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Abstract

This paper provides an empirical comparison of various selection and penalized regression

approaches for forecasting with vector autoregressive systems. In particular, we investigate the

effect of the system size as well as the effect of various prior specification choices on the relative

and overall forecasting performance of the methods. The data set is a typical macroeconomic

quarterly data set for the US. We find that these specification choices are crucial for most

methods. Conditional on certain choices, the variation across different approaches is relatively

small. There are only a few methods which are not competitive under any scenario. For single

series, we find that increasing the system size can be helpful - depending on the employed

shrinkage method.
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1 Introduction

Forecasting future realizations of economic variables is a relevant issue for many policymakers, in

particular central banks, but also for economic agents in general. Nowadays, forecasters have lit-

erally hundreds of time series at their disposal to obtain predictions. Therefore, we are interested

in the problem of forecasting realizations of a K−dimensional economic time series (yt) given an

observed sample y1, y2, . . . , yT , where K can be large. A common model which is used for this

kind of problem is the stable vector autoregressive (VAR) model:

yt = µ+A1yt−1 + . . .+Apyt−p + ut, for t = 1, . . . , T, (1)

where µ is a (K × 1) parameter vector, A1, . . . , Ap are (K × K) parameter matrices, p fixed

pre-sample values y−p+1, . . . , y0 are given, and ut is assumed to be white noise with non-singular

covariance matrix Σu. A comprehensive treatment of the estimation, specification and various

extensions of model (1) is given by Lütkepohl (2005).

Despite its popularity, a problem of this model class is the potentially large number of pa-

rameters which have to be estimated before using this model for forecasting purposes. In the

general unrestricted model this number is equal to K2p+K. The estimation of many parameters

leads to high estimation uncertainty which typically translates into a large mean squared forecast

error (MSFE). A traditional response to this problem was to consider only small- to medium-

dimensional systems with carefully chosen variables. However, these VARs do not exploit the

potentially useful information contained in the many other variables not included in the VAR but

which are nowadays available. It is important to see whether there are gains from incorporating

this additional information. Therefore, other solutions have been developed.

The most traditional approach is subset selection and an overview can be found in Lütkepohl

(2005). Given a suitable maximum lag order, these methods seek to find zero constraints on

the parameters µ, A1, . . . , Ap of the model thereby reducing the number of parameters that

have to be estimated in the final model. Computer-automated subset selection strategies can be

found in the software package PcGets, see Hendry & Krolzig (2001). In practice most subset

selection strategies also involve informal elements which Hoover & Perez (1999) tried to formalize

in their paper. Also Brüggemann & Lüktepohl (2001) and Brüggemann (2004) investigated the

performance of different subset selection methods.

Another solution is to abandon the VAR framework but stay in a linear framework and
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consider factor models (Geweke 1977) instead. This approach gained popularity due to the

increasing amounts of data available to central banks and the general public. In the case of a

very large number of series relative to observed time points, the above mentioned problems become

very important. Factor models are advocated mainly by Stock & Watson (2002a,b), Forni, Hallin,

Lippi & Reichlin (2000) and Forni, Hallin, Lippi & Reichlin (2004) for forecasting macroeconomic

series. In a study similar to ours, Stock & Watson (2012) compare various methods, which are

shown to asymptotically possess a shrinkage representation, to the dynamic factor model in a

forecasting context with a large number of (orthogonal) predictors. In a forecasting exercise with

a quarterly U.S. macro data set they find that the dynamic factor model usually outperforms

pretest and information-criterion methods, Bayesian model averaging, empirical Bayes methods

as well as bagging.

An alternative to factor models are large Bayesian VARs which impose shrinkage induced

by a prior. De Mol, Giannone & Reichlin (2008) show that Bayesian estimation with shrinkage-

inducing priors applied to a large cross-section of macro time series yields forecasts which are

highly correlated with the principal component forecasts advocated by Stock & Watson (2002a,b).

They focus on forecasting a single series with a very large panel of predictors, however. Building

on the latter results, Banbura, Giannone & Reichlin (2010) show that Bayesian shrinkage can also

deal with high-dimensional VARs by increasing the amount of shrinkage with the system size and

find that the largest specifications outperform the small models in forecast accuracy. However,

they find that a “medium-sized” system of 20 key macroeconomic indicators usually suffices

for the purpose of forecasting the three key macroeconomic variables they consider. Giannone,

Lenza & Primiceri (2015) generalize the choice of the priors by introducing hyper parameters

and provide further evidence that a medium-sized VAR of about twenty variables improves over

smaller VARs.

Apart from Bayesian Shrinkage there also exist classical shrinkage or regularization methods

which we all summarize under the heading of penalized regression methods. The most well known

member of this class of techniques is ridge regression (Hoerl 1962, Hoerl & Kennard 1970).

Recently, however, other methods which combine variable selection and shrinkage have become

very popular. The most prominent examples are the lasso (Tibshirani 1996) and the elastic net

(Zou & Hastie 2005). These proposals are rooted in the statistical literature and are traditionally

concerned with cross-sectional data rather than time series data. However, in the recent past a

number of papers have studied variants of the lasso approach for time series models. Nardi &
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Rinaldo (2011) and Kock (2012) study the asymptotic properties of the adaptive lasso applied to

univariate autoregressive (AR) models, while Chen (2011, Chapter 4) and Medeiros & Mendes

(2012) consider the autoregressive moving-average (ARMA) model and general univariate time

series regressions, respectively, in relation to the adaptive lasso.

An early reference on the lasso in a multiple time series set-up is Hsu, Hung & Chang (2008).

They explore small sample estimation properties and forecasting performance of lasso applied to

VARs in a simulation study with systems of relatively low dimension. Kock & Callot (2014a,b)

and Basu & Michailidis (2013) analyze the asymptotic properties of the lasso and adaptive lasso

applied to VARs. Note that Basu & Michailidis (2013) also consider penalization in a likelihood

framework in contrast to the least squares set-up on which the other approaches are based.

Song & Bickel (2011) and Nicholson, Matteson & Bien (2014) consider various types of (group)

lasso methods for VARs that are large in terms of dimension and/or lag order. The simulation

evidence and the forecasting performance provided in the aforementioned papers demonstrate

that the lasso approach can indeed be beneficial in a VAR framework relative to standard OLS

but also relative to factor models; on the latter see Kock & Callot (2014a). Finally, Gefang (2014)

studies the lasso method as well as the elastic net applied to VARs in a Bayesian context and

compares these to standard Bayesian VARs in a forecasting exercise using macroeconomic series.

She performed an pseudo out-of-sample forecast study based on US macroeconomic data similar

to the ones used in our study. Her results demonstrate that the elastic net and lasso frameworks

can lead to improved forecast performance compared to standard Bayesian VARs as considered

e.g. in Banbura et al. (2010). To the best of our knowledge, Gefang (2014) is the only paper

dealing with elastic net in relation to multiple time series data while Savin & Winker (2012)

examine the elastic net for autoregressive distributed-lag models.

