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Abstract

We consider a budget-constrained mechanism designer who selects an optimal set
of projects to maximize her utility. A project’s cost is private information and its
value for the designer may vary. In this allocation problem, the selection of projects
- both which and how many - is endogenously determined by the mechanism. The
designer faces ex-post constraints: The participation and budget constraints must
hold for each possible outcome while the mechanism must be implementable in
dominant strategies. We derive the class of optimal mechanisms and show that
it has a deferred acceptance auction representation. This feature guarantees an
implementation with a descending clock auction. Only in the case of symmetric
projects do price clocks descend synchronously such that the cheapest projects are
executed. The case in which values or costs are asymmetrically distributed features
a novel tradeoff between quantity and quality. Interestingly, this tradeoff mitigates
the distortion due to the informational asymmetry compared to environments where
quantity is exogenous.
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1 Introduction

We study the problem of a mechanism designer who can spend a fixed budget
on a variable number of projects which differ in the value the designer derives
from them. Projects (agents) have private information about their costs and
want to get funding beyond the necessary minimum. The designer’s goal is to
select an affordable set of maximal aggregate quality. In other words, she faces a
mechanism design variant of the knapsack problem with strategic behavior due
to informational asymmetries.1 Essentially, we approach this problem as an “up
to possibly n-units” procurement problem with n agents with single-unit supply
where demand quantity is determined after observing projects’ reports under a
budget constraint. The budget constraint, the individual rationality constraints,
and the participation constraints are imposed ex-post, i.e., a project cannot be
conducted when the assigned funds are insufficient, the sum of transfers must not
exceed the budget for any cost realization, and truth telling must be a (weakly)
dominant strategy.

This framework matches a large range of allocation problems, in which a de-
signer needs to allocate a divisible but fixed capacity among agents. Allocation
problems, in which a financial budget constraint represents the fixed capacity,
include the procurement of bus lines, bridges, and streets, or the allocation of
subsidies or research money. Alternatively, the capacity constraint can repre-
sent the payload limit on a freighter or on a space shuttle,2 or a limited amount
of time to be devoted to several tasks. Out of many suitable applications, we
employ as our leading example a development fund, who desires to distribute
money to nonprofit projects with non-monetary benefits.

Our paper not only helps to understand a class of economically relevant prob-
lems, the framework also presents a novel methodological challenge. The ex-post
nature of both the participation and the budget constraint precludes the use of
standard pointwise optimization techniques à la Myerson (1981). Nonetheless,
rewriting the problem involves expressing expected transfers by the allocation
function as an auxiliary step. As the designer maximizes expected payoff in-
cluding residual money, we can employ the procurement analogue of Myerson’s

1The knapsack problem is a classical combinatorial problem, dating as far back as 1897. A
set of items is assigned values and weights. The knapsack should be filled with the maximal
value, but can carry only up to a given weight. For an overview of the literature on knapsack
problems see Kellerer, Pferschy, and Pisinger (2004).

2Clearly, the capacity of a space shuttle is limited. The problem of optimally allocating the
capacity and incentivizing projects to reduce payload is economically relevant, see Ledyard,
Porter, and Wessen (2000).
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notion of “virtual surpluses”. However, our results easily translate to a setting
in which the designer does not value residual money.

By focusing on dominant strategy implementable deterministic mechanisms, we
can reduce the problem to finding a set of optimal cutoff functions. These cutoff
functions exhibit certain properties, and we call the corresponding mechanisms
“z-mechanisms”. A z-mechanism is characterized by a set of functions {zi} that
depend only on the costs of non-executed projects and are weakly increasing
in those costs. The function zi is a cutoff such that project i is conducted
whenever i’s cost report falls below zi. We show that any z-mechanism has
an equivalent deferred acceptance (DA) auction representation as described in
Milgrom and Segal (2014). A DA auction is an iterative algorithm that computes
the allocation and transfers of an auction mechanism and possesses attractive
features with respect to bidders’ incentives that go beyond dominant strategy
implementability.

First, any DA auction is weakly group-strategy proof. In other words, it is
impossible for a coalition of projects to coordinate their bidding strategies such
that it strictly increases the utility of all projects in the coalition. Second, the
dominant strategy equilibrium outcome of any DA auction is the only outcome
that survives iterated deletion of dominated strategies in the corresponding full
information game with the same allocation rule but where players pay their
own bid. Therefore predicting the dominant strategy equilibrium outcome in
a DA auction can be considered robust. Milgrom and Segal (2014) argue that
these properties make DA auctions suitable for many challenging environments
such as radio spectrum reallocation. Among several potential applications, they
also consider our budget constrained procurement setup (Example 5: “Adaptive
Scoring for a Budget Constraint”). However, they do not show optimality of
the DA auction. To the best of our knowledge, we are the first to do so in a
non-trivial setting. Therefore we can strengthen the argument in favor of DA
auctions.

We investigate symmetric and asymmetric environments separately and propose
implementations. First, we focus on the case in which all projects are ex-ante
symmetric and only the cost is private information. Having characterized the op-
timal mechanism as a z-mechanism, it follows that it is optimal to rank projects
according to their cost and “greenlight” the cheapest ones. Because of the bud-
get, the number of greenlighted projects is endogenously determined by the cost
reports of all participating projects. Second, we examine the case of ex-ante
asymmetric projects, i.e., costs are drawn from different distributions and/or
project values differ. In applications, the designer may prefer some projects over
others and might have different information over cost distributions. We restrict
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attention to the two-project case because it conveys the main insights while
retaining tractability.

In standard procurement settings, the quantity of units to be procured is fixed.
It is a well known result that in such settings projects are greenlighted in order
of their virtual surpluses, e.g., Luton and McAfee (1986). When values are
identical but costs are asymmetrically distributed, the ranking implied by costs
and the ranking implied by virtual surpluses do not necessarily coincide. Broadly
speaking, the designer discriminates against stochastically stronger projects.

Interestingly, the optimal allocation in the symmetric case does not easily gen-
eralize to the asymmetric case. Projects are not simply greenlighted in order
of their virtual surpluses. We show that there are instances where out of two
rival projects the project with lower virtual surplus is optimally chosen. The
reasoning behind this result is that the number of procured units is endogenous.
Always greenlighting in order of virtual surplus reduces the expected number of
greenlighted projects compared to the optimal mechanism. Incentive compati-
bility constraints create a tradeoff between quantity and quality of the procured
projects. Notably, the quantity-quality tradeoff mitigates the stochastic discrim-
ination mentioned above.

Reducing the set of candidates for optimal mechanisms to z-mechanisms, which
have a DA auction representation, enables us to implement any optimal allocation
with an appropriately designed descending clock auction. Individual clock prices
determine the transfer paid to each active project and continuously decrease. In
the symmetric case, clocks run down synchronously. Therefore projects exit in
order of their costs until all remaining projects can be financed.

In asymmetric settings with fixed quantities, a descending clock auction requires
individual clock speeds as the order of virtual surpluses does not coincide with
the order of costs. A designer can adjust the clocks’ speed such that the vir-
tual surplus of marginal projects is kept equal, see Caillaud and Robert (2005,
Proposition 1). As the optimal mechanism in our asymmetric case does not
always allocate in order of virtual surplus, we cannot adopt this approach. In-
stead, the descending clock implementation of the optimal allocation includes
individual clocks stopping at certain times. Here, the quantity-quality tradeoff
kicks in.

Clock auctions are generally easy to understand and hard to manipulate. Fur-
thermore, they are less information hungry than, for example, sealed bid auc-
tions. In descending clock auctions, the designer only learns the private informa-
tion of those projects that are not greenlighted. These features of clock auctions
make them attractive for applications in which there is limited trust between the
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involved parties. In practice, clock auctions are not only used in the eponymous
Dutch flower auction or Japanese fish auction, they are also commonly used in
the public sector, e.g., by the US Department of the Treasury.

To the best of our knowledge, this paper is the only one that considers purely
ex-post constrained optimal procurement design. Such a restrictive setting can
be seen as a “worst case scenario” for the designer, suiting many economic ap-
plications. In our leading example of the development fund, an ex-post budget
constraint appears natural as budgets are usually fixed. The nonprofit nature of
the projects might prohibit acquiring additional money on the financial market.
Information rents are necessary, because a project might want to spend money
on extra equipment that is convenient for the project’s staff but has no value
for the designer. In practice, such incentive problems are often resolved using
dominant strategy implementable mechanisms, as they are easy to explain and
not prone to manipulation or misspecification of beliefs. For similar reasons, we
restrict attention to deterministic mechanisms. Deterministic mechanisms obvi-
ate the need for a credible randomization device and are therefore more easily
applicable in practice. Finally, ex-post participation constraints are necessary
because projects simply cannot be conducted with insufficient funds, and the
designer wants to avoid costly renegotiations when the projects default.

1.1 Literature

Even though the knapsack problem has a wide range of economic applications,
there are relatively few publications in economics on this issue. Most promi-
nently, in his Nancy L. Schwartz memorial lecture Maskin (2002) addressed the
related problem of the UK government that put aside a fixed fund to encourage
firms to reduce their pollution. The government faces n firms that have private
marginal cost of abatement θi and can commit to reduce xi units of pollution. To
reduce pollution as much as possible, the government pays expected compensa-
tion transfers ti to the firms, who report costs and proposed abatement to maxi-
mize ti−θixi. For some distributions, Maskin (2002) proposes a mechanism that
satisfies an ex-post participation constraint, an ex-post incentive compatibility
constraint, and the condition that the budget is not exceeded in expectation. In
response to Maskin (2002), Chung and Ely (2002b) look at a more general class
of mechanism design problems with budget constraints and translate them into
a setting à la Baron and Myerson (1982). Their approach nests Maskin (2002)
and also Ensthaler and Giebe (2014a) as special cases. However, Ensthaler and
Giebe (2014a) more explicitly derive a constructive solution. In contrast to us,
they all consider a soft budget constraint that only requires the sum of expected
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transfers to be less than the budget.

Ensthaler and Giebe (2014a) circumvent this problem by using AGV-budget-
balancing (such as Börgers and Norman, 2009) to obtain a mechanism which
is ex-post budget-feasible. However, transformation into a mechanism with an
ex-post balanced budget in such a way comes at the cost of sacrificing ex-post
individual rationality. Many applications do not allow this constraint to be
weakened. For instance, subsidy applicants usually cannot be forced to conduct
their proposal when receiving only a small or possibly no subsidy. Alternatively,
limited liability justifies insisting on ex-post individual rationality.

To the best of our knowledge, no paper exists that jointly considers optimal
mechanism design under ex-post budget balance and ex-post individual ratio-
nality in a procurement setting. Ensthaler and Giebe (2014b) propose a clock
mechanism that coincides with our optimal mechanism in the symmetric case
for many parameterizations3 but differs in the asymmetric case by holding the
cost-benefit-ratio equal among projects. By simulating different settings, they
conclude that this mechanism outperforms a mechanism used in practice. Al-
though a comparison might be unfair as they consider a belief-free designer, this
clock mechanism is outperformed by our mechanism.

