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Abstract

In prediction markets, investors trade assets whose values are contingent on the oc-

currence of future events, like election outcomes. Prediction market prices have been

shown to be consistently accurate forecasts of these outcomes, but we don’t know

why. I formally illustrate an information acquisition explanation. Traders with more

wealth to invest have stronger incentives to acquire information about the outcome,

thus tend to have better forecasts. Moreover, their trades have larger weight in the

market. The interaction implies that a few well-situated traders can move the asset

price toward the true value. One implication for institutions aggregating information

is to put more weight on votes of agents with larger stakes, which improves on equal

weighting, unless prior distribution accuracy and stakes are negatively related.
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1 Introduction

In a 2003 forecasting tournament, participants predicted outcomes of football games through-

out a season to win prizes. Probability forecasts were rated with a quadratic scoring rule, so

only participants with consistently accurate forecasts would be in the top ranks. Two mock

entrants simply used the prices from two different prediction markets as their forecasts,

and placed 6th and 8th out of almost 2,000 participants (Servan-Schreiber et al., 2004).

More generally, prediction markets have been shown to provide better forecasts than polls

in political elections (e.g., Forsythe et al., 1992; Berg et al., 2008), expert forecasts in sports

(Spann and Skiera, 2009), or sales forecasts in business (Plott and Chen, 2002).

One kind of asset traded in these markets is called winner-take-all (WTA) contract. It

pays out 1 if and only if a pre-specified condition is fulfilled, otherwise it pays out 0. For ex-

ample, the IEM prediction market for the 2012 US Presidential election traded a Democratic

and a Republican contract, which would pay out $1 if and only if the respective candidate

obtained the majority of popular votes cast for the two major parties. Consequently, the

price of a WTA contract may be interpreted as the market probability estimate that the

respective candidate wins the election. With similar contracts, market-based predictions

can be obtained for virtually all areas beyond politics.

Why do these markets predict so accurately? There are no satisfying explanations thus

far. As Berg and Rietz (2006) state, “exactly how prediction markets become efficient is

something of a mystery.” The main goal of this paper is to provide and formally illustrate

a theory. In what I shall call information acquisition explanation, traders have stronger

incentives to acquire information about the unknown outcome the larger their endowment.

Consequently, high endowment traders are better informed. Moreover, high endowment

traders have larger impact on the market price, because they can buy more assets. This in-

teraction implies that few, but well-situated traders can move the market price—interpreted

as prediction—in the right direction, thereby explaining the observed accuracy. Unlike many

financial market models, the explanation does not rely on the presence of insiders nor the

ability of traders to infer information from asset prices. Even markets with traders who have

systematically biased opinions about the outcomes can produce accurate forecasts, because

of effective incentives for information acquisition and weighting by investment volume.

The model extends the competitive equilibrium notion from Manski (2006) with the

possibility to acquire information. In the model, traders start out with heterogeneous beliefs

about the outcome of the election. Based on this prior belief, endowment and asset prices,

they decide whether to acquire information, whose accuracy depends on their information

acquisition effort. Consequently, the share of informed traders and noise traders (driven by

opinion) in the market is endogenously determined, which explains partially where beliefs

originate and when beliefs (and market forecasts) tend to be accurate.

I establish that traders with prior beliefs close to the ‘market estimate’ (price), or with

2



high endowment, have the strongest incentive to acquire information. The interpretation

is that traders with extreme opinions about the outcome do not expect to be swayed by

evidence, and hence do not acquire it, while traders with opinions close to the market

price acquire information, because it might change their investment decision. Moreover,

high endowment traders have stronger incentives to acquire information, because more is

at stake for them. Comparative statics show that the forecast error of the market price is

usually reduced in response to an endowment increase of all traders, because information

acquisition is supported. It also shows that a shift of prior beliefs toward the true outcome

usually improves forecasts, but may in rare cases increase the forecast error.

One lesson for institutional design is that giving more weight to votes or investments of

high endowment agents might improve information aggregation. Unless accuracy of prior

beliefs and endowment are negatively related, high endowment agents tend to have better

information, which can be exploited via weighting. An empirically testable implication

is that forecasts should be better with weighting by stake rather than equal weighting.

Moreover, forecasts should be better if investment per trader is larger in the market.

WTA prediction markets are analytically identical to parimutuel betting without fees.

Prediction market prices are translated into odds like probabilities. For example, if the price

of the Democratic contract is p, and the complement is priced at 1 − p, then the odds of

a Democratic victory are (1− p)/p in the corresponding betting market. Thus, the results

presented here also apply to betting markets.

While the idea that prediction (or stock) markets provide incentives to search for infor-

mation is not new (e.g., Servan-Schreiber et al., 2004; Wolfers and Zitzewitz, 2004; Arrow

et al., 2008), this is the first paper to formalize it in order to explain prediction market

accuracy, and demonstrate its interaction with heterogeneous priors and the endogenous

weighting implied by the market. Existing models are designed to address different ques-

tions (see next section). They typically assume an arbitrary belief distribution or give

traders informative signals by default, so that forecast accuracy is a direct consequence of

the accuracy of these primitives. In contrast, quality of information is endogenous in my

model, so it is more suitable to explain the accuracy or inaccuracy of prediction markets.

In a numerical example, the model with information acquisition has a 10 percentage points

smaller forecast error on average than the model without information acquisition (Manski,

2006), holding all exogenous parameters constant. Moreover, the model motivates a differ-

ent view on the interpretation of prediction market prices (e.g., Manski, 2006, Wolfers and

Zitzewitz, 2006). Instead of comparing prices to statistics of the belief distribution, the key

question is whether beliefs are driven by information rather than opinion (section 3).
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1.1 Related literature

I confine attention to the relevant theoretical contributions in this section.1 An informal

explanation of prediction market accuracy was put forth by Forsythe et al. (1992). In what

they dub marginal trader hypothesis (MTH), they argue that “prices are determined by the

marginal trader” and that marginal traders are “free of judgment bias” (i.e., have accurate

beliefs about the outcome). According to their definition (p. 1158 and fn. 21), a marginal

trader is a trader who places limit orders within 2 cents of the current price. However,

they are vague on how marginal traders “set prices.” Why should they have the power

to set prices, while biased traders—who may be as convinced of the correctness of their

beliefs as unbiased traders—do not? Indeed, the existence of a group with perfect forecast

is not sufficient for an accurate market forecast if wealth is bounded. A small subset of

informed traders cannot always outbid hordes of biased traders to keep the price at the

fair value. Serrano-Padial (2012), for example, demonstrates this point formally. Nor is

their presence necessary—possible biases of Republicans and Democrats may cancel out to

accurately predict the election vote share. Consequently, the MTH does not explain the

consistently good performance of prediction markets.

My information acquisition explanation has similarities to the MTH, in that both imply

that a small group of well informed traders can influence the market price to the better.

However, the information acquisition explanation differs in that informed traders need not

be free from judgment biases, need not have the power to set prices, and need not have

beliefs equal to what is implied by the market price. Interestingly, Forsythe et al. (1992)

find that marginal traders (with good forecasts about the outcome) have larger investments

than the rest, which is captures the information acquisition explanation well.

Instead of explaining predictive accuracy, most of the theoretical literature on betting

markets tries to explain the favorite long-shot bias, i.e., that odds often underestimate

the favorite’s chances, while the long-shot’s chances are overestimated. Explanations are

provided for example by Ali (1977), Ottaviani and Sørensen (2009), Page and Clemen (2013),

and Ottaviani and Sørensen (forthcoming). For a more complete overview of explanations

for the favorite long-shot bias, see the references in Ottaviani and Sørensen (2010). In all of

these models, the origin of beliefs is either unmodeled or informative signals are obtained

by default with exogenous precision.

To my knowledge, information acquisition has been incorporated only once in the context

of prediction markets. Hanson and Oprea (2009) investigate whether a manipulator can

drive the price away from the fundamental value of the asset. Since his presence as well

as the strength of the manipulation preference is common knowledge, informed traders

1A good introduction to prediction markets with examples is provided by Wolfers and Zitzewitz (2004).
An overview of the large betting literature in economics can be found in Sauer (1998), and Thaler and Ziemba
(1988) provide an introduction to empirical anomalies in betting markets. Tziralis and Tatsiopoulos (2007)
give an extensive overview of the prediction market literature with categorization into subfields.
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may react to the manipulation attempt by acquiring more precise signals, thus raising

prediction market accuracy on average. In contrast to my model, they use the quantal

response equilibrium concept, all distributions are assumed to be common knowledge, all

random variables are normally distributed, and there are no budget constraints.