This paper adds to the VAR strand of the literature by providing a comparison of the forecast

performance of various selection and penalized regression methods which is more comprehensive

than the previously mentioned papers in that it includes classical and (empirical) Bayes methods,

traditional subset selection methods as well as the more recent lasso and elastic net methods. In

particular, we investigate for each estimation method various specification choices, i.e. we analyze

the importance of prior lag selection, whether estimation should be based on rolling or expanding

estimation windows and we investigate two alternative methods for choosing tuning parameters.

Such specification choices have been partially addressed by Carriero, Clark & Marcellino (2015)

for Bayesian VARs but have not been systematically considered for the other methods in our
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study. Furthermore, we are interested in the effect of the system size on the relative performance

of the methods as well as on the overall forecast precision across methods. In this sense, this

paper also contributes to the growing literature on large VARs.

We find that the initial lag choice is decisive for the forecasting performance of most methods.

Also, expanding estimation windows and the use of information criteria for the choice of the

tuning parameters are generally preferred. Conditional on these choices, the variation across

methods is small - apart from some approaches which are not competitive such as traditional

selection methods. With respect to the system size, we find that increasing the dimension of the

system can be advantageous for some methods when forecasting single series.

The rest of the paper is organized as follows. Section 2 presents the investigated forecasting

methods. Section 3 explain the pseudo out-of-sample exercise undertaken and discusses the

results. Section 4 concludes.

2 Forecasting Methods

We call combinations of VAR specification and estimation methods simply (VAR) forecasting

methods. For all methods, we assume that there is an upper bound on the possible lag order of

the system, pmax. Thus, a generalized model of (1) is considered

yt = µ+A1yt−1 + . . .+Apmaxyt−pmax + ut, for t = 1, . . . , T. (1’)

Every method consists of two stages. First, the above model might be reduced by an initial

model specification step leading to a VAR with only p ≤ pmax lags. Second, the model found in

the first stage is estimated by one of the selection or penalized regression methods.

2.1 Initial Model Specification

For the initial model specification, we consider either simply selecting the highest, a priori given,

order pmax or choosing the lag order via standard information criteria, see Lütkepohl (2005, Ch.

4). The criteria we consider in this stage are

AIC: The order p is selected by minimizing the Akaike information criterion (AIC)

AIC(m) = ln |Σ̃u(m)|+ 2

T
mK2
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over m ∈ {1, . . . , pmax}, where Σ̃u(m) is the maximum likelihood (ML) estimator of Σu

obtained by fitting an unrestricted VAR(m) model.

BIC: The order p is selected by minimizing the Bayesian information criterion (BIC)

BIC(m) = ln |Σ̃u(m)|+ lnT

T
mK2

over m ∈ {1, . . . , pmax}, by fitting again an unrestricted VAR(m) model.

In order to get get a “reasonably” sized VAR, we let pmax vary according to the dimensions

of the systems we consider in our forecast study. Specifically, we set pmax = 8 for systems up to

dimension K = 3, pmax = 7 for K = 4, pmax = 6 for K = 7 and pmax = 3 for K = 22.

2.2 Estimation Methods

Given the specified lag order p, the resulting VAR(p) can be estimated with different selection

or penalized regression methods. We consider here standard subset selection methods such as top

down selection and a single equation testing procedure. For the penalized regression methods, we

investigate ridge regression, a Bayesian VAR, the lasso, a single equation lasso method as well

as the elastic net.

In order to discuss the above methods in a common framework, we use the following notation

- and variations thereof. Denote by A := [µ A0], where A0 := [A1, . . . , Ap], and its vectorized

version by a := vec(A). Write the model as yt = [µA1 . . . Ap]Zt−1 + ut for t = 1, . . . , T , where

Zt−1 = (1, Z0′
t−1)′ with Z0

t−1 = (y′t−1, . . . , y
′
t−p)

′. Then,

y = (Z ′ ⊗ IK)a+ u = Xa+ u,

where y = vec([y1, . . . , yT ]), Z = [Z0, . . . , ZT−1], u = vec([u1, . . . , uT ]), and X = (Z ′ ⊗ IK).

Throughout, Id denotes the identity matrix of dimension d and, likewise, 0d denotes a vector of

zeros of dimension d × 1. Each of the methods yields a parameter estimator â which is used in

the standard (iterative) way to yield h−step-ahead forecasts.

2.2.1 Top Down Selection (TopDown)

This description follows to a large extent Lütkepohl (2005) which should be consulted for further

details. Restrictions are found equation by equation. Given a lag order p, the coefficients of the
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k-th equation are ordered first by time and then by the order in which the respective variables

enter the VAR equations, i.e,

ykt = µk + αk1,1y1,t−1 + . . .+ αkK,1yK,t−1 +

...

+αk1,py1,t−p + . . .+ αkK,pyK,t−p + ukt, (2)

where αij,l is the coefficient in the (i, j)-position of the matrix Al. A subset model is found by

imposing zero restrictions sequentially until no further improvement can be achieved in terms of

minimizing a pre-specified information criterion. In each step, one coefficient is deleted according

to the order above - starting with the last coefficient, akK,p, up to the intercept - and the value

of the criterion is evaluated and compared to the value of the criterion when the equation is

estimated with the coefficient. If the criterion is improved, the zero restriction is maintained

and the next variable is tried given the restrictions imposed from the previous steps - until all

coefficients have been tried.

For concreteness, the exact definitions and steps are as follows. Define

ak = (µk, αk1,1, . . . , αk1,p, . . . , αkK,p)
′, y(k) = (yk1, . . . , ykT )′ and u(k) = (uk1, . . . , ukT )′. Then, the

k-th equation can be written as

y(k) = Z ′ak + u(k).

Potential zero restrictions are formulated as ak = Rkγk as in Lütkepohl (2005, Chapter 5) for a

suitable ((K ·p+1)×nγ) restriction matrix Rk and a (nγ×1) vector of free parameters γk. Denote

the restricted least squares estimator by γ̂(Rk) = (R′kZ Z
′Rk)

−1R′kZy(k) and the ML estimator of

the variance by σ̃2(Rk) = (y(k) − Z ′Rkγ̂(Rk))
′(y(k) − Z ′Rkγ̂(Rk))/T . The resulting information

criterion is CRIT (Rk) = ln σ̃2(Rk) +CT rk(Rk) with either CT = 2
T (AIC) or CT = 2 lnT

T (BIC).

The algorithm for the k−th equation can then be described as follows:

1. Initialize Rk to be the identity matrix R
(0)
k = IK·p+1, set i = 1

2. For j running from (K · p+ 1) to 1

(a) Form R
(i)
k by deleting the jth column of R

(i−1)
k .

