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Abstract

In repeated normal-form (simultaneous-move) games, simple penal codes (Abreu,
1986, 1988) permit an elegant characterization of the set of subgame-perfect outcomes.
We show that the logic of simple penal codes fails in repeated extensive-form games.
By means of examples, we identify two types of settings in which a subgame-perfect
outcome may be supported only by a profile with the property that the continuation
play after a deviation is tailored not only to the identity of the deviator, but also to
the nature of the deviation.
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My object all sublime
I shall achieve in time
To let the punishment fit the crime,
The punishment fit the crime;
And make each prisoner repent
Unwillingly represent
A source of innocent merriment,
Of innocent merriment!

W. S. Gilbert (1885), The Mikado

1 Introduction

Many popular applications of game theory are naturally modeled as simultaneous-move
stage games, such as the Cournot oligopoly model of collusion. But other interesting
applications have a dynamic structure whose stage game interactions are more naturally
represented by nontrivial extensive-form stage games. Examples include the interaction
between government and the private sector in the time-inconsistency literature, between
upstream and downstream firms in the vertical relations literature, between bidders in
open-outcry auctions, between firms which first invest or choose standards and then com-
pete, between proposer and responders in bargaining games, and between principal and
agent in contracting games. Such applied models often feature a socially desirable (or
‘cooperative’) outcome which is inconsistent with equilibrium in a one-shot game because
of opportunistic actions available to players, but which might be attainable in a repeated
game. Economists are often interested in exploring how changes in institutions and/or rep-
etition of the game might allow the more desirable outcomes to be supported as equilibria
(see, e.g., the seminal work of Friedman (1971)). But with a few exceptions,1 such analysis
has been largely confined to repeated normal-form games, where all players are modeled
as moving simultaneously in the stage game.

When players are sufficiently patient, one may ignore the detailed dynamic structure
within the stage-game interaction and apply standard folk theorem arguments (Wen, 2002).
The reason is that even a small difference in continuation values will dominate any short-
term gain for patient players, so deviations are relatively easy to deter. However, applied
theory is often concerned with the impact of a change in institutions or the environment
on the set of equilibrium outcomes, and such an analysis is meaningful only for impatient
players. In this paper we show that for impatient players, the dynamic structure of the
stage game can be important and should not be neglected.

1Repeated extensive-form games have been analyzed in the relational contracting literature (Levin, 2003),
in the policy games literature (Athey, Atkeson, and Kehoe, 2005), and in the vertical relations literature
(Nocke and White, 2007).
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The literature has so far directed surprisingly little attention towards the study of re-
peated extensive-form games with impatient players. For applications of repeated simultaneous-
move games, the techniques developed by Abreu (1986, 1988) are central. Abreu (1988)
shows that any pure-strategy subgame-perfect equilibrium outcome can be supported by
a set of simple punishment strategies called simple penal codes : If a player, i say, deviates
from the proposed equilibrium play in a given period, in the next period, players switch to
player i’s worst equilibrium play (called i’s optimal penal code). A similar rule applies to
any player who deviates from play during an optimal penal code. In other words, the con-
tinuation play after a deviation by a player is independent of the nature of the deviation,
depending only on the identity of the deviator. This result vastly simplifies the task of
finding the set of equilibria that can be supported in repeated simultaneous-move games:
one needs only to characterize a worst equilibrium for each player, and from there one
can proceed to fill in all other equilibria that can be supported by using these punishment
strategies. Abreu’s result has been correspondingly important for applications employing
normal-form stage games.

But what about applications that involve extensive-form stage games? In this paper,
we show that a similar simplification is not available for characterizing the set of subgame
perfect equilibrium outcomes when the stage game has a nontrivial dynamic structure. We
begin by discussing the appropriate restrictions that simple penal codes should satisfy in
this case. We then present two settings in which simple penal codes can fail to support
equilibria that are supportable with more complicated punishments for a given discount
factor. The forces driving optimal punishment in these settings are intuitive and natural.

Consider a deviation by some player in a repeated simultaneous-move game. Since the
stage game is a simultaneous-move game, the other players can respond only in the next
period. Abreu’s (1988) results rely on the observation that, in repeated simultaneous-move
games, every subgame is strategically equivalent to the original repeated game.2 Hence,
the worst punishment is simply the worst subgame perfect equilibrium of the original game.
Consider now a deviation in a repeated extensive-form game. In contrast to normal form
games, the other players may be able to respond not only in the next period but also within
the same period. Moreover, the deviation may lead to a subgame that is not strategically
equivalent to the original game. Consequently, the appropriate notion of simple penal code
for a repeated extensive-form game is not obvious. Nonetheless, for any history that ends
at the end of a period, the associated subgame is strategically equivalent to the original
repeated game. This suggests that any definition of a simple penal code should have
the feature that after a player deviates from the candidate equilibrium, subsequent play
beginning in the next period should be independent of the precise nature of the deviation.

Our two sets of examples show that optimal punishments in repeated extensive-form
games need not have this property: even though it is feasible to play the same outcome path

2This observation is a direct implication of the property that every subgame’s initial node is at the
beginning of some period.
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after two different deviations starting in the next period, sustaining a candidate equilibrium
outcome may require that different outcome paths are played.

Say that an action for a player is myopically suboptimal if, given the specified behavior
for the other players, that action is not optimal for that player when payoffs from future
periods are ignored. The logic of simple penal codes fails in repeated extensive-form games
because some equilibria require the use of within-period myopically-suboptimal “punish-
ments” to ensure that deviations are not profitable. In contrast, in repeated normal-form
games, the sequential rationality of “within-period” punishments is not an issue. In each
of our examples, the within-period punishment is myopically suboptimal for the potential
punisher(s), but is required to sustain the desired equilibrium.