Among the first to consider information acquisition in financial economics more generally,

Grossman and Stiglitz (1980) show that a fully revealing rational expectations equilibrium

(REE) with costly information acquisition does not exist. The following literature (e.g.,

Verrecchia, 1982; Barlevy and Veronesi, 2000; Peress, 2004) focuses on noisy rational ex-

pectations equilibria, where the price is affected by noise and only partially revealing to

retain the incentive for information acquisition. Recently, Van Nieuwerburgh and Veldkamp

(2010) investigated the information acquisition problem in a portfolio choice problem with

information capacity constraints.

The main difference of my equilibrium concept (and much of the prediction/betting mar-

ket literature, e.g., Ali, 1977; Manski, 2006) to REE is that traders do not infer information

from prices (see definition 1 in the next section). There are two possible justifications. First,

traders do not know “how equilibrium prices are related to initial information” (Radner,

1979) as in a REE. In actual prediction markets, traders do not know beliefs or endowments

of other traders, and do not know if trades are motivated by hedging or manipulation mo-

tives (Rothschild and Sethi, 2013), i.e., they do not have the necessary ‘models’ to extract

information from prices. Moreover, many types of prediction markets are seldomly run (e.g.,

elections) or even unique (e.g., Saddam Hussein being ousted by June 2003, Wolfers and

Zitzewitz, 2004), so possibilities for learning rational expectations may be limited.

Second, the behavioral economics literature has demonstrated repeatedly that subjects

substantially overweight their own opinions and signals. For example, Weizsäcker (2010)

shows in a meta study of information cascade experiments that subjects stick to their own

information more than half of the time even though it would be optimal to follow the

contradicting collective information of others. Also demonstrating the overconfidence in

their own beliefs/information, 89% of traders responded they believed to be better informed

than others in a survey accompanying the IEM 2004 presidential election market (Berg and

Rietz, 2006). Hence, even if traders had the necessary knowledge to infer information from

prices, they would not fully act on it. My model takes this view to the extreme in that no

inference from prices occurs. Thus, traders can be viewed as myopic in the sense that they

ignore the informativeness of prices, but otherwise act rationally given this ignorance. The

models of Hong and Stein (1999) and Eyster et al. (2013), for example, also include traders

who ignore the informational content of prices for behavioral reasons.
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2 A model of costly information acquisition

An unknown state of the world (briefly ‘outcome’) from the set {A,B}, B = Ac, is exoge-

nously given, and will be publicly revealed in the future. For example, suppose a presidential

candidate (incumbent) faces a challenger in an upcoming election. Then A represents victory

by the incumbent in the election, whereas B means the challenger is victorious. Formally,

θ = 1 iff A and θ = 0 iff B, which is the parameter to be predicted.

The market is populated by a continuum of risk-neutral traders. Traders may be het-

erogeneous in their endowment ωi ∈ (0, ω], ω < ∞, which is distributed with cdf W (ωi).

Moreover, each trader i is characterized by prior belief qi ∈ [0, 1], drawn from a continuous

and strictly increasing cdf Q(qi|θ, ωi), which is i’s subjective estimate of Pr(θ = 1). Since

I am interested in the information content in the market, I assume prior heterogeneity is

due to differences in opinion, not due to prior differences in information. This is a deviation

from the common prior assumption imposed in the majority of the literature, and implies

that traders may disagree about prospects. The specification of prior belief distribution Q

allows for a dependence with endowment ωi.

Traders do not receive an informative signal about θ by default. Instead, they may

acquire a private binary signal, which is costly in terms of effort. The precision of the signal

is an increasing function of effort ei ≥ 0, ν(ei) = Pr(si = 1|θ = 1, ei) = Pr(si = 0|θ = 0, ei).

The interpretation is that a trader can run Internet searches, read magazines, or talk to

experts (signal), which influences his beliefs (posterior). But the effort cost may be too

large, so a trader may rather rely on his opinion (prior) to make the investment decision.

Effort costs are not paid out of the endowment, and enter linearly in the utility function.

Two state-contingent futures contracts—also called winner-take-all contracts—are traded

in the prediction market. One A-contract pays 1 iff θ = 1 to the holder, and 0 otherwise.

Conversely, one B-contract pays 1 iff θ = 0. The contracts are issued by the market maker.

The prediction market is thus a complete one-period Arrow-Debreu security market, like

the IEM prediction market described in the introduction. Let the price of the A-contract

be p, and the price of the B-contract 1− p, to rule out arbitrage opportunities. The profit

per A-contract held if A occurs is the difference of value 1 and the price p; the loss per

A-contract if B occurs is p, the price paid.

The timing of trader decisions is shown in Figure 1. Each trader first decides on in-

formation acquisition effort ei, or equivalently signal precision νi ..= ν(ei), for a given

price p (t = 0). Then he receives a signal with precision νi, and computes posterior

πi ..= Pr(θ = 1|si) using Bayes’ rule. The posterior is equal to the prior if zero effort, i.e.,

precision νi = 1/2, is chosen. Based on posterior πi, endowment ωi, and price p, the trader

decides which option to invest in by specifying investment volume ai(πi, ωi, p), bi(πi, ωi, p)

(t = 1). Finally, the outcome θ is revealed and the assets pay out (t = 2).

The equilibrium price p∗ can be viewed as the market’s probability estimate that A
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t
t = 0 t = 1 t = 2

Choose precision
νi(qi, ωi, p) ∈ [1/2, ν̂]

Observe si and
compute posterior
πi(qi, νi, si)

Choose investment
ai(πi, ωi, p), bi(πi, ωi, p)

Outcome θ is revealed,
assets pay out

Figure 1: Timing of decisions for trader i and payout.

occurs. The more traders believe that A is going to occur, the more invest in A, thus raising

the price (forecast) p∗. The forecast error of the market is |p∗− θ|, so the best forecast is for

the market price to equal the fundamental value of the asset (i.e., 1 or 0). In competitive

equilibrium, the price equates the aggregate demand for A and B-contracts, so that money

is redistributed from losers to winners, and the market operates at zero profit.

The competitive equilibrium concept used here requires that price p∗ induces information

acquisition, which leads to beliefs and asset demands clearing the market for that same price.

Definition 1. A competitive equilibrium with endogenous information acquisition requires

1. a precision level function νi(qi, ωi, p) for all i, which maximizes expected utility at t = 0

anticipating optimal behavior at t = 1,

2. posterior beliefs πi(qi, νi, si) for all i, computed via Bayes’ rule,

3. investment functions ai(πi, ωi, p), bi(πi, ωi, p) for all i, which maximize expected utility

subject to ai + bi ≤ ωi at t = 1, and

4. an equilibrium price p∗, which induces information acquisition νi(qi, ωi, p
∗) at t = 0,

leading to beliefs πi(qi, νi, si) and investments ai(πi, ωi, p
∗), bi(πi, ωi, p

∗) clearing the

asset market at t = 1, i.e., for p∗ ∈ (0, 1),∫ ω

0

∫ 1

0

ai(πi, ωi, p
∗)

p∗
dQ(qi|θ, ωi)dW (ωi) =

∫ ω

0

∫ 1

0

bi(πi, ωi, p
∗)

1− p∗
dQ(qi|θ, ωi)dW (ωi).

The difference to an Arrow-Debreu equilibrium is that the equilibrium price must si-

multaneously induce information acquisition levels νi and clear the market for the resulting

investment functions ai, bi. Consequently, the equilibrium concept yields a single equilib-

rium price, even though in principle the sequential decisions of the traders (Figure 1) allow

for different prices at t = 0 and t = 1. To motivate this equilibrium notion, suppose a

Walrasian auctioneer announces an initial price p0 at t = 0. Traders make their information

acquisition decision, update their beliefs and trade at t = 1, which leads to market clearing

price p1 6= p0 if p0 does not fulfill the above definition. Thus, if we were to repeat the proce-

dure with p1 as initial price, traders might make different information acquisition decisions
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and ultimately different investment decisions, possibly leading to yet another price. If this

tâtonnement procedure stops for some p0 = p1, then p0 = p∗ as defined above.

