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Abstract

This paper analyzes Pareto optimal taxation of labor and capital income in a life-
cycle framework with private information and idiosyncratic risk. We focus on history-
independent tax systems. We thereby complement the Mirrlees taxation literature, which
has so far typically either characterized optimal history-dependent distortions or focused
on static environments. For labor income taxes, we provide a novel decomposition of tax
formulas into a redistribution and an insurance component. The latter is independent of
redistributive motives and is determined by the degree of income risk and risk aversion.
We show that the optimal linear capital tax rate is non-zero and derive a simple formula,
which trades off redistributive and insurance benefits against the efficiency loss from sav-
ings distortions. Our quantitative results show that the insurance component contributes
significantly to optimal labor tax rates. Optimal capital taxes are significant and yield
sizable welfare gains.
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1 Introduction

This paper characterizes Pareto optimal labor and capital income taxation with heterogenous
individuals in a life cycle framework. Consistent with a large empirical literature, individuals
face idiosyncratic labor income risk.1 Consistent with real world tax policies, we characterize
relatively simple tax policies that only condition on current earnings. The labor income tax
is allowed to be fully nonlinear in the tradition of the seminal approach to optimal taxation
by Mirrlees (1971). The tax on wealth (or equivalently capital income) is constrained to be
linear in the tradition of dynamic Ramsey models.2 To make the problem theoretically and
computationally tractable, we employ a novel first-order approach for these simple policies in
a dynamic, stochastic environment.

Since the pioneering theoretical work by Mirrlees (1971), a comprehensive literature has
emerged which specializes on characterizing optimal labor income taxation. Recent papers have
shown that labor supply elasticities and the distribution of income/abilities are the key forces
determining optimal nonlinear income tax schedules (Piketty 1997, Diamond 1998, Saez 2001).
A relatively recent literature, often called the New Dynamic Public Finance (NDPF), has
expanded the classical approach and explicitly taken into account dynamics and risk. This has
enabled the literature to make statements about savings distortions (Golosov, Kocherlakota,
and Tsyvinski 2003), as well as to study the implications of idiosyncratic risk over the life cycle
for optimal labor wedges (Golosov, Troshkin, and Tsyvinski 2013, Farhi and Werning 2013).
The NDPF literature has focused on history-dependent labor income taxes, so that taxes paid
on labor income can potentially depend on the whole history of past earnings.

In contrast, we restrict labor income taxation to be history-independent in this paper. This
can be seen as the next logical step after the recent advances in the literature in exploring
optimal taxation in dynamic economies. In this sense, we bridge the classical public finance
approach with the recent NDPF. The big advantage of such an endeavor is that the instruments
we characterize are within the realm of current tax practices. Further, by restricting the power
of labor income taxes, we can investigate the desirability of capital taxation from a new and,
arguably, more realistic angle.

Formally, let yt be the income of an individual in period t (or, equivalently, at age t) and θt be
the productivity in that period. As emphasized by the NDPF literature, in the second-best op-
timal allocation, gross income is a function of the whole history of shocks θt = (θ1, θ2, ..., θt) and
these allocations are derived with dynamic mechanism design techniques. Decentralizing such

1See Meghir and Pistaferri (2011) and Jappelli and Pistaferri (2010) for recent surveys of the empirical
literature.

2See, for example, Conesa, Kitao, and Krueger (2009) and Aiyagari (1995). Whereas labor income is taxed
nonlinearly in most countries of the world, capital is often taxed at a linear rate. This practice is often linked
to arbitrage opportunities in the case of capital. If individual A face a higher marginal tax rate on savings
than individual B, there would be a deal where both could be better of by making individuals B save individual
A’s money. The assumption of linear capital taxes can therefore be grounded on the idea that the government
cannot observe consumption on the individual level and is often made in the public finance literature. See
Hammond (1987) for a more general theoretical discussion of that issue.
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an allocation requires taxes that condition on the whole history of incomes yt = (y1, y2, ..., yt).3

History-independent labor income taxes, i.e. taxes that condition only on yt, can in general
not implement the desired allocations. Thus, history independence places additional restrictions
on allocations. To the best of our knowledge, no previous paper has so far investigated and
characterized such simple and realistic optimal labor income tax systems in a dynamic and
stochastic Mirrlees environment with a continuous type space.