In the first set of examples, the need for different continuations arises because the in-
terests of the deviator and the potential punisher are aligned, though imperfectly. Many
important settings have this structure – for example, policy games, models of relational
contracting, and models where players engage in repeated investment or production. In
such settings, using continuation play to reward a player for carrying out myopically sub-
optimal within-period punishment of the earlier deviator may necessarily also reward the
deviator himself. Consequently, the rewards for the punisher (and hence the outcome path
following the deviation) may have to be fine-tuned to the particular deviation chosen by
the deviator. Within-period punishment is valuable after some, but not all, deviations,
depending on how effective and costly is within-period punishment after a particular de-
viation. We first analyze a simple example to illustrate the difficulty and then show how
the same logic affects a repeated game of bilateral investment with hold-up in the spirit of
Klein, Crawford, and Alchian (1978) and Grossman and Hart (1986).

In the second set of examples, we highlight a contrasting problem, which arises because
players moving after a deviator are required to coordinate to inflict effective within-period
punishment. In contrast to the first set, where complications arise when interests are
aligned, here, difficulties occur when the interests of the players required to inflict pun-
ishment are in conflict. The simplest case has three players, and sustaining the desired
equilibrium requires that the two later movers both inflict within-period punishment on
the first mover in the event of a deviation. Think, for instance, of a situation where a devi-
ation is profitable if and only if one other player ‘accepts’ it. Such a structure is common in
many important settings. Examples include colluding upstream firms (Nocke and White,
2007), attempted expropriation by a sovereign power (where citizen groups can cooperate
to successfully resist expropriation, as in Weingast (1995, 1997)), bargaining over a series
of proposals where a majority vote is sufficient for acceptance (Baron and Ferejohn, 1989),
or attempted entry when an entrant requires more than one customer to break even (as
in Rasmusen, Ramseyer, and Wiley (1991) and Segal and Whinston (2000)). The conflict
of interest between the two potentially enforcing players in these cases means that it is
not possible to provide the maximum “reward” to both the punishers in any given equi-
librium. Intuitively, the continuation equilibrium chosen (and hence the “reward” which
each punisher receives) must depend on the degree of sacrifice which the punisher makes
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in inflicting the myopically suboptimal punishment. In other words, the continuation play,
starting in the period after the deviation by the first mover, is not simple, but rather
depends on which deviation the first mover has chosen among those that are available to
him. Which of the two later moving players receives more of the “carrot” in future play
optimally depends on for which of them it was more costly to apply the “stick”. Again,
we first analyze a simple example and then turn to the classic “naked exclusion game” of
Rasmusen, Ramseyer, and Wiley (1991) and Segal and Whinston (2000) to illustrate the
operation of optimal punishments in that context.

Apart from Rubinstein and Wolinsky (1995), Sorin (1995), Wen (2002), and Mailath
and Samuelson (2006), the repeated-game literature has focused on repeated normal-form
games, ignoring the dynamic structure within the stage game.3 Rubinstein and Wolinsky
(1995) present some examples illustrating the difference between the set of subgame-perfect
equilibrium payoffs of repeated extensive and normal-form games for patient players when
the standard full dimensionality condition of Fudenberg and Maskin (1986) does not hold.
Sorin (1995) discusses the implications of the different information that players have avail-
able across periods in repeated extensive, rather than normal, form games. Wen (2002)
extends the arguments of Abreu (1988) to prove a folk theorem for repeated sequential-move
games under a weaker condition than Fudenberg and Maskin’s (1986) full dimensionality
condition. Finally, Mailath and Samuelson (2006, Section 9.6) prove a folk theorem for re-
peated extensive form games via an extension of the tools of Abreu, Pearce, and Stacchetti
(1990). None of these papers are concerned with penal codes or with characterizing the
set of subgame-perfect equilibrium payoffs with impatient players.

2 The Punishment Should Fit The Crime

“Is it her fault or mine?
The tempter or the tempted - who sins the most?”

William Shakespeare Measure for Measure, Act 2, Scene 2.

In this section, we highlight the value of tailoring the punishment to fit the deviation
in games where the potential deviator and punisher have a commonality of interest. Thus
our games have a strong coordination flavor. The most effective punishments can be
complicated in such settings, because it is difficult to both punish the deviator and reward
the punishing player for applying the costly punishment.

We first present a simple stylized example to illustrate the issues that arise. In the
following subsection, we will present a more interesting application to a game of repeated

3Despite the name, the literature on asynchronously repeated games (for example, Lagunoff and Matsui
(1997)) does not study repeated games. In each period only some players can choose (adjust) an action,
with the other players’ actions fixed from earlier periods. The canonical example is the asynchronous move
prisoners’ dilemma, where player 1 chooses in odd periods, and player 2 in even periods.
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(a) The extensive-form game Γ1.

A B C

A 6, 6 0, 0 0, 0

B 0, 0 4, 4 0, 0

C 0, 0 0, 0 2, 2

(b) The coordination game.

Figure 1: The two period game.

investment and hold-up.

2.1 A Simple Example

We begin with the extensive-form game Γ1, presented in Figure 1a. In this stage game, the
unique backward induction equilibrium is for player I to play M , and player II to play `
(after M). Player II of course, prefers that player I play L.4

Before we describe the repeated extensive-form game, we first analyze a simpler two-
period game. In the first period, Γ1 is played, while in the second period, the coordination
game of Figure 1b is played. Each player’s payoff is the sum of payoffs from the two periods.
In the second period, the payoffs of the two players are, by construction, identical. It is
impossible to punish (or reward) one player without simultaneously doing the same to the
other.

We are interested in equilibria that support L as a choice by player I in the first period.
The payoffs in this example have been chosen so that the variation in second-period payoffs
alone is insufficient to deter player I from playing M when player II chooses `, her myopic
best reply: Player I’s first-period incentive to deviate by playing M is then 6, while the
largest punishment the second period can impose is the profile CC, with associated loss of
payoff of 4.

4The game Γ1 has an interpretation as an entry game between a potential entrant (player I) and an
incumbent (player II), where the entrant can decide to stay out (play L), enter with product line M (play
M) or enter with product line R (play R). (One can also interpret M as small-scale entry and R as large-
scale entry.) Following entry with product M , the incumbent can choose to acquiesce (play `) or fight (play
r). We assume here for simplicity that fighting is possible only when product M is chosen, but one can also
allow fighting after choice of R with, for example, payoffs (-1,1) without changing any of the conclusions
reached in the analysis below.
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Figure 2: The game Γ∗
1.