Trader expectations about the eventual market price p∗ at t = 1 are a necessary con-

sequence of the static trading model, because traders need a price to evaluate the value

of information when deciding whether to acquire information, but a price only forms later

(t = 2). According to the equilibrium definition, traders are able to predict the eventual

market clearing price p∗ at t = 1, but infer no information from it as they would in a

rational expectations equilibrium (REE).2 I show in the appendix that a simple sequential

trading process—where traders invest sequentially (without price expectations) on the ba-

sis of posted prices, which adjust in response to investments—converges to the equilibrium

price of the static model. Thus, the assumption that traders can accurately forecast the

market clearing price is not crucial for the results—it is an artifact of the static model.

2.1 Investment and information acquisition decision

In this section, I determine the optimal individual information acquisition and investment

decisions for a given asset price p. In the next section, individual decisions will be aggregated

to determine the equilibrium price p∗. Going backwards on the time line, taking posterior

πi and price p as given, the investment problem of the risk neutral trader at t = 1 is

max
ai,bi≥0

πi[(1− p)ai/p− bi] + (1− πi)[pbi/(1− p)− ai] s.t. ai + bi ≤ ωi.

That is, the trader believes A occurs with posterior probability πi, yielding a profit of

(1 − p)ai/p on the ai investment, and a loss of all bi investment. Payoffs for B follow

similarly. The linear utility function yields a corner solution, which is ai = ωi, bi = 0 if

πi > p and ai = 0, bi = ωi if πi < p. Henceforth, I will use the short-hand αi ..= ωi/p and

βi ..= ωi/(1− p) to denote the amount of A or B-contracts bought, respectively.

Anticipating these investment decisions, the trader decides how much costly effort to

spend, which determines the precision of the signal. Note that the effort choice at t = 0

has to induce investment behavior which depends on the signal at t = 1 (‘discriminating

signal precision’), otherwise the effort cost is incurred for no benefit. For example, if the

resulting posterior is πi(si = 0, qi, ei) < πi(si = 1, qi, ei) < p, then exerting effort ei > 0

would not make a difference in the investment decision—i invests in B for either realization

of the signal—and therefore cannot be optimal. The minimum discriminating effort level is

ẽi = min
e
{e : πi(si = 1, qi, e) ≥ p ≥ πi(si = 0, qi, e)}.

I omit explicit expressions for the minimum discriminating precision level ν̃i, because Propo-

sition 1 shows that the ‘discrimination constraint’ is never binding.

2For a justification of this ignorance, see the related literature section.
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The expected utility from choosing a discriminating signal precision before observing the

signal (t = 0) is

EU(ei ≥ ẽi) = qiν(ei)(1−p)αi− qi(1− ν(ei))ωi + (1− qi)ν(ei)pβi− (1− qi)(1− ν(ei))ωi− ei.

That is, from his prior perspective, trader i anticipates that he will invest in A iff si = 1

and in B iff si = 0, that the signal will be correct with probability ν(ei), and wrong with

probability 1− ν(ei), and he weighs each case according to his prior belief qi.

The expected utility of not acquiring information is

EU(ei = 0) =

qi(1− p)αi − (1− qi)pαi = (qi − p)αi if qi > p,

(1− qi)pβi − qi(1− p)βi = (p− qi)βi if qi < p.
(1)

A trader prefers information acquisition, i.e., a positive effort level, if and only if the benefits

from the more informed investment decision at least equal the effort costs. Hence, positive

effort, assuming νi ..= ν(ei) ≥ ν̃i, is incentive compatible iff for qi > p

qiνi(1− p)αi− qi(1− νi)pαi + (1− qi)νipβi− (1− qi)(1− p)(1− νi)βi− ei ≥ (qi− p)αi. (2)

Solving the first order condition (νee < 0) for the LHS, the unconstrained optimal positive

effort level is

e∗i = ν−1
e

(
1

qiαi + (1− qi)βi

)
> 0,

where νe is the partial derivative with respect to effort. The optimal level exists under the

Inada conditions νe(e)→ 0 as e→∞ and νe(e)→∞ as e→ 0.

For explicit solutions, I assume a specific form for the effort-precision function,

ν(e) = min

{
1

2
(
√
e+ 1), ν̂

}
, ν̂ < 1,

so that ν(e = 0) is normalized to 1/2 (an uninformative signal). Because the square root

function is unbounded, I impose an upper bound ν̂ < 1, so that traders cannot learn the

true state of the world perfectly by investing a lot of effort. From the first order condition,

the optimal unconstrained precision is

ν∗i
..= ν(e∗i ) =

qiαi + (1− qi)βi + 4

8
.

The upper and lower bound of incentive compatible precisions νi
..= ν(qi, ωi, p) and

νi ..= ν(qi, ωi, p) if qi > p and νi ≥ ν̃i are the solutions to the quadratic equation (2),

(νi, νi) =
qiαi + (1− qi)βi + 4

8
±
√

(qiαi + (1− qi)βi + 4)2

64
− 1/4(1 + qiαi). (3)
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For qi < p, the RHS (expected utility without information acquisition) of (2) changes,

resulting in solutions

(νi, νi) =
qiαi + (1− qi)βi + 4

8
±
√

(qiαi + (1− qi)βi + 4)2

64
− 1/4(1 + (1− qi)βi). (4)

In short, i acquires information iff [νi, νi] ∩ [ν̃i, ν̂] 6= ∅, and chooses ν∗i if it is in the inter-

section. The following proposition characterizes the information acquisition decision.

Proposition 1.

i. Incentive compatible precision levels always discriminate, i.e., ν(qi, ωi, p) ∈ R =⇒
ν(qi, ωi, p) ≥ ν̃(qi, p).

ii. The incentive compatibility constraint to acquire information becomes less stringent as

|qi − p| decreases. If qi ≤ p ≤ 1/2 or 1/2 ≤ p ≤ qi, then ∂νi
∂|qi−p| ≤ 0. Moreover,

there exists a positive probability mass of traders with prior qi around p who acquire

information.

iii. For sufficiently large ωi, the incentive compatibility constraint becomes less stringent as

ωi increases. If, for some ωi > 0, informative signals are acquired, then increasing ωi

strictly increases signal precision until νi = ν̂.

Proof. See Appendix.

Traders who have a prior belief closer to the price p are more willing to acquire infor-

mation (ii.). To understand the intuition, note that traders compute the expected utility

based on their prior belief when deciding about acquiring information. Whenever the prior

deviates considerably from the price, the trader expects large gains |qi−p| per contract with-

out information acquisition (see (1)). This can be interpreted as a trader having a strong

opinion about the outcome, who does not expect to be swayed by evidence and hence does

not acquire it. Conversely, the trader expects only small gains based on his prior if qi is

close to p, so his opinion about the outcome is not as strong, and he is willing to acquire

information and possibly revise his beliefs if there is evidence contradicting his prior.

All else equal, larger endowment makes information acquisition more likely, or increases

information seeking effort, if endowment is sufficiently large (iii.). The intuition is that while

endowment (and thus potential gains and losses) scale up, the cost of acquiring information

remains the same. Thus, due to higher stakes, traders want to be ‘more certain’ that their

investment decision will be the right one. Peress (2004) obtains a similar comparative static

for the same reason in his noisy rational expectations model.

These results are illustrated in Figure 2, in which the optimal precision level ν∗, the range

of incentive compatible precision levels [ν, ν] (conditional on being discriminating) and the

minimum discriminating precision level ν̃ for different values of ω, p, qi are plotted. It illus-

trates how a larger endowment increases the range of priors where information acquisition
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Figure 2: Information acquisition decision: optimal (solid line), incentive compatible (shaded

area) and minimum discriminating (dotted line) precision levels, with varying endow-
ment ω and price p, depending on prior belief qi.

is incentive compatible, and increases the chosen precision, until ν∗ reaches upper bound ν̂

(which is not included in the figure for visibility). The optimal precision ν∗ is increasing in

prior qi for small p and decreasing for large p. The intuition is that A-contracts are cheap

for small p, so investing in A if the state of the world is indeed A gives large profits (this

is the equivalent of winning a long-shot bet). This is when the trader wants to make sure

to make the right investment. Thus, if qi increases, the trader believes this case to be more

likely and increases the probability to make the right investment, i.e., increases ν∗.

Note that the motivation of the traders is not to make the best prediction possible. If

that were the case, traders would also want to obtain information if the prior is far from

the price. Instead, the motivation is to maximize utility, and that might favor opinion over

independent information to save effort costs. Note also that traders tend to acquire less

information the larger the coefficient of absolute risk aversion (Cabrales et al., 2014).