We show that assuming preferences without income effects on labor supply makes this prob-
lem tractable. If labor income taxes are only a function of current income yt, the income that
individuals optimally choose in a decentralized economy only depends on their current produc-
tivity θt and not on accumulated wealth. For the allocation, this implies that income is solely
a function of θt and not of θt. A second advantage of this specification is that the Hessian
matrix of the individual problem has a zero minor diagonal. This makes a first-order approach
valid under a mild monotonicity condition on yt(θt) as in the static Mirrlees model. As we
show in the main body of the paper, these considerations make it possible to solve for optimal
nonlinear labor and linear capital income taxes. Further, this approach is flexible enough to
allow the study of age-independent as well as age-dependent policies. The latter have attracted
increasing interest lately (Weinzierl 2011, Bastani, Blomquist, and Micheletto 2013) and it has
been argued that this approach “seems to have a good probability of leading to significant policy
improvements” (Banks and Diamond 2011).

Theoretical Results. Our first theoretical result for optimal history-independent tax sys-
tems is the derivation of the formula for optimal marginal labor income tax rates and its
decomposition into a redistribution and an insurance component. The natural comparison for
our results is the seminal formula obtained by Diamond (1998) for the static model. We show
that the forces determining the shape of optimal tax schedules in the static model also turn out
to be important in the dynamic context. Tax rates are decreasing in the labor supply elasticity
and the weighted mass of individuals whose labor supply is distorted. They are increasing in
what is called the mechanical effects of income taxation. The mechanical effect Mt(θt) of a
marginal tax rate for individuals of type θt is defined as the welfare gain of taking one marginal
dollar from all individuals with ability ≥ θt in period (at age) t in the absence of behavioral
responses (Saez 2001).

An important difference to the static (or dynamic deterministic) perspective is that the
mechanical effect does not only measure welfare gains from redistribution between ex-ante het-
erogeneous individuals but also from social insurance against idiosyncratic wage risk in dynamic
economies with incomplete markets. We derive a novel decomposition of the mechanical effect
into an insurance component and a redistribution component. The former is independent of
redistributive preferences and is increasing in income risk and risk aversion. Based on these
considerations, we show that the insurance value of taxation actually imposes meaningful lower
bounds on Pareto optimal taxes and imposes a strong necessary condition for the Pareto effi-

3See Kocherlakota (2004, 2005) or Werning (2011).
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ciency of age-dependent tax schedules. Thus, whereas Pareto efficiency alone imposes barely
any restriction on income tax schedules in the static model (Werning 2007), it does so in
dynamic stochastic environments.

Our second theoretical result for optimal tax design is to show that optimal linear capital
taxes are different from zero and to characterize the forces underlying optimal capital taxation.
We derive a formula for the optimal linear capital tax that follows a very simple and intuitive
equity-efficiency relationship: the gains from redistributing wealth are traded-off against the
negative incentive effect on the savings margin. Our results for the taxation of savings are
different from the classical NDPF argument in favor of capital taxation, where savings are
distorted in order to relax incentive constraints via an income effect on labor supply, as implied
by the inverse Euler equation.4 By contrast, we shut this channel down by assuming no-income
effects, and show that with simple tax instruments savings distortions play a very different
role. The case for a positive savings tax now arises, because it is an effective device to achieve
redistribution and insurance across individuals. This motive is typically not present with history
dependent labor taxes, as those can provide insurance by conditioning on the whole history of
shocks, see Kocherlakota (2005).

Quantitative Results. We finally demonstrate how our first-order approach can be applied
numerically to simulate optimal history-independent tax schedules for a three period economy.
We base our calibration on recent estimates of income risk parameters, which are allowed
to condition on age, providing a realistic life-cycle structure for the evolution of income risk
(Karahan and Ozkan 2013). One goal of the quantitative exploration is to investigate how
results change for different social welfare criteria along the (second-best) Pareto frontier. Our
main case of interest is the Utilitarian one but we consider parts of the Pareto frontier ranging
from the Rawlsian case to one, in which Pareto weights are chosen such that they imply exactly
zero marginal tax rates and, therefore, no redistribution in a static Mirrlees economy. We
refer to this set of Pareto weights as laissez-faire weights. This case makes the role of insurance
particularly transparent. In contrast to the static economy, where they are zero by construction,
optimal marginal labor income tax rates in the dynamic economy are significantly positive for
all income levels.