On the other hand, if player II can be induced to play r, the benefit to player I of
M is drastically reduced (from 6 to 1). The trick is in providing appropriate incentives to
prevent II from myopically optimizing, i.e., in specifying a higher continuation payoff after
Mr than after M`. At the same time, the continuation play after Mr must not ignore I’s
original deviation. This motivates the following specification of second period play: play
AA after L, BB after Mr, and CC after M` and r. It is straightforward to check that
this specification supports Lr as equilibrium first period choices.

In the profile described in the previous paragraph, different continuation equilibria are
specified after I’s deviation to M and to R. We have already seen that the second period
play BB after Mr is needed to make II’s choice of r optimal. At the same time, a play of
BB after R does not provide a sufficient disincentive for I.

The play of L in the first period cannot therefore be sustained by a “simple” penal code
in which continuation play is independent of the particular deviation chosen by player I.
As we have seen, the play of L is sustained by a more complex strategy profile which
employs different punishments after different deviations.

Consider now the extensive-form game, Γ∗
1, presented in Figure 2, where the two players

first simultaneously choose A, B or C, and Γ1 follows a simultaneous choice of A. Since Γ1

has a unique subgame-perfect equilibrium with payoffs (6, 6), the pure strategy subgame
perfect equilibrium payoffs of Γ∗

1 coincide with the pure-strategy Nash equilibrium payoffs
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A` Ar B C

AL 1, 11 1, 11 0, 0 0, 0

AM 6, 6 1, 5 0, 0 0, 0

AR 3, 3 3, 3 0, 0 0, 0

B 0, 0 0, 0 4, 4 0, 0

C 0, 0 0, 0 0, 0 2, 2

Figure 3: The (reduced) normal form of Γ∗
1.

of the game of Figure 1b.
The game Γ∗

1 is played in two periods. The discussion above shows that there is a
subgame-perfect equilibrium of the repeated game in which in the first period, both players
choose A, and then player I chooses L. (The only issue we have not addressed is a deviation
by I or II to B or C in the first period. Player II clearly cannot benefit from such a
deviation. For player I, the period-1 payoff from this deviation is 0, the same as from
Mr in Γ1, and the second-period play is the same as well, and so the deviation is not
profitable.)

It is also an implication of the above discussion that this outcome cannot be achieved
in any equilibrium with the property that play in the second period is independent of the
nature of I’s deviation in the first period.

To conclude our discussion of this example, it is useful to compare our analysis with
that of an analysis of the repeated normal form of Γ∗

1. The normal form is given in Figure 3.
Treating the simultaneous-move normal form of Figure 3 as the stage game, the profile in
which (AL, Ar) is played in the first period and (AR, A`) in the second, with any deviation
by player 1 resulting in CC in the second period, is a subgame-perfect equilibrium of the
repeated game. However, this profile is a subgame-perfect equilibrium only because the
simultaneity of moves means that there is no subgame beginning with II’s choice between
` and r, and so subgame perfection does not require that choice to be optimal.

2.2 Application: Bilateral Investment and Hold-Up

We now consider a simplified version of the classic hold-up model with bilateral investment
in the spirit of Klein, Crawford, and Alchian (1978) and Grossman and Hart (1986). Here,
the more standard Nash bargaining stage is replaced by a simple non-cooperative bargain-
ing model where one player makes a take-it-or-leave-it offer to the other player. The stage
game has three stages:

Stage 1 (Investment) Both players simultaneously decide whether or not to make a
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relation-specific investment. The cost of the investment is c > 0. Unless both players
have made the investment, the game ends, with player i’s payoff being −c if i ∈ {1, 2}
had invested and zero otherwise. If both players have made the investment, the game
proceeds to the next stage.

Stage 2 (Offer) Player 1 makes a take-it-or-leave-it offer x ≥ 0 to player 2.

Stage 3 (Acceptance) Player 2 decides whether to accept or reject the offer. If the offer
is accepted, payoffs are (B − x− c, x− c); otherwise payoffs are (−c,−c), where B is
the investment revenue.

The interesting case arises when investment is efficient: B > 2c. Despite the efficiency
of investment, it is well known that ex post bargaining over terms leads to inefficiently low
investment – here, the one-shot game has a unique subgame-perfect equilibrium with no
investment by either player, resulting in payoffs (0, 0).

2.2.1 The Infinitely Repeated Game

Now consider the infinite repetition of the stage game just described, with δ denoting the
common discount factor. We characterize the best equilibrium for player 2, and show that
this equilibrium depends on whether behavior is restricted to simple penal codes. In either
case, this best-for-player-2 equilibrium will involve in each period either (i) no investment
by either player (as in the static equilibrium), resulting in payoffs (0 , 0), or (ii) investment
by both parties, with player 1 making a subsequent offer of x̂, which is accepted by player 2,
resulting in payoffs (B−c− x̂, x̂−c). As each player can ensure himself a payoff of 0 by not
investing, if an investment equilibrium exists, player 1’s offer x̂ must satisfy B− c ≥ x̂ ≥ c.

2.2.2 Optimal Punishments

We first analyze the features of optimal punishments without the restriction to simple
penal codes. Since infinite repetition of the static equilibrium (i.e., the subgame-perfect
equilibrium of the stage game), resulting in no investment, is trivially a subgame-perfect
equilibrium of the repeated game, we turn to the incentive constraints for any equilibrium
involving investment by both parties and an accepted offer of x̂ in every period.