2.2 Competitive equilibrium

How does the possibility of information acquisition affect the forecast of the prediction

market? The following example illustrates how information acquisition can improve the

forecast compared to a model without, as for example used in Gjerstad (2005), Wolfers and

Zitzewitz (2006), or Manski (2006).
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Example. Suppose θ = 1, each trader has endowment ω = 1 and priors qi are uniformly

distributed, i.e., qi ∼ U(0, 1). Without information acquisition, the equilibrium price is

p∗0 = 1/2, because at that price half of the traders are willing to invest in A and half in B,

thus clearing the market. The equilibrium price divides traders in those who always (i.e.,

for each state of the world) invest in A (qi > p∗0), and in traders who always invest in B

(qi < p∗0). I shall call these ‘uninformed’ traders, because their decision is based solely on

their prior, and therefore independent of the true state of the world.

The previous section showed that information acquisition is incentive compatible only

for traders with prior close to the price. When allowing information acquisition (keeping

the price constant), traders with qi < p∗0 = 1/2 close to 1/2 turn from uninformed B-traders

into informed traders acquiring information, and the share of those investing in the correct

asset A improves from 0 to νi(qi, ω, p
∗
0) > 1/2. Conversely, traders with qi > p∗0 close to 1/2

turn from uninformed A-traders into informed traders, and the share of those investing in

A decreases from 1 to νi(qi, ω, p
∗
0) > 1/2. The mass of traders turned into informed traders

is equal for both sides about 1/2 if p = 1/2 (see Figure 2), so the mass of traders in the

population willing to invest in the correct asset A at price p = 1/2 increases. Consequently,

p = 1/2 is not an equilibrium price. Indeed, if aggregate demand is weakly decreasing in p,

the equilibrium price p∗ must be closer to the true value θ = 1 to clear the market.

As the example illustrates, the possibility of information acquisition can sway traders

with incorrect initial opinion to acquire information, revise their beliefs and invest in the

correct outcome instead, thus improving the market forecast.

More formally, let ν(qi, ωi, p) denote the precision level resulting from the endogenously

chosen information acquisition effort. For readability, I will omit the conditioning set of cdf

Q(qi|θ, ωi) in the following. From Definition 1, the equilibrium price p∗ is implicitly defined

as the fixed point of (1{.} is the indicator function)∫ ω

0

∫ 1

0

ai(πi, ωi, p
∗)/p∗dQ(qi)dW (ωi) =

∫ ω

0

∫ 1

0

bi(πi, ωi, p
∗)/(1− p∗)dQ(qi)dW (ωi)

⇐⇒
∫ ω

0

ωi

(∫ 1

0

1{ν(qi, ωi, p
∗) = 1/2}1{qi ≥ p∗}+ 1{ν(qi, ωi, p

∗) > 1/2}

[θν(qi, ωi, p
∗) + (1− θ)(1− ν(qi, ωi, p

∗))]dQ(qi)− p∗
)
dW (ωi) = 0,

where 1{ν(qi, ωi, p
∗) = 1/2}1{qi ≥ p∗} indicates uninformed A-traders, who do not acquire

information and always invest in A, and the remaining term is the contribution of informed

traders to A-investment, who invest according to their information. They invest in A only

in ν(qi, ωi, p
∗) of the cases if the true state of the world is A, otherwise in 1− ν(qi, ωi, p

∗) of

the cases. The equivalence is shown in the proof of Proposition 2 (ii.). Rewriting the share

12



of uninformed A-investors in the population at p∗,∫ 1

0

1{ν(qi, ωi, p
∗) = 1/2}1{qi ≥ p∗}dQ(qi) =

∫ 1

p∗
1{ν(qi, ωi, p

∗) = 1/2}dQ(qi) = 1−Q(tu(p
∗)),

where tu (tl) is the upper (lower) threshold for incentive compatible priors. Explicit expres-

sions for the thresholds, which depend on p and ωi, are derived in the appendix. Since the

precision is bounded by ν̂, for θ = 1 the share of informed investors can be written as∫ 1

0

1{ν(qi, ωi, p
∗) > 1/2}ν(qi, ωi, p

∗)dQ(qi) =

∫ tu

tl

min {ν∗(qi, ωi, p∗), ν̂} dQ(qi).

Hence, the equilibrium price p∗ if θ = 1 fulfills∫ ω

0

(
1−Q(tu) +

∫ tu

tl

min

{
qiαi + (1− qi)βi + 4

8
, ν̂

}
dQ(qi)− p∗

)
ωidW (ωi) = 0. (5)

Proposition 2.

i. There exists an equilibrium price p∗ fulfilling definition 1,

ii. which is implicitly defined as the fixed point of (5).

iii. Assuming homogeneous endowment (ωi = ω), the equilibrium is unique for ω such that

ν̂ is binding,

iv. and unique if aggregate investment is non-increasing in the price.

Proof. See Appendix.

As usual, non-increasing aggregate investment is crucial for uniqueness. Typically, A-

investment decreases in response to a price increase, because uninformed A-traders with qi

close to tu turn into informed traders, who only invest in A in νi < 1 of the cases, and

informed traders with qi close to tl turn into uninformed B-traders, who never invest in A.

Let us call this the price effect. Still, the investment for the A-contract need not necessarily

be decreasing in the price, because of an interaction with information acquisition. Since

the precision chosen by informed traders ν∗(qi, ωi, p) = (qiωi/p + (1 − qi)ωi/(1 − p) + 4)/8

increases for large p, a price increase may trigger more information acquisition, which results

in more investments in A for some informed traders if θ = 1. ν∗ is increasing in p for large

p (holding qi constant), because outcome B becomes more of a long-shot bet with large

potential gains, so making the correct investment is more valuable. However, this effect is

strong enough to reverse the price effect only if p is large and the distribution of priors is

very unsmooth. Since this is a very specific situation, I assume prior distributions to be such

that aggregate investment is weakly decreasing in the price in the following. The validity

of this assumption is confirmed in all numerical examples.
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The following proposition gives comparative statics regarding the market price if (with-

out loss of generality) θ = 1. The results are sufficient conditions for an endowment increase

to reduce forecast error (increase the equilibrium price), and for a shift of priors toward the

true value to reduce forecast error.

Proposition 3. Comparative statics if investment is non-increasing in the price, ω is ho-

mogeneous and θ = 1.

i. Larger endowment ω increases information in the market as measured by

IA =

∫ tu

tl

min{ν∗(qi), ν̂}dQ(qi),

i.e., more traders obtain information of higher precision, unless ν̂ is binding.

ii. Larger endowment increases the equilibrium price p∗ if and only if∫ tu

tl

1{ν∗(qi) < ν̂}∂ν
∗

∂ω
dQ(qi)−min{ν∗(tl), ν̂}q(tl)

∂tl
∂ω

> (1−min{ν∗(tu), ν̂})q(tu)
∂tu
∂ω

.

iii. Any change in the prior distribution from Q to R such that Q(qi) > R(qi) ∀qi ∈ (0, 1)

increases the market price p∗ if ν̂ is binding for all informed traders, unless all traders

in the Q-market already acquire information.

iv. A larger upper bound on the signal precision ν̂ increases the equilibrium price p∗ if ν̂ is

binding for a positive probability mass of traders, otherwise it has no effect.

Proof. See Appendix.

While larger endowment always increases information in the market as measured by

investment from informed traders in the correct asset A (i.), it does not imply that the

forecast error always decreases in response to an endowment increase. This result is stated

in (ii.) and illustrated in Figure 3 for a discrete endowment increase, which increases the

range of priors who acquire information (i.e., tl decreases and tu increases) and increases

the chosen precision ν∗. Some uninformed A-traders, who always invest in the correct

asset A, become informed traders, and only a share ν∗ < 1 of those invests in A, because

signals are imperfect. Hence, investment in A (and consequently the equilibrium price) can

decrease with an endowment increase if and only if the density on the upper threshold q(tu)

is very large compared to the density at the lower threshold q(tl) and the ν∗ increase for

all informed traders, i.e., if and only if the density of traders who reduce investment in the

correct asset is large compared to the density of traders who increase investment. The RHS

of the condition in (ii.) is the investment loss represented by the white bordered area in the

figure, and the LHS is represented by the dotted area. It can be shown that an endowment

increase for uniformly distributed priors always increases the equilibrium price. Moreover,
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Figure 3: The effect of an endowment increase for all traders from ω to ω̃ on the share of investors
s who invest in asset A if θ = 1.