We also investigate the pattern of optimal age-dependent taxes. These results illustrate
the insurance value of taxation even more clearly. The insurance motive is increasing over
the life cycle because the degree of income uncertainty is naturally increasing from an ex-ante
perspective. This calls for increasing taxes over the life cycle. This insurance effect, however, is
counteracted by a well known distributional effect. A well known result from the optimal tax
literature is that the hazard rates of the income and skill distributions are both very informative
statistics for the optimal pattern of marginal tax rates (Diamond 1998, Saez 2001). Let F (θ) be
the distribution function of ability θ and f(θ) the related density. The higher the ratio 1−F (θ)

f(θ)θ
,

4 Golosov, Troshkin, and Tsyvinski (2013) also consider non-separable preferences and consider other argu-
ments for savings distortions than the inverse Euler logic in a NDPF environment.
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the higher is the optimal tax rate for this productivity level, ceteris paribus. In the calibration
based on age-dependent income risk processes, these ratios are highest for the middle-aged,
lowest for the old, and lie in-between for the young for most parts of the income support.
Solely based on this "tagging" logic (Akerlof 1978), it seems desirable to tax the old the least
and the middle-aged the most, since this would minimize labor supply distortions. Because
of the insurance motive of taxation, however, labor income taxes for the old are higher than
labor income taxes on the young. Our quantitative and theoretical results, hence, show that
to understand the economic forces behind optimal age-dependent taxation and make policy
statements about how taxes should change with age over the life cycle, one has to move beyond
a pure "tagging on age" argument and take into account the insurance value of labor taxation.

Lastly, our quantitative results reveal that optimal capital tax rates are significantly positive
and yield sizable welfare gains, as they provide an additional tool to the labor tax to achieve
redistributive goals and provide insurance. Moreover, the desirability to tax savings is driven
by the effectiveness of savings taxes on the old. The Utilitarian planner, for example, would
like to place an almost zero tax rate on the savings of the young and then have savings taxes
increase significantly over the life cycle. The reason is that wealth inequality is increasing over
the life cycle, which in turn increases the redistributive desirability of capital taxation. Lastly,
we conduct comparative static exercises with respect to risk-aversion and show that capital
taxes and its welfare gains are increasing and convex in risk-aversion. The reason is that higher
risk aversion (i) increases the gains from redistribution and insurance via capital taxes and
implies (ii) that savings are less responsive to taxes.

Related Literature. The present paper is related to the NDPF literature. Particularly, two
recent articles by Golosov, Troshkin, and Tsyvinski (2013) and Farhi and Werning (2013) have
characterized optimal history-dependent labor wedges and to this end made use of new dynamic
first-order approaches to make the problem tractable.5 In complementary work, Kapicka (2013)
develops a first-order approach for a general Mirrleesian setting with persistent productivity
shocks. These recent important advances are complementary to the present paper because we
show how to make progress for simpler, history independent tax systems under the assumption
of no-income effects. This parallels the contribution by Diamond (1998), who also assumes
no-income effect to gain novel insights into the static Mirrlees model. His formulas are also the
natural comparison for the optimal marginal tax rates formulas that we derive for the dynamic
model.

In an earlier contribution to the NDPF, Albanesi and Sleet (2006) show that a relatively
simple labor tax system can implement the second-best in the i.i.d. case: wealth dependent
labor income taxation. By contrast, this paper studies the more general case of persistent
shocks.

5Related to these papers and ours, Pavan, Segal, and Toikka (2013) characterize a first-order approach in
very general, dynamic environments.
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There is a small but growing literature on age-dependent income taxation. Most recent and
related to our work, Weinzierl (2011) and Bastani, Blomquist, and Micheletto (2013) study
optimal age-dependent labor income taxation.6 These papers focus on numerical results and
work with a small discrete type space. Our innovation and contribution to this literature is
that our first-order approach allows to study a continuous-type framework. We are, thus, able
to optimize over a fully nonlinear labor income tax schedule that is well defined for each income
level. We are able to characterize this tax schedule theoretically and numerically connecting our
results precisely to the contributions by Diamond (1998) and Saez (2001) for a static framework
and Golosov, Troshkin, and Tsyvinski (2013) for a NDPF framework. In addition, our paper
is the first to study age-dependent capital income taxation, which we find to increase over the
life cycle.

Also studying age dependency as well as standard income taxes, Best and Kleven (2013)
augment the canonical optimal tax framework by incorporating career effects into a two period
model with certainty. By contrast, we place our focus on a risky and dynamic economy, a
standard NDPF framework calibrated to empirical estimates of income risk, but leave out
human capital.7

This paper is also related to Golosov, Tsyvinski, and Werquin (2013), who study general
dynamic tax reforms and elaborate the welfare gains from the sophistication of the tax code
such as age-dependence, history-dependence or joint taxation of labor and capital income.
Similar as them, we study the design of taxes in dynamic environments by directly taking into
account individual responses to taxes instead of using mechanism-design techniques. The main
conceptual difference is that we focus on the full optimum instead of a tax reform approach
and focus on simple history-independent and separable tax systems.