There are two possible ways in which deviations by player 1 to offers less generous
than x̂ can be punished. First, and standardly, deviations could be deterred by the threat
of reversion to the static equilibrium in all future periods. Such reversion may well be
sufficient to deter a small deviation by player 1 (to an offer x not much smaller than x̂)
because his short-run benefit from such a deviation is small. But such a punishment scheme
may not deter a large deviation (to a small offer x) since the short-term benefit of having
a very low offer accepted may be too large. To deter a large deviation, therefore, it may be
necessary to use the second way of deterring a deviation, which is to have player 2 reject
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the low offer (leaving player 1 with a payoff of −c). For player 2 to be willing to carry out
such a within-period punishment, however, requires that he is subsequently rewarded by a
sufficiently attractive continuation play. But for an impatient player 2 such a reward may
not be large enough to induce rejection of an offer x not much smaller than x̂. Thus there
may be a need to fine-tune the continuation play to the size of the deviating offer.

These considerations suggest the following features for an optimal punishment scheme:
There is a cutoff x̃ such that any deviation to an offer x ∈ [x̃, x̂) is accepted by player 2
and the continuation play is reversion to the static equilibrium, while any offer x ∈ [0, x̃)
is rejected by player 2 with the continuation play reverting to an offer of x̂ in every future
period (acceptance by player 2 is followed by reversion to the static equilibrium).

Player 1 will find it unprofitable to make a deviant offer x ∈ [x̃, x̂) only if the smallest
deviant offer x̃ (inducing the same continuation play) is unprofitable, i.e.,

B − c − x̂

1 − δ
≥ (B − c − x̃),

which implies the following lower bound on x̃, the lowest deviant offer that player 2 can
accept:

x̃ ≥
x̂ − δ(B − c)

1 − δ
. (1)

Player 2 will be willing to reject a deviant offer x ∈ [0, x̃) only if

−(1 − δ)c + δ(x̂ − c) ≥ (1 − δ)(x̃ − c),

which implies an upper bound on x̃, the largest deviant offer that player 2 is willing to
reject:

δ(x̂ − c)
1 − δ

≥ x̃. (2)

Combining inequalities (1) and (2), we obtain as a necessary condition, an upper bound
on x̂, the equilibrium offer in the best-for-player-2 equilibrium,

x̂ ≤
δ

1 − δ
(B − 2c). (3)

In equilibrium, players’ individual rationality constraints must also be satisfied, which
requires that each player’s payoff be nonnegative. So we also must have

x̂ ≥ c and B − x̂ ≥ c. (4)

Thus, if (x̃, x̂) describes the best-for-player-2 equilibrium, x̂ is the largest offer satisfying
(3) and (4). Since

δ

1 − δ
(B − 2c) ≥ c ⇐⇒ δ ≥

c

B − c
≡ δ′,
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if δ < δ′, there is no such x̂.5 If δ ≥ δ′, then

x̂ = min

{
δ

1 − δ
(B − 2c), B − c

}

.

Let δ′′ be the smallest value of δ at which x̂ = B − c, i.e.,

δ′′ ≡
B − c

2B − 3c
.

We are now in a position to describe the best equilibria for player 2 (the verification is
straightforward):6

Proposition 1 Suppose δ ∈ (δ′, δ′′). All best equilibria for player 2 have the following
structure: Set

x̂ =
δ

1 − δ
(B − 2c)

and fix an x̃ < x̂ satisfying

x̃ ∈

[
x̂ − δ(B − c)

1 − δ
,
δ(x̂ − c)
1 − δ

]

.

The equilibria have two phases, “invest” and “don’t invest”, and begin in the “invest”
phase. In the “invest” phase,

1. on the path of play, both players invest and player 1 offers x̂ to player 2,

2. player 2 accepts all offers x ≥ x̃, and

3. player 2 rejects all offers x < x̃.

Play stays in the “invest” phase as long as both players invest, the last offer satisfies
x /∈ [x̃, x̂), which player 2 accepts if x ≥ x̂ and rejects if x < x̃. Otherwise, play switches to
the “don’t invest” phase, in which the static no-investment equilibrium is played in every
period.

The equilibria described in Proposition 1 do not have a simple penal code structure,
since deviations by player 1 to relatively generous offers x ≥ x̃ lead to different continuation
play than deviations to less generous offers x < x̃.

5Indeed, if δ < δ′, then there is no stationary equilibrium with investment, since even an offer x̂ = δ(B−c)
(the largest offer consistent with x̃ ≤ 0) violates player 2’s individual rationality.

6In addition to the stationary equilibria described in Proposition 1, there are also equilibria where the
cutoff x̃ depends upon history. This history dependence off the equilibrium path does not affect equilibrium
payoffs.
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However, for δ ≥ δ′′, we can take x̃ = x̂ = B − c, since for large δ,

B − c ≤
δ(x̂ − c)
1 − δ

.

(It is straightforward to verify that the relevant incentive constraints hold.) In this case,
the simple penal code in which player 2 rejects all offers less than B − c (expecting a
continuation value of (B − c)/(1 − δ)) supports the equilibrium.

2.2.3 Simple Penal Code for δ ∈ (δ′, δ′′)

We have just shown that in this game, a simple penal code can be optimal as long as δ ≥ δ′′,
and the only equilibrium involves no investment for δ ≤ δ′. We now investigate the efficacy
of simple penal codes for intermediate values of δ ∈ (δ′, δ′′). Let x† be the largest offer
that player 2 can receive in any equilibrium supported by a simple penal code. There are
two possibilities for a simple penal code in this setting: either any deviating offer results
in no investment in the future, or any deviating offer is rejected, in which case rejection
leads to x† in the future. (Failure by player 2 to reject such a deviating offer would in this
case lead to the no investment equilibrium.)

First consider punishing deviations by infinite reversion to the static (no investment)
equilibrium. Since this static equilibrium is the worst not only for player 1 but also for
player 2, player 2 will accept any (strictly positive) deviant offer. Hence, player 1 will
have no incentive to make a deviant offer x < x† only if he has no incentive to make an
arbitrarily small deviant offer, i.e.,

B − c − x†

1 − δ
≥ B − c,

which implies the following upper bound on x†:

x† ≤ δ(B − c). (5)

It is straightforward to check that the profile in which both players invest, player 1 always
makes the offer δ(B − c), which is accepted (as is any lower off-the-equilibrium path offer),
and any deviation by player 1 to an inferior offer results in future no investment is an
equilibrium for δ ∈ (δ′, δ′′).