Because of the appeal of dominant strategy incentive compatible (DIC) mech-
anisms compared to Bayesian incentive compatible (BIC) mechanisms, many
researchers have produced valuable BIC-DIC equivalence results. These results
characterize environments in which restricting attention to the more robust in-
centive criterion comes without loss. Our setup is not contained in these environ-
ments. For any BIC mechanism, Mookherjee and Reichelstein (1992) show that
one can construct a DIC mechanism implementing the same ex-post allocation
rule, whenever this allocation rule is monotone in each coordinate. However, the
ex-post transfers of the constructed DIC mechanism are not guaranteed to satisfy
ex-post budget balance. More recently, Gershkov, Goeree, Kushnir, Moldovanu,
and Shi (2013) employ a definition of equivalence in terms of interim expected
utilities introduced by Manelli and Vincent (2010). For any BIC mechanism,
including the optimal one, they construct a DIC mechanism that yields the same
interim expected utilities. Here, the ex-post allocation as well as the ex-post
transfers might differ between the two. Therefore a DIC mechanism equivalent
to a feasible BIC mechanism might violate the ex-post constraints in our setting.

Our budget constrained procurement setup with ex-post constraints has received

3In contrast to their setting, the mechanism designer in our model values residual money.
Therefore the designer will not greenlight projects with negative virtual surplus. Ensthaler
and Giebe (2014b) do not consider this case.

6



much attention in the computer science literature. Instead of specifying the
optimal mechanism, the authors in this literature typically aim to construct
allocation algorithms that give good approximation guarantees. In other words,
they try to maximize the minimal payoff an algorithm can guarantee compared
to the full information knapsack payoff. Apart from the seminal paper by Singer
(2010), the works of Dobzinski, Papadimitriou, and Singer (2011) and Chen,
Gravin, and Lu (2011) are notable examples of this approach. Anari, Goel,
and Nikzad (2014) present a stochastic algorithm and show that it gives the
best possible approximation guarantee in the many projects limit in which any
individual project’s costs are small compared to the budget. While the above
papers examine the belief-free case, Bei, Chen, Gravin, and Lu (2012) propose
an algorithm for setups in which the designer knows how the private information
is distributed.

Dizdar, Gershkov, and Moldovanu (2011) investigate a dynamic knapsack prob-
lem where impatient projects with private capacity requirement w and private
willingness to pay v arrive over time. The mechanism designer offers them a
price p and a capacity w′ where the sum of capacities offered is constrained. The
projects’ utility is given by wv − p if the assigned capacity satisfies w′ > w, and
by −p otherwise. However, the static version of their problem does not mirror
our problem in the way procurement auctions mirror seller-buyer auctions. In
their model, the mechanism designer is only interested in the sum of payments
and the value only enters the individual projects’ payoff. In our framework, the
designer maximizes aggregate value of all greenlighted projects minus the sum of
transfers. That is, the project’s value is of first-order importance to the designer
and the project’s type only enter her objective indirectly via the transfers. A
project may only benefit from a higher value indirectly because it cause a larger
transfer.

There seems to be no reasonable analogy for our setting to another setting where
the mechanism designer is a similarly constrained seller and the agents are buyers.
Budget constrained buyers in auctions have been discussed in the literature,
e.g., by Pai and Vohra (2014) or Che and Gale (1998). However, these authors
study budget-constrained agents whereas in our setting the designer is budget-
constrained.

In the following section, we introduce the model. In Section 3 we rewrite the
problem as a problem of finding the optimal z-mechanism. Sections 3.1 and
3.2 cover symmetric and asymmetric environments, respectively. We discuss
extensions and possible modifications to the model in Section 4. Finally, we
conclude in Section 5.
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2 Model

We consider a set of n projects I = {1, . . . , n} and one mechanism designer. Each
project can be conducted exactly once. The designer gains utility vi if and only if
project i ∈ I is conducted. We consider projects to be utility maximizing agents.
If project i is executed, it incurs cost ci ∈ [ci, ci]. The costs are the projects’
private information and are independently drawn from a distribution Fi. We
assume Fi to be continuously differentiable with a strictly positive density fi on
the support. The value of the project vi and the distribution Fi are common
knowledge.

We restrict attention to deterministic mechanisms. This restriction implies that
once all cost reports are collected, we know with certainty which project will be
selected by the mechanism. In other words, the probability of implementation qi
is binary,

qi = 1 ∀i ∈ G and qi = 0 ∀i ∈ R,

where the designer’s allocation decision is represented by a partition of the set of
projects into two disjoint sets G ∪R = I. We will say that projects in set G are
“greenlighted” while projects in set R are “redlighted”. We employ the revelation
principle and without loss of generality only consider direct mechanisms.4

To compensate project i for its cost, the designer pays transfer ti. Consequently,
a direct mechanism is characterized by 〈qi, ti〉. It is a mapping from the vector of
cost reports c ∈ ×ni [ci, ci] into provision decisions and transfers. When we talk
about the allocation, we refer to the former. Project i’s utility ui is given by its
transfer minus the cost it bears:

ui(c) = ti(c)− qi(c)ci.

The designer derives value vi from each greenlighted project i ∈ G while having
to pay the sum of transfers. Therefore she wants to maximize the aggregate value
of greenlighted projects net of transfers paid. Her (ex-post) utility function uD
implies that, in our setting, the designer values residual money,

uD(c) =
∑
i

(
qi(c)vi − ti(c)

)
. (1)

4In general, it is not always possible to employ the revelation principle while restricting at-
tention to deterministic mechanisms. This caveat is a result of deterministic direct mechanisms
being unable to replicate the players’ equilibrium mixing strategies in deterministic indirect
mechanisms, e.g., Strausz (2003). However, in our setting we do not lose generality, due to the
ex-post nature of our constraints.

8



We impose an ex-post participation constraint. That is, if i is greenlighted the
transfer must be at least as high as the cost,

ti(ci, c−i)− qi(ci, c−i)ci ≥ 0 ∀i, ci, c−i. (PC)

In addition, the designer has a budget constraint which is “hard” in the sense
that she cannot spend more than her budget B for any realization of the cost
vector. That is, the designer can never exceed her budget∑

i

ti(c) ≤ B ∀c. (BC)

Finally, incentive compatibility has to hold ex-post. Alternatively, we can say
that the mechanism has to be implementable in (weakly) dominant strategies.5

Therefore, for every realization of the cost vector, project i’s truthful report must
yield at least as much utility as any possible deviation

ti(ci, c−i)− qi(ci, c−i)ci ≥ ti(c̃i, c−i)− qi(c̃i, c−i)ci ∀i, ci, c−i, c̃i. (IC)

One may think that a natural approach to this problem would be to express
the ex-post transfer ti(ci, c−i) as a function of the ex-post allocation decision
qi(ci, c−i), taking c−i as given, and applying the envelope theorem. In that case,
it would be possible to restrict attention to the allocation in order to solve for
the optimal mechanism. However, this approach does not reduce the complexity
of the problem. The reason is that the ex-post transfers and allocation for one
cost vector restrict transfers and allocation for other cost vectors through the
budget constraint in a manner much more involved than standard monotonic-
ity. In particular, the budget constraint with the ex-post transfer expressed as
a function of the ex-post allocation may be ill-behaved. Therefore we cannot
straightforwardly arrive at sufficient conditions using convex optimization.6

3 Analysis

We search for the direct mechanism that maximizes the expected utility of the
designer and refer to this mechanism as the optimal mechanism. Our first step

5In our private value environment, these two concepts are equivalent in a direct revelation
mechanism. In general, however, ex-post incentive compatibility is essentially a generalization
of dominant strategy implementability to interdependent value environments. See Chung and
Ely (2002a).

6Requiring either the budget or the participation constraint to hold only in expectation
would enable us to use the techniques employed by Ensthaler and Giebe (2014a).
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is to show that the ex-post constraints imply that the optimal mechanism has to
be in cutoffs.

Lemma 1. The optimal mechanism can be represented by cutoff functions zi :
[cj, cj]

j∈I\{i} → [ci, ci], where project i is greenlighted whenever it reports a cost
weakly less than its cutoff:

qi(ci, c−i) = I(ci ≤ zi(c−i)).

The transfer to project i will be its cutoff whenever it is greenlighted and zero
otherwise:

ti(ci, c−i) = qi(ci, c−i)zi(c−i).

Proof. First note that for any two cost reports ci, c
′
i of project i and for some c−i,

(IC) implies that if qi(ci, c−i) = qi(c
′
i, c−i), then we must also have ti(ci, c−i) =

ti(c
′
i, c−i). Otherwise i could deviate to the report giving a higher transfer.

Suppose project i is greenlighted for some of its cost reports given c−i. Then
there are only two possible values for ti, depending on whether i is greenlighted
or not: tqi=1

i and tqi=0
i .

Define zi(c−i) = tqi=1
i − tqi=0

i . Then (IC) yields

qi(ci, c−i) =

{
1 if ci ≤ zi(c−i)

0 if ci > zi(c−i).

Suppose to the contrary that for some realization ĉi < zi(c−i) we had qi(ĉi, c−i) =
0. Deviating to a cost report that ensures the green light would imply a utility
increase of zi − ci. An analogous argument applies for ĉi > zi(c−i) > 0.7

The last step is to show that tqi=0
i = 0. This result trivially follows from the

mechanism being optimal, i.e., maximizing expected utility of the designer.

As a direct consequence of dominant strategy implementability, Lemma 1 shows
that allocation and transfers are characterized by cutoffs. Project i is green-
lighted whenever it reports a cost that lies weakly below the cutoff. Crucially,

7When ci = zi, (IC) permits both qi = 0 and qi = 1. By convention, we will assume qi = 1
in this case. However, writing a mechanism this way precludes the specification of tie-breakers,
which might be necessary to conserve budget balance. For example, in a 2-project example
we would write down the mechanism “greenlight the cheaper project” as z1(c2) = c2 and
z2(c1) = c1. If c1 = c2 a tie-breaker is needed to select a project. As this is a zero-probability
event, the choice of the tie-breaker does not impact the designer’s payoff. Similarly, as projects
are indifferent, their ex-post utility is unaffected. Therefore we refrain from specifying a tie-
breaker and will write down our analysis as if both projects are greenlighted in these cases.
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these cutoffs are functions of the other cost reports c−i. However, the optimal
cutoffs remain to be determined. The maximization problem of the designer is
given by

maxzi(c−i) E [
∑

i qi(c)vi − ti(c)]

s.t. (BC),
qi(c) = I(ci ≤ zi(c−i)),

ti = I(ci ≤ zi(c−i))zi(c−i).

(2)

Here qi and ti are determined by the cutoff zi. Incentive compatibility and
participation constraints, thus, hold by construction.

The next step towards solving this problem involves applying standard methods
introduced by Myerson (1981). Let the conditional expected probability of being
greenlighted and the conditional expected transfer be

Qi(ci) = E[qi(ci, c−i)|ci]
and Ti(ci) = E[ti(ci, c−i)|ci].