Finally, Piketty and Saez (2013) have recently derived optimal linear inheritance tax rates
for a class of models with multiple generations. The main difference to the present paper is
that we concentrate on the implications of life cycle instead of intergenerational considerations
for capital taxes. Conesa, Kitao, and Krueger (2009), in tradition with the Ramsey approach
to optimal taxation, study optimal labor and capital income taxes in a computational life cycle
framework. While our approach shares some features from a Ramsey type of exercise, we
allow labor income taxes to be an arbitrarily nonlinear function in the Mirrlees tradition and
theoretically highlight the forces driving labor and capital taxation.

This paper is organized as follows. In Section 2, we state our formal framework and show
how we make the optimal tax problem tractable. In Section 3, we derive our main results
on optimal taxes in a two-period version of the model. We outline how results extend to the
T -periods case in Section 4 and provide a quantitative assessment of optimal policies in Section
5. In Section 6 we conclude.

6Blomquist and Micheletto (2008) is an important earlier paper in this literature.
7Dynamic tax models with human capital are, for example, found in Kapicka and Neira (2013), Findeisen

and Sachs (2013) and Stantcheva (2013). Kapicka (2006) looks at a dynamic deterministic environment with
unobservable human capital and constrains the labor income tax to be history independent in a similar spirit
as in our paper.
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2 The Formal Framework

2.1 Economic Environment

We consider a life cycle framework with T periods where individuals at a certain point in time
t are characterized by their productivity θt ∈ Θ = [θ, θ].8 Further, we denote the history of
shocks by θt = (θ1, θ2, . . . , θt). In each period, individuals make a savings and a labor supply
decision. Flow utility is given by

U(ct, yt, θt) = U

(
ct −Ψ

(
yt
θt

))
,

where U ′′ < 0 , Ψ′′ > 0, ct is consumption in period t and y is gross income in period t.
yt
θt

captures labor effort. Abusing notation, we sometimes write the utility function or its
derivatives as a function of the history of shocks only, i.e. U(θt), U ′(θt) and U ′′(θt).

Importantly, the functional form of U eliminates income effects on labor supply, while al-
lowing for risk-aversion. This assumption is crucial for the tractability of the dynamic optimal
tax problem.9 Without income effects, individual labor supply is independent of the amount of
assets. This simplifies the analysis heavily in two manners. First, there is an obvious ordering
of the income vector. Second, the Hessian matrix of the individual choice problem (choosing
labor supply and savings jointly) has an empty minor diagonal; taking into account optimal
behavior of individuals is thus much simpler. Eliminating income effects has also proven to
be a key simplification in making progress on the theoretical and computational side in public
finance models and especially in optimal tax problems (Diamond 1998).

We assume that agents already differ in the first period. The conditional density function
(cdf ) of the initial distribution of productivities is denoted by F1(θ1) and captures the ex-
ante heterogeneity of agents. The reader should think about this heterogeneity as the level of
heterogeneity of individuals at age of roughly 25. There is no initial heterogeneity in assets and
we assume that all agents start with zero assets.

In the following periods, productivities evolve stochastically over time according to a Markov
process. The respective cdf is Ft(θt|θt−1). Further, denote by ht(θt) the probability of history
θt, i.e. ht(θt) = ft(θt|θt−1)ft−1(θt−1|θt−2).....f1(θ1).

We consider a small open economy, so the interest on savings r is fixed. Further, we assume
incomplete markets in a sense that individuals only have access to risk-free one period bonds.10

8For simplicity, but without loss of generality, we assume that the support of the distribution functions is
constant.

9The empirical literature using detailed micro data sets has typically not rejected a zero income elasticity on
labor supply or found very small effects (see Gruber and Saez (2002) for the US or a recent paper by Kleven and
Schultz (2013) using the universe of danish tax records). In macroeconomics, this class of preferences has shown
to be very useful in matching business cycle moments (Greenwood, Hercowitz, and Huffman 1988, Mendoza
and Yue 2012).

10We allow agents to borrow up to natural debt limit (see Aiyagari (1994)). There are two differences
to Aiyagari (1994): First, labor supply is endogenous; the minimal amount of future earnings in period s is∑T
t=s yt(θ). Secondly, individuals can actually not borrow that much as repaying everything would yield a
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2.2 Policy Instruments and Planner’s Objective

We are interested in the Pareto efficient set of nonlinear labor income tax schedule and linear
capital income tax rates that only condition on current income and potentially age. Thus,
we are not solving for a second-best Pareto problem, where the government could condition
policy instruments on all public information (typically the history of income and savings), but
rather restrict the set of policy instruments in a Ramsey manner. However, our approach shares
the feature of the Mirrlees approach that labor income taxes can be an arbitrarily nonlinear
function of current income, see also the discussion at the end of this subsection. One could call
it a third-best Pareto problem, where third-best refers to the restriction on policy instruments.
In the remainder of this paper, solely the phrase Pareto optimal will be used.