Now consider the other possible simple penal code: inducing player 2 to reject all
deviating offers, followed by a return to an investment equilibrium if and only if he does
so. Player 2 will be prepared to reject any offer x ∈ [0, x†) only if

−(1 − δ)c + δ(x† − c) ≥ (1 − δ)(x† − c),

which implies the upper bound on offers that player 2 will be willing to reject:

x† ≤
δc

2δ − 1
. (6)
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Individual rationality for player 1 requires B − c ≥ x†, which with (6) implies δ ≥ δ′′,
contradicting our assumption on δ. Hence, if δ ∈ (δ′, δ′′), the best simple penal code
involves the play of the no investment equilibrium in all periods following a deviant offer
by player 1. The largest offer that player 2 can receive in any equilibrium supported by a
simple penal code is δ(B − c), which is strictly smaller than x̂.

2.2.4 Discussion

Whenever it improves on simple penal codes, the optimal punishment scheme has an in-
teresting feature. If the offerer deviates from the expected price by shading just slightly,
the responder will accept (shrug it off) but will no longer invest in the relationship (one
can also think about the parties as walking away from the relationship and as receiving
outside options of zero on the spot market). Whereas if the offerer deviates from the ex-
pected price by making a much lower offer, then instead the – perhaps insulting – offer
is rejected, but in the expectation that next period the investment relationship will be
re-established on better terms. The structure of the punishment might at first glance be
considered counter-intuitive, since one might think that the relationship would be more
likely to continue if shading of the price is only slight and not large. But if the relationship
is to be continued, costs must be inflicted within the period by refusing to deal, otherwise
shading will always occur; whereas if the relationship is to be sacrificed (and the pair are
to return to the no-investment or spot market equilibrium), only small amounts of shading
can be prevented. Moreover, the ability to inflict large costs by failing to make a mutually
beneficial trade in a period of deviation (cutting off ones nose to spite ones face) can help
sustain the relationship beyond what would otherwise be possible. So the optimal punish-
ment scheme yields a prediction about the pattern of punishment strategies in relationships
with hold-up: other things being equal, small deviations result in walking away whereas
large deviations result in a costly standoff and then resumption of trade. By contrast, a
simple penal code would involve the responder taking the same action (in particular, walk
away) independently how low the offer he receives is.

3 The Reward Should Fit the Temptation

“You oughtn’t to yield to temptation.”
“Well somebody must, or the thing becomes absurd.”

Anthony Hope, The Dolly Dialogues.

We have just highlighted how the value of deviation-dependent punishments can arise
from the commonality of interest between the punisher and the punished. We now examine
how the value of deviation-dependent punishments arises for a very different reason –
because there is a conflict of interest between two players who are not supposed to acquiesce
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I

B

(1; 20; 0) C

(1; 0; 20)

x = 0

x = 10x

III

II

Yes No

Yes 10; x; 10� x 10; x; 0

No 10; 0; 10� x 0; 0; 0

Figure 4: The extensive form game, Γ2. The choice x for player I ranges over the nonneg-
ative integers, {0, 1, . . . , 10}.

to a deviation by a third player. As in the first set of examples, we begin with a simple
stylized example to illustrate the main force at work, which is the need to choose the
continuation play in order that the reward to each player must be adapted to the sacrifice
that they made in inflicting within-period punishment. We then provide an application to
a more complex game of greater applied interest – in this case, a repeated version of the
“Naked Exclusion” game analyzed by Rasmusen, Ramseyer, and Wiley (1991) and Segal
and Whinston (2000).

3.1 A Simple Example

The stage game for our second simple example is the extensive form Γ2, presented in Figure
4. We interpret the choice of x ∈ {0, 1, . . . , 10} by player I as a bribe to player II (with
10−x the bribe to player III).7 If player I chooses either one of the “cooperative” actions B
or C, then the stage game ends. If player I chooses instead to offer a bribe of 10 to players
II and III (with x representing the split), players II and III then simultaneously decide
whether to accept or reject the bribe. The stage game then ends, and all actions become
common knowledge. The game has many subgame-perfect equilibria, but they all share
some common features: player I attempts to bribe the other players rather than behave
cooperatively, and both players II and III accept any positive bribe offered. Moreover, the
set of subgame-perfect equilibrium payoffs is given by

{(10, x, 10 − x) : x ∈ {0, 1, . . . , 10}} .

7The extensive form Γ2 has a natural interpretation as a bargaining game where player I has a pie of
10 to be split between himself and two others, with decisions being taken by majority voting (to make this
interpretation literal, simply replace the payoff of 1 for player I after actions A and B with a payoff of 0).
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Note that the payoffs of players II and III are negatively related across the equilibria of
the stage game.

We assume randomizations between B and C are observable to order to maintain the
pure strategy nature of the analysis (equivalently, we could assume there is an observable
“sharing” fraction y that I uses to allocate the surplus of 20 between II and III).

We are interested in the possibility of using these multiple equilibria to construct an
equilibrium of the once-repeated game where player I behaves cooperatively in the first
period by playing a (possibly degenerate) probability distribution over the pure cooperative
actions B and C.

We begin by arguing that it is impossible to support this cooperative play by I in the
first period using continuation play in the second period that is independent of the nature
of I’s bribe: If player I deviates by attempting the bribe x, then equilibrium requires that
players II and III both reject player I’s bribe. For II to reject, her continuation payoff
from rejection must be at least x. If the continuation play is independent of I’s bribe,
this implies that II’s continuation payoff after rejection is 10 (otherwise II would accept a
bribe of 10). At the same time, for III to reject, his payoff must be at least 10 − x, again
for all x. But this requires that III’s continuation payoff after rejection is also 10, which is
impossible.