The figure shows traders investing in A for both endowment levels (shaded area), investing in A only for
larger endowment (dotted area), and investing in A only for smaller endowment (white bordered area).
Hence, aggregate investment and equilibrium price increase only if the density weighted dotted area is
larger than the weighted white bordered area. IA is the aggregate investment in A by informed traders,
while UA is investment in A by uninformed traders.

this comparative static holds in all numerical cases with normal distribution in section 2.3.

As with uniqueness, it may fail to hold for unsmooth prior distributions.

The price increases if probability mass is shifted towards the true outcome θ and if the

precision cap is binding (iii.). However, if the precision cap is not binding, this need not

necessarily hold, again because of an interaction with information acquisition. If p > 1/2,

then the optimal precision ν∗(qi, ωi, p) is decreasing in qi, because the profitable state B

(price only 1 − p < 1/2) is considered less likely. Thus, if the mass of traders with high qi

increases, then it can decrease the mass of agents investing in A. It is therefore possible

that traders with more accurate opinions produce worse forecasts, because they invest less

in information acquisition. The price always increases in response to increases of ω or µ in

the numerical example using discrete changes (section 2.3).

An increase of the precision cap ν̂ can be interpreted as the forecasting problem becoming

easier, or better information becoming available. Unsurprisingly, part (iv.) shows that larger

ν̂ never increases the forecast error, and decreases it if ν̂ is binding.

2.3 Numerical example

2.3.1 Preliminaries

The purpose of this section is threefold. First, it demonstrates that this model produces

better predictions than the model without information acquisition (Manski, 2006). Second,

it quantifies the impact of exogenous variables on p∗. And third, it shows the comparative

statics are less ambiguous for discrete changes than the theoretical results may let on.

I calculate the equilibrium price p∗ numerically for various parameter values. Priors

are assumed to be normally distributed, but any probability mass
∫∞

1
q(qi)dqi is bunched

at 1 (similarly all mass below 0 is bunched at 0). This is preferable to truncation, as the

truncated mass depends on parameters µ, σ, which hinders identification of comparative
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static effects.3 Consequently, µ 6= 1/2 is not actually the mean of the prior distribution, but

merely a position parameter.

The equilibrium price with information acquisition is defined in (5), where (Φ denotes

the cdf of the standard normal distribution, φ its density function)

Q(qi) = Φ

(
qi − µ
σ

)
, q(qi) =

1

σ
φ

(
qi − µ
σ

)
∀qi ∈ (0, 1).

The equilibrium price without information acquisition, where traders rely solely on their

priors, is given by (e.g., Manski, 2006)∫ ω

0

(1−Q(p∗0)− p∗0)ωidW (ωi) = 0.

Endowment is homogeneous, with ω as a parameter to be varied. Moreover, I confirmed

numerically that the equilibrium is unique.

Table 1 displays the equilibrium price with information acquisition (p∗), and without

(p∗0), as well as the corresponding parameter values µ, σ, ω, θ. The forecast error of the

market prediction p∗ − θ can be easily computed. It also shows Ij, j = A iff θ = 1, j = B

iff θ = 0, which is the probability mass of informed traders investing in the correct outcome

in equilibrium. This is a measure of information in the market. A high value of Ij either

means many traders acquire information, or that information is good (i.e., signals with

high precision are acquired). For θ = 1, IA =
∫ tu
tl

min{ν∗(qi, ω, p∗), ν̂}dQ(qi). Uj is the

probability mass of uninformed traders investing in the correct outcome, i.e., the mass of

traders that does not acquire information in equilibrium, but has prior qi that makes them

invest in the correct option. For θ = 1, UA = 1−Q(tu). From the market clearing condition,

UA + IA = p∗.

2.3.2 Numerical results

A higher endowment ω leads to smaller forecast error |p∗ − θ|. The reason is that, first,

more endowment leads to a higher mass of traders acquiring information. And second,

traders who do acquire information choose more precise signals. This is reflected by Ij, the

probability mass of informed traders investing in the correct outcome, which is increasing in

endowment. As endowment rises, the market price is more and more driven by information

rather than prior beliefs. For example, at ω = 5, θ = 1 and σ = 0.1, the probability mass

3The cdf of the truncated normal distribution can be increasing in µ for fixed thresholds 0 and 1 at some
x ∈ (0, 1) because of truncation. Thus, an increase of µ does not make the prior distribution unambiguously
more accurate for θ = 1, since there may be points x where the mass of traders with prior qi ≤ x increases in
µ. Hence, µ is not a suitable (unambiguous) position parameter—a negative price response to a µ-increase
could be due to changes in truncation, which we are not interested in, or due to reduced information
acquisition. To solve this problem, I assume any truncated mass is located at the corners, so that the prior
belief distribution in the interior is just the cdf of a normal distribution, which is always decreasing in
response to an increase of µ.
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Table 1: Equilibrium price with information acquisition p∗ for various parameter values.

ω µ σ θ p∗ IB UB p∗0

0.5 0.1 0.1 0 0.18 0.13 0.69 0.19
0.5 0.1 0.3 0 0.27 0.07 0.66 0.28
0.5 0.5 0.1 0 0.49 0.29 0.22 0.5
0.5 0.5 0.3 0 0.49 0.1 0.41 0.5
0.5 0.7 0.1 0 0.65 0.23 0.12 0.66
0.5 0.7 0.3 0 0.61 0.09 0.3 0.61
1 0.1 0.1 0 0.15 0.32 0.52 0.19
1 0.1 0.3 0 0.24 0.17 0.59 0.28
1 0.5 0.1 0 0.43 0.53 0.03 0.5
1 0.5 0.3 0 0.46 0.24 0.3 0.5
1 0.7 0.1 0 0.6 0.39 0.01 0.66
1 0.7 0.3 0 0.58 0.22 0.2 0.61
5 0.1 0.1 0 0.04 0.77 0.18 0.19
5 0.1 0.3 0 0.09 0.51 0.4 0.28
5 0.5 0.1 0 0.13 0.87 0 0.5
5 0.5 0.3 0 0.24 0.69 0.07 0.5
5 0.7 0.1 0 0.28 0.72 0 0.66
5 0.7 0.3 0 0.37 0.6 0.02 0.61

ω µ σ θ p∗ IA UA p∗0

0.5 0.1 0.1 1 0.2 0.12 0.08 0.19
0.5 0.1 0.3 1 0.28 0.07 0.21 0.28
0.5 0.5 0.1 1 0.51 0.29 0.22 0.5
0.5 0.5 0.3 1 0.51 0.1 0.41 0.5
0.5 0.7 0.1 1 0.67 0.25 0.42 0.66
0.5 0.7 0.3 1 0.62 0.09 0.53 0.61
1 0.1 0.1 1 0.22 0.22 0.01 0.19
1 0.1 0.3 1 0.3 0.17 0.13 0.28
1 0.5 0.1 1 0.57 0.53 0.03 0.5
1 0.5 0.3 1 0.54 0.24 0.3 0.5
1 0.7 0.1 1 0.71 0.54 0.17 0.66
1 0.7 0.3 1 0.65 0.22 0.43 0.61
5 0.1 0.1 1 0.44 0.44 0 0.19
5 0.1 0.3 1 0.45 0.45 0.01 0.28
5 0.5 0.1 1 0.87 0.87 0 0.5
5 0.5 0.3 1 0.76 0.69 0.07 0.5
5 0.7 0.1 1 0.93 0.93 0 0.66
5 0.7 0.3 1 0.85 0.66 0.19 0.61

Description: The table displays the equilibrium price with information acquisition p∗ and without (p∗0).
Priors are drawn from distribution N (µ, σ2), and endowment is ω. The true state of the world is θ, so the
forecast error is p∗ − θ. IA is the probability mass of informed traders investing in A in equilibrium, while
UA is the probability mass of uninformed traders investing in A. The upper bound of the signal precision
is ν̂ = 0.95.

of uninformed A-traders UA is 0 (rounded), so it is almost exclusively informed traders

investing in A and supporting the equilibrium, while UA is positive for lower endowment.

Further, µ closer to the true state θ decreases the absolute value of the forecast error.

This not surprising, since it means there is a larger probability mass of uninformed traders

for each given price p willing to invest in the right asset, all else equal.

The effect of σ is ambiguous. In general, the parameter shifts probability mass closer to

or farther away from µ. If µ is small, then a larger σ means there is a larger probability mass

at high values of qi. Consequently, a larger σ increases forecast error for low µ and θ = 0, or

for large µ and θ = 1. That is, there are more wrongly investing uninformed traders, which

drive the market price in the wrong direction. Similarly, a larger σ improves the prediction

if µ is far from θ, because it increases the mass of correctly investing uninformed traders.

