
Peitz, Martin; Schuett, Florian

Working Paper

Net neutrality and inflation of traffic

Working Paper Series, No. 15-05

Provided in Cooperation with:
University of Mannheim, Department of Economics

Suggested Citation: Peitz, Martin; Schuett, Florian (2015) : Net neutrality and inflation of traffic,
Working Paper Series, No. 15-05, University of Mannheim, Department of Economics, Mannheim,
https://nbn-resolving.de/urn:nbn:de:bsz:180-madoc-375355

This Version is available at:
https://hdl.handle.net/10419/129587

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://nbn-resolving.de/urn:nbn:de:bsz:180-madoc-375355%0A
https://hdl.handle.net/10419/129587
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


 
 
 
 
 
 
 
 
 
 
 

University of Mannheim / Department of Economics 
 

Working Paper Series 
 
 
 
 
 
 
 
 

 
Net neutrality and inflation of traffic 

 
Martin Peitz     Florian Schuett 

 
 
 

Working Paper 15-05 
 
 
 

February 2015  
 



Net neutrality and inflation of traffic∗

Martin Peitz† Florian Schuett‡

First version: April 2013; this version: February 2015

Abstract

Under strict net neutrality Internet service providers (ISPs) are required to carry
data without any differentiation and at no cost to the content provider. We provide
a simple framework with a monopoly ISP to evaluate different net neutrality rules.
Content differs in its sensitivity to delay. Content providers can use congestion
control techniques to reduce delay for their content, but do not take into account
the effect of their decisions on the aggregate volume of traffic. As a result, strict net
neutrality often leads to socially inefficient traffic inflation. We show that piece-meal
departures from net neutrality, such as transmission fees or prioritization based on
sensitivity to delay, do not necessarily improve efficiency. However, allowing the ISP
to introduce bandwidth tiering and charge for prioritized delivery can implement the
efficient allocation.
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1 Introduction

The net neutrality debate has focused on the question whether users’ ISPs are allowed to
prioritize certain types of services, and to charge content providers for the delivery of traffic,
possibly dependent on the type of content and the priority which is assigned to the data
packets. The debate within economics has focused on allocative consequences of various
net neutrality rules. Apart from vertical foreclosure concerns, possible inefficiencies in the
regulated or unregulated market may be due to market power, external effects between
content providers and users, as well as direct network externalities arising from congestion
in the network. The present paper adds to this debate by considering the incentives of
content providers to distort traffic volumes in a setting with a monopoly ISP. We show
that, under some conditions, strict net neutrality leads to traffic inflation and a loss in
social welfare compared to the first best, while the first best can be implemented in a
regime with bandwidth tiering and prioritized delivery.

Our analysis is motivated by three observations. First, there are congestion issues
on the Internet. The increase in high-bandwidth applications and content, combined
with limited last-mile capacity, results in congestion during peak hours, leading to delay.
This issue is of particular importance on mobile networks. Second, some content is more
sensitive to delay than other content. Time-sensitive content includes voice and video
telephony, online games, real-time video streaming, and certain cloud services; less time-
sensitive content includes email, web browsing, and file sharing, where modest delays in
transmission do not matter much. Third, and most importantly, certain techniques used to
minimize delay – so called congestion control techniques – affect the volume of traffic on the
network. Some of them work by creating additional traffic; these include forward-error-
correction (FEC) schemes, used to protect video packets,1 and multiple multicast trees
to provide redundant paths. Roughly speaking, these techniques introduce redundancies
which increase packet size but partially insure the sender against packet losses. Similarly,
Google has been reported to have implemented a technique to preload YouTube video clips
on a user’s device before that user has pressed the play button, based on information it
has about this user (see Economist, 2014). Since the user will not play all those preloaded
clips, this tends to increase traffic. Other congestion control techniques reduce the traffic
volume, for example by lowering the quality of the sender’s product; alternatively, senders
may use compression techniques. Several providers of over-the-top content (such as Netflix)
are known to adjust the quality of their service to the risk of congestion.

From an economic point of view, the use of congestion control and compression tech-
niques causes externalities in traffic generation. Congestion control techniques that create
additional traffic reduce individual delay but increase aggregate congestion on the net-
work. Techniques that reduce traffic volumes, including compression, reduce individual
traffic (usually at a cost to the sender) but also decrease aggregate congestion. In either
of these environments, private and social incentives may not be aligned. Inefficiencies may
arise for two reasons: (1) misallocation of traffic and (2) traffic inflation. Under a strict
version of net neutrality (best effort for all traffic, no prioritization, zero prices on the con-

1Skype has been reported to react to persistent packet losses by increasing packet size (De Cicco et al.,
2011).
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tent side), the network essentially constitutes an unmanaged common property resource.
Net neutrality therefore leads to excessive exploitation by CPs (traffic inflation). In ad-
dition, the symmetric treatment of time-sensitive and time-insensitive traffic is inefficient
(misallocation of traffic). By charging for traffic and handling time-sensitive traffic with
priority, the ISP can serve as the guardian of the common property resource. This possibly
reduces redundancies and other sources of inflation and gives time-insensitive traffic lower
priority, which increases the capacity effectively available for time-sensitive traffic.

In our formal framework, there may be one or two lanes of traffic. The speed with
which traffic flows is endogenous and can be controlled by the ISP subject to the constraints
imposed by the regulator. There are two types of content: time-sensitive content and time-
insensitive content. Time-sensitive content must be delivered without delay for consumers
to derive utility from it; for time-insensitive content, delay does not matter. The capacity
(bandwidth) of the ISP’s network is fixed and constitutes a bottleneck needed to reach
consumers. We assume that the probability that a given packet arrives without delay
depends on the ratio of bandwidth to total traffic. To obtain a simple, tractable setting, we
postulate that content providers can enhance the likelihood of on-time delivery by sending
packets more than once. This increases the probability that at least one packet arrives on
time, but also increases total traffic, and hence network congestion. In an extension we
also consider the use of congestion control techniques that reduce the individual volume
of traffic.

The first-best allocation in this framework always involves prioritization of time-sensitive
content, with the volume of traffic adjusted so as to avoid congestion. In a second-best
world, where all content must be carried in a single transport class (best effort), some
congestion arising from traffic inflation is generally optimal, as it increases delivery proba-
bilities for time-sensitive content at the expense of time-insensitive content. We show that
net neutrality regulation leads to an equilibrium level of traffic that generally exceeds the
second-best level, as content providers fail to internalize the effect of their own traffic on
the overall network congestion.

We consider several departures from the above net neutrality rules – namely, deep
packet inspection, transmission fees, and bandwidth tiering – and show that they can
increase efficiency. Deep packet inspection allows the ISP to distinguish different types of
content and prioritize time-sensitive content. Although this can lead to efficient outcomes
in some cases, there are other cases in which time-sensitive CPs dissipate the reductions
in delay by increasing traffic, and overall delivery probabilities may even be lower than
under net neutrality.

When the ISP can charge a uniform transmission fee but cannot prioritize traffic, it
sets the fee so as to price out congestion. The second-best traffic volume generally does
involve some congestion, however, implying that transmission fees tend to be excessive. A
price cap can implement the second-best efficient level.

Better outcomes can be achieved under bandwidth tiering. If the ISP can route traffic
through two tiers – a fast lane and a slow lane – and charge differentiated fees for these tiers,
the fee structure that maximizes the ISP’s profit also leads to efficiency, as it implements
the first-best allocation.

Related Literature. Our paper draws on the old literature on common property
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resources and on recent work on information congestion (Van Zandt, 2004, and, more
closely related, Anderson and De Palma, 2009). It also links to work on gatekeepers on the
Internet. Anderson and De Palma show, among other things, that a monopoly gatekeeper
completely prices out congestion. In their setting, the gatekeeper sets a uniform price for
all incoming traffic, which allows to restrict traffic to the capacity of consumers to process
information. In our context, it is not the limited processing ability of consumers, but the
limited capacity of the network or, more precisely, of switches and interconnection points,
which limits the pass-on of information. In contrast to previous work on information
congestion, in response to the regulatory intervention in telecommunications markets, we
draw a richer picture of the instruments available to the ISP as the gatekeeper. We also
show that monopoly pricing is efficient in some regimes but not in others.

The paper contributes to the literature on net neutrality (see, e.g., Hermalin and Katz,
2007; Economides and T̊ag, 2012; Choi and Kim, 2010; Cheng et al., 2011; Economides and
Hermalin, 2012; Jullien and Sand-Zantman, 2013; Bourreau et al., 2014; Kourandi et al. ,
2014). We borrow from Economides and Hermalin (2012) the notion that delivery speed
is related to the ratio of traffic to bandwidth. Like Choi and Kim (2010) and Krämer and
Wiewiorra (2012), we provide a rationale for why prioritization and quality differentiation
may be efficiency enhancing.2

Choi et al. (2014) consider heterogeneous content providers and allow for intercon-
nection between competing ISPs. At an initial stage, ISPs agree on quality levels and
interconnection fees. Then, absent net neutrality, competing ISPs set menus of delivery
qualities and subscription prices on the content provider side and CPs make subscription
decisions. Afterwards, prices on the consumer side are set and consumers make sub-
scription decisions. In their model, competing ISPs agree on access charges and delivery
qualities such that they behave like monopoly bottlenecks against CPs. Without net neu-
trality ISPs have more instruments to extract CPs’ surplus because under net neutrality,
they are forced to provide one level of quality for all CPs. In equilibrium without net
neutrality regulation, ISPs may focus on extracting surplus on the content provider side,
while they may focus on extracting consumer surplus under net neutrality. Welfare re-
sults are, however, less clear. More closely related, Choi et al. (2013) consider congestion
externalities on the Internet. They investigate the interplay of prioritized delivery and
quality of service (QoS) investments by content providers, such as improved compression
technologies. They show that, given a small network capacity, prioritization can facilitate
entry of high-bandwidth content with the negative side effect that congestion of other con-
tent increases. Given a large network capacity, entry is less of an issue and prioritization
allows for a faster delivery of time-sensitive content which tends to increase welfare. How-
ever, content providers have less incentive to invest in quality of service. This suggests a
differential treatment of traffic on mobile versus fixed networks.

Our paper can be seen as complementary to Choi et al. (2013). Unlike us, they model
congestion using an M/M/1 queuing model. Furthermore, their setting is asymmetric in
the sense that it features a single high-bandwidth CP who can invest in QoS improvements;

2Including network investments may overturn the result in the model by Choi and Kim (2010). As
they show, a monopoly ISP may invest more in capacity under net neutrality because expanding capacity
reduces the CPs’ willingness to pay for prioritization of their services.
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all other CPs have low-bandwidth content and cannot invest in QoS. Yet the other CPs’
content is sensitive to congestion as well, albeit less so than the major CP’s. By contrast,
in our model there is a continuum of time-sensitive CPs who are all symmetric in both
their ability to use congestion control techniques and the sensitivity of their content to
delay. Time-insensitive CPs cannot use congestion control but are unaffected by delay.
Moreover, we provide a rich picture of the short-term effects of various regulatory regimes
that are part of the net neutrality debate, whereas Choi et al. (2013) focus on the effects
of prioritization and how they differ depending on the type of network.

The remainder of the paper is organized as follows. Section 2 lays out the model,
introduces congestion and considers two efficiency benchmarks. Section 3 considers equi-
librium traffic volumes under net neutrality and various other regimes. Section 4 discusses
some extensions. In particular, it is shown that our main insights are robust in alternative
settings in which firms can reduce individual traffic volume at a cost (through the use of
compression techniques or quality reduction). Section 5 concludes. Proofs are relegated
to the Appendix.

2 The model and efficiency

2.1 The model

We consider a market for Internet services which is intermediated by a monopoly ISP
delivering content from content providers to users. There are thus three types of actors:
consumers, content providers, and the monopoly ISP. Consumers decide on subscription
and the purchase and use of content; content providers sell their content to consumers and
decide on the intensity of use of the Internet and possibly the type of contract offered by
the ISP. Consumers are homogeneous with respect to content and derive a utility u from
each content provider whose content is delivered on time.

There is a continuum of content providers whose mass is normalized to 1. Content
providers come in two categories. Content providers of category 1 offer time-sensitive
content, while content providers of category 2 offer time-insensitive content. Content of
category 1 arrives “in good order” with probability γ, which depends on the capacity of
the network, on the decision of the content provider in question about how to deliver
the content, and on the total volume of traffic. Content providers of category 2 are
not constrained by the limited capacity and their content is delivered with probability 1
since their delivery can be delayed to a moment in which there is no congestion in the
network. A fraction µ of content providers is of category 1, while the remaining fraction
1− µ is of category 2. This is arguably the simplest way to model heterogeneity between
content providers. The heterogeneity reflects the fact that some types of content such as
live digital television and video telephony are highly time-sensitive, while other types of
content such as email and delayed on-demand movies and most streaming services are less
time-sensitive. There is not much loss if email and delayed on-demand movies arrive a
bit later, and most streaming services can be buffered and thus do not require immediate
delivery from the point of view of consumers. Implicit in our model is that traffic volumes
vary over time with the feature that there are always periods of spare capacity during
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which time-insensitive content can be delivered without any loss of value.
The monopoly ISP offers subscriptions to consumers and, depending on the regime it is

subject to, may offer contracts to content providers. In our setting the capacity of the ISP
is given. Thus, an excessive use by content providers may lead to delays and a deterioration
of the surplus consumers derive from time-sensitive content. More specifically, a content
provider with time-sensitive content may increase its probability of being delivered in time,
γ, by sending its content more than once.