The interim incentive compatibility required by Myerson (1981) is weaker than
our condition (IC). Consequently, the expected transfer is determined by the

allocation, Ti(ci) = Qi(ci)ci +
∫ c
ci
Qi(x)dx. The usual monotonicity condition is

trivially fulfilled as we are dealing with cutoff mechanisms. This reformulation
in turn allows us to rewrite the objective function as a function of the alloca-
tion. Substituting into problem (2) and integrating by parts yields the following
maximization problem,

maxzi(c−i) E
[∑

i I(ci ≤ zi(c−i))
(
vi − ci − Fi(ci)

fi(ci)

)]
s.t.∑

i I(ci ≤ zi(c−i))zi(c−i) ≤ B ∀c.
(3)

We call ϕi(ci) := ci + Fi(ci)
fi(ci)

the virtual cost of project i and ψi(ci) := vi − ϕi(ci)
the virtual surplus. Here, ϕ and ψ are the procurement analogues to standard
auction terminology. We can directly see from problem (3) that the optimal
mechanism maximizes the expected sum of greenlighted virtual surpluses.

Note that constrained optimization via Lagrangian is not straightforward here
because of the non-differentiability of the indicator function. Instead, in the
following we derive useful properties of the optimal cutoffs that can be exploited
to characterize the optimal mechanism.
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Assumption 1 (Log-concavity). For all i the cumulative distribution function
Fi is log-concave.

This assumption is standard in information economics. It is equivalent to the
reverse hazard rate function f/F being a weakly decreasing function or the ratio
F/f being weakly increasing. Hence, the standard regularity condition is implied:
ϕi is strictly increasing and ψi is strictly decreasing. A decreasing reverse hazard
rate is the procurement analogue to the assumption of increasing hazard rate
functions in seller auction settings.

Lemma 2. Disregarding (BC), the optimal cutoffs, here defined as z∗∗i , are in-
dependent of the cost reports:

z∗∗i :=

{
ψ−1
i (0) if ψ−1

i (0) ∈ [ci, ci]

c otherwise.

In the symmetric case, z∗∗i = z∗∗ for all i ∈ I.

Regularity ensures that a lower cost ci translates to a higher virtual surplus
ψi(ci). The designer wants to greenlight any project with cost weakly below z∗∗i .
Note that regularity implies the invertibility of ψi and thus allows for the above
definition of z∗∗i . Crucially, the arguments leading to Lemma 2 also imply that
it is never optimal to greenlight a project with negative virtual surplus.

We have previously introduced G and R as the sets of greenlighted and redlighted
agents. Consequently, we denote the cost vector of projects in G as cG and
similarly the cost vector of projects in R as cR. In general, cX is a vector that
contains all elements ci from cost vector c for projects i ∈ X ⊂ I. We now define
a class of mechanisms and then show that any mechanism outside of this class
cannot be optimal.

Definition 1 (z-mechanism). A z-mechanism is characterized by a set of cutoff
functions {zi}i∈I that are almost everywhere equal to cutoff functions that are

Property 1 left-continuous for each of its arguments,

Property 2 always weakly less than z∗∗i ,

Property 3 weakly increasing in each other project’s cost report,

Property 4 independent of costs cG conditional on {G,R} being the partition
of greenlighted and redlighted projects for projects in G.

Note that z-mechanisms have some salient features. The cutoffs of those projects
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that are greenlighted are only determined by the cost reports of projects that
are redlighted. This feature is due to the fact that project i’s cost contains no
information about the cost report of project j. What can be exploited however
is the ordering of cost reports at the margin, allowing for an iterative allocation
mechanism. Being able to restrict attention to z-mechanisms is highly useful,
as the set of all feasible z-mechanisms is a much more tangible object than the
substantially larger set of all permissible cutoff-mechanisms. In addition, we show
at the end of this section that any z-mechanism has a DA auction representation.

For some of the following lemmata and propositions, we provide the proof for
the two-project case in the main text and provide the proof of the general case
in the appendix.

Proposition 1. Among all mechanisms satisfying (PC), (BC) and (IC), any
mechanism that maximizes the designer’s payoff (1) is a z-mechanism.

We divide the proof into several lemmata showing that any optimal mechanism
can violate the properties of Definition 1 only on a set with Lebesgue-measure
zero. There are infinitely many possible cutoff functions that differ on finitely
many points that have Lebesgue-measure zero and therefore yield the same ex-
pected payoff. In order to make the functions we talk about unique, we will
w.l.o.g. restrict attention to cutoff functions that satisfy the properties. Note
that Property 1 does not require a proof because we can replace any function
zi with a left-continuous function that is identical up to a set of points with
Lebesgue-measure zero. Property 2 follows directly from the rewritten objective
function (3) and the argument behind Lemma 2. Let us now consider Property
3.

Lemma 3. The optimal cutoff function zi is weakly increasing in cj for all i, j
with j 6= i, i.e., zi(cj, c−i−j) ≥ zi(c

′
j, c−i−j) for almost every cj > c′j and c−i−j.

Proof. (with n = 2, see appendix for the general proof)
For a graphical representation of the proof see Figure 1. By Property 2 of a z-
mechanism, any optimal function zi cannot exceed z∗∗i . Greenlighting a project
with negative virtual surplus decreases the designer’s payoff and uses part of the
budget.

Fix any function z1. Suppose to the contrary that z2 is decreasing on a set
with positive Lebesgue-measure. Then, there exist sets H and L with positive
Lebesgue-measure, such that

z2(cL) > z2(cH) for all cL ∈ L, cH ∈ H,
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where cL < cH for all elements of the corresponding sets.

Now, consider the deviation ẑ2(cH) = ẑ2 for all cH ∈ H with ẑ2 = z2(ĉL) for an
arbitrary ĉL ∈ L. In other words, flatten z2 over H and leave z1 as it is. This
deviation is depicted in Panel 1a.

The deviation increases the payoff by∫
H

∫ ẑ2

z2(cH)

ψ2(c2)dF2(c2)dF1(cH) > 0.

The change in payoff is positive as z2(cL) ≤ z∗∗2 . Graphically, the increase in
payoff corresponds to the shaded areas in Panel 1b. In the lighter shaded area,
both projects are implemented with the deviation whereas only project 1 is im-
plemented with the initial candidate. In the darker shaded, area project 2 is
implemented instead of no project.

It remains to show that the deviation is not only profitable but also feasible. Fix
any c1.

Case 1: For all c2 > ẑ2. The deviation does not affect the budget constraint,
because project 2 is redlighted regardless of the deviation.

Case 2: For all c2 ≤ ẑ2. The following establishes budget-feasibility:

• Suppose z1(c2) ≥ c1.
Because the initial candidate mechanism was feasible and implemented
both projects for cost realization (ĉL, c2), the budget must satisfy B ≥
z2(ĉL) + z1(c2) = ẑ2 + z1(c2). Therefore the deviation is feasible.

• Suppose z1(c2) < c1.
Only project 2 is implemented. Again, the deviation is feasible.

Graphically, feasibility of the second case is represented by the dash-dotted line
in Panel 1b. Any cost realization for which the deviation changes project 2’s
cutoff (that is, c1 ∈ H) has a corresponding point on the dash-dotted line such
that both points lead to the same cutoffs. In addition, points on the dash-
dotted line can have a greenlighted project 1 while project 1 can be redlighted in
corresponding points affected by the deviation (the darker shaded are in Panel
1b), as cH > ĉL. Finally, note that points on the dash-dotted line are not affected
by the deviation. Therefore feasibility of the deviation follows from feasibility of
the initial candidate.

Lemma 3 establishes that cutoff functions must be weakly increasing in their
arguments. The intuition is straightforward. The cost draws of all projects

14



are independent. Therefore project i’s cost report only matters for the payoff
generated from project j 6= i through the budget constraint. Project i’s cost
report only influences the budget through exceeding or lying below the cutoff. If
project i exceeds its cutoff, this frees budget to be distributed among the other
projects. Consequently, their cutoffs must remain constant or increase. While
the intuition is the same for both n = 2 and n > 2, the proof is more involved
in the general case. The reason is that the cost report of the project with the
decreasing cutoff does not pin down all other cutoffs and hence the remaining
budget - as it does when n = 2. We cannot trivially extend the proof above, if
some cutoff of a third project z3 increases in c1 while z2 decreases. The intuition
of the general proof is that a decreasing cutoff cannot be optimal, because it
essentially implies exchanging project 2 for project 1 while the virtual surplus of
project 2 decreases relative to the virtual surplus of project 1.

c1, z1

c2, z2

z2

ẑ2

L H

(a) Candidate and deviation.

c1, z1

c2, z2

z2
z1

ĉL

(b) Feasibility and profitability.

Figure 1: A decreasing z2 cannot be optimal (deviation in the proof of Lemma
3).

Remember that G represents the set of greenlighted projects and R represents
the set of redlighted projects. In the following lemma, we establish that given
that only the projects of some set G are greenlighted and given the remaining
projects’ costs cR, for all g ∈ G all functions zg intersect each other at some point
(aG1 (cR), aG2 (cR), ...). This point only depends on cost reports cR of redlighted
projects. Intuitively, optimal cutoffs cannot depend on greenlighted projects’
cost, because for these projects the cutoff coincides with the transfer. For the
two-project case, Figure 2 illustrates that (BC) must bind when both projects
are greenlighted. But then project 1 influencing project 2’s cutoff would change
the remaining budget which is equal to project 1’s transfer, given that (BC)
binds. This contradicts the notion of a cutoff mechanism.

15



B c1

B

c2

{1, 2}

a2

a1

Figure 2: In Lemma 4, we show that in the non-trivial two-project case whenever
G = {1, 2}, both projects get constant transfers summing up to the budget. For
instance, the weakly increasing candidate mechanism depicted above is improved
by the deviation indicated by the arrows.

Lemma 4. Conditional on any arbitrary partition {G,R}, the optimal cutoff
functions zg for all g ∈ G are independent of the costs of all greenlighted projects
cG. That is,

zg(cG−g, cR) = zg(c
′
G−g, cR),

for all cG−g and c′G−g such that G is the set of greenlighted agents.

Moreover, if cost vector (cG, cR) induces allocation {G,R}, then cost vector
(c′G, cR) also induces {G,R} if c′g ≤ cg for all g ∈ G.

Proof. (with n = 2, see appendix for the general proof and consult figure 2 for
intuition)
By Lemma 1, the optimal mechanism has to be in cutoffs. What remains to be
shown is that said cutoffs only depend on cR. For G = {1} or G = {2}, i.e.,
when only one project is greenlighted, the statement follows from the nature
of a cutoff function. Hence we need to show that the cutoffs must be constants
whenever G = {1, 2}. Therefore suppose that G = {1, 2} is induced with positive
probability.

Take any feasible candidate mechanism with any increasing cutoff functions zi
and define

a1 = max{c1|∃c2 : c2 ≤ z2(c1), c1 ≤ z1(c2)}
a2 = max{c2|∃c1 : c1 ≤ z1(c2), c2 ≤ z2(c1)}.
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The maximum exists by left-continuity of zi, following Property 1 of a z-mechanism.
Whenever greenlighting both projects, the sets over which we have defined a1 and
a2 must be non-empty. Hence by definition of a1, there exists c̃2 such that a1 =
z1(c̃2). Similarly, there exists c̃1 such that a2 = z2(c̃1).

By definition (c̃1, c̃2) ≤ (a1, a2). Therefore a1 + a2 ≤ B is implied by the budget
constraint.