We consider two scenarios. In the first, the government can condition labor income tax
schedules T (·) and capital tax rates τ on time t, so T = {Tt(·)}t=1,...,T and τ = {τt}t=1,...,T .
This is equivalent to age-dependent taxation. In the second scenario, we study income tax
functions, which are independent of time/age. In this case T is a single function and τ a scalar.

The preferences of the social planner are described by the set of Pareto weights {f̃1(θ1)}θ1∈[θ,θ].
The cumulative Pareto weights are defined by F̃1(θ1) =

∫ θ1
θ
f̃1(θ̃1)dθ̃1. The set of weights are

restricted such that F̃1(θ) = 1. Different sets of Pareto weights refer to different points on the
Pareto frontier. The set of weights where f̃1(θ1) = f1(θ1) ∀ θ1, e.g., refers to the Utilitarian
planner. Similar as ht(θt), define h̃t(θt) = ft(θt|θt−1)ft−1(θt−1|θt−2).....f̃1(θ1) to express the
Pareto weights for individuals with certain histories.

In the remainder of this paper, we use the notions wealth, savings or capital for at inter-
changeably. Also note that the way we define τt, it is a stock tax not a flow tax. However,
there is always a one to one mapping between such a stock tax and a tax on capital income,
i.e. rat. Thus, there is no loss of generality in the way we defined τt. In the following, we use
the notions capital taxes, wealth taxes and capital income taxes interchangeably. Further note
that the way we define capital taxes implies that borrowing is subsidized at the same rate as
saving is taxed.11

Relation to Ramsey and New Dynamic Public Finance. The tax problem we look at
lies between the classical Ramsey approach and the NDPF approach. The Ramsey equivalent to
our problem would be a parametric restriction on T , e.g., a linearity restriction. In that sense,
the allocations that can be attained via a Ramsey approach are a subset of the allocations,
that we can attain with our policy instruments. In a NDPF approach, policy instruments are
normally only restricted by informational asymmetries. Therefore, the the set of allocations
that we can attain with our policy instruments is a subset of the allocations that can be reached
via a NDPF approach.

negative number in U (·) because of the disutility of labor. Therefore, in the absence of taxes, the maximal
amount of debt is

∑T
t=s

(
yt(θ)−Ψ

(
yt(θ)
θ

))
. For CRRA preferences, e.g., this constraint would never be binding

as the marginal utility of consumption would then be ∞ in the worst case scenario.
11One could impose a zero subsidy (tax) on borrowing as an additional constraint. This would make notation

more burdensome without changing the main results on the desirability of non-zero capital taxes.
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2.3 Individual Problem Given Taxes

In the remainder of this section, for simplicity, we always use notation that refers to age-
dependent taxation, i.e. Tt and τt. For the age-independent tax problem we would only have
to drop the subscript t. Each period, individuals make a work and savings decision. Formally,
the recursive problem of individuals given age-dependent taxes {Tj, τj}j=t,...,T reads as:

Vt(θt, at, {Tj, τj}j=t,...,T ) = max
at+1,yt

U

(
yt − Tt(yt) + (1 + r)(1− τt)at − at+1 −Ψ

(
yt
θt

))
+ Et [Vt+1(θt+1, at+1, {Tj, τj}j=t+1,...,T )] , (1)

where a1 = 0 and aT ≥ 0. Based on the assumption on preferences, the following lemma
directly follows:

Lemma 1. The optimal gross income yt that solves (1) is independent of assets, capital taxes
{τ}j=t,...,T and future labor income taxes {Tj}j=t+1,...,T . It is thus only a function of the current
shock and of the current labor income tax: yt(θt, Tt).

This will greatly simplify the optimal tax analysis. For the resulting allocation, this implies
that yt is only a function of θt and not of θt. The savings decision of individuals, in contrast,
will depend on all state variables: at+1(θt, at, {Tj, τj}j=t,...,T ). Recursively inserting, one can
also write at+1(θt, {Tj, τj}j=1,...,T ). For the resulting allocation, this implies that assets are a
function of the history of shocks: at+1(θt).