On the other hand, it is easily verified that the following profile is a subgame-perfect
equilibrium: In the first period, player I plays cooperatively; if he were to deviate all bribes
would be rejected by both players II and III . In the second period, after cooperative play
in the first period, player I bribes at some level x in the second period (any level works).
If player I had deviated in the first period, and his bribe x was rejected by both II and
III , player I offers the same bribe in the second period, which is accepted by both II and
III . (If I offers another bribe in the second period, both players II and III accept.) If
only one player accepts a bribe, then in the next period, player I offers the bribe that
leaves the accepting player with 0. It is irrelevant whether that player accepts the bribe
in the second period (the other player of course accepts). Finally, if both players accept
the first-period bribe, an arbitrary continuation equilibrium is played (since both players
accepting is a simultaneous deviation by II and III , these payoffs are irrelevant for the
purposes of checking for subgame perfection).

We now show that this logic extends if the stage game is infinitely repeated and payoffs
are discounted. Consider supporting the play of a (constant or time-dependent) probability
distribution over the pure cooperative actions B and C in every period of the infinitely
repeated game. In case player I deviates by offering bribes (x, 10−x), the best simple penal
code prescribes that the bribes be rejected by both players II and III , which is then followed
by the infinite reversion to the pure cooperative actions B and C, each with probability
1/2; this maximally punishes the deviant player I and optimally rewards players II and
III , given that the continuation play cannot depend on x by definition of a simple penal
code. (As in the once-repeated game, accepting a bribe would leave that deviant player
with a payoff of 0 in all future periods.) Cooperative play can be sustained by this best
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simple penal code if and only if δ ≥ 1/2.8

The optimal punishment, by contrast, provides a larger reward to the player who was
tempted more: in case player I deviates from cooperative play to offer bribes (x, 10 −
x), players II and III reject the bribes, which is then followed by the perpetual play of
cooperative actions B and C with probabilities yB on B and yC = 1 − yB on C. This is
effective if player II does not find it profitable to accept the bribe,

x(1 − δ) ≤ δ20yB ⇐⇒ yB ≥
x(1 − δ)

20δ
,

and player III does not find it profitable to accept the bribe,

(10 − x)(1 − δ) ≤ δ20(1 − yB) ⇐⇒ yB ≤ 1 −
(10 − x)(1 − δ)

20δ
.

These two inequalities are consistent as long as δ ≥ 1/3, in which case choosing the
midpoint,

yB =
1
2

+

(
1 − δ

δ

)(
2x − 10

40

)

,

provides sufficient incentive to support the cooperative outcome.
This example shares some features with the three-person alternating-offer bargaining

game of Shaked (described in Sutton (1986, p. 721)), though Shaked’s example is not a
repeated game: it ends once players have agreed on a division of the pie. In Shaked’s game,
when players are sufficiently patient, any division of the pie between the three bargainers
is consistent with subgame perfection. Those equilibria, like here, specify different contin-
uation equilibria as a function of the identity of the player who is supposed to reject (in
his game, one veto is enough). But our example illustrates that the continuation equilibria
may need to be finely tuned to the original deviation. In Shaked’s example, by contrast,
it is always sufficient to promise the entire pie to the rejecter, while both players must be
rewarded in our game, since both must reject.

3.2 Application: Naked Exclusion

In this section, we analyse a repeated version of the classic “naked exclusion” model of
Rasmusen, Ramseyer, and Wiley (1991) and Segal and Whinston (2000). The game has
three long-lived players, an incumbent monopolist (I) and two buyers (B1 and B2). Each
period, the same incumbent faces a challenge from a different short-lived entrant who is
more efficient than the incumbent. For simplicity, we do not model the potential entrants as

8The relevant incentive constraint is that neither player II nor player III prefer to accept a bribe of 10,

10(1 − δ) ≤ 10δ ⇐⇒ δ ≥
1

2
.
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players. In each period, the incumbent can choose whether or not to offer exclusive dealing
contracts to the two buyers. Exclusive dealing contracts last one period and the incumbent
can make a transfer payment to the buyers to compensate them for signing an exclusive
dealing contract. The incumbent’s exclusive dealing offers are publicly observable, and
buyers make their acceptance/rejection decisions simultaneously. If at least one buyer signs
an exclusive dealing contract for the current period, no entry occurs, and the incumbent
subsequently charges the monopoly price to each buyer, earning a profit πm on each. If no
buyer has signed an exclusive dealing contract for the current period, the entrant enters
the market, resulting in zero profit for the incumbent and an increase in the rents for the
buyers equal to S per buyer.

The stage game proceeds as follows:

Stage 1 I chooses between offering no exclusive dealing contracts, N , and a tuple (x1, x2) ∈
[0,∞)2, where xi ≥ 0 is the offered transfer payment to Bi in return for signing an
exclusive dealing contract. If I chooses N , then the period ends, and payoffs for I
and the two buyers are (0, S, S); otherwise the game proceeds to Stage 2. (Here, S
denotes the increase in buyer surplus due to entry.)

Stage 2 Facing public offers (x1, x2), B1 and B2 simultaneously choose whether to accept
the offer (ai = 1) or not (ai = 0). If at least one buyer accepts the offer, payoffs are
(2πm−a1x1−a2x2, a1x1, a2x2), where πm is the monopoly profit that the incumbent
can extract from each buyer; if both buyers reject the offer, payoffs are (0, S, S).

We assume that payoffs satisfy 2πm > S > πm > 0. The first inequality ensures that
the incumbent’s monopoly profit is sufficiently large that it is worthwhile for him to offer a
large enough “bribe” to one buyer to make it a dominant strategy for that buyer to accept
the exclusive dealing offer. The second inequality implies that entry is efficient. While
the stage game has multiple subgame-perfect equilibria, there is no entry in any of these
equilibria and aggregate payoffs are 2πm. The best equilibrium for buyer B1 (buyer B2)
involves I offering (S, 0) (resp., (0, S)), making it a dominant strategy for that buyer to
accept the offer and resulting in incumbent profit of 2πm−S. These are the worst equilibria
for I. The best equilibrium for I is the one in which I offers (0, 0) and both buyers accept
the offer, resulting in incumbent profit of 2πm.