The network may be congested, which depends on how content is treated by the ISP and
how much content is sent by content providers. Network capacity constitutes a common
property resource. The contribution of our base model to the net neutrality debate is to
allow content providers to inflate traffic in order to increase their probability of successful
delivery; the traffic volume of CP i is denoted by αi, the total volume of traffic by A. The
following subsection will specify the behavior of content providers and derive the delivery
probability γ.

Motivated by the net neutrality discussion, we will consider the following regulatory
regimes:

• regime 1: strict net neutrality (only fast lane);

• regime 2: deep packet inspection (fast lane and slow lane, with priority according to
needs for speed);

• regime 3: uniform pricing on the content provider side (only fast lane, but at a price);

• regime 4: regulated tiering with zero pricing restriction for non-prioritized packages
(fast lane and slow lane, use of slow lane free);

• regime 5: unregulated tiering without price restrictions (fast lane and slow lane,
payments depending on lane).

Regime 1 is currently largely in place due to the historical development of the Internet
if one abstracts from content delivery networks.3 Regime 2 is partly practiced with respect
to TV streaming services and VoIP. Regime 4 is foreseen in regulation e.g. in the European
Union. Regimes 3 and 5 are currently not part of the policy debate, but appear natural
possibilities in a two-sided market setting.

The timing of events is as follows:

1. ISP announces subscription price s and transmission fee t per unit of content, which
may be conditioned on priority classes.

2. CPs decide whether to be active and choose pi and αi.

3. Consumers choose whether to buy Internet access from ISP at subscription price s
and which content to request.

3This is true, in particular, under the FCC’s new net neutrality rules, which prohibit prioritization
agreements between ISPs and CPs.
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4. Content of CP i is delivered to consumers on time with probability γ(αi, A). For each
requested unit delivered on time consumers pay pi to CP i; for each unit of traffic
carried CPs pay t to the ISP (possibly conditional on priority classes). Consumers
realize net utilities, CPs and ISP obtain profits.

We solve for subgame perfect Nash equilibria (SPNE) of the associated game.

2.2 Congestion

Since we consider a market with homogeneous viewers who have unit demand for each
content i and whose valuation for each such unit is u, each content provider i will set
pi = u, which is collected only if the content reaches the consumer (which happens with
probability γ).4 The profit of a time-sensitive content provider is γ(αi, A)u − kαi. To
isolate the effect of redundancies and multiple routes, we consider the stylized situation in
which a content provider has to deliver a single packet. We assume that the probability
that a given packet is delivered on time is equal to the ratio between the ISP’s bandwidth
and the total traffic A carried on the network. Sending a packet several times increases the
probability that at least one packet arrives on time. Here, packets are perfect substitutes
in the sense that the consumers’ utility is the same if the content is delivered once or
twice on time. Let B denote the ISP’s available bandwidth (or network capacity). The
probability of reaching a consumer when sending a package αi times is

γ(αi, A) = δ(A)

αi∑
τ=1

(1− δ(A))τ−1 = 1− (1− δ(A))αi , (1)

where

δ(A) = min

{
B

A
, 1

}
. (2)

We distinguish between two systems of content delivery: a one-tiered system, in which
all traffic is routed according to the best-effort principle, and a two-tiered system, in
which some traffic is prioritized in times of bandwidth shortage. In a one-tiered system
A = µα + 1 − µ, where α ≡ (

∫ µ
0
αidi)/µ is the average number of packets sent by time-

sensitive CPs. By contrast, in a two-tiered system time-sensitive traffic is prioritized and
A = µα.

Suppose that each content provider can send a package once, twice, or not at all, i.e.,
αi ∈ {0, 1, 2}.5 Assume moreover that B < 1, which implies that in a one-tiered system,
if each CP sends one packet (so A = 1), not all time-sensitive content can be delivered on
time.

4To not further increase the number of parameters, the value u is assumed to be independent of the
type of traffic. Clearly, introducing different values of u depending on the type would affect the allocation
of capacity between the two types of content. This applies to the equilibrium capacity allocation as well
as the capacity allocation in the first-best and second-best benchmark.

5Sending a package twice can be interpreted as including redundancies, even though in practice redun-
dancies tend to increase the traffic volume by less than 100 %.
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At stage 4, if consumers have purchased Internet access, they consume all content for
which u ≥ pi (presuming that the payment is only made if the delivery occurs on time).
Suppose that a fraction λn of time-sensitive CPs, n = 0, 1, 2, chooses αi = n. Then,
consumers purchase Internet access if and only if∫ µ

0

[λ2γ(2, A) + λ1γ(1, A)](u− pi)di+

∫ 1

µ

(u− pi)di ≥ s.

Since, in SPNE, pi = u for all i, this condition becomes s ≤ 0. At stage 2, the ISP thus
chooses s = 0. This implies that if ISPs can only charge on the consumer side, content
providers absorb all the surplus generated from delivering content and the monopoly ISP
will make zero revenues.6

2.3 Efficiency: first-best and second-best traffic volumes

We begin by considering two benchmarks. In the stylized environment we study, time-
insensitive content does not need to be delivered on time for consumers to derive utility
from it. This implies that the first best always involves prioritization of time-sensitive
content, i.e., content delivery is two-tiered and the probability of delivery for a packet that
is sent αi times is γ(αi, µα). We also consider a second best world in which all content has
to be routed through a single tier according to a best-effort principle; the probability of
delivery for a packet that is sent αi times is then given by γ(αi, µα + 1− µ).

Total surplus in the market for time-insensitive content is always equal to (1−µ)(u−k),
independent of the number of tiers and the traffic volume. In the market for time-sensitive
content, total surplus as a function of α is given by7

W (α) =

{
uαγ(1, A)− αk for α ∈ [0, 1]
u [(α− 1)γ(2, A) + (2− α)γ(1, A)]− αk for α ∈ (1, 2].

(3)

To understand the first line, note that when a share λ1 of time sensitive CPs choose αi = 1
and a share λ0 choose αi = 0, then α = λ1. To understand the second line, observe that
when a share λ1 of time-sensitive CPs choose αi = 1 and a share λ2 = 1−λ1 choose αi = 2,
then α = λ1 + 2(1− λ1) = 2− λ1. Thus, we can replace λ1 by 2− α and λ2 by α− 1.

Let α̂dp denote the level of traffic in a two-tiered system above which the delivery
probability falls below 1, i.e., α̂dp is such that δ(µα) = 1 for α ≤ α̂dp and δ(µα) < 1 for
α > α̂dp. Similarly, let α̂nn denote the level of traffic in a one-tiered system above which the
delivery probability drops below 1. (The reason for the use of the subscripts dp and nn will
become clear below.) We have that α̂dp = B/µ and α̂nn = max{0, (B− (1−µ))/µ}. If the

6While we restrict our analysis to fixed capacity of the ISP, under net neutrality, an immediate conse-
quence of this finding is that in this admittedly extreme setting the ISP has no strict incentive to increase
capacity even if expanding capacity is costless.

7The function W reflects the fact that it can never be socially optimal to have CPs randomize between
0 and 2 packages. Consider for example a situation in which all CPs send 1 package. One may wonder
whether it can be optimal to have some send 2 packages instead, and others zero, while leaving α un-
changed. This is not the case because the increase in probability of delivery for those sending 2 packages
is less than the decrease for those sending 0: γ(2, A)− γ(1, A) < γ(1, A) ⇔ δ(A)(1− δ(A)) < δ(A).
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traffic volume is less than α̂, then all content is delivered on time; otherwise some content
is delayed. It is readily seen that α̂dp ≥ α̂nn: when only time-sensitive content is carried,
the volume needed to cause congestion is larger. The following lemmas characterize first-
best and second-best traffic volumes, respectively. They provide natural benchmarks to
compare equilibrium outcomes with in the various regimes considered below.

Throughout the paper we will refer to situations with α ∈ [0, 1) as partial availability
and to situations with α = 1 as full availability. This relates to whether or not all time-
sensitive content is available to consumers. Similarly, we will refer to situations with
α ∈ (1, 2) as partial duplication and to situations with α = 2 as full duplication, which
relates to whether some or all time-sensitive CPs send their content twice.8

Lemma 1 The first-best traffic volume αFB is such that there is no congestion and no
duplication, i.e., each CP’s content is sent at most once:

αFB =

{
α̂dp if B < µ (partial availability)
1 if B ≥ µ (full availability).

According to Lemma 1, the first-best level of traffic always avoids congestion. A social
planner prefers a situation where all available content is delivered on time but some content
is unavailable to a situation where more content is available but some of it delivered with
delay. The intuition for this result is that, for α ≥ α̂dp, the elasticity (in absolute value)
of the delivery probability δ equals one:

−dδ/dα
δ/α

=
µα

B
δ(µα) = 1.

This implies that increasing α beyond α̂dp leaves the amount of time-sensitive content
delivered on time – and thus gross consumer surplus – unchanged (i.e., αδ(µα) is invariant
with respect to α). The increase in available content is exactly offset by a decrease in
delivery probability. While it has no effect on consumer surplus, the increase raises cost
(αk) and is therefore undesirable from a total surplus perspective.

Let us now determine the efficient allocation under the constraint that all traffic is
routed according to the best-effort principle and that the traffic volume of time-insensitive
content is given. To characterize the second-best level of traffic, let w(δ) ≡ δ2(B+ 1−µ−
2δ)/B and δmax ≡ arg maxB/(1+µ)≤δ≤B w(δ).

Lemma 2 The second-best traffic volume αSB may involve congestion and duplication:
there exists k̂ ∈ [min{uw(B/(1 + µ)), uB(1− µ2 −B)/(1 + µ)2}, uw(δmax)] such that,

1. for k/u ≥ min{(1− µ)/B,B/(1− µ)}, αSB = α̂nn (partial availability),

2. for (1− µ)B ≤ k/u < min{(1− µ)/B,B/(1− µ)}, αSB ∈ (α̂nn, 1) solves

1− µ
B

(
δ(µαSB + 1− µ)

)2
=
k

u
(partial availability), (4)

8In situations with (partial or full) duplication, we have full availability.
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3. for k̂/u ≤ k/u < (1− µ)B, αSB = 1 (full availability),

4. for min{w(B/(1 + µ)), B(1− µ2 −B)/(1 + µ)2} ≤ k/u < k̂/u, αSB ∈ (1, 2) solves

w
(
δ
(
µαSB + 1− µ

))
=
k

u
(partial duplication), (5)

5. for k/u ≤ min{w(B/(1 + µ)), B(1− µ2 −B)/(1 + µ)2}, αSB = 2 (full duplication).

Lemma 2 shows that when all traffic needs to be routed according to a best-effort
principle, the surplus-maximizing traffic volume may be so high as to cause congestion on
the network; moreover, the planner may want to send time-sensitive content more than
once. This is in contrast with the result of Lemma 1, showing that when time-sensitive
content can be prioritized, the planner avoids congestion and duplication. Here, as the
cost k of sending packets decreases, the optimal volume of traffic tends to increase. This
result can again be related to the elasticity of the delivery probability:

−dδ/dα
δ/α

=
µα

B
δ(µα + 1− µ) =

µα

µα + 1− µ
< 1.

That is, raising α beyond α̂nn leads to an increase in the amount of time-sensitive content
delivered without delay.

The intuition for this result is that part of the congestion caused by increasing traffic
above α̂nn is borne by time-insensitive content. By definition, time-insensitive content
can be delayed without reducing consumer surplus. Although sending more time-sensitive
traffic creates congestion, part of this comes at the expense of time-insensitive content, for
which delay does not matter. This is worthwhile doing if k is sufficiently small.

To further illustrate, consider a hypothetical choice between two traffic volumes: A = B
(which corresponds to α = α̂nn) and A = 1 (which corresponds to α = 1). With the first
option, all content is delivered on time (δ(B) = 1). With the second option, only a fraction
B of time-sensitive content is delivered on time (δ(1) = B). Thus aggregate surplus (gross
of transmission costs) is uB with the first option and u[Bµ+ 1−µ] > uB with the second
option, where the inequality is due to B < 1.

3 Market equilibrium

3.1 Net neutrality

In a regime of net neutrality all content is routed through a single tier and content providers
do not make any payments to the consumers’ ISPs. In this regime we characterize equilib-
rium traffic. We look for a symmetric equilibrium in which all time-sensitive CPs behave
alike. This may involve randomizing between different αi ∈ {0, 1, 2} (which is equivalent
to fractions λn of time-sensitive CPs using pure strategies n). To begin, we make the
following assumption:

Assumption 1 k/u < B/(1− µ).

10



This is a minimal assumption for the model to be interesting. Otherwise, it is not
profitable for any time-sensitive CP to send a package even if all other time-sensitive CPs
send zero packages.

Each time-sensitive CP compares its profit from sending the package once, uγ(1, A)−k,
to the profit from sending it twice, uγ(2, A)−2k, or not at all (yielding zero), taking as given
total traffic A. For the purposes of the following lemma, let δ̄ = arg maxB/(1+µ)≤δ≤B δ(1−δ).

Lemma 3 Under net neutrality, depending on the parameters one or several symmetric
and possibly degenerate mixed-strategy equilibria exist. The equilibrium traffic volume αnn

can be characterized as follows:

1. for B < k/u < B/(1 − µ), there is a mixed-strategy equilibrium in which time-
sensitive CPs randomize over αi = 0 (probability 1 − αnn) and αi = 1 (probability
αnn), where αnn ∈ (α̂nn, 1) solves

δ(µαnn + 1− µ) =
k

u
(partial availability), (6)

2. for B(1−B) ≤ k/u ≤ B, there is a pure-strategy equilibrium in which all CPs choose
αi = 1 so that αnn = 1 (full availability),

3. for k/u ≤ B(1 + µ − B)/(1 + µ)2, there is a pure-strategy equilibrium in which all
time-sensitive CPs choose αi = 2 so that αnn = 2 (full duplication),

4. for min{B(1 − B), B(1 + µ − B)/(1 + µ)2} < k/u < δ̄(1 − δ̄), there are one or
two mixed-strategy equilibria in which time-sensitive CPs randomize over αi = 1
(probability 2− αnn) and αi = 2 (probability αnn − 1), where αnn ∈ (1, 2) solves

δ(µαnn + 1− µ) (1− δ(µαnn + 1− µ)) =
k

u
(partial duplication). (7)

No other symmetric equilibrium exists.