Now we show that z1(c′2) = a1, for all c′2 ≤ a2, and z2(c′1) = a2, for all c′1 ≤ a1.
Suppose not. Suppose (without loss of generality) there is some set Ξ ⊂ [0, a2]
with positive Lebesgue-measure such that z1(c′2) < a1 for all c′2 ∈ Ξ. Denote
zΞ

1 := maxc2∈Ξ z1(c2). Since a1 + a2 ≤ B, changing the mechanism to z1(c′2) =
a1, ∀c′2 ≤ a2 does not violate the budget constraint and increases the payoff by

∆ > Pr(c2 ∈ Ξ)

∫ a1

zΞ
1

ψ1(c)dF (c) > 0.

By combining our earlier insights with the previous two lemmata, we have shown
that the optimal mechanism must be a z-mechanism. The next step is to show
that any z-mechanism can alternatively be described by a DA auction as pro-
posed by Milgrom and Segal (2014). To this end, we first restate their definition.

Definition 2 (DA auction). A deferred acceptance (DA) auction is an iterative
algorithm defined by a collection of scoring functions

sAi : [ci, ci]× [cj, cj]j∈I\A → R+

that are weakly increasing in ci for all i ∈ A and for all A ⊂ I. Let At ∈ I denote
the set of active bidders in iteration t and initially A1 = I. The algorithm stops
in some period T when all active projects have a score of zero, sAT

i = 0 for all i
in AT . Then the set of greenlighted project is AT . Otherwise, at each iteration
t, the project with the highest score is removed. The payment pti of project i
at iteration t is either given by the highest possible cost that i could have had
without being removed from the set of active bidders or by the last iteration’s
payment, depending on which payment is smaller,

pti(c) =

{
sup{c′i : sAt

i (c′i, cI\At) < sAt
j (cj, cI\At)} for j ∈ At \ At+1,

min{sup{c′i : sAt
i (c′i, cI\At) ≤ 0}, pt−1

i } if t = T.
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The algorithm is initialized with p0
i = min{ci, z∗∗i , B}.8

The main appeal of DA auctions lies in their incentive guarantees on top of dom-
inant strategy implementability. DA auction are weakly group-strategy proof.
That is, no coalition of projects can manipulate their reports such that it strictly
increases the utility of all projects in the coalition: At least one member of the
coalition receives a weakly worse payoff whenever other coalition members bene-
fit. Because collusion in auctions is generally illegal, compensating the worse off
coalition member is not contractible. In addition, the dominant strategy equi-
librium outcome in a DA auction can be interpreted as robust in the following
sense: Consider the full information game where all cost reports are observed,
projects can report any cost, the allocation is determined according to the DA
auction’s allocation rule, but projects receive their own report as payments. The
dominant strategy equilibrium outcome of the DA auction is the only outcome
that survives iterated deletion of dominated strategies in this game.

Proposition 2. Any z-mechanism has an equivalent DA auction representation.

The proof of Proposition 2 is relegated to a separate section in the appendix.

Corollary 1. Any z-mechanism can be implemented with a descending clock
auction.

Corollary 1 follows directly from Proposition 2 and from Milgrom and Segal
(2014, Proposition 3) who show that any DA auction can be implemented by a
clock auction.9

3.1 The symmetric case

In this section, we focus on symmetric projects where vi = v and Fi = F for every
project i. An implication of this assumption is that the order of costs coincides
with the order of virtual surpluses and that z∗∗i = z∗∗ for all i. We show how to
utilize the established results to characterize the optimal allocation and also how

8Compared to Milgrom and Segal (2014), we slightly tweak the updating function of pay-
ments without changing the deferred acceptance nature of the algorithm and any of its prop-
erties.

9For technical reasons, Milgrom and Segal (2014) only consider discrete type distributions.
While we use continuous distributions for expositional reasons, we rely on the fact that any
continuous type distribution can be approximated arbitrarily closely by a discrete distribution.
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to implement it. As in previous proofs, the proof of Proposition 3 considers the
two-project case while the general proof is relegated to the appendix. In the two-
project case, the designer’s optimization problem can be reduced to optimally
solving for a single constant. Nevertheless, we discuss possible deviations from
the optimal mechanism in greater detail to highlight the complications which
arise in asymmetric environments.

Proposition 3. Arrange the projects in ascending order of their reported costs,
c1 ≤ c2 ≤ · · · ≤ cn and define zk := min

{
B
k
, z∗∗, ck+1

}
. In the symmetric

case, the z-mechanism with zi(c−i) = zk
∗

is the optimal budget-constrained
mechanism. The optimal number of accepted projects k∗ is given by k∗ :=
max{k|ck ≤ zk}.

Proof. (with n = 2, see appendix for the general proof)
In Proposition 1, we have shown that the optimal mechanism must be a z-
mechanism. As a candidate for optimality, consider any z-mechanism M z differ-
ent from the mechanism proposed above. Suppose M z greenlights both projects
sometimes. For graphic intuition of the deviation consult Figure 3.

By Lemma 2, any optimal mechanism must never greenlight a project with neg-
ative virtual surplus. This property is depicted as the kink at (z∗∗, z∗∗).

In the area above the dashed budget line, c1 + c2 > B, the designer can, by
(BC) and (PC), only execute one of the two projects. It can be directly seen
from objective function (3) that the designer prefers the project with the higher
virtual surplus, i.e., the one with lower cost. It does not, however, follow directly
that zi(cj) = cj whenever B − ci < cj < z∗∗. The reason is that the designer
may want to forgo executing the better project for some cost vectors (shaded
triangle and crossed square in Figure 3) in order to execute both projects in
an additional area (horizontally lined, Figure 3). In such a case, the designer is
forced by incentive compatibility to execute the worse project (for cost vectors in
the shaded triangle or the square that is both horizontally and vertically lined).

By Lemma 4, both cutoffs must be constant whenever both projects are executed.
In optimum in that case, there can be no slack in the budget constraint and zi
is flat in that region. Otherwise increasing one of the cutoffs until the budget
binds is both feasible and profitable.

Now, consider candidate mechanism M z

zi(cj) =


z∗∗ if cj ≥ z∗∗

cj if z < cj < z∗∗

B − z if cj < z

and zj(ci) =


z∗∗ if cj ≥ z∗∗

ci if B − z < cj < z∗∗

z if cj < B − z
(4)
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c B cj

c
B

ci

B
2

B − z

zB
2

z∗∗
zi(cj)

zi(cj) candidate

zj(ci)

Figure 3: A candidate mechanism and the deviation to the proposed mechanism.

and see that a deviation to the mechanism in the proposition is always profitable.

For ease of exposition, let A = B
2

. The proposed deviation to the z-mechanism
MA changes the designer’s payoff in the following way

∆ = Fj(z)

∫ A

B−z
ψi(x)dFi(x) (vertical)

− Fi(A)

∫ z

A

ψj(c)dFj(c) (horizontal)

+

∫ z

A

∫ c

A

ψi(x)dFi(x)− (Fi(c)− Fi(A))ψj(c)dFj(c) (shaded)

where the patterns represent the area in Figure 3 where the allocation changes.
Everywhere else the allocation and payoff remain the same.

To rewrite ∆ define γ(x) = F (x)(v − x) where γ′(x) = ψ(x)f(x):

∆ = F (z)(γ(A)− γ(B − z))− F (A)(γ(z)− γ(A))

+ F (A)(γ(z)− γ(A)) +

∫ z

A

γ(c)− γ(A)− F (c)ψj(c)dF (c)

= F (z)(γ(A)− γ(B − z))− F (A)(γ(z)− γ(A))

+ F (A)(γ(z)− γ(A))− γ(A)(F (z)− F (A)) +

∫ z

A

F 2(c)dc
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because (ψ(c)F (c) − F (c)(v − c))f(c) = F 2(c) and then since
∫ z
A
F (c)2dc >

F (A)2
∫ z
A

1dc,

∆ > F (z)(γ(A)− γ(B − z))− γ(A)(F (z)− F (A)) + F (A)2(z − A)

= F (A)2(v − A+ z − A)− F (z)F (B − z)(v −B + z)

= (v −B + z)(F (A)2 − F (z)F (B − z))

> 0⇔ F (A)2 > F (z)F (B − z).

This statement is true under Assumption 1, log-concavity. Maximizing F (z)F (B−
z) with respect to z, the first order condition is given by

F (z)

f(z)
=
F (B − z)

f(B − z)
(5)

which is only true at z = B/2 since F/f is an increasing function. For the
same reason, the left-hand side is greater (less) than the right-hand side for
z > B/2(< B/2) making z = B/2 the maximum.

We have assumed that in the optimal mechanism both projects get greenlighted
for some cost vectors. It remains to show that the optimal mechanism beats
the best mechanism in which at most one project gets greenlighted. The best
mechanism that selects at most one project would always select the project with
higher virtual surplus. Clearly, the optimal mechanism of this proposition creates
more payoff as it also always greenlights the project with higher virtual surplus.
Additionally, it sometimes adds a second project with positive virtual surplus.

In the symmetric case, all greenlighted projects get the same transfer. Those
projects that are excluded do not prefer to instead get the green light with the
associated transfer. There are two rationales for greenlighted projects to get the
same transfer. First, as shown in the proof of Proposition 3, this way the prob-
ability of getting as many projects as possible is maximized. Ex-post incentive
compatibility prevents the budget from being shifted away from projects with low
cost reports to projects with high costs. Therefore offering equal cutoffs is the
best the designer can do. Second, as shown in (3) - the rewritten maximization
problem of the designer - the expected utility of the designer is given by the sum
of virtual surpluses of greenlighted projects. Therefore she wants to greenlight
those projects with the highest virtual surpluses. That goal is consistent with
offering equal cutoffs to greenlighted projects and excluding those with higher
cost. In the optimal allocation, greenlighted projects will have higher virtual
surplus than those which are not greenlighted.
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The compatibility of the two goals - get as many projects as possible and get
those with the highest virtual surpluses - is a special feature of the symmetric
case. It generically fails in the asymmetric case, as we demonstrate in the next
section.

c B c1

c
B

c2

both

1

2

(a) Budget-constrained, full information.

c B c1

c
B

c2

both

1

2
z{1,2}

z{1,2}

none

z∗∗

z∗∗

(b) Budget-constrained, private information.

Figure 4: An example of optimal allocations for the symmetric case with n = 2.

Figure 4 illustrates the optimal budget-constrained allocations in an example
with two projects. Panel 4b shows the fully-constrained optimal allocation jux-
taposed with the relaxed optimal allocation when (IC) is neglected, shown in
Panel 4a. First, note that in this example v ≥ c and c < B. Therefore a
completely unconstrained designer with full information would always greenlight
both projects, and a budget-constrained designer with full information at least
one. However, z∗∗ < c. Therefore for some realizations of c (the upper-right
corner of Panel 4b), no project will get greenlighted in the optimal allocation,
even though doing so would be profitable from an ex-post perspective. The neg-
ative virtual surpluses of the projects in these cases indicates that the cost of
allocating to such a project - incentive compatibility will require higher transfers
for other cost types - outweighs the benefit from an ex-ante perspective. The
second major difference between the relaxed optimal allocation and the optimal
allocation can be seen for those realizations of costs where allocating to both
projects would be feasible only in the relaxed problem. This difference is a result
of the designer’s inability to shift budget from low-cost to relatively higher-cost
projects.