3.2.1 The Infinitely Repeated Game

We now investigate the effects of the infinite repetition of this game. We are interested in
determining the conditions under which it is possible to sustain the play of N (no exclusive
dealing, and thus entry) in each period as an equilibrium of the game. In this equilibrium,
the incumbent’s payoff is zero, and each buyer receives S in every period. The common
discount factor is denoted δ ∈ (0, 1).
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We first consider sustaining the perpetual play of N by a simple penal code. Any
pair of deviant offers (x′

1, x
′
2) will be accepted by both buyers if x′

1 + x′
2 > 2πm, and

rejected by both buyers otherwise. In either case, this is followed by the play of N in all
future periods. Note that this simple penal code maximally punishes the deviating I, and
maximally rewards the two buyers, given that the rewards cannot be made dependent on
the deviant offers. If one of the buyers were to deviate and accept the exclusive dealing
offer when x′

1 + x′
2 ≤ 2πm, then that deviant buyer would be maximally punished by the

play of an equilibrium that gives him a zero payoff in all future periods. (For instance, by
the perpetual play of the static equilibrium that gives S to the other buyer.)

Facing deviant offers (x′
1, x

′
2) such that x′

1 + x′
2 ≤ 2πm,9 buyer Bi is willing to reject

his offer x′
i if and only if

x′
i ≤

S

1 − δ
.

As this incentive constraint has to hold for any x′
i ≤ 2πm, provided x′

i + x′
−i ≤ 2πm, the

perpetual play of N can be sustained by a simple penal code if and only if

δ ≥
2πm − S

2πm
≡ δ̂SPC .

We now show that, using an optimal punishment, the perpetual play of N can be
sustained for even lower discount factors, namely if and only if

δ ≥
2πm − S

4πm − S
≡ δ̂OPC < δ̂SPC .

The optimal punishment differs from the simple penal code above only in the event in which
I’s deviant offers (x′

1, x
′
2) are such that max(x′

1, x
′
2) ∈ (S, 2πm) and x′

1 + x′
2 ≤ 2πm. Such

deviant offers are rejected by both buyers, and are followed, from the next period onward,
by play of the equilibrium which maximizes the payoff of buyer Bj , j ≡ arg max(x′

1, x
′
2),

i.e., by providing maximal reward for the buyer who received the larger deviant offer. As
we show below, in this continuation equilibrium, buyer Bj gets a per-period payoff of 2πm,
whereas buyer B−j and the incumbent I both get zero. So, I is maximally punished.

Turning to the buyers’ incentive constraints following such deviant offers, note first that
buyer B−j receives S this period (and zero in all future periods) from rejecting his offer
but only x′

−j ≤ 2πm−x′
j < S in this period (and zero in all future periods) from accepting.

So his incentive constraint is satisfied for all discount factors. Buyer Bj is willing to reject
his offer if and only if

x′
j ≤ S +

δ

1 − δ
2πm.

9If instead the deviant offers sum to more than 2πm, equilibrium prescribes that both buyers accept the
offers. As each buyer has a myopic incentive to do so, provided the other buyer does as well, the incentive
constraints are trivially satisfied in that case.
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As this inequality has to hold for all x′
j not exceeding 2πm, Bj ’s incentive constraint is

satisfied if and only if δ ≥ δ̂OPC .
It remains to show that, for any δ ≥ δ̂OPC , there is an equilibrium that gives buyer

Bj a per-period payoff of 2πm.10 Along the equilibrium path, I offers xj = 2πm to Bj

and x−j = 0 to B−j , both buyers accept, and no entry takes place. (Note that neither
buyer has a myopic incentive to deviate, so equilibrium may as well prescribe play of the
same equilibrium in all future periods following a deviation by a buyer.) Consider now
a deviation by I to offers (x′

1, x
′
2). If x′

1 + x′
2 > 2πm, both offers are accepted, and the

same equilibrium (giving I a zero payoff) is played forever after. (Accepting the offer is
myopically optimal for each buyer, provided the other buyer does so as well, so no dynamic
incentives need to be provided.) If instead x′

1 +x′
2 ≤ 2πm, both offers are rejected (so that

entry occurs, yielding a payoff of S to each buyer in the current period); equilibrium play
from the next period onward is exactly the same as following the same vector of deviant
offers in the optimal (non-simple) punishment scheme for sustaining the perpetual play of
N described above. As our analysis above shows, both buyers have an incentive to reject
I’s deviant offers if δ ≥ δ̂OPC . Hence, I does not have a profitable deviation.

3.2.2 Discussion

In this extended example, ‘no exclusive dealing’ can be supported as an equilibrium out-
come in a repeated version of the “naked exclusion” game. On the equilibrium path, the
incumbent is not supposed to offer exclusive dealing contracts to his retailers – but if he
does, both of the retailers must reject these offers in order to inflict within-period punish-
ment on the incumbent and reduce his temptation to deviate. Inducing such rejection does
not require dynamic incentives if the incumbent offers a payment for exclusive dealing of
less than S, since (if rejection by the other retailer is expected), rejection is myopically
optimal. But inducing rejection of an exclusive dealing offer with a payment of more than
S does require dynamic incentives since such rejection would decrease the retailer’s current
profit. Retailers must therefore be ‘rewarded’ in the continuation game for rejecting such
a tempting exclusive dealing contract.

In contrast to the first set of examples, in this setting, there is no trade-off between
rewarding the punisher and punishing the deviator, since equilibria which reward the pun-
ishers (exclusive dealing or equilibria with entry) can be constructed which yield zero profits
to the incumbent. There is, however, a trade-off between rewarding the two retailers who
must both reject the deviant offers. The most that both retailers can receive at the same
time is S per retailer (when entry occurs in every period), so the best simple penal code
involves the play of this equilibrium after any deviation by the incumbent. But there exist
equilibria with exclusive dealing that can provide more than S to one retailer (and less
than S to the other one, and zero to the incumbent). Thus, if the incumbent makes a

10As both I and B−j can ensure themselves a payoff of at least zero, there does not exist an equilibrium
in which Bj earns more than 2πm per period.
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deviation involving a bribe of more than S to one retailer (and less than S to the other,
otherwise the deviation is unprofitable), the optimal punishment scheme provides a larger
‘carrot’ to the retailer most tempted. In this setting, as in Section 2, the continuation
play again optimally depends on the particular deviation chosen, but this time because the
reward provided must fit the temptation resisted (or the sacrifice made) when rejecting the
deviation.