(b) Compute γ̂(R
(i)
k ) and CRIT (R

(i)
k ).
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(c) Set

R
(i)
k =

 R
(i)
k , if CRIT (R

(i)
k ) < CRIT (R

(i−1)
k ),

R
(i−1)
k , if CRIT (R

(i)
k ) ≥ CRIT (R

(i−1)
k ).

(d) Set i = i+ 1

After the determination of the restrictions for all k equations, call the implied restriction matrix

for the whole system R such that all zeros restrictions on a can again be formulated as a = Rγ

and we can can write y = (Z ′⊗ IK)Rγ+u for all equations jointly. The corresponding estimated

generalized least squares (EGLS) estimator is γ̂(R) = (R′(Z Z ′ ⊗ Σ̂−1
u )R)R′(Z ⊗ Σ̂−1

u )y, where

Σ̂u is computed from an unrestricted least squares estimator and the top down estimator of a

is âTD = Rγ̂(R). Depending on which information criteria is used, the variants of this selection

method are labeled AIC TopDown or BIC TopDown.

2.2.2 Single Equation Testing Procedure (TP)

The description of this selection strategy follows closely the one in Lütkepohl (2005, section

5.2). This procedure is applied again to each equation (2) of the VAR such that regressors are

sequentially deleted, one at a time, according to which regressor has the smallest t-ratio. Then,

new t-ratios are computed for the reduced model. One stops when all t-values are greater than

some threshold value η.

This procedure is computationally much less expensive than an alternative method proposed

by Brüggemann & Lüktepohl (2001) that sequentially eliminates those regressors which lead

to the largest reduction in a pre-specified information criterion. Both methods are equivalent

provided the threshold is chosen such that η = {[exp(cT /T )− 1] · (T −N + j − 1}1/2 at the j-th

step of the elimination procedure. In this study, we use cT = 2 (AIC) and cT = lnT (BIC) and

label the corresponding test procedures by AIC TP and BIC TP, respectively.

After the determination of the restrictions for all K equations, we again collect these and

estimate the whole system by EGLS.

2.2.3 Ridge Regression (RR)

Ridge regression goes back to Hoerl (1962) and Hoerl & Kennard (1970). For the implementa-

tion, we first standardize the time series variables by subtracting their means and dividing by

their standard deviations. Generally, we denote standardized variables by placing a ∼ on top

of the respective symbols. However, we keep on using the same notation for the corresponding
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parameters and only use ∼ to indicate parameter estimators based on the standardized variables.

Mean-adjusting the time series provides us with an easy way of excluding the intercept term from

penalization. The scaling is motivated by the fact that a common shrinkage parameter is used

with respect to all parameters.

Let a0 = vec(A0) denote the parameter vector for the standardized model without the inter-

cept. Let C be a selector matrix and denote by c a vector towards which the parameter estimates

are shrunk such that deviations from the restriction Ca0 = c are penalized. Further, let X̃0

denote the regressors matrix with the standardized variables (without an intercept). Then, the

ridge regression can be formulated as

min
a0

(ỹ − X̃0a0)′(ỹ − X̃0a0) + λ · (Ca0 − c)′(Ca0 − c).

We consider two variants of ridge regression which we label all and allbutdiag. The first

variant restricts all coefficients in A1, . . . , Ap towards zero and consequently C = IK2·p, c =

0K2·p. The second variant restricts all coefficients but the diagonal elements in Aj , j = 1, . . . , p.

Consequently, the columns of the previously defined matrix C that correspond to the diagonal

elements are removed and c = 0K2·p−K·p.

The above problem leads to the solution

ã0
RR =

(
(X̃0′X̃0) + λ(C ′C)

)−1 (
X̃0′ ỹ + λC ′c

)
. (3)

Then, the parameter estimator in terms of the original scaling is recovered. This re-scaling is also

applied to all other estimation approaches which are based on standardized data.

The choice of the penalty parameter λ is important. It has been mentioned in the literature

that traditional cross-validation is less suited for tuning parameter selection in a time-dependent

framework, see e.g. Medeiros & Mendes (2012), Nicholson et al. (2014).1 We employ two al-

ternative methods that have been advocated in the recent literature on penalization in (vector)

time series models: λ is either determined by evaluating the fit via information criteria (AIC or

BIC) or by evaluating the predictive MSE (PMSE) over the last 20% of observations for a grid

of possible values for λ.

For the choice of the grid for λ, we adopt the approach of Friedman, Hastie & Tibshirani (2010)

1Kock & Callot (2014b), however, have noted that cross-validation performs similarly to the BIC in their
simulation study on adaptive and standard lasso estimation of VAR models. However, they found cross-validation
to be considerably slower than the BIC. We arrived at similar conclusions in a small pilot forecasting study on our
data.
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for determining a grid for the lasso penalty parameter.2 Denote the grid by λ(i), i = 1, . . . , G.

First, we determine the highest value, λ(G), by ||Cã0
RR(λ(G))||2 = 0.1 · ||Cã0

OLS ||2, where ã0
OLS is

the OLS estimator of a0 based on the standardized variables and || · ||2 is the Euclidean norm.

That is, we choose λ(G) such that the resulting estimated parameter vector is “small”. Then, we

set the minimum value to λ(1) = 0.001 · λ(G) and construct a sequence of 100 values of λ linearly

decreasing from λ(G) to λ(1) - on the log scale.3 Hence, we have G = 100.

The BIC has been used e.g. by Kock & Callot (2014a,b) and by Medeiros & Mendes (2012).

Wang, Li & Tsai (2007) have shown the asymptotic validity of the BIC for tuning parameter

specification for lasso estimation of a univariate time series regression with an error term following

an AR process. The use of the information criteria works as follows. For each value λ(i) of the

grid, the information criteria are computed as

IC(λ(i)) = ln |Σ̃u(λ(i))|+ CT × dof(λ(i)), (4)

where either CT = 2/T (AIC) or CT = lnT/T (BIC) and Σ̃u(λ(i)) is the usual ML estimator of the

covariance matrix computed on the standardized data. The degrees of freedoms are obtained as

dof(λ) = tr

(
X̃0
(
X̃0′X̃0 + λC ′C

)−1
X̃0′

)
, see Bühlmann & van de Geer (2011, Sect. 2.11). The

λ(i) that minimizes IC(λ) is chosen. For all methods, we employ the same information criterion

for the penalty selection that was used for the initial model selection. If p = pmax is chosen, we

use the BIC. This is done for simplicity. In principle, we could have tried more combinations.

