ki+kj]∀i = n, s is distributed
according to some known distribution function G(θi), i = n, s, i 6= j.

The capacity of the transmission line is larger than the installed capacity in each mar-
ket T ≥ max {ks, kn}; i.e. the transmission line is never congested.

Timing of the game. Having observed the realization of demands θ ≡ (θs, θn), each
supplier simultaneously and independently submits a bid specifying the minimum price
at which it is willing to supply up to its capacity, bi ≤ P , i = n, s, where P denotes the
"market reserve price", possibly determined by regulation. Let b ≡ (bs, bn) denote a bid
profile. On basis of this profile, the auctioneer calls suppliers into operation. If suppliers
submit different bids, the capacity of the lower-bidding supplier is dispatched first. If the
two suppliers submit equal bids, then most efficient supplier (supplier i) is ranked first

with probability ρi = 1 if both suppliers are equally efficient ρi =
1

2
. The tie breaking

rule implemented minimize production costs.

The output allocated to supplier i, i = n, s, denoted by qi(θ, b), is given by (figure 13
summarizes supplier’s n output function)

qi(b; θ, T ) =


min {θi + θj, ki} if bi < bj

ρimin {θi + θj, ki}+ [1− ρi]max {0, θi + θj − kj} if bi = bj

max {0, θi + θj − kj} if bi > bj

Finally, the payments are worked out by the auctioneer. When the auctioneer runs
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Figure 13: Profit function for supplier n. (kn = ks = 60, T = 60)
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a discriminatory price auction, the price received by a supplier for any positive quantity
dispatched by the auctioneer is equal to its own bid. Hence, for a given realization of
θ ≡ (θj, θi) and a bid profile b ≡ (bj, bi), supplier i’s profits can be expressed as

πd
i (b; θ, T ) =

{
(bi − ci)qi(b; θ, T )

In the case that the auctioneer runs an uniform price auction, the price received by a
supplier for any positive quantity dispatched by the auctioneer is equal to the higher bid
accepted in the auction. Hence, for a given realization of θ ≡ (θj, θi) and a bid profile
b ≡ (bj, bi), supplier i’s profits can be expressed as (figure 12 summarizes supplier’s n
profits for both types of auctions)

πu
i (b; θ, T ) =

{
(bj − ci)min {θi + θj, ki} if bi ≤ bj and θi + θj > ki

(bi − ci)qi(b; θ, T ) otherwise

Equilibrium analysis

In this section I characterize the equilibrium in the presence of asymmetries in generation
capacity and production costs.

Lemma 5. When the realization of demands (θj, θi) is low (area A), the equilibrium is
in pure strategies for both types of auctions. When the realization of demands (θj, θi)
and the production costs are high a pure strategies equilibrium exists for both type of
auctions. In the rest of the cases, multiplicity of pure strategy equilibria exist when the
auction is uniform, but not when it is discriminatory (figure 14). Moreover, due to the
asymmetry in production costs, the pure strategy equilibria are asymmetric.

Proof. When the realization of demands (θj, θi) is low (area A), both suppliers have
enough capacity to satisfy total demand and the equilibrium is the typical Bertrand equi-
librium with asymmetries in costs where the efficient supplier submits a bid equal to the
marginal cost of the inefficient one to extract the efficiency rent.
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When the realization of demands (θj, θi) is intermediate (area A1) at least one of
the suppliers faces a positive residual demand. When the generation costs are high, the
efficient supplier prefers to submit a low bid to extract the efficiency rents. In such a
case, multiplicity of pure strategies equilibria exist for both type of auctions where the
inefficient supplier submits the maximum bid allowed by the auctioneer and the efficient
supplier submits a bid that made undercut unprofitable. When the generation costs are
low, the efficiency rents are very low and the efficient supplier prefers ot satisfy the residual
demand, in such a case it submits the maximum bid allowed by the auctioneer. Therefore,
as in lemma three, multiplicity of equilibria exist when the auction is uniform, but not
when it is discriminatory.