According to Lemma 3, for a given value of k/u, it is possible that there are multiple
equilibria. There can be multiple pure-strategy equilibria: for some parameter values,
both αnn = 1 and αnn = 2 form an equilibrium (namely, if B(1 + µ − B)/(1 + µ2) >
B(1− B)). There can also be multiple mixed-strategy equilibria: noting that, in general,
δ(1 − δ) is inverse U-shaped, with a maximum at δ = 1/2, we conclude that unless
1/2 /∈ (B/(1 +µ), B), the equation δ(A)(1− δ(A)) = k/u has two solutions, corresponding
to two different mixed-strategy equilibria αnn ∈ (1, 2). Finally, there can be situations with
(at least) one pure-strategy equilibrium and (at least) one mixed-strategy equilibrium.
Figure 1 depicts the case where there is a unique equilibrium for all values of k/u, and
αnn decreases (weakly) with k/u over the whole range. Figure 2 depicts the case where for
k/u ∈ (B(1−B), B(1 + µ−B)/(1 + µ)2), there are two pure-strategy equilibria (αnn = 1
and αnn = 2) as well as a mixed-strategy equilibrium with αnn ∈ (1, 2).

Drawing on Lemmas 2 and 3, the following proposition compares the equilibrium traffic
under net neutrality with the traffic volume that is second-best efficient.
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0 k/u
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B
1−µ

B(1+µ−B)
(1+µ)2

B(1−B) B

Figure 1: The equilibrium under net neutrality when B < 1/2

Proposition 1 The equilibrium level of traffic under net neutrality always exceeds the
second-best level: αnn ≥ αSB, with strict inequality for at least part of the parameter space.

According to Proposition 1, net neutrality generates inflation of traffic, leading to
excessive congestion of the network. Time-sensitive CPs do not internalize the effect of
the data they send on overall traffic, and therefore choose to send more than the socially
optimal number of packets.

3.2 Uniform transmission fee

Suppose that the ISP routes all traffic according to a best-efforts principle (no prioriti-
zation), but charges content providers a uniform transmission fee t per unit of traffic it
carries on its network. Type-1 (time-sensitive) CPs choose αi ∈ {0, 1, 2} to maximize

γ(αi, A)u− αi(k + t),

where A = µα + 1 − µ. Thus, for given t, the equilibrium is the same as under net
neutrality (see Subsection 3.1) replacing k by k + t, and the traffic from time-sensitive
CPs α(t) facing the ISP for a given t is equal to the corresponding equilibrium traffic.
Because of multiplicity of equilibria, we need to specify which equilibrium is selected for
each possible t in order for the ISP’s problem to be well defined. In what follows, we will
assume that whenever there are multiple equilibria, the one with the highest traffic volume
is selected. This is the most favorable selection rule for the ISP. We will then show that
despite this favorable rule, the ISP will always choose a transmission fee that prevents

12



αnn

0 k/u

2

1

B
1−µ

B(1+µ−B)
(1+µ)2

B(1−B) B

Figure 2: The equilibrium under net neutrality when B/(1 + µ) > 1/2

congestion. The inverse demand is given by

t(α) =


u− k for 0 ≤ α ≤ α̂nn
uδ(µα + 1− µ)− k for α̂nn < α ≤ 1
uδ̄(1− δ̄)− k for 1 < α ≤ α̃nn
uδ(µα + 1− µ)(1− δ(µα + 1− µ))− k for α̃nn < α ≤ 2,

(8)

where α̃nn = max{1, (2B − (1− µ))/µ}. The ISP’s problem is

max
0≤α≤2

t(α)(µα + 1− µ).

Using (8), we can compute

t′(α) =


0 for 0 ≤ α ≤ α̂nn
− µ
B
uδ2(µα + 1− µ) for α̂nn < α ≤ 1

0 for 1 < α ≤ α̃nn
− µ
B
uδ2(µα + 1− µ)(1− 2δ(µα + 1− µ)) for α̃nn < α ≤ 2,

(9)

from which we deduce the ISP’s marginal revenue, MR(α) = t′(α)(µα + 1− µ)) + µt(α),
noting that for µα+ 1−µ ≥ B (i.e., α ≥ α̂nn), we have (µα+ 1−µ)/B = 1/δ(µα+ 1−µ):

MR(α) =


µ(u− k) for 0 ≤ α ≤ α̂nn
−µk for α̂nn < α ≤ 1
µ(uδ̄(1− δ̄)− k) for 1 < α ≤ α̃nn
µ(uδ2(µα + 1− µ)− k) for α̃nn < α ≤ 2.

(10)

As the following proposition shows, the ISP always chooses α = α̂nn.
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Proposition 2 The transmission fee that maximizes the ISP’s profit prices out congestion;
i.e., t is such that α(t) = α̂nn.

If the ISP is allowed to charge a uniform transmission fee, it responds to traffic infla-
tion by charging a fee that eliminates congestion on its network. To see why, consider a
hypothetical choice for the ISP between traffic volume A = B (corresponding to α = α̂nn)
and A = 1 (corresponding to α = 1). With the first option, all content is delivered on
time (δ(B) = 1) but only a fraction of time-sensitive CPs are active. All active CPs are
willing to pay t(α̂nn) = u − k. The ISP’s profit is B(u − k). With the second option, all
CPs are active and time-sensitive content is delivered with probability δ(1) = B. Now,
the marginal CP is time-sensitive and has willingness to pay t(1) = Bu − k. The ISP’s
profit is Bu−k < B(u−k), where the inequality follows from B < 1. Although increasing
traffic beyond A = B increases the total amount of content delivered on time (see Section
2.3), unlike the planner the ISP only takes into account the effect on the marginal CP, who
happens to be time-sensitive. The increase in the amount of time-sensitive content deliv-
ered on time does not compensate the decrease in surplus extracted from time-insensitive
CPs.9

Recall that eliminating congestion entirely is generally not socially optimal in a single-
tiered system. In other words, the fee chosen by the ISP tends to exceed the fee a social
planner would choose. The profit-maximizing transmission fee implements the second-best
level of traffic αSB only if k/u ≥ min{(1− µ)/B,B/(1− µ)}. If instead k/u < min{(1−
µ)/B,B/(1−µ)}, then the profit-maximizing transmission fee leads to an inefficiently low
level of traffic. Thus, it is not a priori clear whether allowing the ISP to charge a uniform
transmission fee is better than net neutrality: while net neutrality leads to traffic inflation,
freely set transmission fees lead to excessive contraction of traffic. The ISP may go as far
as to price time-sensitive content out of the market (this happens if B ≤ 1− µ).

The flip side of this argument is that a cap on the transmission fee can always implement
the second-best efficient level of traffic. Thus, a departure from net neutrality that allows
ISPs to set uniform transmission fees should be accompanied by a regulatory intervention
in the form of a price cap.

3.3 Deep packet inspection

Deep packet inspection allows the ISP to identify whether a given packet contains time-
sensitive or time-insensitive content. Therefore, under deep packet inspection, all available
bandwidth in times of shortage can be allocated to time-sensitive content.10 The proba-
bility that a given packet is delivered without delay is δ(µα). Thus, time-sensitive content

9The amount of time-sensitive traffic delivered on time is µα̂nn when A = B and µB when A = 1. The
latter exceeds the former forB < 1 and µ ≤ 1. Consider the caseB > 1−µ so that α̂nn > 0. Then, as traffic
goes fromA = B toA = 1, the ISP’s profit from time-sensitive CPs increases by (1−µ)(1−B)u−k(1−B)/µ.
However, the ISP’s profit from time-insensitive CPs decreases by (1−µ)(1−B)u. Hence, for any k > 0, the
increase in profit from time-sensitive CPs is strictly less than the decrease in profit from time-insensitive
CPs.

10We assume that the ISP carries out this prioritization although in the absence of transmission fees it
does not benefit from this.
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has a higher probability of being delivered on time for any given α. We assume that
B < 2µ, so that not all content is delivered on time if all time-sensitive CPs send their
content twice. Letting ¯̄δ = arg maxB/2µ≤δ≤B/µ δ(1− δ), the following lemma characterizes
the equilibrium under deep packet inspection.

Lemma 4 Under deep packet inspection, depending on the parameters, one or several
possibly degenerate symmetric mixed-strategy equilibria exist. The equilibrium traffic αdp

can be characterized as follows:

1. for k/u > B/µ, there is a mixed-strategy equilibrium in which time-sensitive CPs
randomize over αi = 0 (probability 1 − αdp) and αi = 1 (probability αdp), where
αdp ∈ (0, 1) solves

δ(µαdp) =
k

u
(partial availability), (11)

2. for B(µ−B)/µ2 ≤ k/u ≤ B/µ, there is a pure-strategy equilibrium in which all CPs
choose αi = 1 so that αdp = 1 (full availability),

3. for k/u ≤ B(2µ − B)/4µ2, there is a pure-strategy equilibrium in which all time-
sensitive CPs choose αi = 2 so that αdp = 2 (full duplication),

4. for min{B(µ−B)/µ2, B(2µ−B)/4µ2} < k/u < ¯̄δ(1− ¯̄δ), there are one or two mixed-
strategy equilibria in which time-sensitive CPs randomize over αi = 1 (probability
2− αdp) and αi = 2 (probability αdp − 1), where αdp ∈ (1, 2) solves

δ(µαdp)
(
1− δ(µαdp)

)
=
k

u
(partial duplication). (12)

No other symmetric equilibria exist.

Comparing the equilibrium level of traffic described in Lemma 4 with the first-best
level identified in Lemma 1, the following proposition identifies a case in which deep packet
inspection leads to efficiency.

Proposition 3 If B ≥ µ, there exists an equilibrium under deep packet inspection in
which the first-best level of traffic is transmitted irrespective of k/u; i.e., αdp = αFB = 1.

Proposition 3 shows that deep packet inspection has the potential to alleviate traffic
inflation. When B ≥ µ and each CP sends one packet, then all content arrives on time.
Thus, given the other CPs’ behavior, no CP has an incentive to deviate and send more
than one packet, regardless of k/u. Under net neutrality, even if B ≥ µ, the equilibrium
may involve substantial inflation; in particular, full duplication (αnn = 2) may occur if k/u
is low. In such a situation, introducing deep packet inspection can reduce traffic inflation
and eliminate congestion, resulting in the efficient outcome (subject to multiplicity of
equilibria and equilibrium selection).

A sufficient condition for deep packet inspection to improve efficiency is that αdp ≤
αnn, but this is not necessarily the case. Deep packet inspection can actually lead time-
sensitive CPs to increase the number of packets they send, at least partially dissipating
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the efficiency gains from the prioritization of time-sensitive content. Suppose that CPs
play a mixed-strategy equilibrium with α ∈ (0, 1) under both net neutrality and deep
packet inspection.11 From (6) and (11), it must then be that δ(µαnn + 1 − µ) = δ(µαdp)
or, equivalently,

µαnn + 1− µ = µαdp.

Thus, the total traffic on the network (in times of shortage) is the same in both regimes.
Intuitively, for CPs to be indifferent, the delivery probability for a given packet must be
the same in both regimes, which requires higher volumes of time-sensitive traffic under
deep packet inspection; i.e., αdp > αnn.

What we are ultimately interested in is whether deep packet inspection increases the
overall amount of content delivered on time, which could be the case even if traffic increases.
Consider again the situation where CPs play equivalent mixed-strategy equilibria. Even
though total traffic (and thus the probability of delivery for a given packet) is the same
under both regimes, there is a a larger proportion of time-sensitive CPs sending their
packets (αdp > αnn). Thus the amount of delivered content is higher under deep packet
inspection than under net neutrality in this case.

The above finding does not hold for all parameters; there are cases in which deep
packet inspection does not increase delivery probabilities and even decreases them, as we
show by example. Suppose that αnn = 1 and αdp = 2 are the respective equilibria under
net neutrality and deep packet inspection; i.e., time-sensitive CPs generate twice as much
traffic under deep packet inspection as under net neutrality. This situation can arise if
B < 2µ and

B(1−B) ≤ k

u
≤ B

2µ

(
1− B

2µ

)
,

which to be possible, assuming that total traffic is greater under deep packet inspec-
tion (i.e., 2µ > 1), requires 2µ/(1 + 2µ) < B. The probability of delivery under net
neutrality is then γ(1, 1) = B while under deep packet inspection it is γ(2, 2µ) = 1 −
(1 − B/(2µ))2. Thus, the probability of delivery is higher under net neutrality if B >
1 − (1 − B/(2µ))2 which is equivalent to B < 4µ(1 − µ). A value of B satisfying
2µ/(1 + 2µ) < B < 4µ(1 − µ) exists if µ < (1 +

√
5)/4 ≈ 0.81. The following propo-

sition summarizes the above finding.

Proposition 4 There are parameter constellations such that the equilibrium probability
of on-time delivery for time-sensitive content is lower under deep packet inspection than
under net neutrality.