For the alternative approach using the predictive MSE, we divide the available data points

into two parts: an estimation subsample consisting of z̃(1) = [ỹ1, ỹ2, . . . , ỹt̄] and an evaluation

subsample consisting of z̃(2) = [ỹt̄+1, ỹt̄+2, . . . , ỹT ] with t̄ = [0.8T ], where [x] denotes the smallest

integer larger than or equal to x. The corresponding ridge estimator of A0 computed from the

estimations sample for fixed λ is denoted by Ã
(1)
RR(λ). For each candidate λ(i), i = 1, . . . , G, the

predictive MSE criterion is computed as

PMSE(λ(i)) = vec
(
z̃(2) − Ã(1)

RR(λ(i))Z̃0(2)
)′

vec
(
z̃(2) − Ã(1)

RR(λ(i))Z̃0(2)
)
,

where Z̃0(2) = [Z̃0
t̄ , Z̃

0
t̄+1, . . . , Z̃

0
T−1]. The λ(i) that minimizes PMSE(λ(i)) is chosen.

The foregoing approach has also been used by Song & Bickel (2011) and Nicholson et al.

2Their original approach is briefly outlined in subsection 2.2.5.
3That is, we compute 100 equidistant points between ln(λ(1)) and ln(λ(G)) and then take the exponent of these

values.
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(2014) for the determination of the tuning parameters of the lasso method applied to a VAR

model setup. It can be interpreted as a simplified version of cross-validation that respects the time

series nature of the data. Since the observations are kept together with their lags, the predictive

MSE approach boils down to a sequence of one-step ahead forecasts for the evaluation subsample

using fixed parameter estimates, i.e. the parameters are not re-estimated after proceeding one

period in the evaluation subsample.

2.2.4 Bayesian Shrinkage (Bayes)

This approach is similar to a “truly” Bayesian approach of Doan, Litterman & Sims (1983) and

Litterman (1986) in so far as the resulting point estimator is the posterior mean of the VAR

parameters given the so called Minnesota or Litterman prior. Conceptually, this strategy is very

similar to ridge regression and we frame our “Bayesian” strategy in terms of an optimization

problem in order to discuss all approaches within a common framework. The estimation problem

becomes

min
a

(y −Xa)′(IT ⊗ Σ−1
u )(y −Xa) + λ · (Ca− c)′V −1

a (Ca− c)

where λ and the matrix Va = diag(v11,1, v21,1, . . . , v11,2, . . . , vKK,p̂) with

vij,l =

 (1/l)2, if i = j

(θσi/lσj)
2, if i 6= j,

(5)

determines the tightness of the prior information, see Lütkepohl (2005, 7.4.2). The matrix C =

[0(K2·p)×K IK2·p] selects all parameters but the intercepts and c is a (K2 · p × 1) vector towards

which a is shrunk. In the case of differenced data c is just a vector of zeros. In the case of levels

data c is usually such that the VAR is shrunk towards a K−dimensional random walk. The

solution is given by

âBA =
(
(X ′(IT ⊗ Σ−1

u )X) + λ(C ′V −1
a C)

)−1 (
X ′(IT ⊗ Σ−1

u )y + λC ′V −1
a c

)
.

Note that in most descriptions of the prior, λ, as defined here, is actually λ−2 but we decided

to keep the interpretation of λ as a parameter which is positively related to the strength of the

restriction. The above formula as well as parts of the prior contain the unknown covariance Σu.

In order to apply the above formula, we use the OLS estimator, Σ̂u, in its place.

11



A specific pair (λ, θ) is determined via the information criteria or via a comparison of predictive

MSEs. The procedure is analogous to the one described in the section on ridge regression with

a few modifications. First, non-standardized data are used and, second, the degrees of freedom

used to compute the information criteria are computed analogous to (4) as

dof(λ, θ) = tr

(
X ′(IT ⊗ Σ̂−1

u )X
[
X ′(IT ⊗ Σ̂−1

u )X + λC ′V −1
a C

]−1
)
.

For the determination of a suitable grid, we let θ take on values in {0.2, 0.4, 0.6, 0.8, 1} since

this parameter just determines the relative shrinkage of the diagonals versus the off-diagonal

elements, see Lütkepohl (2005). The grid for λ is obtained analogous to case of ridge estimation,

holding θ = 1 fixed.

2.2.5 Lasso Regression (Lasso)

The lasso procedure was originally proposed by Tibshirani (1996). The approach minimizes the

sum of squared residuals subject to an L1 penalty on the size of the estimated coefficients. In

contrast to ridge regression that only continuously shrinks coefficients towards zero, parameter

estimates can become zero if the penalty parameter λ is large enough. Hence, lasso allows for

sparse solutions and, thereby, also performs model selection. Indeed, lasso is particularly useful

for models with many coefficients which are close to zero and a small number of coefficients that

are relatively large.

Using the introduced notation, the optimization problem underlying lasso is formulated in

terms of standardized variables and is given by

min
a0

(ỹ − X̃0a0)′(ỹ − X̃0a0) + λ · ||a0||1, (6)

where ||a0||1 =
∑

i,j,l |αij,l| is the L1-norm of the parameter vector. There exists no closed-form

solution for the Lasso estimator but (6) can be solved numerically in order to obtain the estimator

ã0
LA. To this end, we use the glmnet package for Matlab, see Friedman et al. (2010). This package

is designed to solve elastic net minimization problems of which the lasso problem (6) is a special

case. The general elastic net minimization problem is described in subsection 2.2.7.

Again, the penalization parameter λ is chosen by optimizing different criteria for a grid of

possible values - starting at the smallest value λ(G) for which the entire vector a0 = 0. (Friedman

et al. 2010). The minimum value of the grid is chosen such that λ(1) = 0.001 · λ(G). Then, we
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proceed as described for the ridge regression set-up, i.e. setting G = 100, a sequence from λ(G) to

λ(1) is constructed that linearly decreases on the log scale. Again, we have applied information

criteria (AIC, BIC) and the predictive MSE criterion analogous to the procedure for the ridge

regression set-up in order to determine the tuning parameter λ. Note, however, that we use the

number of non-zero coefficients of the lasso solution for a given penalty λ to measure the degrees

of freedom needed for computing the information criteria, see e.g. Zou, Hastie & Tibshirani (2007)

and Bühlmann & van de Geer (2011).

2.2.6 Single Equation Lasso Regression (Lasso SE)

The foregoing version of lasso ignores the structure of the VAR model. Song & Bickel (2011) have

suggested a version of lasso that considers each of the K equations of the VAR separately and,

in terms of penalization, distinguishes between the different lags as well as between the variables’

own lags and the corresponding other variables’ lags. This “no grouping” version is their preferred

lasso variant and shares some of the ideas of the Bayesian shrinkage approach discussed above.

To illustrate the approach, consider the k-th equation of the VAR in terms of the standardized

variables but still using the same notation as in 2.2.1. Hence, ak is the parameter vector of the

k-th equation. Denote by αkk,i the element of ak that belongs to the k-th variable at lag i and

denote by αkj,i the parameters that belong to the other regressors’ - at lag i. The optimization

problem for this equation is

min
ak

(ỹ(k) − Z̃ ′ak)′(ỹ(k) − Z̃ ′ak) + λk

θk p∑
i=1

iνk |αkk,i|+
p∑
i=1

iνk
∑
j 6=k
|αkj,i|

 .