Corollary 2. In the symmetric case, the optimal direct mechanism can be im-
plemented by a descending clock auction. The clock price, denoted by τ , starts
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at z∗∗ and descends continuously down to B
n

. Projects can drop out at any price
but cannot re-enter. The auction stops once the clock price can be paid out to
all projects remaining in the auction.

In any iteration, a scoring function of the corresponding DA auction is

sAt
i (ci, At) = max

{
ci −

B

|At|
, 0

}
.

We consider the descending clock auction of Corollary 2 to be a natural indirect
mechanism that implements the outcome of the optimal z-mechanism. Project
i’s equilibrium strategy, which implements this outcome, has it staying in the
auction as long as the price is weakly larger than its private cost, τ ≥ ci. It is
easily verifiable that this is a weakly dominant strategy for project i.

3.2 The asymmetric case

In this section, we demonstrate why the logic of the optimal mechanism in the
symmetric case does not carry over to the asymmetric case. To preserve tractabil-
ity, we restrict ourselves to the two-project case. However, we allow for differing
values v1 and v2 as well as differing cost distributions F1 and F2.

First, note that we can draw on some of the observations from the symmetric case.
We did not use symmetry in Lemma 1 and 2. Therefore just as in the symmetric
case, we are faced with a problem of finding the right cutoff functions. The
rewritten objective of the designer given by maximization problem (3) carries
over to the asymmetric case. The designer still wants to maximize the expected
virtual surplus of greenlighted projects and allocating to projects with negative
virtual surplus is not profitable:

maxz1(c2),z2(c1) E
[
I(c1 ≤ z1(c2))

(
v1 + c1 + F1(c1)

f1(c1)

)
+I(c2 ≤ z2(c1))

(
v2 + c2 + F2(c2)

f2(c2)

) ]
s.t.

I(c1 ≤ z1(c2))z1(c2) + I(c2 ≤ z2(c1))z2(c1) ≤ B ∀c1, c2.

(6)

Given that we consider the non-trivial case, z∗∗1 +z∗∗2 > B, we know from Lemma
4 that the cutoffs must be constants whenever both projects are greenlighted.
Furthermore, we know that these constants must add up to the budget. Oth-
erwise, increasing one of the cutoffs until the budget binds is both feasible and
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profitable. Let project 1’s cutoff be z and project 2’s cutoff be B − z. These
cutoffs pin down the allocation if at least one project has cost below its constant
cutoff. Otherwise, we are free to choose one of the two projects. A glance at the
objective function (6) reveals that in such a case it is desirable to greenlight the
project with higher but positive virtual surplus, if feasible. This result allows us
to rewrite the objective function (6) as a function of z:

max
z
π(z) =

∫ z

0

ψ1(c1)dF1(c1) +

∫ B−z

0

ψ2(c2)dF2(c2) (7)

+

∫ c2

max{ψ−1
2 (ψ1(z)),B−z}

∫ min{ψ−1
1 (ψ2(c2)),z∗∗1 ,B}

z

ψ1(d)dF1(d)dF2(c2)

+

∫ c1

max{ψ−1
1 (ψ2(B−z)),z}

∫ min{ψ−1
2 (ψ1(c1)),z∗∗2 ,B}

B−z
ψ2(d)dF2(d)dF1(c1).

In the symmetric case, the order of virtual surpluses coincides with the reversed
order of costs. A natural extension of the optimal allocation to the asymmetric
case would involve adjusting the cutoffs so that they equalize virtual surplus.
We will call this the “candidate” allocation.

The condition for optimality of the candidate allocation is stated in Proposition
4. By regularity, there is a unique z such that ψ1(z) = ψ2(B − z). To imple-
ment the candidate allocation, the constant cutoffs at which both projects are
greenlighted must be this z for project 1 and B − z for project 2. But then, we
only obtain optimality if F2(B−z)

f2(B−z) = F1(z)
f1(z)

. The intuition behind this statement

is straightforward. Selecting z in order to satisfy ψ1(z) = ψ2(B − z) allows the
designer to always get the project with the higher virtual surplus, if she cannot
get both. However, if F2(B−z)

f2(B−z) 6=
F1(z)
f1(z)

the cutoffs z and B − z will not maximize
the probability to get both projects.

Therefore the two aspects of the designer’s payoff maximization - getting projects
with high virtual surplus and getting as many projects as possible - are only
aligned if the condition (8) is met. Note that the condition is met by construction
in the symmetric case. However, in an asymmetric environment the condition is
generically violated.

Proposition 4. In the non-trivial asymmetric two-project case, i.e., n = 2 and
z∗∗1 + z∗∗2 > B, in which values or cost distributions differ across projects, it is
generically not optimal to always allocate to the project with the higher virtual
surplus.
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Proof. To obtain the derivative of (7) with respect to z we can use the rules for
differentiation under the integral sign.10 Given the max operators, the derivative
will take a different form depending on whether ψ1(z) ≷ ψ2(B− z). However, as
π is continuously differentiable, it suffices to look at one of the two forms.

∂π

∂z

∣∣∣∣
z:ψ1(z)≥ψ2(B−z)

=

∫ ψ−1
1 (ψ2(B−z))

z

ψ1(x)dF1(x)f2(B − z)+

+ ψ1(z)f1(z)F2(B − z)

− ψ2(B − z)f2(B − z)F1(ψ−1
1 (ψ2(B − z)))

Now take the z corresponding to the candidate allocation with ψ1(z) = ψ2(B−z).
In this case we are left with

∂π

∂z
= 0⇔ F2(B − z)

f2(B − z)
=
F1(z)

f1(z)
(8)

which is a non-generic case. Consequently, it is generically not optimal to always
allocate to the project with the higher virtual surplus.

Remark 1. Proposition 4 is driven by a tradeoff between quantity and quality.

Even though the designer always prefers the project with the higher virtual sur-
plus, if she was to greenlight a single project, she sometimes greenlights the
project with lower virtual surplus out of two rival projects, as quantity is en-
dogenous here. The simplest way to lay out the intuition behind Proposition 4
is by an example.

Example 1. There are two projects, (n = 2), with v1 = 5, v2 = 4.5, and c1, c2

are uniformly distributed on support [0, 1]. The budget is given by B = 1. The
optimal cutoff functions are given by:

z1(c2) =


0.53 if c2 ≤ 0.47

c2 + 0.25 if 0.47 < c2 ≤ 0.75

1 if c2 > 0.75

z2(c1) =

{
0.47 if c1 ≤ 0.72

c1 − 0.25 if c1 > 0.72.

10Define g(z, c2) :=
∫min{ψ−1

1 (ψ2(c2)),z
∗∗
1 ,B}

z
ψ1(x)dF1(x)f2(c2) and then use

d
dz

(∫ b(z)
a(z)

g(z, c2)dc2

)
= g(z, b(z))b′(z)− g(z, a(z))a′(z) +

∫ b(z)
a(z)

gz(z, c2)dc2.
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Possible scoring functions for a corresponding DA auction are given by:

s
{1,2}
1 (c1) =


c1 + 0.47 if 0.53 < c1 < 0.72

2c1 − 0.25 if c1 ≥ 0.72

0 otherwise

s
{1,2}
2 (c2) =

{
2c2 + 0.25 if c2 > 0.47

0 otherwise

s
{1}
1 (c1) = 0

s
{2}
2 (c2) = 0.

The corresponding optimal allocation is:

(q1, q2) =



(1, 1) if 0 ≤ c1 ≤ 0.53 and 0 ≤ c2 ≤ 0.47

(1, 0) if 0 ≤ c1 ≤ 0.72 and c2 > 0.47

(1, 0) if c1 > 0.72 and ψ1 ≥ ψ2

(0, 1) if 0.53 < c1 ≤ 0.72 and c2 ≤ 0.47

(0, 1) if c1 > 0.72 and ψ1 < ψ2.

The corresponding transfers are:

t1(c1, c2) =


0.53 if c2 ≤ 0.47 and c1 ≤ 0.53

c2 + 0.25 if 0.47 < c2 ≤ 0.75 and c1 ≤ c2 + 0.25

1 if c2 > 0.75

0 otherwise

t2(c1, c2) =


0.47 if c1 ≤ 0.72 and c2 ≤ 0.47

c1 − 0.25 if c1 > 0.72 and c2 < c1 − 0.25

0 otherwise.

Consider Example 1. The candidate allocation demands cutoffs z̃1
{1,2} = 0.625

and z̃2
{1,2} = 0.375 for allocating to both projects. At these cutoffs, the proba-

bility of allocating to both projects is 0.625 · 0.375 ≈ 0.234. This allocation is
depicted in Panel 5a. Now the maximal feasible probability to allocate to both
projects is at equal cutoffs, ẑ1

{1,2} = ẑ2
{1,2} = 0.5. The corresponding area is the
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dotted square in the lower-left corner of Panel 5b. However, at these cutoffs it
is not incentive compatible to always allocate to the project with higher virtual
surplus, if at least one project exceeds ẑi

{1,2} - i.e., to allocate along the dot-
ted diagonal line.11 Hence, incentive compatibility introduces a tradeoff between
maximizing the probability of greenlighting both projects and allocating to the
preferred one if only one project is feasible. Consequently, the optimal cutoffs
(z∗1 , z

∗
2) for greenlighting both projects do not lie at (0.625, 0.375) but rather at

(0.53, 0.47).

B, c1
c1

B, c2

c2

both

1

2

z̃1
{1,2}

z̃2
{1,2}

(a) Candidate allocation.

B, c1
c1

B, c2

c2

both

1

2
z
{1,2}
2

z
{1,2}
1

(b) Optimal allocation.

Figure 5: Candidate and optimal allocation for Example 1.

Given the optimal allocation in Example 1, there are some realizations of the cost
vector in which the designer allocates to the project with lower virtual surplus.
These realizations are represented by the shaded area in Panel 6a. Here, (IC),

(PC), and the choice of (z
{1,2}
1 , z

{1,2}
2 ) force the designer to allocate to project 2,

even though project 1 has the higher virtual surplus.

The cost vectors for which the designer allocates to both projects is represented
by the rectangular area in the lower-left corner of Panel 6a. The upper-right
corner of this area lies on the dashed line representing the budget constraint. A
point (z

{1,2}
1 , z

{1,2}
2 ) on this line has z

{1,2}
1 + z

{1,2}
2 = B. Moving this corner point

on the dashed line to the right has two effects: shrinking the shaded area and
shrinking the area of the rectangle. While it is desirable to shrink the shaded
area, in which the designer must allocate to project 2 despite its lower virtual
surplus, shrinking the size of the rectangle lowers the probability of allocating

11Not to be confused with the dashed diagonal representing the budget constraint.

27



to both projects. Given that we have an interior solution in this example, at
(z
{1,2}
1 , z

{1,2}
2 ) these two effects balance each other out.