While deep packet inspection may implement the efficient allocation, under some pa-
rameter constellations, deep packet inspection actually performs worse than (strict) net
neutrality. Thus, deep packet inspection alone cannot reliably fix the problem of traffic
inflation.

11This requires B/µ < k/u < B/(1− µ).
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3.4 Bandwidth tiering

Under bandwidth tiering the ISP can introduce two tiers of service (a fast, prioritized
and a slower best-effort lane), and charge different transmission fees in each tier (regime
5). The ISP divides its bandwidth B into a slow lane Bs and a fast lane Bf such that
Bs + Bf = B and Bf ≥ Bs ≥ 0, where, as previously, Bf should be interpreted as the
bandwidth allocated to priority service in times of shortage (and similarly for Bs and non-
priority service). We start with the general case in which both ts and tf may be positive.
Further below we look at regulated tiering, and, in particular, a zero-price rule for the
slower lane (regime 4) before determining the solution under unregulated tiering.

Clearly, we must have ts ≤ tf ; otherwise, no one would ever choose the slow lane.
Moreover, in the absence of minimum quality of service (QoS) requirements, the ISP has
an incentive to make the slow lane as slow as possible: on the one hand, the willingness
to pay of time-insensitive CPs is unaffected by Bs; on the other hand, the willingness to
pay of time-sensitive CPs is increasing in Bf . Thus, the ISP will set Bs = 0 and Bf = B.
(Note that this is efficient in our setup, as it does not mean that the slow lane will not
deliver, but rather that the slow lane delivers with delay in times of high traffic.)

The ISP’s problem is

max
ts,tf

(1− µ)ts + µα(tf )tf subject to ts ≤ tf ,

where µα(tf ) is the demand for priority service when only time-sensitive content is trans-
mitted via the fast lane. It is the same as the equilibrium traffic under deep packet
inspection, µαdp, as derived in Lemma 4, after replacing k by k + tf . Once again we as-
sume that whenever there are multiple equilibria, the one with the highest traffic volume
is selected. Under this selection rule, the inverse demand for traffic on the fast lane is

tf (α) =


u− k for 0 ≤ α ≤ min{1, α̂dp}
uδ(µα)− k for min{1, α̂dp} < α ≤ 1

u¯̄δ(1− ¯̄δ)− k for 1 < α ≤ α̃dp
uδ(µα)(1− δ(µα))− k for α̃dp < α ≤ 2,

(13)

where α̃dp = max{1, 2B/µ}.
The constraint ts ≤ tf must be binding at the ISP’s profit maximum. Time-sensitive

CPs will never switch to the slow lane since Bs = 0 means the probability of on-time
delivery in times of high traffic is zero. Hence, ts = tf , allowing us to write the ISP’s
problem as

max
α

(1− µ)tf (α) + µαtf (α),

from which we obtain marginal revenue

MR(α) = t′f (α)(µα + 1− µ) + µtf (α). (14)

Using (13) and the fact that δ′ = −(1/B)δ2, we can compute

t′(α) =


0 for 0 ≤ α ≤ min{1, α̂dp}
− µ
B
u(δ(µα))2 for min{1, α̂dp} < α ≤ 1

0 for 1 < α ≤ α̃dp
− µ
B
u(δ(µα))2(1− 2δ(µα)) for α̃dp < α ≤ 2.

(15)
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Noting that for µα ≥ B (i.e., α ≥ α̂dp), we have µα/B = 1/δ(µα), the ISP’s marginal
revenue is:

MR(α) =


µ(u− k) for 0 ≤ α ≤ min{1, α̂dp}
−µ(k + (1− µ) u

B
δ(µα)) for min{1, α̂dp} < α ≤ 1

µ
(
u¯̄δ(1− ¯̄δ

)
− k) for 1 < α ≤ α̃dp

µ
(
u(δ(µα))2

(
1− (1−µ)(1−2δ(µα))

B

)
− k
)

for α̃dp < α ≤ 2.

(16)

Before deriving the optimal transmission fee on the fast lane under unregulated tiering
we will first look at the case of regulated tiering (regime 4).

Regulated tiering. Consider a zero-price rule on the slow lane that restricts the ISP to
charging ts = 0. The ISP is free to choose tf , as well as Bs and Bf . As previously, it will
set Bs = 0 and Bf = B to maximize the surplus that can be extracted from time-sensitive
CPs. The ISP’s profit is πISP = µαtf (α), where tf (α) is defined in (13) and t′f as derived
in (15). From this we deduce marginal revenue MR(α) = µ(αt′f (α) + tf (α)),

MR(α) =


µ(u− k) for 0 ≤ α ≤ min{1, α̂dp}
−µk for min{1, α̂dp} < α ≤ 1

µ
(
u¯̄δ
(

1− ¯̄δ
)
− k
)

for 1 < α ≤ α̃dp

µ (u(δ(µα))2 − k) for α̃dp < α ≤ 2.

(17)

The following lemma reports the profit-maximizing transmission fees under bandwidth
tiering with and without regulatory restrictions on the price of the slow lane.

Proposition 5 Irrespective of regulation, the profit-maximizing transmission fee on the
fast lane prices out congestion, i.e., tf is such that α = min{1, α̂dp}. The profit-maximizing
transmission fee on the slow lane, if unregulated, is ts = tf .

This result is reminiscent of Anderson and De Palma (2009), where a monopoly gate-
keeper prices out information congestion. For a better understanding, it is useful to look
at the ISP’s choice between implementing two levels of traffic on the fast lane, A = B (i.e.,
α = B/µ) and A = µ (i.e., α = 1), assuming B < µ. With the first option, all content
arrives on time but only a fraction of time-sensitive CPs are active. Active CPs are willing
to pay tf (B/µ) = u− k, so the ISP’s profit from the fast lane is (B/µ)(u− k). With the
second option, all time-sensitive CPs are active but their content arrives on time only with
probability B/µ. Thus their willingness to pay is tf (1) = (B/µ)u− k, and the ISP’s profit
from the fast lane is (B/µ)u − k < (B/µ)(u − k) (since, by assumption, B < µ). The
intuition is that increasing α leaves the amount of content delivered on time unchanged,
but in the second case more content is being sent so costs are higher.

Unregulated tiering. Proposition 5 shows that the ISP will prevent congestion on the
network also under bandwidth tiering; this holds independently of regulatory restrictions
on the price of the slow lane, ts. If prices are unregulated the ISP will price the slow lane
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exactly as (or just marginally below) the fast lane, so that time-insensitive CPs choose the
slow lane and time-sensitive ones, for whom the slow lane is not an option, choose the fast
lane.12

Comparing the equilibrium outcome when the ISP is allowed to charge for the fast lane
to the first-best solution identified in Lemma 1, we see that the prices that maximize the
ISP’s profits implement the efficient solution: time-insensitive content is routed through
the slow lane, time-sensitive content is routed through the fast lane, and the volume of
traffic is at the efficient level: α = min{1, α̂dp}. Unlike in the case of a uniform transmission
fee, no regulatory intervention is required to ensure efficiency. Allowing the ISP to do
bandwidth tiering and charge (at least) for the fast lane leads to the first-best allocation.

Note that in this simple model there is no efficiency rationale for implementing a
minimum QoS requirement, i.e., imposing a lower bound B on the bandwidth allocated to
the slow lane (so that Bs ≥ B).

4 Extensions

4.1 Congestion control techniques that reduce traffic

In our base model it is assumed that the congestion control technique available to content
providers is such that individual delay can be reduced only at the expense of increasing
the volume of traffic. In this subsection, we instead consider techniques that decrease the
volume of traffic but have other drawbacks for the content provider: namely, compression
and quality reduction. We modify the basic model by assuming that time-sensitive content
providers have two packets of content to deliver, and that both must arrive on time for
consumers to derive utility from the content. Time-insensitive CPs continue to send a
fixed volume of traffic, which we set equal to one unit per CP. This reflects the idea that
time-sensitive content is often more bandwidth-heavy as well (this is the case, e.g., for
video telephony and online gaming). If a time-sensitive CP sends its content without
compression and in high quality, the probability that both packets arrive on time is δ(A)2,
and the CP’s payoff is uδ(A)2− 2k. In the following subsections, we consider compression
and quality reduction as two alternative ways of trimming down the data volume of time-
sensitive content and thereby enhancing the probability of on-time delivery.

4.1.1 Compression

Suppose that CPs can make use of a compression technology that reduces the number of
packets required to transmit time-sensitive content from two to one. Time-sensitive CPs
have to pay c per packet to use such a technology. With compression, the probability that
the content arrives on time is thus δ(A), and the CP’s payoff is uδ(A) − k − c. Assume
c > k (otherwise sending one compressed packet would always be cheaper than sending

12The fact that both lanes are priced the same is an artefact of our somewhat extreme assumption that
time-sensitive content is never delivered on time on the slow lane and that time-insensitive content does
not benefit at all from faster delivery. In a more realistic setup, the result would be less extreme but
similar in spirit.
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two uncompressed packets) and c < min{uB/(1−µ), u}−k (otherwise compression would
never be profitable, even if no other time-sensitive CP were active).

Denote by λ1 the fraction of time-sensitive CPs investing in compression and by λ2
the fraction using uncompressed transmission. (Thus, 1− λ1 − λ2 gives the share of CPs
remaining inactive.) The social planner solves

max
λ1,λ2

λ1 (uδ(A)− c− k) + λ2
(
u(δ(A))2 − 2k

)
(18)

subject to λ1 + λ2 ≤ 1, where A = µ(λ1 + 2λ2) + 1 − µ in a one-tiered system and
A = µ(λ1 + 2λ2) in a two-tiered system. A more insightful way of looking at this problem
is the following: (a) fix δ and find the optimal combination of λ1 and λ2 for a given δ; (b)
find the optimal δ. Formally, part (a) entails, in a one-tiered system,

δ =
B

µ(λ1 + 2λ2) + 1− µ
,

or λ1 = (B/δ − (1− µ))/µ− 2λ2. Substituting this into the objective, the optimal combi-
nation of λ1 and λ2 is obtained by solving

max
0≤λ2≤(B/δ−(1−µ))/2µ

(
B/δ − (1− µ)

µ
− 2λ2

)
(uδ − c− k) + λ2(uδ

2 − 2k).

Differentiating with respect to λ2 yields 2c− uδ(2− δ). Thus, for each δ ∈ [B/(1 + µ), 1],
there exists a cutoff value ĉ ≡ uδ(1− δ/2) such that

(
λ1 = 0, λ2 = (B/δ − (1− µ))/2µ

)
is

optimal for c > ĉ and
(
λ1 = min{(B/δ − (1 − µ))/µ, 1}, λ2 = 0

)
is optimal for c < ĉ. In

words, for a given δ, the planner will use the same transmission technology for all CPs: if
c is high, all content will be sent uncompressed, while if c is low, all content will be sent
compressed. Note that the choice depends only on c and not on k. The intuition is that
sending content uncompressed generates twice as much transmission costs (2k versus k)
but also twice as much traffic; to keep δ and thus traffic constant, half as much content
can be sent as with compression.13 Total transmission costs are thus the same and only
the compression cost matters for the comparison.

Although fully characterizing the optimal policy is difficult, based on this insight we
can derive a sufficient condition for the planner to use only compressed transmission at
the second-best optimum. At δ = B/(1 + µ) (the lowest possible delivery probability), we
have ĉ = uB(1 +µ−B/2)/(1 +µ)2. Since δ(1− δ/2) is increasing in δ, we conclude that if

c ≤ uB(1 + µ−B/2)/(1 + µ)2, (19)

the optimal second-best policy necessarily involves all active time-sensitive CPs using
compression technology (λ1 > λ2 = 0).

We now turn to equilibrium behavior. For simplicity we impose the following assump-
tion:

13Strictly speaking, this is true only as long as α ≥ α̂nn. For α < α̂nn, a marginal increase in traffic
does not reduce the delivery probability. Here, however, this is irrelevant as B < 1. Thus, an outcome
where all time-sensitive CPs use compression and A < B cannot arise.
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Assumption 2 The transmission cost satisfies

k

u
≤ B2

2(1 + µ)2
.

This implies that sending content uncompressed (αi = 2) is profitable even if all other
time-sensitive CPs do the same. Thus, the only decision we have to consider is whether
time-sensitive CPs use compression and not whether they are active. The superscript ct
stands for compression technology.

Lemma 5 Suppose that Assumption 2 holds. Then, under net neutrality, all time-sensitive
CPs are active in equilibrium. The equilibrium use of compression technology is charac-
terized as follows:

1. for (c − k)/u ≤ B(1 − B), there is a pure-strategy equilibrium in which all time-
sensitive CPs invest in compression (λct1 = 1, λct2 = 0),

2. for (c− k)/u ≥ B(1 + µ−B)/(1 + µ)2, there is a pure-strategy equilibrium in which
all time-sensitive CPs choose uncompressed transmission (λct1 = 0, λct2 = 1),

3. for min{B(1 − B), B(1 + µ − B)/(1 + µ)2} < (c − k)/u < δ̄(1 − δ̄), there are
one or two mixed-strategy equilibria in which time-sensitive CPs randomize over
compressed (probability λct1 ) and uncompressed (probability 1 − λct1 ) transmission,
where λct1 ∈ (0, 1) solves

δ(1 + µ(1− λ1)) (1− δ(1 + µ(1− λ1))) =
c− k
u

. (20)

The following result extends Proposition 1 by showing that under net neutrality CPs
tend to underinvest in compression technology.

Proposition 6 Suppose that Assumption 2 holds. Then there exists a range of admissible
values of (c−k)/u such that, under net neutrality, all CPs use uncompressed transmission
in equilibrium, while the second-best optimum calls for all active CPs to use compressed
transmission.