When the realization of demands (θj, θi) is high (area B) both suppliers have incen-
tives to submit a high bid and satisfy the residual demand. In such a case, multiplicity
of equilibria exist when the auction is uniform, but not when it is discriminatory

When the realization of demands (θj, θi) is intermediate or high and the auction is
discriminatory, a pure strategy equilibrium does not exist. However, the model satisfies
the properties established by Dasgupta and Maskin (1986) which guarantee that a mixed
strategy equilibrium exists.

Lemma 6. In the presence of transmission constraints and positive transmission costs. In
a mixed strategy equilibrium, no supplier submits a bid lower than bid (bi) such that

(bi − ci)min {θi + θj, k} = (P − ci)max {0, θi + θj − k} .

Moreover, the support for the mixed strategy equilibrium for both suppliers is S =[
max

{
bi, bj

}
, P
]
.

Proof. The proof proceeds as in lemma two.

Using lemmas five and six, I characterize the equilibrium.

Proposition 4. When the suppliers are asymmetric in generation capacity and generation
costs, the characterization of the equilibrium falls into one of the next three categories.

i Low demand (area A). The equilibrium strategy pair is in pure strategies for both
types of auctions.

ii Intermediate demand (area A1). When the production costs are high, the equilib-
rium strategy pair is in pure strategies for both types of auctions. By the contrary,
when the production costs are low, the equilibrium strategy pair is in pure strategies
when the auction is uniform and in mixed strategies when it is discriminatory.

iii High demand (area B). The equilibrium strategy pair is in pure strategies when the
auction is uniform and in mixed strategies when it is discriminatory.

Proof. The proof proceeds as in proposition two.

As in the presence of transmission constraints and transmission costs. The main dif-
ferences between both type of auctions are when the realization of demand is intermediate
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Figure 14: Equilibrium areas. Asymmetries in generation capacity and production costs.
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(area A1). In that case, when the production costs are high, it is profitable for the efficient
supplier to undercut the inefficient one to extract the efficiency rent and the equilibrium
pair strategies is in pure strategies for both type of auctions. By the contrary, when the
production costs are low, the efficient supplier prefers to submit a high bid and satisfy the
residual demand. In such a case, multiplicity of pure strategies equilibria exist where the
efficient supplier submits the maximum bid allowed by the auctioneer and the inefficient
one submits a bid that make undercut unprofitable. When the auction is discriminatory,
the equilibrium is in mixed strategies. Hence, when the production costs are low, the
discriminatory price auction performs better in terms of equilibrium price and electricity
production cost minimization.

Figure 14 presents a summary of the results presented in proposition four when the
realization of demand belongs to area A1 for different parameter specifications. The left
panel of the figure shows the characterization of the equilibrium when the smaller sup-
plier is also the most efficient. In that case, when the auction is uniform, multiplicity
of equilibria exists where the inefficient supplier submits the maximum price allowed by
the auctioneer; by the contrary, when the auction is discriminatory the equilibrium is in
mixed strategies and the inefficient supplier can be dispatched first with positive prob-
ability. Therefore, the uniform price auction performs better in terms of efficiency, but
worse in terms of prices. The central panel shows the equilibrium areas when the larger
supplier is the most efficient one and the production costs are high. In that case the effi-
cient supplier undercut the inefficient one and the equilibrium is the same for both types
of auctions. The panel in the right presents the equilibrium areas when the production
costs are low. In that case, a new area appear (black grey area). When the auction is
uniform the efficient supplier faces a high residual demand and prefers to submit a high
bid. Hence when the larger supplier is also the efficient one and the difference in costs is
low, the uniform price auction performs worse in terms of efficiency and equilibrium prices.

The main results presented in proposition four depend crucially on the value of the
production cost (low or high). Due to the importance that the production cost has on
the results of the model, I analyze the effect that an increase in production costs has on
equilibrium market outcomes.
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Proposition 5. Increase in production costs when the realization of demands (θj, θi) belong
to area A1.

• When the production costs are low, an increase in costs doesn’t modify the equilib-
rium price when the auction is uniform, but reduces it when the auction is discrim-
inatory (an increase in production costs is pro-competitive).

• When the production costs are high, an increase in those costs increases the equi-
librium price for both types of auctions (an increase in production costs is anti-
competitive).

Proof. The proof proceeds as in proposition three.
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