The penalty of the parameters associated with lag i is scaled with iνk such that the coefficients

of higher-order lags are penalized more strongly if νk > 0. The value νk = 2 would correspond to

the Bayesian shrinkage approach, compare equation (5). Similarly, the penalty of the parameters

associated with the k-th variable are scaled with θk whereby θk < 1 assures that these are less

strongly penalized than the parameters associated with the other variables. The scaling factor θk

has the same function as in the Bayesian shrinkage approach.

However, in the current set-up θk as well as νk and λk are individually determined for each

equation k, for details see Song & Bickel (2011). The grids for νk and θk are chosen as follows:

νk can take on values in {0, 1, 2} and θk in {0.1, 0.2, . . . , 0.9, 1}. Conditional on a particular pair
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(νk, θk), we determine the grid for λk as for the general lasso.

We use the univariate versions of the information criteria and the PMSE criterion to jointly se-

lect the three tuning parameters for each equation separately, searching over the three-dimensional

product space obtained from the three individual grids.

2.2.7 Elastic Net Regression (Elastic Net)

This approach has been suggested by Zou & Hastie (2005). The elastic net combines the L1 and

L2 penalties used in the lasso approach and ridge regression, respectively. This combination is

motivated by some problems from which the lasso approach suffers in the case of correlated regres-

sors. Ridge regression shrinks coefficients of correlated regressors towards each other introducing

the so-called grouping effect. By contrast, the lasso tends to pick one of the regressors and ignores

the rest of them. Moreover, lasso may show weird behavior in case of extreme correlations. In

fact, it breaks down in case of perfect regressor correlation. Accordingly, lasso cannot pick more

variables than observations are available. See Zou & Hastie (2005) for more details on the latter

issues.

The joint consideration of the penalties introduces both automatic model selection and the

described grouping effect. Thereby, it is hoped that the elastic net performs as well as lasso

whenever lasso works well but fixes the highlighted problems of lasso, compare Zou & Hastie

(2005).

Following Friedman et al. (2010), the relevant minimization problem for the standardized

variables can be written as

min
a0

(ỹ − X̃0a0)′(ỹ − X̃0a0) + λ
(
α||a0||1 + 0.5 · (1− α)a0′a0

)
(7)

The last term is the elastic net penalty leading to the classical ridge penalty if α = 0 and the lasso

problem if α = 1. For a fixed value of α, (7) can be interpreted as a re-scaled lasso minimization

problem.

Using again the glmnet package for Matlab to numerically solve the minimization prob-

lem (7) we obtain the elastic net solutions for a fixed value of α. We let α take on values in

{0, 0.05, 0.10, . . . , 0.9, 0.95, 1} to create a grid for α. As regards λ, we set up a grid in the same

way as for lasso conditional on a particular value for α. We jointly determine the values for λ

and α by searching over the Cartesian product of the two grids using the information criteria as

well as the predictive MSE criterion analogous to the case of the ridge regression. However, the
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degrees of freedom for the computation of the information criteria have to be adopted. Following

Tibshirani & Taylor (2012), we set dof(λ, α) = tr

(
X̃0
A

[
X̃0′
AX̃

0
A + λ · 0.5 · (1− α)I

]−1
(X̃0
A)′
)

,

where X̃0
A is formed from the columns of X̃0 associated with non-zero coefficients - given λ, α.

Accordingly, I is an identity matrix of dimension equal to the cardinality of the active set.

3 Empirical Forecast Comparison

3.1 Data and Setup

We empirically compare the selection and penalized regression methods using different systems

of quarterly US macroeconomic data. The data are taken from the Federal Reserve Bank of St.

Louis and the respective series IDs are given in table 1. Our data sample spans from 1959 Q1 to

2012 Q2. Thus, we have T̄ = 214 quarterly observations. The first 102 observations from 1959

Q1 to 1984 Q2 are used for initial estimation.4 That is, the first 1-step-ahead forecast is for 1984

Q3 and so on.

We follow Carriero et al. (2015), Stock & Watson (2008) and Koop & Korobilis (2013) by

only considering variables transformed to stationarity. The composition of the VARs is inspired

by Giannone et al. (2015) and Koop & Korobilis (2013) and similar papers in the area. We

consider here a variety of systems ranging from very small systems to a system that comprises 22

variables. This setup allows us to evaluate the effect of increasing the system size on the forecast

performance of the methods. The used transformations as well as the composition of the VARs

are given in table 1 in the appendix.

Most results in the tables are given for expanding estimation windows. However, to account

for structural breaks we consider in addition rolling estimation windows of size 100 which cor-

responds to 25 years. While one can think of more elaborate ways of dealing with structural

breaks, the focus of this paper is different and the results in Bauwens, Koop, Korobilis & Rom-

bouts (2015) indicate that for MSFE comparisons rolling estimation windows have reasonable

forecasting performance in the presence of structural breaks.

We will measure the forecasts’ precision in two ways. First, we are interested in a performance

measure for the whole system. Second, we take a closer look at three variables which are important

from an economic point of view.

4Since some variables have to be differenced twice, this ensure that there is always a minimum of 100 sample
observations for estimation.
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To measure system-wide performance we use the generalized forecast second moment criterion

proposed by Clements & Hendry (1993). It is defined as follows for a maximum horizon h

GFESMh =
(
det(E[vec(e1, . . . , eh)vec(e1, . . . , eh)′])

)1/(K·h)
, (8)

where ej is (K × 1)-dimensional j-th-step-ahead forecast error, j = 1, . . . , h. We take h = 4 in

the following. The main advantage of this measure is that it is invariant to non-singular, scale-

preserving linear transformations of the variables, see Clements & Hendry (1993) for details.

Second, as it is common in the literature, we consider the root mean squared forecast error

(RMSFE) for the following three variables: annualized real GDP growth, 400∆ ln rgdpt, annual-

ized inflation as measured by the GDP deflator, 400∆ ln pgdpt, and the (raw) federal funds rate

in levels it.

3.2 Results

The tables 2 and 3 show the results on the overall forecasting performance as measured by the

GFESM measure (8) for different forecasting methods. For all tables, each row displays the results

for a combination of an initial model specification step and an estimation method. For example,

the fourth row “AIC Lasso SE” shows the result for an initial model choice with AIC followed

by the application of the lasso single equation method. Table 2 contains the GFESM measures

obtained when using the predictive MSE for choosing the tuning parameters while table 3 gives

the corresponding results when using an information criterion.5 More precisely, the tables contain

percentage differences of the GFESM measure of the listed methods relative to the forecasts from

a benchmark VAR(0), that is, a model which only contains an intercept. Negative values indicate

an improvement over this benchmark. For example, a value of −0.02 means that the GFESM

measure of the particular methods is 2 % smaller than the GFESM measure of the benchmark.