The effect is more pronounced with smaller ω, where the price is driven more by opinion.

The prediction in the model without information acquisition p∗0 is unaffected by endow-

ment, because it does not influence beliefs. Moreover, the prediction is the same independent

of the state of the world, because investment decisions are not correlated with θ. The fore-
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casts in the model with information acquisition are never worse, and usually strictly better

than in the model without. Averaging over the 36 cases in Table 1, the forecast error in

the Manski model is larger by about 10.5 percentage points, given the same endowment

and prior distribution. Therefore, allowing for information acquisition goes a long way in

explaining forecast accuracy.

2.4 Endogenous weighting: endowment heterogeneity

In elections or votes, each “voice” has equal weight. For purposes of preference aggregation,

this may be fair, but if voting is meant to determine an objectively correct state, then equal

weighting need not yield the best outcome (e.g., Ashton and Ashton, 1985). Indeed, if

information among traders cannot be shared, the optimal weighting is to give full weight to

the group with the best information. However, it is usually difficult to identify this group ex

ante. In the asset market, this dilemma is solved endogenously by weighting each bet with

its wager, or each trade with its volume (“weighting effect”). Combining with the earlier

result that larger endowment induces more information acquisition (“incentive effect”), the

market endogenously gives higher weight to traders with better forecasts, all else equal.

In the following, I assume for simplicity there are two endowment groups (ωH , QH) and

(ωL, QL) with ωH > ωL, represented by endowment and prior distribution. The share of

traders of group H in the market is 0 < γ < 1. The equilibrium price in a hypothetical

market populated only by group H is p∗H , and the price in the hypothetical low endowment

market is p∗L, which is a way of expressing the combination of the group prior distribution

and its endowment in terms of a forecast. Lemma 7 in the appendix shows that if aggregate

investment is non-increasing in the price, then the market price in the market with both

groups fulfills min{p∗H , p∗L} < p∗ < max{p∗H , p∗L} for p∗H 6= p∗L. An immediate consequence of

this result is the following.

Corollary 4. If the market consists of two endowment groups ωH > ωL, and aggregate

investment is non-increasing in the price for both groups, then the equilibrium price p∗ has

a smaller forecast error than the price in a market consisting only of the low endowment

group p∗L if and only if the forecast error in the high endowment market is smaller, i.e.,

|θ − p∗| < |θ − p∗L| ⇐⇒ |θ − p∗H | < |θ − p∗L|.

This corollary implies that adding a group of high endowment traders or traders with

better information to the market would improve the market prediction. To analyze the

weighting effect, consider a uniform (equal) weight price u∗, defined in the general case as∫ 1

0

1{ai(qi, ωi, u∗) > bi(qi, ωi, u
∗)}dQ(qi) = u∗.

The price is determined by equating the share of the number of investments in A (instead
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of the share of dollars in A) with the price u∗ that induces these investments. This method

gives equal weight to every trader independent of his investment volume, as in polling, but it

is not a market clearing price whenever it diverges from p∗. Thus, the market maker might

have to use his own funds to pay the winners, or he might make a profit. If endowment is

homogeneous or if p∗H = p∗L, then p∗ = u∗.

Proposition 5. Suppose the market consists of two endowment groups ωH > ωL, and

aggregate investment is non-increasing in the price for both groups. If p∗H > p∗L, then p∗ > u∗.

Similarly, p∗H < p∗L implies p∗ < u∗.

Proof. See Appendix.

Corollary 6. If |p∗H − θ| < |p∗L− θ|, then endogenous weighting compared to equal weighting

unambiguously reduces the forecast error, i.e., |p∗ − θ| < |u∗ − θ|, but the improvement is

smaller than for optimal group weighting, i.e., |p∗H − θ| < |p∗ − θ|.

As shown in the previous sections, a larger endowment for traders typically leads to

smaller forecast error. Thus, the endogenous weighting implied by market clearing reduces

forecast error if prior beliefs and endowment are independent, or if higher endowment groups

tend to have more accurate priors. An evolutionary argument makes the latter condition

plausible: traders with better priors have better forecasts, so they increase their endowment

by making the right investments. Hence, over time high endowment traders are the ones

with better priors (e.g., Servan-Schreiber et al., 2004). Endogenous weighting increases the

forecast error only if the low endowment group has considerably better priors to compensate

for the inferior information due to the incentive effect, so that p∗L is closer to θ than p∗H .

In summary, the endogenous weighting of the market improves on the effect of informa-

tion acquisition by giving more weight to richer traders, which usually have better forecasts.

3 Discussion: Interpreting prediction market prices

Several authors have asked how prediction market prices are to be interpreted. Contrary

to conventional wisdom, Manski (2006) shows that an equilibrium price with risk neutral

traders, interpreted as probability forecast, may be far from the mean belief in the market.

Gjerstad (2005) and Wolfers and Zitzewitz (2006) demonstrate that this disparity is smaller

for risk averse agents. They use a set-up without information and with arbitrary distribution

of beliefs, which may or may not be close to the actual outcome. Consequently, the mean

belief is a convenient summary statistic, but it may not be a good predictor of the outcome.

What we are instead interested in is how price p∗ relates to the outcome θ. To answer

this, the key question is whether the price is driven by opinion, which may be close or far

from the truth, or by information and evidence, which is correlated with the outcome and

therefore more reliable. As this model shows, the price can be anything from an aggregation
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of wrong opinions to a very accurate and informed forecast. And even if initial beliefs about

the outcome are off, the prediction market may generate a good forecast if agents have

sufficient incentives to seek out information and revise their beliefs and investments.

Of course, it is possible to interpret the belief distribution of Manski et al. as posterior

distribution after information acquisition. Any information acquisition equilibrium based

on prior distribution Q can be reached in the model without information acquisition with

belief distribution R such that (assuming homogeneous endowment)

1−R(p∗) = 1−Q(tu) +

∫ tu(p∗)

tl(p∗)

min

{
qiαi(p

∗) + (1− qi)βi(p∗) + 4

8
, ν̂

}
dQ(qi) = p∗.

Yet, merely assuming a belief distribution without modeling its generation does not give any

insights into its informational content. Moreover, meaningful comparative static analysis is

not possible, as distribution R is fixed for primitives ω and Q, hence changes in information

acquisition (e.g., incentive compatibility) would not be captured.

4 Conclusion

Costly information acquisition explains the existence of uninformed traders, who do not

acquire information and rely only on their opinion when investing, and of informed traders.

In my model, noise traders and informed traders evolve endogenously from an initial distri-

bution of opinions and endowment. Thus, good forecasts are not explained merely by the

existence of insiders in the market, and bad ones by their absence. Rather, the information

acquisition explanation implies that accurate initial beliefs as well as large endowment—

improving incentives for information acquisition—can lead to good forecasts, but low stakes,

high information costs, or inaccurate beliefs may also lead to bad ones.

Overall, a few high endowment agents, who choose to be informed because of large stakes,

can be sufficient to drive the market price in the right direction due to their large weight in

the market. In conventional financial markets, these high endowment agents may be hedge

funds and investment banking divisions, who can move millions of dollars and have access to

research into potential investment opportunities that smaller investors cannot afford. The

explanation also implies that larger weight on bets or votes of high endowment agents may

improve information aggregation in other contexts, at least as long as pooling of information

is difficult and other motives such as manipulation (Rothschild and Sethi, 2013) play a minor

role. Endogenous weighting has a bias reducing effect, unless endowments and priors are

sufficiently negatively related.

There appears to be only one empirical paper that attempts to shed light on the role of

money as incentive in futures markets. Servan-Schreiber et al. (2004) compare predictions of

a play money prediction market and a real stakes prediction market. They find no significant

difference in forecast accuracy, but stress that the play money market has stronger selection
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of good forecasters, because large ‘play endowment’ can only be obtained with a record

of correct predictions. Moreover, the top traders were allowed to redeem play money for

prizes, thus providing different (rank order) incentives for information acquisition. Hence, a

direct test of the information acquisition explanation, e.g., by endowing traders with money

randomly to rule out selection effects, is yet to be done.

Appendix A: Proofs

Proof of Proposition 1. i. Setting qi = p, both ν and ν̃ take value 1/2, the global

minimum. The former increases faster as qi deviates, hence the result follows.

ii. From i., νi ≥ ν̃ for qi close to p for any ωi > 0. Since νi(p = 1/2) = 1/2 and νi(p) is

continuous with finite slope, there exists a neighborhood around qi = p such that νi < ν̂

whenever ν̂ > 1/2.