2.4 The Social Planner’s Problem

The age-dependent tax problem of the social planner reads as:

max
{Tj ,τj}j=t,...,T

∫
Θ

V1(θ1, 0, {Tj, τj}j=1,...,T )dF̃1(θ1) (2)

where V1(θ1, 0, T , τ) is the solution to (1) for each θ1 and subject to an intertemporal budget
constraint:

T∑
t=1

1

(1 + r)t−1

∫
Θt
Tt(yt(θt))ht(θt)dθt

+
T∑
t=2

1

(1 + r)t−1

∫
Θt−1

τt(1 + r)at(θ
t−1, {Tj, τj}j=1,...,T )ht−1(θt−1)dθt−1 ≥ R (3)

where R is some exogenous revenue requirement of the government and at(θt−1, {Tj, τj}j=1,...,T )

is the amount of savings of individuals with history θt−1 that optimally follows from (1).
Constraint (1) makes the solution of the problem with Lagrangian methods nontrivial. In

the following subsection, we argue that (1) can be replaced by a set of first-order conditions
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for at+1 and yt and a monotonicity condition on yt that is well known from the static Mirrlees
literature.

2.5 First-Order Approach

In the remainder of this paper, we will suppress the dependence of assets and gross income on
taxes. We will thus write yt(θt) instead of yt(θt, Tt) and at(θt−1) instead of at(θt−1, {Tj, τj}j=1,...,T ).

We now want to show how (1) can be replaced by two first-order conditions and a monotonic-
ity constraint. The set of first-order conditions for the individual problem (1) are standard.
For the labor supply decision, we have ∀t and ∀θt ∈ Θ :

1− T ′t (yt(θt) = Ψ′
(
yt(θt
θt

)
1

θt
. (4)

For the savings decision, we have ∀t = 1, ..., T − 1 and ∀θt ∈ Θt :

U ′
(
yt(θt)− Tt(yt(θt))− at+1(θt) + (1− τt)at(θt−1)−Ψ

(
yt(θt)

θt

))
=β(1 + r)(1− τt)

∫
Θ

U ′

(
yt+1(θt+1)− Tt+1(yt+1(θt+1))− at+2(θt, θt+1)

+ (1− τt+1)at+1(θt)−Ψ

(
yt+1(θt+1)

θt+1

))
dFt+1(θt+1|θt). (5)

These conditions are only necessary and not sufficient for the agents’ choices to be optimal.
Due to the assumption about preferences, however, the second order conditions are of partic-
ularly simple form. The derivative of the first-order condition of labor supply with respect to
consumption, i.e. the cross derivative of the value function, is zero. By symmetry of the Hes-
sian, the same holds for the derivative of the Euler equation with respect to labor supply. Thus,
the minor diagonal of the Hessian matrix contains only zeros. For (4) and (5) to represent a
maximum, only the second derivatives of the value function with respect to labor supply and
consumption have to be ≤ 0. For labor supply, a familiar argument from the standard Mirrlees
model implies that this holds if and only if12

y′t(θt) ≥ 0. (6)

The second-order condition for savings is always fulfilled due to concavity of the utility function.
Hence, (4) and (5) represent a maximum whenever y′t(θt) ≥ 0. As y′t(θt) ≥ 0 even implies global
concavity, (4) and (5) even represent a global maximum if y′t(θt) ≥ 0 holds. These considerations
yield the following lemma:

12See, e.g., Salanié (2003, p.87 ff).
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Lemma 2. Instead choosing {Tt, τt}t=1,...,T to maximize (2) subject to (3) and (1), the planner
can also choose {Tt, τt, {yt(θt)}θt∈Θ, {at(θt−1)}θt−1∈Θt−1}t=1,...,T subject to (3), (4), (5) and (6).

Incorporating (4) into a Lagrangian, however, is still problematic as it contains T ′t , i.e. the
derivative of the function with respect to which we want to maximize. To tackle this problem,
we make use of the following derivative

∂
(
yt(θt)− Tt(yt)−Ψ

(
yt(θt)
θt

))
∂θt

= y′t(θt)(1− T ′t (yt))−Ψ′
(
yt(θt)

θt

)[
y′t(θt)

θt
− yt(θt)

θ2
t

]
.

Inserting (4) into this derivative yields:

∂
(
yt(θt)− Tt(yt)−Ψ

(
yt(θt)
θt

))
∂θt

= Ψ′
(
yt(θt)

θt

)
yt(θt)

θ2
t

. (7)

Thus, (7) implies (4). We can therefore slightly rephrase Lemma 2:

Lemma 3. Instead choosing {Tt, τt}t=1,...,T to maximize (2) subject to (3) and (1), the planner
can also choose {Tt, τt, {yt(θt)}θt∈Θ, {at(θt−1)}θt−1∈Θt−1}t=1,...,T subject to (3), (7), (5) and (6).