In addition, the six lowest numbers are marked bold. We chose to first present in tables 2 and 3

the results for the case of expanding estimation windows. Later on, we comment on tables 4 and

5 that show the performance of the methods for expanding estimation windows relative to rolling

estimation windows.

The unconstrained autoregression performs well for the smallest system but their precision

5Note that the GFESM measures are the same for the unconstrained VARs and the VARs specified via subset
selection methods because they do not depend on tuning parameters.
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deteriorates when the system size increases. The AIC in particular does not do better than the

benchmark “unconditional” VAR(0) forecast and it does particularly bad when the system size

is maximal.

When the VAR is estimated by a single equation lasso method, the forecast performance is

mixed and depends on the system it is applied to as well as on the initial model selection method

and on the method for selecting the tuning parameter. Generally, however, the single equation

lasso method works better when the BIC is used for the initial model selection. In this case, the

method works generally better than the benchmark.

Applying the lasso to the estimation of the entire system is not in all cases better than the

single equation approach. However, it clearly outperforms the single equation lasso method when

the system dimension is large (System V). The method performs best when combined with the

BIC at the initial model selection stage.

When the VAR is estimated via the elastic net method, the resulting forecasts are in general

as precise as the forecasts resulting from the lasso. Also in this case, the initial model selection

stage is important and using BIC is preferable.

VARs estimated with ridge regression yield forecasts whose precision depends on a number

of factors. First, restricting all coefficients or only the off-diagonal coefficients (allbutdiag) is not

decisive. Often the simpler variant that restricts all coefficients seems, however, slightly preferable

but not by a large amount. Second, the initial model selection step is still important with similar

results as in the previous cases. Excluding the generally inferior results for the VARs that use

the maximal lag length (Pmax ), the VARs with ridge regression appear to perform worse or not

much better than the VARs estimated with the lasso or elastic net techniques.

When the VARs are estimated with the empirical Bayesian estimation method, the resulting

forecasts are generally more precise than the benchmark - with very few exceptions. Furthermore,

the forecast precision varies much less over different initial model selection methods. This could be

a consequence of the particular shrinkage that penalizes long lags more than shorter lags. While

the VARs estimated with the lasso or the elastic net methods yield similarly precise estimates

they only do so when the BIC is used initially.

Using some of the more traditional selection methods seems less advantageous relative to the

benchmark. The forecasts’ precision can be very bad when the initial model selection and the

selection method is too “liberal”, in the sense of allowing for too many non-zero parameters.

However, if one uses the BIC at the initial stage together with a top down or testing procedure
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using the BIC as well, the resulting forecasts are usually more precise than the benchmark.

From table 2, one can see that it is often more important how the VAR lag length is chosen

rather than which specific shrinkage or regularization method is used. It turns out that using the

BIC for initial model specification is typically the best choice. Table 3 shows that applying the

BIC also for selecting the tuning parameters additionally increases forecast precision compared

to the AIC. This applies in particular in case of large systems. We have obtained corresponding

findings in relation to the individual series which we discuss below.

The tables 4 and 5 contain relative GFESM numbers for comparing methods which rely on

an expanding estimation window versus methods which rely on rolling estimation windows. The

results represent percentage differences in GFESM such that negative entries indicate that the

expanding estimation window is preferable. The six largest values (in modulus) are marked bold.

In general the expanding estimation window is advantageous, sometimes quite clearly, no matter

whether the PMSE (table 4) or an information criterion (table 5) is used to select the tuning

parameters.

The tables 6 and 7 contain relative GFESM numbers for comparing methods which specify the

tuning parameter via the PMSE or via the use of information criteria. Negative entries indicate

that the PMSE is advantageous. Again, the six largest values (in modulus) are marked bold. No

obvious pattern is seen. However some larger positive values indicate that the PMSE approach

might not be overly stable and occasionally leads to unfavorable choices.

The results for the single series are given in the tables 8 - 10. We consider real GDP growth,

the GDP deflator and the federal funds rate. This corresponds to the three key macroeconomic

variables considered by Banbura et al. (2010).6 The displayed numbers are the estimated RMSFEs

for different horizons. The six lowest numbers are marked bold. Not all results for the whole

system carry over to the single series. However, it is generally preferable to use BIC at the initial

model selection stage, i.e. typically to choose a small lag length. Also the empirical Bayesian

method performs reliably well over different settings. Relative to forecasts from a benchmark

VAR(0) the improvements are typically confined to short forecast horizons.

Whether an increase in the system size is beneficial depends on the series as well as the

employed penalized estimation and selection methods. It can help for example for real GDP

growth when a shrinkage method like lasso or the elastic net is applied while for the other series

the shrinkage rather ensures that the results do not worsen much and sometimes improve. Note

6As Banbura et al. (2010) rely on monthly data, they use employment as an indicator of real economic activity
rather than real GDP growth. Moreover, they consider the consumer price index.
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that increasing the system size is, in relative terms, more beneficial at short forecast horizons

than at longer horizons.

Generally, the improvement in forecast performance due to an increase of the system size are

less pronounced in comparison to the Bayesian VAR set-up of Banbura et al. (2010). Yet, some

results are rather similar. First, forecasts on a macroeconomic price index seem to profit the

least when considering a medium-sized VAR with about 20 variables. Second, the reduction in

the RMSFE for our Bayes methods regarding the federal funds rate observed when extending

system IV (K = 7) to the larger VAR system V (K = 22) corresponds very well to the respective

findings of Banbura et al. (2010) on their similar sized VARs. Note, however, that Banbura et al.

(2010) use monthly data for a period that just runs until 2003.

Overall, we can derive the following three main results. First, it is most beneficial to use

BIC for initial model specification and for deciding on the values for the tuning parameters.

Indeed, model and tuning parameter specification is often more important than the issue of which

selection or penalized regression method should be applied. The fact that BIC is preferred is an

indication that using AIC may lead to an in-sample over-fit which is negatively correlated with

out-of-sample forecast performance. Second, as an exception, the empirical Bayesian approach is

relatively robust to different initial model specification methods. Third, the relative performance

of the lasso approach (in combination with BIC) clearly improves with the size of the system. As

a consequence, it is often the best approach for the large system V in terms of absolute forecast

performance.

4 Conclusion

In this paper, we compared the forecasting performance of some traditional and some newly

proposed selection and penalized regression methods for estimating small to medium-sized VARs.

The comparison was conducted with quarterly US macroeconomic data. For this data set, we

found that some specification choices such as the overall lag order can be more important than

the choice of the estimation or selection method. That said, subset selection methods did not

perform very well for our data sets, while the other methods yielded comparable forecasts. We

also confirm the results in the previous literature that increasing the dimension of the VAR can

be beneficial provided that some shrinkage is applied to account for the quickly increasing number

of parameters.
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A Data

Denote by xkt the raw variable and by ykt the transformed variable taken in logarithms. The

transformation codes (Tcode) are: 1 - no transformation (levels), yk,t = xk,t; 2 - first difference,

yk,t = ∆xk,t; 3 - second difference, yk,t = ∆2xk,t; 4 - logarithm, yk,t = 400 · ln(xk,t); 5 - first

difference of logarithm, yk,t = 400 · ∆ ln(xk,t); 6 - second difference of logarithm, yk,t = 400 ·

∆2 ln(xk,t). The transformations are taken from Koop & Korobilis (2013).