Proposition 6 is weaker than Proposition 1 in the sense that it only identifies a range
of parameter values for which there is underinvestment in compression technology but
does not show that there can never be overinvestment. The latter would require fully
characterizing the optimal second-best policy, which is a complex task that we leave for
future research.

Next we show that bandwidth tiering with a zero-price rule on the slow lane can solve
the problem of underinvestment in compression. Assume that B ≤ µ so that there is
congestion even if all time-sensitive CPs use compression. We also impose the following
assumption.
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Assumption 3 The compression cost satisfies

c ≤ u
B

2µ

(
1− B

4µ

)
. (21)

This is the equivalent in a two-tiered system of condition (19), ensuring that the planner
wants all time-sensitive CPs to use compression.

As in the baseline model, the ISP chooses to allocate bandwidth Bf = B to the fast
lane and Bs = 0 to the slow lane, charging a price tf ≥ 0 for the fast lane while the price
for the slow lane ts is exogenously set to zero. Letting tf (α) denote the inverse demand
for traffic on the fast lane, with α = λ1 + 2λ2, the ISP solves

max
α

µαtf (α).

The demand for traffic is determined by the equilibrium of the compression-choice game
we have just analyzed (see Lemma 5), replacing δ(1) by δ(µ), δ(1 + µ) by δ(2µ), and k by
k + tf . As before, in case of multiple equilibria we select the equilibrium with the largest
demand for traffic.

For brevity we restrict attention to the case B/µ ≥ 2/3, implying that δ(2µ)(1 −
δ(2µ)) ≥ δ(µ)(1 − δ(µ)). CPs using compressed transmission earn uδ(µα) − c − (k +
tf ) while CPs using uncompressed transmission earn u(δ(µα))2 − 2(k + tf ). If the ISP
charges tf = uδ− k− c, then all time-sensitive CPs prefer compressed over uncompressed
transmission: compressed transmission yields zero, while uncompressed transmission yields
uδ2 − 2(k + tf ) = 2c− uδ(2− δ) < 0, where the inequality follows from (21) and the fact
that δ(1− δ/2) is increasing in δ. Thus, inverse demand for the fast lane is14

tf (α) =


u− k − c for α ∈ [0, α̂dp]
uδ(µα)− k − c for α ∈ (α̂dp, 1]
c− k − uδ(µα) (1− δ(µα)) for α ∈ (1, 2B/(2µ−B)]
c− k − uδ(2µ) (1− δ(2µ)) for α ∈ (2B/(2µ−B), 2],

owing to the fact that the equilibrium selected is α = 2 for (c − (k + tf ))/u ≥ B(2µ −
B)/(4µ2), which happens for all α such that δ(µα) ≤ 1 − δ(2µ) ⇔ α ≥ 2B/(2µ − B).
From this we infer

t′f (α) =


0 for α ∈ [0, α̂dp]
−uδ(µα)/α for α ∈ (α̂dp, 1]
−u µ

B
(δ(µα))2 (2δ(µα)− 1) for α ∈ (1, 2B/(2µ−B)]

0 for α ∈ (2B/(2µ−B), 2].

Putting both together, we obtain marginal revenue, MR(α) = µ[αt′f (α) + tf (α)], or

MR(α) =


µ[u− k − c] for α ∈ [0, α̂dp]
−µ[c+ k] for α ∈ (α̂dp, 1]
µ[c− k − u(δ(µα))2] for α ∈ (1, 2B/(2µ−B)]
µ[c− k − uδ(2µ)(1− δ(2µ)) for α ∈ (2B/(2µ−B), 2].

14It can be verified that CPs’ payoff is always nonnegative for these prices and traffic volumes. In
particular, for α = 2 so that tf = c− k− uB(2µ−B)/(4µ2), a CP’s payoff is uB(4µ−B)/(4µ2)− 2c ≥ 0,
where the inequality follows from (21).
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Proposition 7 Suppose that Assumption 3 holds and 2/3 ≤ B/µ ≤ 1. Then, the profit-
maximizing transmission fee on the fast lane prices out congestion and leads all time-
sensitive CPs to use compression; i.e., tf is such that α = α̂dp.

Proposition 7 shows that allowing the ISP to implement bandwidth tiering and charge
for the fast lane can solve the problem of underinvestment in compression highlighted by
Proposition 6.

4.1.2 Quality reduction

Suppose that instead of compressing their content, CPs have the option of reducing the
quality of transmission (e.g., by using a lower resolution or a lower frame rate). More
specifically, suppose that quality reduction cuts the volume of data that needs to be trans-
mitted in half (one instead of two packets), but also decreases the surplus from consuming
the content by a factor β < 1. Thus, a CP’s profit from sending reduced-quality content
is βuδ(A)− k.

Let us again denote by λ1 the fraction of time-sensitive CPs sending reduced-quality
content and by λ2 the fraction sending standard-quality content. Consider the social plan-
ner’s problem expressed as a two-step procedure: (a) fix δ and find the optimal combination
of λ1 and λ2 for a given δ; (b) find the optimal δ. In a one-tiered system, part (a) entails

δ =
B

µ(λ1 + 2λ2) + 1− µ
,

or λ1 = (B/δ − (1− µ))/µ− 2λ2. Substituting this into the objective, the optimal combi-
nation of λ1 and λ2 is obtained by solving

max
λ2

(
B/δ − (1− µ)

µ
− 2λ2

)
(βuδ − k) + λ2(uδ

2 − 2k),

where λ2 ∈ [0, (B/δ− (1−µ))/2µ]. Differentiating with respect to λ2 yields −2(βuδ−k)+
uδ2−2k. Thus, for each δ ∈ [B/(1+µ), 1] there is a cutoff value β̂ ≡ δ/2 above which it is
optimal to send all content in reduced quality

(
λ1 = min{(B/δ − (1− µ))/µ, 1}, λ2 = 0

)
,

and below which it is optimal to send all content in standard quality
(
λ1 = 0, λ2 =

(B/δ− (1− µ))/2µ
)
. In particular, for β ≥ 1/2, it is second-best socially optimal that all

active CPs send content in reduced quality.
The following lemma characterizes equilibrium behavior under net neutrality.

Lemma 6 Suppose that β ≥ 1/2. Under net neutrality, the equilibrium use of quality
reduction is characterized as follows:

1. for k/u > βB, there is a mixed-strategy equilibrium in which time-sensitive CPs
randomize over αi = 0 (probability 1 − λqr1 ) and αi = 1 (probability λqr1 ), where
λqr1 ∈ (0, 1) solves

βδ(µλqr1 + 1− µ) =
k

u
, (22)
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2. for B(B − β) ≤ k/u ≤ βB, there is a pure-strategy equilibrium in which all time-
sensitive CPs send content in reduced quality (λqr1 = 1, λqr2 = 0),

3. for k/u ≤ B(B−β(1 +µ))/(1 +µ)2, there is a pure-strategy equilibrium in which all
time-sensitive CPs send content in standard quality (λqr1 = 0, λqr2 = 1),

4. for B(B−β(1+µ))/(1+µ)2 < k/u < B(B−β), there is a mixed-strategy equilibrium
in which time-sensitive CPs randomize over reduced quality (probability λqr1 ) and
standard quality (probability λqr2 = 1− λqr1 ), where λqr1 ∈ (0, 1) solves

δ(1 + µ(1− λ1)) (δ(1 + µ(1− λ1))− β) =
k

u
. (23)

Putting together this result with the earlier observation on the optimal second-best
policy, we can state the following.

Proposition 8 Suppose that β ≥ 1/2. Then, under net neutrality, for k/u < B(B − β),
at least some CPs use standard-quality transmission in equilibrium, while the second-best
optimum calls for all active CPs to use reduced-quality transmission.

The assumption that β ≥ 1/2 means that the loss in utility from the quality reduction
suffered by consumers is less than proportional to the reduction in traffic. Under this
assumption, Proposition 8 shows that for sufficiently low costs of transmission the equilib-
rium is associated with insufficient quality reduction compared to what the social planner
would choose.

Next we show that bandwidth tiering with a zero-price rule on the slow lane can
solve the problem of insufficient quality reduction. Assume that B ≤ µ so that there is
congestion even if all time-sensitive CPs use quality reduction. Moreover, assume that
1/2 ≤ β ≤ B/µ. The first inequality ensures that the planner wants all time-sensitive
CPs to use reduced-quality transmission, while the second inequality ensures that in the
equilibrium under deep-packet inspection, some CPs use standard-quality transmission if
k/u is low enough.

Again the ISP allocates bandwidth Bf = B to the fast lane and Bs = 0 to the slow lane,
charging a price tf ≥ 0 for the fast lane while on the slow lane the regulator imposes ts = 0.
Letting tf (α) denote the inverse demand for traffic on the fast lane, with α = λ1 + 2λ2,
the ISP solves

max
α

µαtf (α).

The demand for traffic is determined by the equilibrium of the quality-choice game (see
Lemma 6), replacing δ(1) by δ(µ), δ(1 + µ) by δ(2µ), and k by k + tf .

The assumption that β ≥ 1/2 implies that βδ ≥ δ(δ − β) for all δ ≤ 1. Hence, for
(k + tf )/u ≥ (B/µ)((B/µ)− β), all active CPs use reduced-quality transmission. Inverse
demand for the fast lane is

tf (α) =


βu− k for α ∈ [0, α̂dp]
βuδ(µα)− k for α ∈ (α̂dp, 1]
βuδ(µα) (δ(µα)− β)− k for α ∈ (1, 2].
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From this we infer

t′f (α) =


0 for α ∈ [0, α̂dp]

−βu µ
B

(δ(µα))2 for α ∈ (α̂dp, 1]

−βu µ
B

(δ(µα))2 (2δ(µα)− β) for α ∈ (1, 2].

Putting both together, we obtain marginal revenue, MR(α) = µ[αt′f (α) + tf (α)], or

MR(α) =


µ[βu− k] for α ∈ [0, α̂dp]
−µk for α ∈ (α̂dp, 1]

−µ
[
βu (δ(µα))2 + k

]
for α ∈ (1, 2].

Proposition 9 Suppose that 1/2 ≤ β ≤ B/µ ≤ 1. Then, the profit-maximizing trans-
mission fee on the fast lane prices out congestion and leads all time-sensitive CPs to use
quality reduction; i.e., tf is such that α = α̂dp.

Thus, allowing the ISP to implement bandwidth tiering and charge for the fast lane
can also solve the problem of insufficient quality reduction established in Proposition 8.

4.1.3 Ad-financed content providers

So far, we have considered a revenue model of CPs whereby they charge users directly
for their service. Many real-world CPs follow an alternative business model whereby
revenues are generated not only from payments by users to CPs but also from payments
by advertisers. In addition, content providers can adjust their data volume through their
choice of advertising strategy: they can choose between unobtrusive text advertisements,
which are less bandwidth heavy but also draw less attention, and flashy pop-up videos,
which consume more bandwidth and draw more attention.

We now present a simple extension of our model that includes revenues from advertising
and gives content providers a choice between different advertising strategies. Content
providers offer content, which users value with v. For simplicity, we postulate that there
is a fixed level of advertising. Advertising leads to a utility loss of a on the user side.
Hence, a user’s net utility of a bundle consisting of content and advertising is v − a. To
avoid any interaction of CPs on the advertiser side, we postulate that users have unit
demand for each advertised product (and all CPs advertise different products).15 They
obtain gross surplus z for any product that makes it into their memory. Advertisers make
take-it-or-leave-it offers to users. In turn, CPs are able to extract all surplus generated on
the user and on the advertiser side. Congestion is an issue if the ISP does not deliver all
content including advertising; this happens for time-sensitive content that does not reach
users on time.

We now consider the content provider’s strategy with respect to advertising. Suppose
that ads can be of high resolution such that users will remember for sure if it is delivered.

15Removing interactions among advertisers is in line with most of the literature on ad-financed media;
for a seminal contribution on ad-financed media platforms, see Anderson and Coate (2005); for a survey
on Internet media, see Peitz and Reisinger (2014).
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Alternatively, the content provider can choose to provide only low-resolution ads such that
users remember the ad only with probability κ. The advantage of the latter is that the
data volume is lower. For simplicity, let us assume that the data volume for the bundle
consisting of content and high-resolution ad is two packets, while the data volume for the
bundle that includes the low-resolution ad is only one packet. Furthermore, to mirror
our previous analysis, time-insensitive CPs can only offer the low-resolution version (this
assumption is merely for convenience).

In this simple setting, advertisers extract all surplus in the advertiser-user interaction
and the price they charge for their product or service is z. Content providers then charge
z for high-resolution advertising and κz for low-resolution advertising. Thus, recalling
that the delivery probability of time-sensitive traffic is δ(A) for each packet and the CP’s
transmission cost per packet is k, a CP with time-sensitive content obtains revenues (v −
a+z)δ(A)2−2k employing high-resolution advertising and (v−a+κz)δ(A)−k employing
low-resolution advertising. Let us now do the following change of variables. We define
u = v−a+z and β such that βu = v−a+κz, which implies that β = (v−a+κz)/(v−a+z).
Therefore, this setting is formally equivalent to the setting in which less traffic leads to a
reduction of content quality and CPs obtain only revenues from users. In the special case
v = a, u = z and β = κ, CPs make revenues only from advertisers and do not charge users
directly.

We can thus reinterpret the results from the previous subsection as follows. If the
probability κ of a low-resolution ad being remembered is sufficiently high, a social planner
would want to send only low-resolution advertising; yet under net neutrality the equilib-
rium will exhibit high-resolution advertising when transmission costs are low (k small).
Bandwidth tiering combined with fast-lane pricing can lead CPs to switch to socially
efficient low-resolution advertising.