The principle that the reward provided should be tailored to the sacrifice is natural.
This is particularly so in the dynamic variant of the repeated naked exclusion game set out
above, where, rather than entrants being short-lived, the entrant replaces the incumbent
in the period following rejection of all exclusive dealing contracts, and hence becomes the
new incumbent, offering exclusive dealing contracts against a new entrant, the following
period.11 In this dynamic game, if an incumbent deviates by offering an asymmetric set of
exclusive dealing contracts (more than S to one retailer, less than S to another), then it is
natural that the entrant, when he becomes the incumbent next period, plays a continuation
equilibrium which provides larger rewards to the retailer which made a greater sacrifice in
enabling the entrant to replace the old incumbent.

The same forces are also at work in Nocke and White (2007). That paper studies collu-
sion in an intermediate goods industry where several upstream firms compete to sell inputs
to downstream retailers. In the stage game, which is infinitely repeated, the upstream
firms first simultaneously make contract offers to downstream firms; then, the downstream
firms simultaneously decide which contract(s) to accept; and, finally, the downstream firms
compete in the retail market. An upstream firm can profitably deviate from the collusive
equilibrium only if his deviant contract offer is accepted by at least one downstream re-
tailer. Whilst Nocke and White concentrate on the simpler case where collusion is sustained
by “Nash reversion”, it can be shown that the optimal punishment scheme induces down-
stream retailers to help sustain upstream collusion by rejecting certain deviant offers (in
particular, those which are very profitable for the deviating firm). In order that down-
stream firms do indeed reject such offers, the tempted downstream retailers need to be
“rewarded” by the play of an equilibrium in the continuation game that is favorable to
them in that case, with the likelihood of this reward optimally chosen to be increasing in
the relative size of the temptation.

Weingast (1995, 1997) has also analyzed a game with a structure similar to the naked
exclusion game set out above. In Weingast’s game, an incumbent sovereign can expropriate
one or both of his subject groups. The subject groups can successfully resist expropriation
only if they both do so, however (just as exclusivity is successfully resisted only if both
retailers reject it), and resistance is costly. As in the naked exclusion game, it is desirable
to support an equilibrium with no expropriation by the sovereign, but this is impossible in

11Since we focus on equilibria in which the incumbent makes zero profit in all future periods, independent
of whether or not he deviates, our analysis of the optimal punishment extends to this dynamic version of
the game. In the dynamic version, it is the entrant who rewards the buyer rejecting the exclusive dealing
contract.
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the one-shot game because the sovereign can play a ‘divide and conquer’ strategy whereby
he expropriates only one of the two groups, so that the other has no myopic incentive to
resist. This is formally very similar to the incumbent making asymmetric exclusive dealing
offers in the game analyzed above. Weingast discusses informally the potential benefits
of repetition as a way to coordinate resistance and provide rewards for groups which join
the resistance against their myopic self interest; these benefits have been confirmed experi-
mentally by Cason and Mui (2013). Our analysis suggests that coordinated resistance will
be most successful when the division of the spoils from successful resistance (provided in
the continuation game) takes into account the relative sacrifices made in resistance. This
requires that players anticipate that a new sovereign put in place following successful coor-
dinated resistance will play an asymmetric equilibrium, where those who made the largest
sacrifices in resisting the ancien régime are most rewarded when it is overthrown, a sugges-
tion which seems not implausible. These examples show that the supposed “complexity”
of optimal penal codes in extensive form games need not be seen as a disadvantage and a
reason to focus instead on Nash-reversion in such games, but can instead be a source of
richness and additional predictions for a model.

4 Conclusion

A major concern in any long run interaction is the provision of incentives to discipline
the behavior of agents. In simple interactions, such as the repeated prisoners dilemma, an
opportunistic deviation is immediately profitable (since the other players cannot immedi-
ately react) and can only be deterred by appropriate specifications of continuation play
(or future punishments). In many applications, interactions are intrinsically dynamic and
opportunistic deviations are only profitable if they are validated by the complicit behavior
of at least one other player. Moreover, this complicit behavior is often myopically optimal
(since, for example, it may involve accepting a “bribe”).

When agents are impatient, deterring deviations may therefore require preventing the
complicit behavior, which requires specifying deviation-dependent continuations. In this
paper, we have indicated two likely causes of the need for deviation-dependent continu-
ations: 1) Rewarding a potentially complicit player for not being complicit also rewards
the original deviator; and 2) there are multiple potentially complicit players and there is a
trade-off in rewarding players for not being complicit.

We have illustrated these causes by providing applications to a repeated bilateral invest-
ment game with hold-up in the spirit of Klein, Crawford, and Alchian (1978) and Grossman
and Hart (1986), and to a repeated naked exclusion game modeled on Rasmusen, Ram-
seyer, and Wiley (1991) and Segal and Whinston (2000). But we expect that the same
phenomena will arise in many other interesting applications. The first cause of the need for
deviation-dependent continuations – the commonality of interest between potential pun-
isher and punishee – arises in many environments, such as the interaction between parent
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and child; between legislators of the same political party; between a monetary authority
and the public; and between principal and agent in relational contracting. The second
cause – the trade-offs between rewarding different punishing parties – arises in settings
such as multi-player bargaining or lobbying; collusion in vertically related markets; and a
defendant dealing with multiple claimants. As we hope our examples show, examining the
particular structure of optimal punishment in an applied settings can yield new insights as
to ways to make existing institutions work better.

Our analysis also indicates the importance of carefully modeling the within-period
interactions. In this respect, the game theoretic literatures focus on folk theorems with
patient players is unfortunate and potentially seriously misleading. In particular, such a
focus allows researchers to use the normal form of the within-period interaction, which
effectively ignores the within-period dynamic structure.
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