Graphically, the fact that there is no slack in the budget constraint, when-
ever both projects are greenlighted, implies that the area representing points
at which both projects are executed touches the dashed line representing the
(BC)-constraint at least once, as can be seen, for example, in Panel 6b. In fact,
it can touch the (BC)-constraint exactly once, as it is not possible to greenlight

both projects when c1 > z
{1,2}
1 or c2 > z

{1,2}
2 without violating (BC) sometimes.

This result means that the area where both projects are greenlighted is the rect-
angle with corners (0, 0) and (z

{1,2}
1 , z

{1,2}
2 ). Then, if c1 < z

{1,2}
1 but c2 > z

{1,2}
2 ,

the nature of cutoffs prevents that the designer greenlights project 2. There-
fore project 1 must be greenlighted, as represented by the lightly shaded area in
Panel 6b. A similar argument applies to the darkly shaded area. Thus, looking
at Panel 6b, the choice of (z

{1,2}
1 , z

{1,2}
2 ) determines the allocation for all points

except those in the upper-right corner. Here, the designer is free to choose the
allocation, as long as the line delineating whether project 1 or 2 gets greenlighted
is (weakly) increasing or vertical. Not surprisingly, it is optimal to greenlight the
project with the higher virtual surplus.

B, c c1

B, c

c2

1

2
z
{1,2}
2

z
{1,2}
1

both

(a) Greenlighting the project with lower vir-
tual surplus.

B, c c1

B, c

c2

both
z
{1,2}
2

z
{1,2}
1

2 by (IC)

1 by (IC)

free to
choose (IC)
allocation

(b) (IC)-constraints on the allocation.

Figure 6: Greenlighting the project with lower virtual surplus and (IC)-
constraints on the allocation (Example 1).

Remark 2. The tradeoff between quantity and quality mitigates the discrimi-
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nation against the stochastically stronger12 project compared to the case where
quantity is exogenous.

Example 2. There are two projects, (n = 2), with v1 = v2 = 5 and c1 is
uniformly distributed on support [0, 1] and F2(c2) = 3

√
c2 with support [0, 1].

The budget is given by B = 1. The optimal cutoff functions are given by:

z1(c2) =


0.56 if c2 ≤ 0.44

2c2 if 0.44 < c2 ≤ 0.5

1 if c2 > 0.5

z2(c1) =

{
0.44 if c1 ≤ 0.88
1
2
c1 if c1 > 0.88

Scoring functions, allocation and transfers are omitted but can be easily com-
puted from the cutoff functions as in Example 1.

To illustrate Remark 2, consider Example 2.13 Here the designer chooses among
two projects with identical value but different cost distributions. The notion
of “weak” and “strong” is reversed to standard seller auction settings, e.g., as
discussed in de Castro and de Frutos (2010). In the example, project 2 is stochas-
tically stronger than project 1 in a sense that F1 dominates F2 in terms of the
reverse hazard rate. That is, for all c

f1(c)

F1(c)
≥ f2(c)

F2(c)
.

Reverse hazard rate dominance implies first-order stochastic dominance, e.g.,
Krishna (2009, p. 47). Therefore project 2 tends to have lower cost. In Figure
7, the 45◦-line represents the efficient allocation if only a single unit is procured.
The dashed line below represents the allocation chosen by a designer maximizing
her own payoff in the single unit case. Consequently, the horizontally striped
wedge in between represents the cost vectors where the discrimination of project
2 creates an inefficiency. When quantity is endogenous however this inefficiency
is mitigated. The size of this effect depends on the distributions and in Figure
7 corresponds to the shaded triangle. In contrast to the case where quantity is
exogenously given, here the designer allocates efficiently.

12 We say that project i is stochastically stronger than project j if Fj dominates Fi in terms
of the reverse hazard rate.

13We choose to make this point by example. However, it should be clear that this point can
easily be generalized.
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B, c c1

B, c

c2

Figure 7: Quantity being endogenous mitigates the distortion against the
stochastically stronger project (Example 2).

Remark 3. In an optimal implementation with descending price clocks, the
clocks not only run at individual speeds, occasionally some clocks also have to
halt.

By Corollary 1, we can implement the optimal mechanism with a descending
clock auction. A crucial difference to the symmetric case is that each project has
its own price clock, because individual virtual surplus functions require individ-
ual speeds. Interestingly, an implication of the quantity-quality tradeoff is that
sometimes one clock has to halt. For Example 1, these price clocks are depicted
in Figure 8 as a function of time. Note that the entire (maximal) duration of
the auction can be divided into three segments. The auction starts with both
clocks at z∗∗1 = z∗∗2 = c. First, τ2 decreases while τ1 is held constant, which
happens until both clocks imply the same virtual surplus, i.e., ψ2(τ2) = ψ1(c2).
Second, both τ1 and τ2 decrease simultaneously, keeping virtual surplus equal,
ψ1(τ1) = ψ2(τ2), until τ2 = z

{1,2}
2 . Third, only τ1 decreases until τ1 = z

{1,2}
1 . If at

this point both projects still remain in the auction, the auction stops and both
are greenlighted. Otherwise, the inferior project 2 is greenlighted.

The cost vectors for which the designer greenlights project 2 despite its lower
virtual surplus, represented by the shaded area in Panel 6a, are also represented
graphically in Figure 8. If the auction ends in the third time segment (shaded area
of Figure 8) before both projects can be greenlighted, project 1 must have exited

30



time

τ1, τ2

c

τ2

τ1

z
{1,2}
1

z
{1,2}
2

ψ−1
2 (ψ1(c))

end

Figure 8: Optimal descending clock auction in Example 1.

because τ1 dropped below c1. Project 2 is greenlighted and receives transfer z
{1,2}
2

even though project 1 has the higher virtual surplus. Therefore if cost vectors
in the shaded area of Panel 6a realize, the optimal descending clock auction will
end in the third time segment.

We should emphasize again a novel feature of this descending clock auction. The
clocks of both projects are paused asynchronously for some time of the auction.
One project’s clock runs down while the other project’s clock stops. Since we
have examined a very simple example, each project’s clock is paused only once.
In a more general setting, the projects’ clocks may pause and resume several
times.

Given the nature of our problem, we do not find a simple and general (n >
2) full characterization of the optimal mechanism in the asymmetric case. In
our examples with two projects, the problem boils down to finding one point,
(z
{1,2}
1 , z

{1,2}
2 ), with respect to one crucial tradeoff. Naturally, the number of

relevant tradeoffs increases with the number of projects. Therefore unfortunately,
optimization with a larger set of projects quickly loses tractability.

4 Discussion

With our model as a starting point, there are several natural extensions. In this
section, we will address the most natural alternative models or extensions.
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Disregarding residual money - Whether it is reasonable to assume that the
designer values residual money depends on the setting. To illustrate, this is
not the case in Ensthaler and Giebe (2014a), where money does not enter the
objective function, only the constraints. Note that in such a setting, the designer
would want to allocate to projects with negative virtual surplus and would be
indifferent between paying zk∗ or ck∗+1 in the optimal symmetric mechanism.
Other than that, our results qualitatively carry over.

vi as private information, potentially correlated with ci - We can ne-
glect asking for vi directly since no meaningful non-babbling equilibria in the
vi-dimension exist. If the conditional density of vi|ci has full support, project i
cannot credibly announce being a “high” type, say vi. If we slightly change the
regularity assumption such that E[vi|ci]−ci− F (ci)

f(ci
must be strictly increasing, our

results generalize by exchanging the previously commonly known vi with E[vi|ci].
This regularity condition mildly restricts the degree of positive correlation.

Interdependent types - We can interpret the symmetric case as a setting in
which identical projects are provided at individual costs. Hence, one may won-
der about a setting where projects only draw an imperfect signal about the cost,
which finally depends on other projects’ signals as well. In a clock auction in such
an environment, active projects update their belief about the cost whenever a
project drops out. Moreover, the designer learns this information as well. There-
fore the design of the optimal mechanism crucially depends on the information
structure. This analysis is left for a follow-up paper.

5 Conclusion

Despite their importance, knapsack problems with private information have been
somewhat overlooked by the economics literature. We examine a setting where a
budget-constrained procurer faces privately informed sellers under ex-post con-
straints. Amongst many possible economic problems, this setting particularly
applies to a development fund, who is typically endowed with a fixed budget
and wants to finance both many projects and projects of high quality. Such
problems often entail relationships in which sellers can renege on the terms of
the agreement ex-post. In order to avoid non-delivery or costly renegotiation,
it is appropriate to impose ex-post constraints on the seller’s side. For such
settings, we have have shown that z-mechanisms constitute the class of optimal
deterministic dominant strategy implementable mechanisms.

A z-mechanism is described by a set of cutoff functions that are increasing in
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other projects’ costs. Cutoffs only depend on the cost of other projects as they
drop out of the allocation. In other words, if two different realizations of the cost
vector lead to the same allocation, then the cutoffs of projects conducted only
vary in the costs of projects not conducted.

We show that any z-mechanism can alternatively be characterized as a deferred
acceptance (DA) auction, introduced by Milgrom and Segal (2014). The DA
auction representation allows for a simple implementation via descending clock
auctions, which are easy to understand and usable in practice. In addition, DA
auctions have attractive properties regarding incentive compatibility which make
the prediction of equilibrium play more robust.

We fully describe the optimal allocation and the corresponding descending clock
auction in an environment where projects are ex-ante symmetric. The optimal
mechanism is monotone in the sense that the k cheapest projects are green-
lighted and all projects conducted receive the same transfer. This transfer either
corresponds to the lowest cost among non-executed projects or the budget is
distributed equally. The equivalent clock auction features a single price clock
that continuously decreases until all active projects can be financed.

For asymmetric environments, where values and/or cost distributions differ, we
demonstrate a novel tradeoff between quantity and quality of the greenlighted
projects. The designer values both quantity and quality, expressed by the virtual
surplus, of the projects. In settings where quantity is exogenous, the designer
would always choose the projects with the highest virtual surpluses. If quantity
is endogenously determined by the mechanism, as in our setup, it is not always
desirable to conduct the best projects. When the best projects are always con-
ducted, incentive compatibility would force the designer to reduce the expected
number of greenlighted projects. This insight entails a consequence for the corre-
sponding descending clock auction. Clocks not only run asynchronously, but also
periodically have to stop for certain projects. In comparison to settings where
quantity is exogenous, the allocation is less distorted away from efficiency, i.e.,
stochastically weaker projects are favored less.

Other interesting extensions are left for future research, for example multiple
projects per agent. For practitioners, a simple approximately optimal mechanism
may be of great value. The characterization of the optimal mechanism as a
z-mechanism sheds light on how to construct such an approximately optimal
mechanism. Halting clocks should be a key feature for the corresponding clock
auction in asymmetric environments.

In conclusion, our methodological approach contributes to a better understanding
of of a class of relevant problems and opens the door for future research in this
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area. Furthermore, we provide an elegant indirect mechanism, that can be easily
implemented in practice.
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Appendix

A Properties of a z-mechanism: General proofs

Lemma 3. The optimal cutoff function zi is weakly increasing in cj for all i, j
with j 6= i, i.e., zi(cj, c−i−j) ≥ zi(c

′
j, c−i−j) for almost every cj > c′j and c−i−j.

cM c1

z2

z3

c1

ĉ3

ĉ2

(a) Intuition for the hat deviation.

cM c1

z2

z3

c1

c̃3

c̃2

(b) Intuition for the tilde deviation.