Table 1: Data and Systems

System
Series Series ID Tcode I II III IV V

Real GDP GDPC96 5 x x x x x
GDP Deflator GDPDEF 6 x x x
Federal Funds Rate FEDFUNDS 2 x x x
Real Consumption PCECC96 5 x x x x
pReal Investment GPDIC96 5 x x
Hours HOANBS 5 x x
Real Wages COMPRNFB 5 x x
CPI CPIAUCSL 6 x
3-Month Tbill TB3MS 2 x
One year bond rate GS5 2 x
Five years bond rate GS10 2 x
M2 Money Stock M2SL 6 x
S&P 500 Index SP500 5 x
ISM Manufacturing: Prices Index NAPMPRI 1 x
Real Personal Income RPI 5 x
Industrial Production Index INDPRO 5 x
Civilian Unemployment Rate UNRATE 2 x
Housing Starts HOUST 4 x
Producer Prixe Index PPIFCG 5 x
PCE Price Index PCECTPI 6 x
Average Hourly Earnings CES3000000008 6 x
M1 Money Stock M1SL 6 x
Oilprice OILPRICE 5 x
Real Gov. Consumption & Investment GCEC96 5 x

K 2 3 4 7 22

Note: Description of the series used in the forecasting exercise. Series ID refers to the identification in the St.
Louis’ FRED database.
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B Forecast Error Measures

B.1 System Forecasts

Table 2: GFESM percentage differences relative to benchmark for expanding estimation window
using predictive MSE

Method \ System I II III IV V

AIC no -0.05 0.22 0.08 0.03 0.33
BIC no -0.04 -0.01 0.01 -0.02 0.01
Pmax Lasso SE -0.04 0.02 0.04 0.01 -0.02
AIC Lasso SE -0.04 -0.01 -0.01 -0.02 -0.01
BIC Lasso SE -0.03 -0.04 -0.01 -0.01 -0.03
Pmax Lasso -0.02 0.05 0.06 0.00 -0.04
AIC Lasso -0.05 0.05 0.04 -0.02 -0.04
BIC Lasso -0.03 -0.01 0.00 -0.03 -0.05
Pmax Elastic Net -0.02 0.08 0.06 0.01 -0.03
AIC Elastic Net -0.05 0.04 0.03 -0.03 -0.03
BIC Elastic Net -0.03 -0.03 -0.00 -0.03 -0.04
Pmax RR all 0.03 0.36 0.40 0.36 0.42
AIC RR all -0.05 0.21 0.08 0.02 0.29
BIC RR all -0.04 -0.01 0.01 -0.02 0.01
AIC RR allbutdiag -0.05 0.21 0.08 0.02 0.30
BIC RR allbutdiag -0.04 -0.01 0.01 -0.02 0.01
Pmax Bayes -0.04 0.01 0.01 0.02 -0.02
AIC Bayes -0.05 -0.01 -0.01 -0.02 -0.01
BIC Bayes -0.03 -0.05 -0.01 -0.03 -0.04
Pmax AIC TopDown 0.00 0.31 0.30 0.21 0.33
AIC AIC TopDown -0.03 0.22 0.08 0.04 0.24
Pmax BIC TopDown -0.02 0.16 0.14 0.14 0.14
BIC BIC TopDown -0.03 0.01 -0.00 -0.02 -0.05
AIC AIC TP -0.04 0.21 0.08 0.05 0.27
BIC BIC TP -0.03 0.00 -0.00 -0.02 -0.04

Note: Relative performance is computed as (GFESMi/GFESMBM ) − 1.
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Table 3: GFESM percentage differences relative to benchmark for expanding estimation window
using information criteria

Method \ System I II III IV V

AIC no -0.05 0.22 0.08 0.03 0.33
BIC no -0.04 -0.01 0.01 -0.02 0.01
Pmax Lasso SE -0.04 0.00 -0.02 -0.00 -0.01
AIC Lasso SE -0.05 0.13 0.03 0.03 0.13
BIC Lasso SE -0.03 -0.02 -0.00 -0.03 -0.05
Pmax Lasso -0.03 -0.01 -0.01 -0.02 -0.04
AIC Lasso -0.05 0.13 0.05 0.01 0.17
BIC Lasso -0.04 -0.03 -0.01 -0.03 -0.05
Pmax Elastic Net -0.04 -0.01 0.00 -0.02 -0.04
AIC Elastic Net -0.05 0.12 0.04 -0.01 0.19
BIC Elastic Net -0.04 -0.04 -0.02 -0.03 -0.04
Pmax RR all -0.02 -0.00 0.01 -0.01 0.01
AIC RR all -0.06 0.11 0.05 -0.02 0.22
BIC RR all -0.04 -0.04 -0.02 -0.03 -0.01
AIC RR allbutdiag -0.06 0.11 0.04 -0.00 0.17
BIC RR allbutdiag -0.04 -0.06 -0.01 -0.04 -0.07
Pmax Bayes -0.03 -0.05 -0.03 -0.02 -0.05
AIC Bayes -0.06 0.05 0.01 -0.01 0.11
BIC Bayes -0.04 -0.05 -0.02 -0.02 -0.05
Pmax AIC TopDown 0.00 0.31 0.30 0.21 0.33
AIC AIC TopDown -0.03 0.22 0.08 0.04 0.24
Pmax BIC TopDown -0.02 0.16 0.14 0.14 0.14
BIC BIC TopDown -0.03 0.01 -0.00 -0.02 -0.05
AIC AIC TP -0.04 0.21 0.08 0.05 0.27
BIC BIC TP -0.03 0.00 -0.00 -0.02 -0.04

Note: Relative performance is computed as (GFESMi/GFESMBM ) − 1.
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B.2 Specification Choices

Table 4: GFESM percentage differences for expanding estimation windows (EEW) relative to
rolling estimation windows (REW) using predictive MSE