4.2 Content providers facing privately informed users

Since, in the models considered so far, CPs can extract the full surplus in any provider-
user interaction and the ISP does not offer any stand-alone utility, the ISP makes zero
profit from providing access to content. This feature of our model may be criticized
as being unrealistic. It also implies that an ISP does not have an incentive to make
traffic more efficient, as long as it does not have price instruments to obtain revenues
on the content provider side. In particular, it implies that, in the models considered so
far, the ISP does not have any incentive to engage in deep packet inspection (even if it
were costless to implement). Our model can be easily augmented to generate positive
equilibrium subscription fees for Internet access.

Suppose consumers are heterogeneous with respect to the value they derive from con-
suming content. For any content i, each user draws her valuation from {uL, uH}, where
high willingness to pay uH = u + ∆u is drawn with probability λ and low willingness to
pay uL = u with probability 1 − λ. Draws are independent across consumers and across
content. We consider the timing where consumers observe their tastes after making the
decision whether to buy an Internet subscription. Thus, consumers are ex ante identical
when buying Internet access. We assume that content providers prefer serving both con-
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sumer types to serving only one; i.e., u ≥ λ(u + ∆u). Hence, in each user-content match
users obtain an expected net surplus of λ∆u. Aggregating over all content (taking into
account the probability that a match is formed) gives the expected consumer net surplus
gross of the subscription fee. The ISP can then use the subscription fee to extract this
surplus.

We have shown in Section 3 that under deep packet inspection there is an equilibrium
in which CPs send their traffic once if B > µ, and this implements the first-best level
of traffic. Since all time-sensitive traffic arrives on time in this case, whereas it does not
under net neutrality, user expected net surplus (gross of the subscription fee) must be larger
under deep packet inspection than under net neutrality. The ISP can extract this expected
surplus via its subscription fee. Hence, the ISP optimally sets a higher subscription fee
and makes a larger profit under deep packet inspection than under net neutrality.

5 Conclusion

We have presented a model of a congested Internet that delivers time-sensitive and time-
insensitive content to users. The former needs to be delivered on time for consumers to
derive utility from it. For the latter, timely delivery does not matter. The probability
of on-time delivery for a given packet is equal to the ratio between bandwidth and total
traffic. Content providers can increase the overall probability of timely delivery by sending
a packet several times, thereby improving the chances that at least one of them arrives on
time. However, this creates negative externalities for other CPs.

In such a framework, enforcing strict net neutrality rules may not be a good idea, as it
worsens network congestion. Net neutrality effectively turns the network into an unman-
aged common property resource. We show that departures from strict net neutrality can
alleviate the overexploitation and misallocation problem, as the ISP is enabled to manage
this resource. Deep packet inspection may eliminate congestion by solving the misallo-
cation problem and at the same time removing the incentive to inflate traffic. However,
the result is ambiguous since, under some circumstances, deep packet inspection may ac-
tually increase congestion. Thus, deep packet inspection can backfire if CPs respond by
increasing traffic, possibly making it inferior to strict net neutrality. Alternatively, if the
ISP can charge a transmission fee, it will price out congestion, while a misallocation prob-
lem remains. Moreover, we find that fully eliminating congestion is generally not socially
optimal in a best-effort system. Regulating the transmission fee (by means of a price cap)
therefore raises efficiency.

A better outcome than under the above regulated environments can be achieved by
allowing the ISP to engage in bandwidth tiering and price discrimination, as this allows
the ISP to address both the traffic inflation and the traffic misallocation problem. In
our simple and stylized setting, such a regime can implement the first-best allocation.
Therefore, regulatory intervention risks being welfare-reducing.16

16An exception is a regulatory intervention that fixes the price of the slow lane at zero, which we show
to be welfare neutral.
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We show that our main insights apply more broadly; this includes environments in
which CPs can take costly actions to reduce the volume of traffic (through the use of
compression techniques, a reduction of quality such as lower resolution or an adjustment
of the traffic volume associated with advertising). Since part of the benefits from these
costly actions accrue to others, CPs tend to underinvest in them.

We have considered only short-term effects of different regulatory regimes and did
not address investment issues, neither by the ISP nor by CPs. In particular, bandwidth
was exogenous in the analysis. One concern in the net neutrality debate is that under
net neutrality an ISP does not have a strong incentive to invest since it finds it difficult
to monetize its investment. However, the opposite fear is that absent net neutrality, an
ISP does not have strong incentives to invest in alleviating congestion simply because
congestion allows the ISP to extract rents from CPs with time-sensitive content whose
success depends on prioritized access. In our model, under net neutrality, the ISP does
not have an incentive to invest in bandwidth because the ISP cannot make any profit (see,
however, the extension section with a specification that generates positive profits for the
ISP).

Our analysis is provided within a simple and stylized model. We deliberately focused
on a monopoly ISP with perfectly inelastic demand for subscription, atomless CPs and
vertical separation between Internet connection and content. Future work may want to
add investment incentives by ISPs in a setting that incorporates the feature of our model
that CPs react to changes in bandwidth by adjusting their traffic volume.17

Appendix: Relegated proofs

Proof of Lemma 1. Using (1) and (2) to substitute for γ in (3) as well as the fact that
δ(µα) = 1 for α ≤ α̂dp, we can rewrite total surplus as

W (α) =


α(u− k) for α ∈ [0,min{α̂dp, 1})
α(uδ(µα)− k) for α ∈ [min{α̂dp, 1}, 1]
u− αk for α ∈ [1,max{α̂dp, 1}]
uδ(µα) [α(1− δ(µα)) + δ(µα)]− αk for α ∈ (max{α̂dp, 1}, 2].

(24)

Differentiating (24) and using δ′ = −(1/B)δ2 yields

W ′(α) =


u− k for α ∈ [0,min{α̂dp, 1})
uδ(µα) (1− δ(µα)µα/B)− k for α ∈ [min{α̂dp, 1}, 1]
−k for α ∈ [1,max{α̂dp, 1}]
uδ(µα) [1− δ(µα) (1 + µα/B)

+2 (δ(µα))2 (α− 1)µ/B
]
− k for α ∈ (max{α̂dp, 1}, 2].

Noting that for α ≥ α̂dp we have µα/B = 1/δ(µα), we observe that for α ∈ [min{α̂dp, 1}, 1],

W ′(α) = −k < 0, and for α ∈ (max{α̂dp, 1}, 2], W ′(α) = u (δ(µα))2
(

1− 2δ̃µ/B
)
− k < 0,

17Previous work has included changes of total traffic due to the participation decision of CPs but
abstracted from the adjustment of traffic volumes by active CPs. The exception is Choi et al. (2013).
By comparing environments with different bandwidth, they obtained some interesting insights on how
incentives of CPs depend on available bandwidth; see our literature review in the introduction.
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where the inequality follows from B/(2µ) ≤ δ(µα) for α ≤ 2. Hence, W ′(α) > 0 for
α < min{α̂dp, 1} and W ′(α) < 0 for α > min{α̂dp, 1}. Together with continuity of W , this
implies that welfare in a two-tiered system is maximized at α = min{α̂dp, 1}.

Proof of Lemma 2. Since time-insensitive content yields the same utility as time-
sensitive content and has a weakly greater probability of delivery, the second-best allocation
is such that time-insensitive content is always sent while the traffic volume of time-sensitive
content is adjusted. Using (1) to substitute for γ in (3), total surplus from time-sensitive
content in a one-tiered system can be written as

W (α) =

{
α[uδ(µα + 1− µ)− k] for α ∈ [0, 1]
uδ(µα + 1− µ) [α(1− δ(µα + 1− µ)) + δ(µα + 1− µ)]− αk for α ∈ (1, 2]

(25)
Since, for α ≥ α̂nn, δ(µα + 1 − µ) is strictly monotonic in α, it can be inverted. Let
α(δ) = (B/δ − (1 − µ))/µ denote α as a function of δ and define Ŵ (δ) ≡ W (α(δ)).
Because 0 ≤ α ≤ 2, an upper bound on δ is min{B/(1 − µ), 1} and a lower bound is
B/(1 + µ). From (25), we thus obtain

Ŵ (δ) =


1
µ
(B/δ − (1− µ))(uδ − k) for δ ∈

[
B,min

{
B

1−µ , 1
}]

1
µ

[u (δ2 − δ(B + 1− µ) +B)− k (B/δ − (1− µ))] for δ ∈
[

B
1+µ

, B
)
.

(26)
Before establishing Claims (1) - (5), we make three preliminary observations. First, we

show that Ŵ is strictly concave on [B,min{B/(1− µ), 1}]. We have

Ŵ ′(δ) =
1

µ

(
kB

δ2
− u(1− µ)

)
Ŵ ′′(δ) = −2kB

µδ3
< 0.

Second, we derive the condition under which Ŵ (B/(1 + µ)) ≤ Ŵ (B). Substituting into
(26) and rearranging yields

B

1 + µ

(
1− µ− B

1 + µ

)
≤ k

u
. (27)

Third, we derive a necessary condition for the existence of a local maximum on [B/(1 +
µ), B). We have

Ŵ ′(δ) =
u

µ
[2δ − (B + 1− µ)] +

k

µ

B

δ2

Ŵ ′′(δ) =
2

µ

(
u− kB

δ3

)
.

The first-order condition for a local maximum is Ŵ ′(δ) = 0, or w(δ) = k/u. Hence, a
necessary condition for the existence of a local maximum is k/u ≤ maxB/(1+µ)≤δ≤B w(δ).
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The unconstrained maximizer of w(δ) is found by solving w′(δ) = [2δ(B+1−µ)−6δ2]/B =
0, yielding a unique δw = (B+1−µ)/3 at which the second-order condition holds (w′′(δw) =
−2(B + 1 − µ)/B < 0). Taking into account the constraint B/(1 + µ) ≤ δ ≤ B and the
fact that w(δ) has a local minimum at δ = 0, we obtain

δmax =


(B + 1− µ)/3 if B/(1 + µ) ≤ (B + 1− µ)/3 ≤ B
B if (B + 1− µ)/3 > B
B/(1 + µ) if (B + 1− µ)/3 < B/(1 + µ),

and maxB/(1+µ)≤δ≤B w(δ) = w(δmax). We conclude that existence of a local maximum on
[B/(1 + µ), B) requires

k

u
≤ w(δmax). (28)

Note that, for all δ ∈ [B/(1 + µ), B],

w(δ) =
δ2(B + 1− µ− 2δ)

B
<

(1− µ)δ2

B
⇔ B < 2δ,

which is always satisfied since δ ≥ B/(1 + µ) > B/2. Because moreover (1 − µ)δ2/B is
increasing in δ for δ ≥ 0, it follows that

w(δmax) < (1− µ)δmax/B ≤ (1− µ)B. (29)

Claim (1): Concavity of Ŵ on [B,min{B/(1− µ), 1}] implies that if Ŵ ′(min{B/(1−
µ), 1}) ≥ 0 or

min{B/(1− µ), (1− µ)/B} ≤ k/u,

then Ŵ ′ > 0 for all δ ∈ (B,min{B/(1 − µ), 1}] as well as Ŵ ′
+(B) ≡ limδ↘B dŴ/dδ =

(k/B − u(1 − µ))/µ > 0 and hence Ŵ (B) < Ŵ (min{B/(1 − µ), 1}). Moreover, since
(1− µ)B < min{B/(1− µ), (1− µ)/B}, it follows from (27) that Ŵ (B) ≥ Ŵ (B/(1 + µ)),
and from (29) that there is no local maximum on [B/(1 + µ), B). Hence, Ŵ is maximum
at δ = min{B/(1− µ), 1} which implies αSB = α̂nn.

Claim (2): Concavity also implies that if Ŵ ′(min{B/(1− µ), 1}) < 0 < Ŵ ′
+(B) or

(1− µ)B < k/u < min{B/(1− µ), (1− µ)/B},

then there exists a unique local maximum on [B,min{B/(1−µ), 1}] solving (1−µ)δ2/B =
k/u, which corresponds to the value of α solving (4). Since k/u > (1 − µ)B implies (27)
and rules out existence of a local maximum on [B/(1+µ), B) by (29) and (28), αSB solving
(4) is a global maximum.

Claim (5): A necessary condition for αSB = 2 to be optimal is Ŵ ′(B/(1 + µ)) ≤ 0 ⇔
w(B/(1 + µ)) ≥ k/u. A condition that, in conjunction with the first, is both necessary
and sufficient, is Ŵ (B/(1 + µ)) ≥ Ŵ (B). Using (27) thus establishes the claimed result.

From the above results, we infer that if min{w(B/(1 + µ)), B(1− µ2−B)/(1 + µ)2} <
k/u < (1 − µ)B, the solution must be some δ ∈ (B/(1 + µ), B]. We know that δ = B
(and thus α = 1) must be optimal for w(δmax) ≤ k/u < (1 − µ)B by (28) and (29).

30



Hence, what remains to be shown is that there exists k̂ with the claimed properties when
k/u < w(δmax).

Note first that the second-order condition for a local maximum at some δ0 ∈ (B/(1 +
µ), B) satisfying the first-order condition w(δ0) = k/u is

Ŵ ′′(δ0) =
2

µ

(
u− kB

δ30

)
≤ 0 ⇔ δ0 ≤

B + 1− µ
3

.

Thus, we can distinguish three cases:

• If B ≤ (B+ 1−µ)/3, any δ0 ∈ (B/(1 +µ), B) satisfying w(δ0) = k/u is both a local
and global maximum. Hence, k̂ = uw(δmax) = uw(B).