Figure 9: Continuous decrease / increase.

Proof. Suppose to the contrary that somewhere z2 is decreasing in c1. Then
there exist some c1

M and η > 0 such that z2(c1, c−1−2) > z2(c1, c−1−2) for all

c1 ∈ (c1
M − η, c1

M), for all c1 ∈ (c1
M , c1

M + η), and for all c−1−2 ∈ χ−1−2 ⊂
×j∈I\{1,2}[cj, cj], where χ−1−2 has positive Lebesgue-measure.

With more than two projects, the simple deviation of the two-project case -
flattening the decreasing cutoff - is not necessarily feasible. It may be the case
that other projects’ cutoffs are strictly increasing and that for some cost vectors
these cutoffs have to be paid along z2. Then simply flattening z2 could violate
the budget constraint.

Suppose no other cutoff is increasing while z2 is decreasing. Then the decrease
of z2 cannot be optimal and flattening z2 will increase the designer’s payoff
much in the same way as in the two-project-case. Otherwise, pick a subset of
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cM c1

z2

z3

c1

ĉ3

ĉ2

(a) Intuition for the hat deviation.

cM c1

z2

z3

c1

c̃2

c̃3

(b) Intuition for the tilde deviation.

Figure 10: Jump decrease / increase.

χ̂1 ⊂ (c1
M , c1

M + η) (with pos. Lebesgue-measure) such that w.l.o.g. project 3’s
cutoff increases in c1 in the analogous sense to the decrease of z2 defined above -
for cost vectors where both project 2 and project 3 are eventually greenlighted,
i.e., z2 and z3 both need to be paid.

The set

Ξ̂23(c1, c−1−2−3, δ) = {(c2, c3)|c2 ∈ (z2(c1, c3, c−1−2−3), z2(c1, c3, c−1−2−3) + δ];

c3 ∈ (z3(c1, c2, c−1−2−3)− δ, z3(c1, c2, c−1−2−3)]}

must have positive measure on R2 for all c1 ∈ χ̂1 and for any c−1−2−3 ∈ χ−1−2−3,
where χ−1−2−3 is a set with positive Lebesgue measure where the cutoff of project
2 is decreasing while the cutoff of project 3 is increasing. It is the set of (c2, c3)
tuples, where c2 just exceeds z2 by no more than δ, while c3 lies just below z3 by
no more than δ - given c−1−2−3 and c1. By Ξ̂2

23(c1, c−1−2−3, δ) we denote the set

of project 2 components of tuples in the set Ξ̂23(c1, c−1−2−3, δ), and similarly for
project 3.
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Now deviate from the candidate mechanism in setting

ẑ2(c1, c3, c−1−2−3) := z2(c1, c3, c−1−2−3) + δ

ẑ3(c1, c2, c−1−2−3) := z3(c1, c2, c−1−2−3)− δ
for all

c1 ∈ (ĉ1, ĉ1 + ε)

c2 ∈ Ξ̂2
23(c1, c−1−2−3)

c3 ∈ Ξ̂3
23(c1, c−1−2−3)

c−1−2−3 ∈ χ̂−1−2−3 ⊂ χ−1−2−3.

We call this deviation the hat deviation. The intuition for this deviation is
the following. For an ε-environment of c1 to the right of cM1 (i.e., ĉ1 > cM1 ),
increase the decreasing cutoff z2(c1, c3, c−1−2−3) by δ for all c3 that drop out
of the allocation if z3(c1, c2, c−1−2−3) (at c2) is decreased by δ. Likewise only
increase z3(c1, c2, c−1−2−3) by δ for those c2 that are additionally greenlighted
if z2(c1, c3, c−1−2−3) is increased by δ. Therefore if the deviation changes the
allocation, project 2 is now greenlighted whereas project 3 is not.

This deviation is feasible. Remember that there must be enough budget to pay
both z2 and z3 - otherwise flattening z2 would have been possible. But then there
is enough budget for z2 + δ and z3 − δ.

Now define

ĉ2 := sup
c1,c−1−2−3

Ξ̂2
23(c1, c−1−2−3)

ĉ3 := inf
c1,c−1−2−3

Ξ̂3
23(c1, c−1−2−3)

s.t.

c1 ∈ (ĉ1, ĉ1 + ε)

c−1−2−3 ∈ χ̂−1−2−3.

In words, to bound the change in payoff we let ĉ2 be the highest cost type gained
by the deviation and we let ĉ3 be the lowest cost type lost by the deviation. Then
the change in payoff for the hat deviation is bounded in the following way:

∆̂ > (ψ2(ĉ2)− ψ3(ĉ3))∗∫
χ̂−1−2−3

∫ ĉ1+ε

ĉ1

∫
Ξ̂2

23(c1,c−1−2−3)

∫
Ξ̂3

23(c1,c−1−2−3)

1dF3(·)dF2(·)dF1(·)dF−1−2−3(·).
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If ∆̂ > 0, we have found a profitable deviation. If not, then consider the following
tilde deviation.

Analogously to Ξ̂23 we define the set

Ξ̃23(c1, c−1−2−3, δ) = {(c2, c3)|c2 ∈ (z2(c1, c3, c−1−2−3)− δ, z2(c1, c3, c−1−2−3)];

c3 ∈ (z3(c1, c2, c−1−2−3), z3(c1, c2, c−1−2−3) + δ]}

which again must have positive measure.

Now, we deviate for an ε-environment to the left of cM1 (i.e., c̃1 < cM1 ). But
instead of increasing z2 and decreasing z3, we increase z3 and decrease z2:

z̃2(c1, c3, c−1−2−3) := z2(c1, c3, c−1−2−3)− δ
ẑ3(c1, c2, c−1−2−3) := z3(c1, c2, c−1−2−3) + δ

for all

c1 ∈ (c̃1 − ε, c̃1)

c2 ∈ Ξ̃2
23(c1, c−1−2−3)

c3 ∈ Ξ̃3
23(c1, c−1−2−3)

c−1−2−3 ∈ χ̃−1−2−3 ⊂ χ−1−2−3.

The relevant bounds to bound the payoff are then given by

c̃2 := inf
c1,c−1−2−3

Ξ̃2
23(c1, c−1−2−3)

c̃3 := sup
c1,c−1−2−3

Ξ̃3
23(c1, c−1−2−3)

s.t.

c1 ∈ (c̃1 − ε, c̃1)

c−1−2−3 ∈ χ̃−1−2−3.

And this gives the following bound for the payoff

∆̃ > (ψ2(c̃3)− ψ3(c̃2))∗∫
χ−1−2−3

∫ c̃1

c̃1−ε

∫
Ξ̃2

23(c1,c−1−2−3)

∫
Ξ̃3

23(c1,c−1−2−3)

1dF3(·)dF2(·)dF1(·)dF−1−2−3(·).

By appropriately choosing δ, Ξ̂−1−2−3, and Ξ̃−1−2−3, we can ensure that ĉ3 >
c̃3 and ĉ2 < c̃2. This follows simply from the notion of increasing/decreasing
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cutoffs and is illustrated in Figures 9 and 10. Therefore ∆̂ ≤ 0 implies ∆̃ > 0.
Consequently, there is always a profitable deviation and our candidate mechanism
could not have been optimal.

Lemma 4. Conditional on any arbitrary partition {G,R}, the optimal cutoff
functions zg for all g ∈ G are independent of the costs of all greenlighted projects
cG. That is,

zg(cG−g, cR) = zg(c
′
G−g, cR),

for all cG−g and c′G−g such that G is the set of greenlighted agents.

Moreover, if cost vector (cG, cR) induces allocation {G,R}, then cost vector
(c′G, cR) also induces {G,R} if c′g ≤ cg for all g ∈ G.

Proof. Take any feasible candidate mechanism with any set of increasing cutoff
functions {zi}I for any individual project. Assume that for some cost vectors
with positive Lebesgue-measure, only all projects in set G ⊆ I are executed
while all projects of set R are not conducted. Therefore there exists a set, CG

R ,
with positive Lebesgue-measure containing the part of the cost vector for the
projects in set R such that the partition {G,R} is induced given some c where
the redlighted projects have costs cR ∈ CG

R . Then aGi (cR) according to the
following definition

aGi (cR) = max{ci|∃cG−i : ci ≤ zi(cG−i, cR),

and cg ≤ zg(cG−j, c−G)∀g ∈ G,
and cr > zr(cG, c−G−r)∀r ∈ R} (9)

exists for all i ∈ G given cR ∈ CG
R . In words, aGi (cR) is the highest cost of

project i such that, given some cost vector cR of projects that are not executed,
there exists some vector cG−i of costs of competing projects that induces a cutoff
zi(cG−i, c−G) above said cost while each element cg of the vector cG−i is lower
than the cutoff induced by aGi (cR) and the elements of the cost vectors cR and
cG−i−g,

∀g ∈ G \ {i}, cg ≤ zg(cR, cG−i−g, a
G
i (cR)).

Simultaneously, it must hold that these costs induce a cutoff such that no project
r ∈ R is conducted

∀r ∈ R, cr > zr(cR−r, cG−i, a
G
i (cR)).

Moreover, we can replace any function zi with a left-continuous function that is
identical up to a set of points with Lebesgue-measure zero. Hence, the limit is
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reached from below and there exists at least one cost vector (ĉ−i, a
G
i (cR)) where

G is the set of executed projects and aGi (ĉR) = zi(ĉ−i) holds. Now, notice that

ĉg ≤ aGg (ĉR) ∀g ∈ G \ {i},

because, given ĉR, there cannot exist a cost vector where only all projects in
G are executed and the cost of project g exceeds aGg (ĉR) by its construction.
Moreover, we have established that every cutoff function zi is weakly increasing
in each argument. Thus,

aGi (ĉR) = zi(ĉ−i) ≤ zi(a
G
G−i(ĉR), ĉR),

where aGG−i is the vector of all aGg defined according to (9) except aGi . This
inequality tells us that, whenever some vector (cR, cG−i) ≥ (ĉR, a

G
G−i(ĉR))14 re-

alizes, a sufficient condition for project i ∈ G to be executed is ci ≤ aGi (ĉR).

The same logic also applies to all projects in G other than i. Therefore at
least all projects g ∈ G are conducted whenever a cost vector realizes such that
cg = aGg (cR).15 Consequently, the budget constraint requires that∑

g∈G

zg(a
G
−g(cR), cR) ≤ B. (10)

Furthermore, given cR, for all projects g ∈ G, zg(c−G, cR) = aGg (cR) if cG−g ≤
aGG−g(c−G). That is, the cutoffs are constant given the cost vector of non-executed
projects.

Suppose to the contrary that zi(c−i) < ai(cR) for some i ∈ G and for all c−i ∈
Ξ ⊂ CG

−i with Ξ having positive Lebesgue measure.