Method \ System I II III IV V

AIC no -0.02 -0.02 -0.07 -0.13 -0.29
BIC no -0.01 -0.03 -0.01 -0.02 -0.05
Pmax Lasso SE -0.02 -0.05 -0.11 -0.06 -0.06
AIC Lasso SE -0.01 -0.00 -0.04 -0.03 -0.05
BIC Lasso SE -0.01 -0.02 -0.02 -0.01 -0.02
Pmax Lasso -0.00 -0.02 -0.02 -0.01 -0.01
AIC Lasso -0.01 0.04 -0.01 -0.01 -0.01
BIC Lasso -0.00 -0.02 0.01 -0.01 -0.01
Pmax Elastic Net -0.01 -0.00 -0.00 -0.02 -0.02
AIC Elastic Net -0.01 0.04 -0.01 -0.02 -0.02
BIC Elastic Net -0.00 -0.01 0.01 -0.01 -0.02
Pmax RR all -0.04 -0.05 -0.12 -0.16 -0.19
AIC RR all -0.02 -0.02 -0.06 -0.12 -0.26
BIC RR all -0.01 -0.03 -0.01 -0.02 -0.05
AIC RR allbutdiag -0.02 -0.02 -0.07 -0.12 -0.27
BIC RR allbutdiag -0.01 -0.03 -0.01 -0.02 -0.05
Pmax Bayes -0.02 -0.05 -0.03 -0.04 -0.09
AIC Bayes -0.01 -0.03 -0.04 -0.04 -0.08
BIC Bayes -0.01 -0.03 0.00 -0.01 -0.02
Pmax AIC TopDown -0.02 -0.04 -0.12 -0.14 -0.29
AIC AIC TopDown -0.00 -0.01 -0.07 -0.07 -0.34
Pmax BIC TopDown 0.01 -0.07 -0.14 -0.07 -0.31
BIC BIC TopDown -0.04 -0.04 -0.04 -0.02 -0.03
AIC AIC TP 0.00 -0.03 -0.08 -0.07 -0.35
BIC BIC TP -0.03 -0.04 -0.03 -0.01 -0.03

Note: Relative performance is computed as (GFESMEEW /GFESMREW ) − 1.

27



Table 5: GFESM percentage differences for expanding estimation windows (EEW) relative to
rolling estimation windows (REW) using information criteria

Method \ System I II III IV V

AIC no -0.02 -0.02 -0.07 -0.13 -0.29
BIC no -0.01 -0.03 -0.01 -0.02 -0.05
Pmax Lasso SE -0.02 -0.03 -0.06 -0.01 -0.01
AIC Lasso SE -0.01 0.03 -0.04 -0.04 -0.30
BIC Lasso SE -0.01 -0.01 -0.00 -0.02 -0.01
Pmax Lasso 0.01 -0.01 0.00 0.00 -0.01
AIC Lasso -0.00 -0.00 -0.04 -0.06 -0.34
BIC Lasso -0.02 -0.03 -0.01 -0.01 -0.01
Pmax Elastic Net 0.00 -0.02 0.01 0.01 -0.01
AIC Elastic Net -0.00 0.00 -0.05 -0.06 -0.32
BIC Elastic Net -0.01 -0.02 -0.01 -0.00 -0.00
Pmax RR all 0.01 0.00 0.01 -0.00 -0.03
AIC RR all -0.01 -0.00 -0.04 -0.06 -0.30
BIC RR all -0.01 -0.02 -0.01 -0.00 -0.00
AIC RR allbutdiag -0.02 -0.01 -0.06 -0.06 -0.33
BIC RR allbutdiag -0.01 -0.03 -0.01 -0.01 -0.00
Pmax Bayes 0.01 -0.01 -0.01 0.00 -0.04
AIC Bayes -0.01 -0.01 -0.05 -0.05 -0.32
BIC Bayes -0.01 -0.03 -0.01 -0.00 -0.01
Pmax AIC TopDown -0.02 -0.04 -0.12 -0.14 -0.29
AIC AIC TopDown -0.00 -0.01 -0.07 -0.07 -0.34
Pmax BIC TopDown 0.01 -0.07 -0.14 -0.07 -0.31
BIC BIC TopDown -0.04 -0.04 -0.04 -0.02 -0.03
AIC AIC TP 0.00 -0.03 -0.08 -0.07 -0.35
BIC BIC TP -0.03 -0.04 -0.03 -0.01 -0.03

Note: Relative performance is computed as (GFESMEEW /GFESMREW ) − 1.
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Table 6: GFESM percentage differences for predictive MSE (PMSE) relative to information
criteria (IC) using expanding estimation windows

Method \ System I II III IV V

Pmax Lasso SE 0.00 0.02 0.07 0.01 -0.01
AIC Lasso SE 0.01 -0.13 -0.04 -0.04 -0.12
BIC Lasso SE 0.00 -0.02 -0.01 0.02 0.02
Pmax Lasso 0.02 0.06 0.07 0.02 -0.00
AIC Lasso 0.00 -0.07 -0.02 -0.03 -0.18
BIC Lasso 0.01 0.02 0.02 0.00 0.00
Pmax Elastic Net 0.02 0.09 0.05 0.03 0.00
AIC Elastic Net 0.00 -0.07 -0.01 -0.02 -0.19
BIC Elastic Net 0.01 0.01 0.02 -0.00 0.00
Pmax RR all 0.05 0.36 0.38 0.37 0.40
AIC RR all 0.00 0.09 0.03 0.04 0.06
BIC RR all -0.00 0.03 0.03 0.01 0.02
AIC RR allbutdiag 0.00 0.09 0.03 0.02 0.11
BIC RR allbutdiag 0.00 0.05 0.02 0.01 0.08
Pmax Bayes -0.01 0.07 0.05 0.04 0.03
AIC Bayes 0.01 -0.06 -0.03 -0.01 -0.10
BIC Bayes 0.00 0.00 0.02 -0.01 0.01

Note: Relative performance is computed as (GFESMPMSE/GFESMIC) − 1.

Table 7: GFESM percentage differences for predictive MSE (PMSE) relative to information
criteria (IC) using rolling estimation windows

Method \ System I II III IV V

Pmax Lasso SE -0.00 0.03 0.14 0.07 0.05
AIC Lasso SE 0.01 -0.09 -0.05 -0.06 -0.35
BIC Lasso SE 0.00 -0.01 0.00 0.01 0.03
Pmax Lasso 0.03 0.07 0.09 0.04 0.00
AIC Lasso 0.01 -0.11 -0.04 -0.08 -0.45
BIC Lasso -0.01 0.01 -0.00 -0.00 0.00
Pmax Elastic Net 0.03 0.08 0.07 0.06 0.02
AIC Elastic Net 0.01 -0.10 -0.06 -0.07 -0.44
BIC Elastic Net -0.00 -0.00 -0.00 0.01 0.02
Pmax RR all 0.10 0.43 0.58 0.63 0.67
AIC RR all 0.01 0.10 0.05 0.11 0.00
BIC RR all 0.00 0.05 0.02 0.03 0.06
AIC RR allbutdiag 0.01 0.10 0.04 0.09 0.00
BIC RR allbutdiag 0.00 0.06 0.01 0.03 0.13
Pmax Bayes 0.02 0.12 0.06 0.08 0.09
AIC Bayes 0.01 -0.05 -0.04 -0.03 -0.34
BIC Bayes -0.00 0.01 0.00 0.00 0.02

Note: Relative performance is computed as (GFESMPMSE/GFESMIC) − 1.
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