• If B/(1 + µ) ≥ (B + 1− µ)/3, no δ0 ∈ (B/(1 + µ), B) satisfying w(δ0) = k/u can be
a local maximum. Hence, k̂ = min{uw(B/(1 + µ)), uB(1− µ2 −B)/(1 + µ)2}.

• If B/(1 + µ) < (B + 1 − µ)/3 < B, there exists a unique δ0 ∈ (B/(1 + µ), B)
satisfying both w(δ0) = k/u and δ0 < (B + 1 − µ)/3. This δ0 is a local maximum
but not necessarily a global maximum.

What remains to be shown is that, in the last case, there exists k̂ such that Ŵ (δ0) ≥
Ŵ (B) for k ≤ k̂ and Ŵ (δ0) < Ŵ (B) for k > k̂. Because Ŵ (δ0) = maxδ Ŵ (δ), by the
envelope theorem

d

dk

[
Ŵ (δ0)− Ŵ (B)

]
= 1− B

µδ0
< 0,

where the inequality follows from δ0 < B. This proves Claims (3) and (4).

Proof of Lemma 3. Let us first consider an equilibrium in which each CP sends one
packet, so that α = 1. Then, CP i’s profit from αi = 1 is

uγ(1, 1)− k = uB − k.

Hence, if k/u > B, αi = 1 for all i is not an equilibrium as CPs would make negative
profit. The only equilibrium then involves mixing over αi = 0 and αi = 1. For each CP to
be indifferent, it must be that

uγ(1, µα + 1− µ)− k = 0,

yielding (6), which can be solved for a unique αnn ∈ (0, 1). Note that deviating to αi = 2
can never be profitable if uδ(A) − k ≤ 0 since, for any δ(A) ≤ 1, uγ(2, A) − 2k =
2[uδ(A)(1− δ(A)/2)− k] < 2[uδ(A)− k] ≤ 0.

If k/u ≤ B, αi = 1 for all i (implying αnn = 1) is an equilibrium provided no one can
gain from deviating to αi = 2, which requires

uγ(1, 1)− k ≥ uγ(2, 1)− 2k ⇔ γ(2, 1)− γ(1, 1) ≤ k/u.

Noting that
γ(2, A)− γ(1, A) = δ(A)(1− δ(A)), (30)
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this becomes B(1 − B) ≤ k/u. Thus, αi = 1 for all i is an equilibrium for B(1 − B) ≤
k/u ≤ B.

Next, let us consider an equilibrium in which each time-sensitive CP sends two packets,
i.e., αi = 2 for all i, implying α = 2. No CP must have an incentive to deviate to either
αi = 0 or αi = 1, which requires, respectively,

uγ(2, 1 + µ)− 2k ≥ 0 ⇔ δ(1 + µ)

(
1− δ(1 + µ)

2

)
≥ k

u
(31)

uγ(2, 1 + µ)− 2k ≥ uγ(1, 1 + µ)− k ⇔ δ(1 + µ) (1− δ(1 + µ)) ≥ k

u
, (32)

where (32) follows from (30). Since (32) implies (31), it is both necessary and sufficient.
Thus, αi = 2 for all i is an equilibrium for k/u ≤ δ(1 + µ)(1 − δ(1 + µ)) = B(1 + µ −
B)/(1 + µ)2.

Finally, consider a mixed-strategy equilibrium in which time-sensitive CPs randomize
between sending one and two packets. Each CP i must be indifferent between αi = 1 and
αi = 2, i.e., uγ(1, α)− k = uγ(2, α)− 2k or

γ(2, A)− γ(1, A) =
k

u
,

which, using (30), yields (7). Moreover, it must be that

uγ(1, µα + 1− µ)− k ≥ 0 (33)

at α solving (7). We have uγ(1, µα + 1 − µ) − k = uδ(µα + 1 − µ) − k ≥ uδ(µα + 1 −
µ)(1− δ(µα + 1− µ))− k = 0 for any α since δ(µα + 1− µ) ≤ 1, where the last equality
follows from (7). Hence, (33) is satisfied.

Existence of a mixed-strategy equilibrium αnn ∈ (1, 2) requires

min
α∈(1,2)

δ(µα + 1− µ)(1− δ(µα + 1− µ)) <
k

u
< max

α∈(1,2)
δ(µα + 1− µ)(1− δ(µα + 1− µ)).

Since δ(1−δ) is strictly concave, the minimum is necessarily attained at one of the bound-
aries. The boundaries are δ(1) = B and δ(1 + µ) = B/(1 + µ). Hence, minα∈(1,2) δ(µα +
1 − µ)(1 − δ(µα + 1 − µ)) = min{B(1 − B), B(1 + µ − B)/(1 + µ)2}. By definition, the
maximum of δ(1− δ) is attained at δ̄. Thus an equilibrium with αnn ∈ (1, 2) in which each
CP randomizes between αi = 1 (probability 2 − αnn) and αi = 2 (probability αnn − 1)
exists for min{B(1−B), B(1 + µ−B)/(1 + µ)2} < k/u < δ̄(1− δ̄).

Proof of Proposition 1. Consider first the case B < k/u < B/(1− µ). By Lemma 3,
the equilibrium traffic αnn is then determined by δ(αnn) = k/u, with αnn ∈ (α̂nn, 1). By
Lemma 2, if k/u ≥ min{(1−µ)/B,B/(1−µ)}, the optimal traffic is αSB = α̂nn < αnn. If
instead k/u < min{(1− µ)/B,B/(1− µ)}, then αSB is determined by (1− µ)(δ(µα+ 1−
µ))2/B = k/u. Since δ is decreasing in α, what we need to show is that δ ≥ (1−µ)δ2/B or
δ ≤ B/(1−µ). This inequality follows from the definition of δ = min{B/(µα+1−µ), 1} ≤
B/(1− µ).
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For k̂/u ≤ k/u ≤ B, where k̂ is defined in Lemma 2, we have αnn ≥ 1 ≥ αSB.
Furthermore, min{w(B/(1 + µ), B(1 − µ2 − B)/(1 + µ)2} ≤ B(1 − µ2 − B)/(1 + µ)2 ≤
min{B(1−B), B(1 + µ−B)/(1 + µ)2} because

1−B − µ2 ≤ (1−B)(1 + µ)2.

Since αnn = 2 is the unique equilibrium for k/u ≤ min{B(1−B), B(1 +µ−B)/(1 +µ)2},
we thus have αnn = αSB = 2 for k/u ≤ min{w(B/(1 + µ), B(1 − µ2 − B)/(1 + µ)2} and
αnn = 2 > αSB for min{w(B/(1 + µ), B(1 − µ2 − B)/(1 + µ)2} < k/u ≤ min{B(1 −
B), B(1 + µ−B)/(1 + µ)2}.

The interval that remains is min{B(1−B), B(1 + µ−B)/(1 + µ)2} ≤ k/u < k̂/u. We
can distinguish two cases depending on whether B ≶ (1− µ2)/(2− µ). We first show that
for B ≥ (1− µ2)/(2− µ), the above interval is empty as k̂/u ≤ min{B(1−B), B(1 + µ−
B)/(1 + µ)2}. Then we show that for B < (1 − µ2)/(2 − µ), if there is a local maximum
of W (α) on (1, 2), then it is such that αnn > αSB.

We have B ≥ (1 − µ2)/(2 − µ) if and only if B/(1 + µ) ≥ (1 − µ + B)/3. From
the proof of Lemma 2, we know that a necessary condition for a local maximum at δ0 is
δ0 ≤ (1 − µ + B)/3. Thus, if B ≥ (1 − µ2)/(2 − µ), there exists no local maximum of
Ŵ (δ) (defined in the proof of Lemma 2) on (B/(1 + µ), B). Hence, k̂/u = min{w(B/(1 +
µ)), B(1 − µ2 − B)/(1 + µ)2} = B(1 − µ2 − B)/(1 + µ)2, where the last equality follows
from

w (B/(1 + µ)) =
B(1− µ)(1 + µ−B)

(1 + µ)3
≥ B

1 + µ

(
1− µ− B

1 + µ

)
⇔ B ≥ µ(1− µ2)

2
,

which is implied by B ≥ (1 − µ2)/(2 − µ). We conclude that αSB = 1 ≤ αnn for B(1 −
µ2 −B)/(1 + µ)2 < k/u < (1− µ)B.

Now suppose that B < (1 − µ2)/(2 − µ). Then Ŵ (δ) may have a local maximum on
(B/(1 + µ), B) (and thus W (α) a local maximum on (1, 2)). Inspection of (26) reveals
that Ŵ is first increasing, then decreasing, and then increasing again as δ varies from 0
to ∞. Hence, existence of a local maximum on (B/(1 + µ), B) requires either Ŵ ′

−(B) ≡
limδ↗B dŴ/dδ < 0 or δI < B, where δI = 3

√
Bk/u is the inflection point of Ŵ . We have

Ŵ ′
−(B) < 0 ⇔ k

u
< B(1−B − µ)

δI < B ⇔ k

u
< B2.

Thus, if k/u ≥ max{B(1−B−µ), B2}, there cannot be a local maximum on (B/(1+µ), B),
so k̂/u ≤ max{B(1− B − µ), B2}. But this implies that if B2 ≤ B(1− B) ⇔ B ≤ 1/2,
there exists no value of k/u such that αnn = 1 and αSB ∈ (1, 2). For B ≤ 1/2, we can thus
restrict attention to k/u ≤ B(1−B) (if k/u ≥ B(1−B) ≥ max{B(1−B − µ), B2}, then
αSB ≤ 1 ≤ αnn). By Lemma 3, if B(1−B) ≤ B(1 +µ−B)/(1 +µ)2, the only equilibrium
when k/u ≤ B(1 − B) is αnn = 2. If instead B(1 − B) > B(1 + µ − B)/(1 + µ)2, then
for B(1 + µ − B)/(1 + µ)2 < k/u < B(1 − B), there exists a mixed-strategy equilibrium
where αnn is determined by

δ(µαnn + 1− µ)(1− δ(µαnn + 1− µ)) =
k

u
.
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Importantly, B(1−B) > B(1 + µ−B)/(1 + µ)2 implies that αnn must lie on the upward
sloping part of δ(1− δ) (i.e., δ(µαnn + 1− µ) < 1/2), where

∂

∂α
[δ(µα + 1− µ)(1− δ(µα + 1− µ))]|α=αnn < 0.

An interior αSB ∈ (1, 2) must satisfy the first-order condition

γ(2, µα + 1− µ)− γ(1, µα + 1− µ)︸ ︷︷ ︸
=δ(µα+1−µ)(1−δ(µα+1−µ))

+(α−1)γ2(2, µα+1−µ)+(2−α)γ2(1, µα+1−µ) =
k

u

as well as the second-order condition W ′′ ≤ 0. Since γ2(αi, µα+ 1−µ) = −µαi

B
(δ(µα+ 1−

µ))2(1− δ(µα + 1− µ))αi−1 < 0 for αi ∈ {1, 2}, we conclude that αSB < αnn.
Finally, consider the case 1/2 < B ≤ (1− µ2)/(2− µ) (which exists if µ < 1/2). Then,

B2 ≥ B(1 − B), so we need to show that there exists no local maximum of Ŵ (δ) on
(B/(1 + µ), B) for k/u ≥ B(1−B) (where αnn = 1 is an equilibrium). By Lemma 2, any
such local maximum satisfies the first-order condition w(δ0) = k/u. Thus, it suffices to
show that

max
B/(1+µ)≤δ≤B

w(δ) < B(1−B). (34)

From the proof of Lemma 2, we know

max
B/(1+µ)≤δ≤B

w(δ) ≤ w

(
B + 1− µ

3

)
=

1

B

(
B + 1− µ

3

)3

.

A sufficient condition for (34) is therefore

Φ(B, µ) ≡
(
B + 1− µ

3

)3

−B2(1−B) < 0.

Maximizing Φ(B, µ) subject to 1/2 ≤ B ≤ (1−µ2)/(2−µ) yields the maximizer (B∗, µ∗) =
(1/2, 0), with Φ(1/2, 0) = 0. It follows that Φ(B, µ) < 0 for all (B, µ) satisfying 1/2 <
B ≤ (1− µ2)/(2− µ).

Proof of Proposition 2. From inspection of (10), the ISP’s profit is increasing for
α ∈ [0, α̂nn) and decreasing for α ∈ (α̂nn, 1], implying a local maximum at α = α̂nn. At
α = 1, there is a discontinuity in the ISP’s profit. To see this, note that t(1) = uB − k
while limα↘1 t(α) ≤ uδ̄(1− δ̄)− k. Since

δ̄(1− δ̄) =


(B/(1 + µ))(1−B/(1 + µ)) for 1/2 ≤ B/(1 + µ)
1/4 for B/(1 + µ) < 1/2 ≤ B
B(1−B) for B > 1/2,

we conclude that there is a downward jump in the ISP’s profit at α = 1. This rules out
α = 1 as a solution.

The ISP’s revenue is continuous on α ∈ (1, 2]. There is a local maximum either at one
of the boundaries, α = α̃nn and α = 2, or at the interior solution solving δ(µα+ 1− µ) =
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√
k/u. The latter exists if and only if B/(1 + µ) <

√
k/u < B. We now show that the

local maximum on (1, 2] gives the ISP a lower profit than α̂nn. The ISP’s profit when
α = α̂nn is given by πISP

0 = max{B, 1 − µ}(u − k). Its profit when setting α such that
δ(µα + 1 − µ) =

√
k/u is πISP

1 = B(u − 2
√
uk). Note that πISP

1 must be weakly greater
than the ISP’s profit when setting either α = α̃nn or α = 2, since it is the unconstrained
maximum of [uδ(µα+ 1−µ)(1− δ(µα+ 1−µ))−k](µα+ 1−µ). But we have πISP

0 > πISP
1

if and only if k < 2
√
uk, which is always satisfied; hence, α = α̂nn is the global maximizer

of the ISP’s profit.