As we show in Appendix A.1, (7) and (5) can be incorporated into a Lagrangian or opti-
mal control problem. Further, when solving for optimal policies, we do not incorporate the
monotonicity constraint (6) into the Lagrangian as is standard practice in the optimal tax liter-
ature. In the numerical simulations we will ex-post check whether the monotonicity condition
is fulfilled or not. The Lagrangian and all first-order conditions for the age-dependent and
age-independent case are stated in Appendices A.1 and B.1 respectively.

3 Pareto Optimal Taxes – The Two-Period Case

We start by deriving and discussing optimal taxes in a two-period model, so T = 2. The
reason is that optimal taxes in the two periods case are much easier to interpret and basically
convey all the economic intuition. Building on our results we then briefly discuss formulas for
the general case in Section 4. For pedagogical reasons, we begin with the case, in which the
government does not tax savings. We then build on that case and move to Pareto optima with
capital taxation.

3.1 Labor Income Taxation in the Absence of Savings Taxes

We start by characterizing optimal labor income taxes for the case that wealth taxes are con-
strained to be zero. This case is an important benchmark, where it is particularly transparent
to elaborate the insurance motive of labor income taxes in addition to the redistribution motive.
In addition, this benchmark serves as a helpful starting point for Section 3.2 where we discuss
the optimality of non-zero capital taxes.
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3.1.1 Optimal Labor Income Taxes

We first consider the case of age-dependent taxation; we refer to taxes in period t = 1 (t = 2)
as taxes for the young (old).

Proposition 1. Pareto optimal marginal labor income tax rates for the young satisfy:

T ′1 (y1(θ1))

1− T ′1 (y1(θ1))
=

(
1 +

1

ε(θ1)

)
1

λθ1f1(θ1)
×M1(θ1) (8)

where

M1(θ1) =

∫ θ

θ1

(
λ− U ′(θ̃1)

f̃1(θ̃1)

f1(θ̃1)

)
dF1(θ̃1)

and ε(θt) denotes the elasticity of taxable labor income w.r.t. to the net-of-tax-rate in period t,
which is defined by: ε(θt) = ∂yt(θt)

∂(1−T ′t (yt(θt)))

1−T ′t (yt(θt))

yt(θt)
.

λ is the marginal value of public funds and given by

λ =

∫
Θ

U ′(θ1)dF̃1(θ1). (9)

Further, the distortion at the top and bottom of the income distribution is zero, i.e. T ′1 (y1(θ)) =

T ′1 (y1(θ)) = 0.

Proof. See Appendix A.2.4.

This formula is very similar to the static model – see Diamond (1998).13 Note that in
general the optimal tax formula in Propositions 1 can intuitively be derived by tax perturbation
methods, where an infinitesimal increase of the marginal tax rate ∆T ′ at an infinitesimal income
interval with length ∆y1(θ1) around income level y1(θ1) is considered. The mechanical welfare
gain from taking money from all young individuals with income > y1(θ1) is given byM1(θ1)×
∆T ′∆y1(θ1), which will henceforth be called themechanical effect (Saez 2001). It depends on the
redistributive preferences, i.e. the Pareto weights, of the planner, the degree of risk aversion as
well as on the share of individuals with income > y1(θ1). The planner trades off this mechanical
effect against a loss in tax revenue which is induced by lower labor supply of individuals of type
θ1; as shown by Piketty (1997), this term is equivalent to LS(θ1) = λ

T ′1 (y1(θ1))

1−T ′1 (y1(θ1))
θ1f1(θ1) ε(θ1)

ε(θ1)+1
×

∆T ′∆y1(θ1). Setting LS(θ1) =M1(θ1)×∆T ′∆y1(θ1) yields formula (8). Note that even though
savings will also adjust as a consequence of the small tax perturbation, this has no consequences
for welfare via individual utilities by the envelope theorem. In the presence of capital taxes,
this will no longer be true as we will discuss in Section 3.3.

The fact that the marginal value of public funds equals the average social marginal utility –
as reflected by (9) – is a well known result from the static Mirrlees literature without income
effects, that generalizes to our dynamic setting if wealth taxes are constrained to be zero. We
now turn to optimal labor income taxes for the old.

13Relatedly, for the case of history-dependent taxes, Golosov, Troshkin, and Tsyvinski (2013) also find that
optimal labor wedges in the initial period follow the same forces as in the static model.
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Proposition 2. Pareto optimal marginal labor income tax rates for the old satisfy:

T ′2 (y2(θ2))

1− T ′2 (y2(θ2))
=

(
1 +

1

ε(θ2)

)
1

λ
1+r

θ2

∫
Θ
f2(θ2|θ1)dF1(θ1)

×M2(θ2),

where

M2(θ2) =

∫
Θ

∫ θ

θ2

(
λ

1 + r
− βU ′(θ1, θ̃2)

f̃1(θ1)

f1(θ1)

)
dF2(θ̃2|θ1)dF1(θ1).