Setting qi = p, νi − νi =
√
ωi/2 > 0. Since νi, νi are continuous in qi, there exists a

neighborhood around qi = p such that [νi, νi] ∩ [ν̃i, ν̂] 6= ∅. Because the density of qi is

strictly positive everywhere, there is a positive probability mass of traders with qi such

that information acquisition is incentive compatible.

The term within the square root of (3) or (4) is strictly decreasing in qi if qi > p and

strictly increasing if qi < p. If the term is negative, then information acquisition is

not incentive compatible. Thus, the incentive compatibility constraint becomes less

stringent as qi approaches p.

Because ν∗i is increasing in qi whenever p < 1/2 and decreasing whenever p > 1/2, the

chosen precision is increasing in qi for qi ≤ p ≤ 1/2 and decreasing for 1/2 ≤ p ≤ qi.

Together with the effect on the stringency of the IC, ∂νi
∂|qi−p| ≤ 0 if 1/2 ≤ p ≤ qi or

qi ≤ p ≤ 1/2.

iii. I first show that the range of incentive compatible effort levels is nondecreasing for

sufficiently large ωi > 0. Incentive compatible positive effort levels exist for a given

qi iff the term within the square root in (3) or (4) is nonnegative. This term becomes

positive for sufficiently large ωi, because all squared ωi terms have positive sign, while

one (linear) ωi term has a negative sign.

To be shown: choice set [νi, νi] ∩ [ν̃i, ν̂] is nondecreasing and non-empty as ωi → ∞.

Since i. states ν̃i ≤ ν, it remains to be shown that sufficiently large ωi implies νi < ν̂.

Claim: limω→∞ νi → ν̃. To see this,4 apply a Taylor approximation for νi (see (3), (4)),

which is of the form y −
√
y2 − z ≈ z/(2y) and holds for y >> z. Then, as ωi →∞,

z

2y
=

1 + qiωi/p

ωi[qi/p+ (1− qi)/(1− p)] + 4
→ qi/p

qi/p+ (1− qi)/(1− p)
= ν̃i.

4I am grateful to Ron Gordon for this idea.
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The above approximation is obtained by Taylor expanding
√

1− x at 1,
√

1− x ≈
1 − 1/2x (omitting higher order terms, as these vanish asymptotically for x small).

Then, using x = z/y2,

y −
√
y2 − z = y − y

√
1− z/y2 ≈ y − y

(
1− z

2y2

)
=

z

2y
.

The Taylor approximation becomes arbitrarily accurate as ωi →∞, since 1−z/y2 → 1.

It is easy to verify that νi converges from above. Therefore, the range of incentive com-

patible effort levels is nondecreasing for sufficiently large ωi. Consequently, νi increases

as ωi increases until νi = ν̂, as ν∗i is strictly increasing in ωi.

Proof of Proposition 2. i. The optimal precision νi(qi, ωi, p) is upper hemi-continuous

(uhc) in the parameters and non-empty by Berge’s maximum theorem, and since the

maximizer is unique by concavity, uhc coincides with continuity. Consequently, we can

write investment as function of the primitives, i.e., ai(πi(qi, νi, si), ωi, p) as ai(qi, ωi, p),

same for bi(qi, ωi, p).

The investment maximization problem at t = 1 for each i is continuous, with maximizer

ai, bi from the compact set ωi ≥ ai + bi ≥ 0. Applying Berge’s maximum theorem, the

investment correspondence is uhc in the parameters, non-empty and compact-valued.

This implies that aggregate investment is uhc in the parameters (Aumann, 1976). Given

risk-neutrality, investment is multi-valued if and only if πi = p. In this case, investment

is the budget line, which is a convex set. Writing (5) as mapping [0, 1]→ [0, 1],∫ ω

0

(
1−Q(tu) +

∫ tu

tl

min{ν∗(qi, p), ν̂}dQ(qi)

)
ωidW (ωi)/

∫ ω

0

ωidW (ωi) = p,

Kakutani’s fixed point theorem guarantees the existence of p fulfilling definition 1.

ii. In equilibrium, the number of contracts demanded for either outcome must be identical,

so that investments from the losers are identical to earnings of the winners. Without

loss of generality, suppose θ = 1. Then, denoting the mass of uninformed traders buying

A-contracts at price p∗ by UA and the mass of informed A-traders by IA (similarly for

B), the equilibrium price fulfills∫ ω

0

ωi
UA + IA

p∗
dW (ωi) =

∫ ω

0

ωi
UB + IB
1− p∗

dW (ωi)

⇐⇒
∫ ω

0

ωi(UA + IA)(1− p∗)− ωi(UB + IB)p∗dW (ωi) = 0

⇐⇒
∫ ω

0

ωi(UA + IA − p∗)dW (ωi) = 0,
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because UA + UB + IA + IB = 1, and because risk neutral agents invest the entire

endowment ωi. Replacing the UA, IA terms, this is the desired expression.

iii. Rewriting,
∫ tu(p)

tl(p)
min{ν∗, ν̂}dQ = ν̂[Q(tu) − Q(tl)], since ν̂ is binding. A change in p

changes this term by ν̂[t′uq(tu) − t′lq(tl)], and changes 1 − Q(tu) by −t′uq(tu). Hence,

ν̂[t′uq(tu)− t′lq(tl)]− t′uq(tu) < 0, since ν̂ ≤ 1 and t′u, t
′
l > 0. Thus, the probability mass

investing in A is strictly decreasing in p, so there is a unique p∗ fulfilling equality (5).

iv. As before, writing (5) as∫ ω

0

(
1−Q(tu) +

∫ tu

tl

min{ν∗(qi, p), ν̂}dQ(qi)

)
ωidW (ωi)/

∫ ω

0

ωidW (ωi) = p,

where the LHS is aggregate A-investment and weakly decreasing in p by assumption,

immediately shows that the unique equilibrium is unique.

Proof of Proposition 3. i. Using Leibniz’ integral rule,

∂IA
∂ω

=

∫ tu

tl

(
qi

8p∗
+

(1− qi)
8(1− p∗)

)
q(qi)dqi

+
tuα + (1− tu)β + 4

8
q(tu)t

′
u −

tlα + (1− tl)β + 4

8
q(tl)t

′
l > 0,

because ∂tl/∂ω < 0 and ∂tu/∂ω > 0.

ii. Using Leibniz’ integral rule to compute ∂(5)
∂ω

and rearranging gives the expression.

iii. Not all agents acquire information, which implies tl ∈ (0, 1) or tu ∈ (0, 1). The share of

traders investing in A is 1 − Q(tu) +
∫ tu
tl
ν̂q(qi)dqi = 1 − Q(tu) + ν̂[Q(tu) − Q(tl)]. For

any change Q(qi) > R(qi) ∀qi ∈ (0, 1), the share changes by Q(tu)− R(tu) + ν̂[R(tu)−
Q(tu)− R(tl) +Q(tl)] > 0, since [1− ν̂]Q(tu) ≥ [1− ν̂]R(tu) and Q(tl) ≥ R(tl) with at

least one strict inequality, as tl or tu is in the interior. The increase of the equilibrium

price is implied by the implicit function theorem and non-increasing investment.

iv. If ν̂ is binding, then

∂(5)

∂ν̂
=

∫
1dQ+ ν̂[q(tu)t

′
u − q(tl)t′l] > 0,

since t′u > 0 and t′l < 0. Similarly, if it is not binding, the derivative is 0.

23



Proof of Proposition 5. For θ = 1, u∗ is defined as

γ

[
1−QH(tu(u

∗, ωH)) +

∫ tu(u∗,ωH)

tl(u∗,ωH)

min{ν∗(u∗, ωH , qi), ν̂}dQH(qi)− u∗
]

+(1− γ)

[
1−QL(tu(u

∗, ωL)) +

∫ tu(u∗,ωL)

tl(u∗,ωL)

min{ν∗(u∗, ωL, qi), ν̂}dQL(qi)− u∗
]

= 0.

Setting the price equal to p∗, which fulfills p∗H > p∗ > p∗L (Lemma 7), the first term within

brackets is positive, while the second is negative. Since the relative weight of the first term

is reduced compared to (6), because ωH > ωL, while the relative weight of the second is

larger, the LHS is negative. Consequently, the unique solution u∗ must be smaller than

p∗.