Proof of Lemma 4. Let us first consider an equilibrium in which each CP sends one
packet, so that α = 1. Then, CP i’s profit from αi = 1 is

uγ(1, µ)− k = umin

{
B

µ
, 1

}
− k.

Hence, if k/u > B/µ, αi = 1 for all i is not an equilibrium as CPs would make negative
profit. The only equilibrium then involves mixing over αi = 0 and αi = 1. For each CP to
be indifferent, it must be that

uγ(1, µα)− k = 0,

yielding (11), which can be solved for a unique αdp ∈ (0, 1). Note that deviating to αi = 2
can never be profitable if uδ(µα) − k ≤ 0 since, for any δ(µα) ≤ 1, uγ(2, µα) − 2k =
2[uδ(µα)(1− δ(µα)/2)− k] < 2[uδ(µα)− k] ≤ 0.

If k/u ≤ B/µ, αi = 1 for all i (implying αdp = 1) is an equilibrium provided no one
can gain from deviating to αi = 2, which requires

uγ(1, µ)− k ≥ uγ(2, µ)− 2k ⇔ γ(2, µ)− γ(1, µ) ≤ k/u.

Using (30) this becomes B(µ− B)/µ2 ≤ k/u. Thus, αi = 1 for all i is an equilibrium for
B(µ−B)/µ2 ≤ k/u ≤ B/µ.

Next, let us consider an equilibrium in which each time-sensitive CP sends two packets,
i.e., αi = 2 for all i, implying α = 2. No CP must have an incentive to deviate to either
αi = 0 or αi = 1, which requires, respectively,

uγ(2, 2µ)− 2k ≥ 0 ⇔ δ(2µ)

(
1− δ(2µ)

2

)
≥ k

u
(35)

uγ(2, 2µ)− 2k ≥ uγ(1, 2µ)− k ⇔ δ(2µ) (1− δ(2µ)) ≥ k

u
, (36)

where (36) follows from (30). Since (36) implies (35), it is both necessary and sufficient.
Thus, αi = 2 for all i is an equilibrium for k/u ≤ δ(2µ)(1− δ(2µ)) = B(2µ−B)/(2µ)2.

Finally, consider a mixed-strategy equilibrium in which time-sensitive CPs randomize
between sending one and two packets. Each CP i must be indifferent between αi = 1 and
αi = 2, i.e., uγ(1, µα)− k = uγ(2, α)− 2k or

γ(2, µα)− γ(1, µα) =
k

u
,
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which, using (30), yields (12). Moreover, it must be that

uγ(1, µα)− k ≥ 0 (37)

at α solving (12). We have uγ(1, µα)− k = uδ(µα)− k ≥ uδ(µα)(1− δ(µα))− k = 0 for
any α since δ(µα) ≤ 1, where the last equality follows from (12). Hence, (37) is satisfied.

Existence of a mixed-strategy equilibrium αdp ∈ (1, 2) requires

min
α∈(1,2)

δ(µα)(1− δ(µα)) <
k

u
< max

α∈(1,2)
δ(µα)(1− δ(µα)).

Since δ(1−δ) is strictly concave, the minimum is necessarily attained at one of the bound-
aries. The boundaries are δ(µ) = min{B/µ, 1} and δ(2µ) = min{B/(2µ), 1}. By definition,

the maximum of δ(1− δ) is attained at ¯̄δ. Thus an equilibrium with αdp ∈ (1, 2) in which
each CP randomizes between αi = 1 (probability 2−αdp) and αi = 2 (probability αdp− 1)

exists for min{B(µ−B)/µ2, B(2µ−B)/(2µ)2} < k/u < ¯̄δ(1− ¯̄δ).

Proof of Proposition 3. By Lemma 1, the efficient level of traffic when B ≥ µ is
αFB = 1. By Lemma 4, αdp = 1 is an equilibrium for B(µ − B)/µ2 ≤ k/u ≤ B/µ. If
B ≥ µ, then µ−B ≤ 0 and B/µ ≥ 1. Hence, αdp = 1 is an equilibrium for all k/u ∈ [0, 1].

Proof of Proposition 5. Note first that when the ISP can set ts > 0 (unregulated tier-
ing), compared to the case of regulated tiering the constraint ts ≤ tf creates an additional
incentive not to decrease tf : any price decrease on the fast lane must also be applied to
the slow lane, and implies a reduction in revenue there. Thus, if tf (min{1, α̂dp}) is optimal
when ts = 0, it must be optimal a fortiori when ts = tf . Hence it suffices to show that
setting α = min{1, α̂dp} is optimal under regulated tiering.

From inspection of (17), the ISP’s profit is increasing for α ∈ [0,min{1, α̂dp}] and
decreasing for α ∈ (min{1, α̂dp}, 1], implying a local maximum at α = min{1, α̂dp}. At
α = 1, there is a discontinuity in the ISP’s profit. To see this, note that t(1) = uδ(µ)− k
while limα↘1 t(α) ≤ u¯̄δ(1− ¯̄δ)− k. Since

¯̄δ(1− ¯̄δ) =


(B/(2µ))(1−B/(2µ)) for 1/2 ≤ B/(2µ)
1/4 for B/(2µ) < 1/2 ≤ B/µ
(B/µ)(1−B/µ) for B/µ > 1/2,

we conclude that there is a downward jump in the ISP’s profit at α = 1.
The ISP’s revenue is continuous on α ∈ (1, 2]. There is a local maximum either at one

of the boundaries, α = α̃dp and α = 2, or at the interior solution solving δ(µα) =
√
k/u.

The latter exists if and only if B/(2µ) <
√
k/u < B/µ. We now show that the local

maximum on (1, 2] gives the ISP a lower profit than min{1, α̂dp}. The ISP’s profit when
α = min{1, α̂dp} is given by πISP

0 = µmin{1, α̂dp}(u − k). His profit when setting α such

that δ(µα) =
√
k/u is πISP

1 = B(u−2
√
uk). Note that πISP

1 must be weakly greater than the
ISP’s profit when setting either α = α̃dp or α = 2, since it is the unconstrained maximum
of [uδ(µα)(1− δ(µα))−k]µα. There are two cases. For B < µ so that min{1, α̂dp} = B/µ,
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we have πISP
0 > πISP

1 if and only if B(u − 2
√
uk) < B(u − k), or k < 2

√
uk, which is

always satisfied. For B ≥ µ, we have α̃dp ≥ 2 so there can be no interior solution; the ISP
compares profits at α = min{1, α̂dp} = 1 and α = 2. It prefers charging tf (1) to tf (2) if
and only if

µtf (1) ≥ 2µtf (2) ⇔ µ(u− k) ≥ 2µ

(
uB

2µ

(
1− B

2µ

)
− k
)

⇔ u

(
1− B

µ

(
1− B

2µ

))
+ k ≥ 0,

a sufficient condition for which is 2µ2 − B(2µ − B) ≥ 0. The value of µ that minimizes
this expression is µ = B/2, yielding min 2µ2−B(2µ−B) = B2/2 > 0. We conclude that
α = α̂dp is the global maximizer of the ISP’s profit both under regulated and unregulated
tiering.

Proof of Lemma 5. Assumption 2 means that if all CPs use uncompressed transmission
(λ1 = 0, λ2 = 1) so that A = 1 + µ, they all make positive profit: u(δ(1 + µ))2 − 2k ≥ 0.
Because δ′ < 0, this also holds for A < 1 +µ, and we only have to consider two strategies:
compressed and uncompressed transmission. For a given A, compressed transmission is
more profitable than uncompressed transmission if and only if uδ(A)−c−k ≥ u(δ(A))2−2k,
or

δ(A)(1− δ(A)) ≥ c− k
u

. (38)

Claim (1): Evaluating (38) at A = 1, which corresponds to (λ1 = 1, λ2 = 0), we
obtain B(1 − B) ≥ (c − k)/u. We further need to show that CPs make positive profit in
equilibrium, which requires uB − c − k ≥ 0, or B − 2k/u ≥ (c − k)/u. It suffices that
B − 2k/u ≥ B(1−B) ⇔ B2/2 ≥ k/u, which is implied by Assumption 2.

Claim (2): Evaluating (38) at A = 1 + µ, which corresponds to (λ1 = 0, λ2 = 1),
we obtain B(1 + µ − B)/(1 + µ)2 ≥ (c − k)/u. If this inequality is not satisfied, it is
an equilibrium for all CPs to use uncompressed transmission. Profitability is ensured by
Assumption 2.

Claim (3): For CPs to be indifferent between compressed and uncompressed transmis-
sion, (38) must hold with equality. Existence of a mixed-strategy equilibrium λct1 ∈ (0, 1)
requires

min
λ∈(0,1)

δ(1+µ(1−λ1))(1−δ(1+µ(1−λ1)) <
c− k
u

< max
λ∈(0,1)

δ(1+µ(1−λ1))(1−δ(1+µ(1−λ1)),

or min{B(1−B), B(1 +µ−B)/(1 +µ)2} < (c− k)/u < δ̄(1− δ̄) (see the proof of Lemma
3). Profitability is again ensured by Assumption 2.

Proof of Proposition 6. By Lemma 5, the condition for an equilibrium where all CPs
use uncompressed transmission (λ1 = 0, λ2 = 1) is

c− k
u
≥ B

1 + µ

(
1− B

1 + µ

)
. (39)
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A sufficient condition for the second-best optimum to call for compressed transmission is
c ≤ uB(1 + µ−B/2)/(1 + µ)2, or

c− k
u
≤ B

1 + µ

(
1− B

2(1 + µ)

)
− k

u
. (40)

Assumption 2 implies that

B

1 + µ

(
1− B

2(1 + µ)

)
− k

u
≥ B

1 + µ

(
1− B

1 + µ

)
.

Hence, there always exists a value of (c− k)/u such that (39) and (40) are simultaneously
satisfied.

Proof of Proposition 7. Marginal revenue is positive and constant on [0, α̂dp], negative
and constant on (α̂dp, 1], increasing on (1, 2B/(2µ−B)], and constant on (2B/(2µ−B), 2].
Thus, we only need to compare the three corner solutions α = α̂dp, α = 1, and α = 2. The
ISP prefers charging tf (α̂dp) to tf (1) if and only if µα̂dptf (α̂dp) ≥ µtf (1), or

B(u− k − c) ≥ µ[uB/µ− k − c] ⇔ B ≤ µ,

which is satisfied by assumption. The ISP prefers charging tf (α̂dp) to tf (2) if and only if
µα̂dptf (α̂dp) ≥ 2µtf (2), or

B(u− k − c) ≥ 2µ

[
c− k − u B

2µ

(
1− B

2µ

)]

⇔ uB

(
2− B

2µ

)
≥ c(2µ+B)− k(2µ−B).

Since µ ≥ B, a sufficient condition for this is

u
B

3µ

(
2− B

2µ

)
≥ c.

Under condition (21), it suffices to show that

u
B

3µ

(
2− B

2µ

)
≥ u

B

2µ

(
1− B

4µ

)

⇔ 2

(
2− B

2µ

)
≥ 3

(
1− B

4µ

)
⇔ 1 >

B

4µ
,

which is always satisfied since B ≤ µ.

Proof of Lemma 6. Reduced quality is more profitable than standard quality if and
only if uδ(A)2 − 2k ≤ βuδ(A)− k, or

δ(A)(δ(A)− β) ≤ k/u. (41)
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Reduced-quality transmission allows CPs to make nonnegative profit if and only if βδ ≥
k/u. The assumption that β ≥ 1/2 implies that βδ ≥ δ(δ − β) for all δ ≤ 1. Hence,
if reduced-quality transmission is unprofitable, then standard-quality transmission is also
unprofitable.

If all time-sensitive CPs are active and send reduced quality, we have A = 1 and δ = B.
Thus, for k/u ≥ βB, it is not an equilibrium for all time-sensitive CPs to be active; instead,
the equilibrium is such that they randomize in a way that makes them indifferent between
being active and inactive, as captured by (22). For all time-sensitive CPs to make a profit
with reduced quality transmission and prefer it to standard transmission, it must be that
βB ≥ k/u ≥ B(B − β).

If all time-sensitive CPs send standard quality, we have A = 1 + µ and δ = B/(1 + µ).
For all time-sensitive CPs to prefer standard-quality to reduced-quality transmission, it
must be that k/u ≤ B(B−β(1+µ))/(1+µ)2. Moreover, CPs must make nonnegative profit,
which requires uδ(A)2− 2k ≥ 0 or k/u ≤ B/(2(1 + µ)2). The assumption β ≥ 1/2 implies
that δ2/2 ≥ δ(δ− β) for all δ ≤ 1; hence the condition k/u ≤ B(B − β(1 + µ))/(1 + µ)2 is
sufficient for an equilibrium with only standard quality transmission. Finally, randomizing
between reduced and standard quality requires that CPs are indifferent between the two,
i.e., δ(A)(δ(A)−β) = k/u, which is possible for B(B−β(1+µ))/(1+µ)2 < k/u < B(B−β).

Proof of Proposition 8. This follows immediately from Lemma 6, showing that λqr2 > 0
for k/u < B(B − β), and the second-best optimal policy requiring λ2 = 0 for β ≥ 1/2.

Proof of Proposition 9. Marginal revenue is positive and constant on [0, α̂dp] and
negative on (α̂dp, 2]. Thus, the revenue-maximizing traffic volume for the ISP is α̂dp.
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