Define Ξ(cG−i−j, cR) ⊂ [0, cj] where zi(cG−i−j, cj, cR) < aGi (cR) for all cj ∈
Ξ(cG−i−j, cR). For any cG−i−j ≤ aG−i−j(cR), let

zΞ
i (cG−i−j, cR) := max

cj∈Ξ(cG−i−j ,cR)
zi(cG−i−j, cj, cR)

By (10), changing the mechanism to

zi(cG−i,−j, cj, cR) = aGi (cR), ∀cj ≤ aGj (cR)

14When x and y are vectors, x ≥ y means that every element xi of x weakly exceeds the
corresponding element yi of y.

15aGi (cR) is only defined if CG 6= ∅ and cR ∈ CGR , but this does not hinder the proof.
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does not violate the budget constraint. This deviation increases the payoff con-
ditional on cR by

∆ >

∫
Ξ−j

Pr(cj ∈ Ξ(cG−i−j, cR))

∫ aGi (cR)

zΞ
i (cG−i−j ,cR)

ψi(c)dFi(c)dF−i−j(c−i−j) > 0.

Given that Ξ has positive Lebesgue-measure, this deviation will also strictly
increase the unconditional payoff.

B Constructing a scoring function for a z-mechanism:
Proof of Proposition 2

To prove Proposition 2, it is helpful to consider the following lemmata. While
Lemma 4 (Property 4 of a z-mechanism) is a statement that conditions on a
fixed allocation, it also has implications on the cutoffs resulting from different
cost vectors that induce different allocations.

Lemma 5. Take any z-mechanism and any two cost vectors c 6= ĉ that induce
partitions {G,R} and {Ĝ, R̂}, respectively. Then

cR∪R̂ = ĉR∪R̂
cG∩Ĝ 6= ĉG∩Ĝ

implies

G = Ĝ

R = R̂,

that is, c and ĉ induce the same allocation.

Proof. Given cost vector c, define a new cost vector c′, where c′i = min{ci, ĉi}
for all i ∈ G ∩ Ĝ and c′R∪R̂ = cR∪R̂. By Lemma 4, c′ induces allocation {G,R}.
Similarly, a perturbation of cost vector ĉ in the same way with ĉ′i = min{ci, ĉi}
for all j ∈ G ∩ Ĝ and ĉ′

R∪R̂ = ĉR∪R̂ must induce allocation {Ĝ, R̂}. But c′ = ĉ′

by construction. Hence, G = Ĝ and R = R̂.

Lemma 6. Take any z-mechanism and any two cost vectors c 6= c̃ that induce
partitions {G,R} and {G̃, R̃}, respectively. Then

zi(cG∩G̃, cR∪R̃) = zi(c̃G∩G̃, cR∪R̃)

zj(c̃G∩G̃, c̃R∪R̃) = zj(cG∩G̃, c̃R∪R̃)

for all i ∈ G and for all j ∈ G̃, respectively.
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Proof. By Lemma 5, the vector (c̃G∩G̃, cR∪R̃) leads to allocation {G,R} and the

vector (cG∩G̃, c̃R∪R̃) leads to allocation {G̃, R̃}. The rest follows directly from
Lemma 4 (Property 4 of a z-mechanism).

Having established these properties we can prove Proposition 2 by induction.
We construct a scoring function for each iteration of a DA auction that repli-
cates the underlying z-mechanism. Conditional on all previous iterations having
been constructed correctly, we can demonstrate how to construct an appropriate
scoring function for any iteration.

Proposition 2. Any z-mechanism has an equivalent DA representation.

Proof. This proof is structured as follows. First, we construct scoring functions
for each iteration of the DA auction. Then we explain how the zeros of the
scoring functions are derived. Finally we show by induction that the constructed
DA auction implements the same allocation as the underlying z-mechanism.

Scoring functions

First, we introduce some notation. Let At be the set of active projects in iteration
t and let Ot := I \ At be the set of inactive projects (O as in “out”). Let
Otj := Ot ∪ {j} be the union of dropped out projects and some individual
project j.

Fix an optimal z-mechanism and consider the corresponding DA auction with
scoring functions {sAi }A⊂I,i∈A

sAi (ci, cO) =


0 if ci ≤ aAi (cO),

ci +
j∈A∑
i 6=j

bjOi(ci, cO) otherwise,
(11)

where aAi (cO) is defined as in (9) and bjOi(ci, cO) is defined as

bjOi(ci, cO) := max
{
cj : ∃c̃−Oi−j : R = Oi|ci, cO

}
:= max

{
cj : ∃c̃−Oi−j : ci > zi(cj, c̃−Oi−j, cO),

and co > zo(ci, cj, c̃−Oi−j, cO−i)∀o ∈ O,

and cg ≤ zg(ci, cj, c̃−Oi−j, cO)∀g ∈ A \ i
}
.

In words, bjOi(ci, cO) is the highest cost of project j such that given the vector
cOi the corresponding z-mechanism implements the allocation partition R = Oi
and G = A \ i for some realization of the cost vector c̃−Oi−j.
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Zeros of the scoring functions

Suppose the DA auction ends in the t-th iteration. Then all projects i ∈ At
have score sAt

i = 0 and the cost vector must induce G = At in the underlying
z-mechanism. By Lemma 4 (Property 4 of a z-mechanism), cutoffs of projects
in G are constant in the part of the cost vector cAt for all cost vectors inducing
the same allocation.

Therefore we can characterize the zeros of the scoring function by a threshold
and sAt

i = 0 whenever project i’s cost is below this threshold. The threshold
is given by aAt

i (cO) as defined in (9). Notice that ci ≤ aAt
i (cO) implies that

project i will not be eliminated in the t-th iteration, even if other projects exceed
their threshold. This implication does not rule out permissible z-mechanisms.
Conditional on cOt , some projects exceeding their threshold can at most lead to
a higher cutoff for project i due to monotonicity.

Further notice that if ci > aAt
i (cO), there always exist cost vectors with cOt

for previously eliminated projects that induce G = At \ {i}. For example, all
cost vectors with cj ≤ aAt

j (cOt) for all j ∈ At \ {i} will induce that allocation.
However, this condition is sufficient for G = At \ {i} but not necessary. There
can be other cost vectors inducing the same allocation.

Iteration 1

If multiple projects have a positive score, it also holds that

If ĉ induces R̂ = {i} then sIi (ci) > sIj (cj) for all j 6= i (12)

The meaning of R̂ = {i} is that ĉi > zi(ĉ−i) and ĉj ≤ zj(ĉ−j). Hence, by
construction

ĉj ≤ zj(ĉ−j) ≤ bji (ĉi) (13)

as bji (ĉi) is the highest cutoff zj that allows allocation R̂ = {i} given ĉi.

Next, we show
ĉi > bij(ĉj). (14)

Suppose that the contrary holds, then there exists a vector c̃−i−j such that

ĉi ≤ zi(ĉj, c̃−i−j)

and allocation R̃ = {j} is implemented. By Lemma 6 we know that the cutoffs

z are constant in costs of projects Ĝ∩ G̃ = I \ {i, j}. Consequently, we arrive at

ĉi ≤ zi(ĉj, c̃−i−j) = zi(ĉj, ĉ−i−j)

43



which means that i is greenlighted for vector ĉ, a contradiction to our initial
assumption that ĉ implements R̂ = {i}.

Next, we show
bki (ĉi) ≥ bkj (ĉj) for all j 6= i and k 6= i, j. (15)

By definition

bki (ĉi) = zk(ĉi, c̃−i−k) for some c̃−i−k,

bkj (ĉj) = zk(ĉj, ċ−j−k) for some ċ−j−k.

Because projects−i−j−k are greenlighted for both cost realizations (ĉk, ĉi, c̃−i−k)
and (ĉk, ĉi, ċ−i−k), it follows by Lemma 6 that

bki (ĉi) = zk(ĉi, c̃−i−k) = zk(ĉi, ĉ−i−k),

bkj (ĉj) = zk(ĉj, ċ−j−k) = zk(ċi, ĉ−i−k).

Furthermore, it must hold that ĉi > ċi, otherwise vector ĉ would not optimally
redlight project i while vector (ĉ−i, ċi) optimally greenlights project i. Then by
property 2 of a z-mechanism (monotonicity),

bki (ĉi) = zk(ĉ−k) ≥ zk(ċi, ĉ−i−k) = bkj (ĉj).

Combining (13), (14) and (15) leads to (12). We have shown that the scoring
function eliminates the correct project when |R| = 1, i.e., the redlighted,project.

Finally, we need to show that if |R| > 1, the project removed in the first iteration
is redlighted in the allocation implemented by the underlying z-mechanism, i.e.,

A1 \ A2 = {k} ⇒ k ∈ R.

Now take cost vector c̃ with allocation {G̃, R̃} and let i ∈ G̃ be some greenlighted

project and and let j ∈ R̃ be some redlighted project, respectively. Since project
j is redlighted, it must have cost c̃j > aIj . Hence there exists some cost vector

ĉ with ĉj = c̃j such that R̂ = {j}. By Lemma 6, we can assume ĉi = c̃i since

i ∈ G̃ ∩ Ĝ. As our scoring function correctly matches all cases where |R| = 1,
it must be that sj(c̃j) > si(c̃i). Given that we have chosen i and j arbitrarily,
we have shown that any project removed in the first iteration must be in the
redlighted set, which was to show.

Iteration 2

We can show with the same arguments as above, that the previously stated
scoring function is correct for t = 2 as well. To this end, we inductively rely on
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the fact, that the project k removed in the first iteration is indeed redlighted by
the z-mechanism - as we have shown above.

Iteration t ≥ 3

With the appropriate scoring functions used in all previous iterations, we can
then show that the t-th iteration removes the correct project for all cost vectors
inducing |R| = t given a z-mechanism and otherwise removes some project i ∈ At,
where i ∈ R, for all cost vectors inducing |R| > t.

C The asymmetric case

Proposition 4. Arrange the projects by cost in ascending order, c1 ≤ c2 ≤ · · · ≤
cn and define zk := min

{
B
k
, z∗∗, ck+1

}
. In the symmetric case, the z-mechanism

with zi(c−i) = zk
∗

is the optimal budget-constrained mechanism. The optimal
number of accepted projects k∗ is given by k∗ := max{k|ck ≤ zk}.

Proof. The case n = 2 has been proven in Section 3.1.

Now, consider n = 3. Fix any c3 and any mechanism as candidate for optimality.
Either c3 > z3(c1, c2) or c3 ≤ z3(c1, c2). In the first case, project 3 is not executed
and the budget remaining for the other two is still B. In the second case, project
3 is executed and the budget remaining for the other two becomes B− z3(c1, c2).

Now, consider deviating to the proposed mechanism only for project 1 and 2.
The change in profit looks like a probability weighted sum of terms similar to the
two-project case, only that the distributions F are conditional on c1 and c2 being
in some interval (that induces z3 > or < c3) and the budget must be adjusted.

Because log-concavity of F implies log-concavity of F (c)−F (a)
F (b)−F (a)

this deviation is
always positive like in the case n = 2. The same logic can be applied to any
n, changing any mechanism by selecting two projects and then adjusting their
cutoffs in the following way: The budget is shared equally if both projects are
executed; if only one project is executed, it has to be the one with higher virtual
surplus; never execute projects with negative virtual surplus. Iterating over these
steps ultimately arrives at the proposed mechanism which has to be optimal.
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