Lemma 7. If the market consists of two groups with p∗H 6= p∗L, and aggregate invest-

ment is non-increasing in the price for both groups, then the unique market price p∗ fulfills

min{p∗H , p∗L} < p∗ < max{p∗H , p∗L}.

Proof. If θ = 1, the equilibrium price is implicitly defined as

γωH

[
1−QH(tu(p

∗, ωH)) +

∫ tu(ωH)

tl(ωH)

min{ν∗(p∗, ωH , qi), ν̂}dQH(qi)− p∗
]

+(1− γ)ωL

[
1−QL(tu(p

∗, ωL)) +

∫ tu(ωL)

tl(ωL)

min{ν∗(p∗, ωL, qi), ν̂}dQL(qi)− p∗
]

= 0.

(6)

Suppose without loss of generality p∗H > p∗L. By monotonicity of aggregate investment,

the LHS when evaluated at p = p∗L is positive and therefore cannot be a market clearing

price. Since investment in the A-contract is weakly decreasing in p in both groups, the

LHS is strictly decreasing in p. Thus, the unique market clearing price must fulfill p∗ > p∗L.

Similarly, the LHS evaluated at p = p∗H is positive, which implies p∗ < p∗H .

Appendix B: Upper and lower threshold of incentive

compatible priors

The goal is to find tu, the upper threshold of prior belief qi, where information acquisition is

just incentive compatible. Note that, for large ωi, precision levels ν∗i may be greater 1 and

therefore violate the axioms of probability. Moreover, for large ωi, there is no type qi ∈ [0, 1]

for which no information acquisition is preferable (i.e., there is no real solution for ql, qu

below). This requires case distinctions. Ignoring constraints, the type that is indifferent

between information acquisition and relying on his prior knowledge is found by setting the
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square root term in (3) equal to zero, which gives qu, and including constraints we obtain

tu =

qu(p) =
−y−
√
y2−4xz

2x
if ν∗(qu) ≤ ν̂, qu ≤ 1 and qu ∈ R,

q : ν(q) = ν̂ ∧ q ≥ p otherwise,

where x = (α − β)2, y = −2β2 − 8α − 8β + 2αβ, z = β2 + 8β. qu is the smaller of the

two solutions of the quadratic equation. Only the case qi ≥ p has to be considered here,

because at qi = p information acquisition is always incentive compatible (Proposition 1),

so the upper threshold must be larger than the price. For the lower threshold type ql, the

square root term in (4) is similarly set to zero, resulting in

tl =

ql(p) =
−y+
√
y2−4xz

2x
= 1− qu(1− p) if ν∗(ql) ≤ ν̂, ql ≥ 0 and ql ∈ R,

q : ν(q) = ν̂ ∧ q ≤ p otherwise,

where x = (α− β)2, y = −2β2 + 8α+ 8β + 2αβ, z = β2 − 8β. This is the larger of the two

solutions to the quadratic equation. The following properties of the threshold functions are

used in the proofs. With respect to the price,

∂qu
∂p

> 0,
∂ql
∂p

> 0, and
∂qu
∂p

>
∂ql
∂p
⇐⇒ p < 1/2,

∂qu
∂p

<
∂ql
∂p
⇐⇒ p > 1/2.

Using symmetry,

∂qu
∂p

= (1− ql(1− p))′ = q′l(1− p) = q′u(p), q
′
l(1/2) = q′u(1/2).

Moreover,

∂qu
∂ω

> 0,
∂ql
∂ω

< 0, and
∂qu
∂ω

> −∂ql
∂ω
⇐⇒ p < 1/2,

∂qu
∂ω

< −∂ql
∂ω
⇐⇒ p > 1/2.

Appendix C: Sequential trading

This section shows that the equilibrium price p∗ of the static trading model (Definition 1)

can also be reached under an additional assumption if traders invest given posted prices

sequentially, and a market maker uses the investments to adjust the posted prices. More

specifically, each trader n = 1, 2, . . . is an i.i.d. draw from the population, faces a price

pn−1(a, b), which is a function of previous investments a = (a1, a2, . . . , an−1) in A and

b = (b1, b2, . . . , bn−1) in B, acquires information (or not) and makes his investment choice

given this price. The market maker posts prices (p1, p2, . . .), sells at these prices, and updates

the posted prices depending on the sequentially arriving investments. The market maker

uses the following pricing rule—which is identical to the parimutuel rule, except here the

price applies only to the next trader—as a function of past investments, with arbitrary
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starting price:

pn−1 =

∑n−1
i=1 ai∑n−1

i=1 (ai + bi)
, p0 ∈ [0, 1], for n = 1, 2, . . . .

To show convergence of this price process, I am going to use the following strong law of

large numbers:

Theorem (Etemadi (1983)). Let {ai : i > 0} be a sequence of non-negative random variables

with finite second moments such that:

a. supi>0 Eai <∞,

b. E[aiaj] ≤ EaiEaj, j > i, and

c.
∑∞

i=1 Var ai/i
2 <∞.

Then, as n→∞, (
n∑
i=1

ai − E

[
n∑
i=1

ai

])
/n

a.s.−→ 0.

The crucial condition due to the non-independence of subsequent investments induced

by price changes is non-positive auto-covariance (b). A larger investment in A increases the

price of asset A, and so future investments in A are expected to be smaller. As the following

proposition shows, this condition is fulfilled if aggregate investment is non-increasing in

the price, which also implies that the equilibrium is unique (Proposition 2). Thus, the

equilibrium of the static model can be reached in such a simple sequential trading process

and traders do not need any price expectations as in the static model of definition 1; they

just take the price they are offered.

Proposition 8. If aggregate investment is non-increasing in the price, then

pn−1
a.s.−→ p∗,

with p∗ as defined in Definition 1.

Proof. Clearly, ai and bi are nonnegative, and supi>0 Eai < ∞ due to ωi ≤ ω̄ < ∞.

Moreover, since any ai is finite, there is an upper bound c such that Var ai ≤ c <∞, hence

∞∑
i=1

Var ai/i
2 ≤

∞∑
i=1

c/i2 <∞,

since the over-harmonic series is convergent. It remains to be shown that (b) above holds.

Investment an by trader n depends on the offered price pn−1. Hence, although trader

characteristics are i.i.d. draws, the investment is not; it is influenced by previous investments

26



causing price changes. Thus, for θ = 1,

E[an|pn−1] = E[an|a1, . . . , an−1] =

∫ 1

0

∫ ω̄

0

an(qn, ωn, pn−1)dQ(qn)dW (ωn)

=

∫ ω

0

(
1−Q(tu) +

∫ tu

tl

min{ν∗(qn, pn−1), ν̂}dQ(qn)

)
ωndW (ωn),

which is just the aggregate investment in A in the static model at price pn−1. Thus, the

assumption of non-increasing aggregate investment implies E[aiaj] ≤ 0, j > i, i.e., a large

investment in A tends to trigger lower subsequent investments in A. In equilibrium (5), the

share of aggregate investment in A equals the price of asset A,∫ ω

0

(
1−Q(tu) +

∫ tu

tl

min{ν∗(qi, p∗), ν̂}dQ(qi)

)
ωidW (ωi)/

∫ ω

0

ωidW (ωi) = p∗.

Since aggregate investment is decreasing in the price, if pn−1 < p∗, then E[an|pn−1] ≥ E[an|p∗]
and E[bn|pn−1] ≤ E[bn|p∗], hence

E
[ ∑n

i=1 ai∑n
i=1(ai + bi)

∣∣∣∣pn−1

]
≥ pn−1.

Similarly, if pn−1 > p∗, then E[an|pn−1] ≤ E[an|p∗] and E[bn|pn−1] ≥ E[bn|p∗]. Therefore,

E
[ ∑n

i=1 ai∑n
i=1(ai + bi)

]
→ p∗,

and

E

[
n∑
i=1

an

]
/n→ E

[
n∑
i=1

an

∣∣∣∣p∗
]
/n and E

[
n∑
i=1

bn

]
/n→ E

[
n∑
i=1

bn

∣∣∣∣p∗
]
/n

for all p0. Since EaiEaj ≥ 0, Etemadi (1983)’s theorem implies(
n∑
i=1

ai − E

[
n∑
i=1

ai

])
/n

a.s.−→ 0 and

(
n∑
i=1

(ai + bi)− E

[
n∑
i=1

(ai + bi)

])
/n

a.s.−→ 0.

Together,

pn−1 =

∑n−1
i=1 ai∑n−1

i=1 (ai + bi)

a.s.−→ p∗.
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