Further, the distortion at the top and bottom of the income distribution is zero, i.e. T ′2 (y2(θ)) =

T ′2 (y2(θ)) = 0.

Proof. See Appendix A.2.4.

The interpretation is very similar to the labor income taxes for the young. An interesting
difference is that the mechanical effect can now be decomposed into an insurance and a re-
distribution term. We will elaborate on this decomposition in Section 3.1.2. Finally notice
that age-dependent transfers are not uniquely pinned down. This follows by simple Ricardian
equivalence arguments. Perhaps more surprisingly, we will show that this result also extends
to the case where wealth is taxed in addition to labor income in Section 3.3.

Finally, the following proposition, summarizes our results for optimal age-independent marginal
tax rates.

Proposition 3. Age-independent Pareto optimal marginal labor income tax rates are given by:

T ′(y(θ))

1− T ′(y(θ))
=

(
1 +

1

ε(θ)

)
1

λθ
(
f1(θ) + 1

1+r

∫
Θ
f2(θ|θ1)dF1(θ1)

) × [ 2∑
i=1

Mi(θ)

]
(10)

and λ is defined as in (9). Further, the distortion at the top and bottom of the income distri-
bution is zero, i.e. T ′(y(θ)) = T ′(y(θ)) = 0.

Proof. See Appendix B.2.3.

The difference here is that here labor supply incentives of the young and old are traded off
against the mechanical effect for young and old. Trivially, age-independent taxes by definition
lead to lower welfare as the trade-off cannot be optimally solved for each age group separately.

In this section we derived simple labor income taxes, which are allowed to condition on
current income and (potentially) age only. We have shown that the formulas and their under-
lying intuition closely resemble their static model counterpart. Despite this close connection
between the static and dynamic model, we now show how optimal taxes in the dynamic, risky
environment can be decomposed into an insurance and a redistribution part. In a dynamic
model, these concepts have a meaningful distinction, as becomes clear in the next section.
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3.1.2 Insurance versus Redistribution and Pareto Optimality

We now show how the role of income taxes in a dynamic and risky economy can be meaningfully
decomposed into two parts: insurance and redistribution.14 We proceed by showing it for
the case of age-dependent taxes on the old, but the general insights also hold true for age-
independent taxation. For this purpose, we slightly reinterpret the classical tax perturbation.
Assume that T ′2 (y2(θ2)) is increased in a way that everyone with old age income above y2(θ2)

now pays one more dollar of labor income tax. Then, assume that the additional tax revenue
generated by this increase is redistributed in a lump sum fashion in the second period; this
reinterpretation is harmless as this lump sum increase has no first-order impact on welfare via
the implied responses of savings behavior.15

Note that due to the reform, it is likely that the expected life-time utility of some θ1-types
is increased, while the utility of others is decreased. The reform typically creates winners and
losers.16 We denote the uniform lump sum increase in period two by ∆L(θ2); its value is
given by

∫
Θ

∫∞
θ2
dF2(θ̃2|θ1)dF1(θ1). For each type θ1, we now introduce a ‘constant utility term’

CU(θ1, θ2) and a ‘redistribution term’ R(θ1, θ2). The constant utility term is defined as follows:

CU(θ1, θ2) =

∫ θ
θ2
U ′(θ1, θ̃2)dF2(θ̃2|θ1)∫ θ

θ
U ′(θ1, θ2)dF2(θ2|θ1)

.

The numerator captures the (expected) utility loss in period two due to the tax increase.
Dividing it by expected marginal utility in period two says by how much consumption had to
be increased in period two, in every state of the world, in order to make the individual of type
θ1 in expectation equally well of. This number is smaller than one because (i) the tax increase
in period 2 affects the individual in period 2 with probability less than one and because of (ii)
risk aversion. As we will argue below, this term is useful to measure the insurance gain from
taxation.

We define:
R(θ1, θ2) = ∆L(θ2)− CU(θ1, θ2).

The term R(θ1, θ2) captures redistribution. It is positive (negative) if expected utility for that
θ1-type increases (decreases) because the increase in the lump sum transfer ∆L(θ2) is larger
(smaller) than CU(θ1, θ2).

14Relatedly, Boadway and Sato (2012) derive a formula for the optimal marginal tax rate in a static setting
with heterogeneity and uncertainty. They also show how their formula addresses the desire to redistribute and
to provide insurance. Their timing is different, however. In their setup, individuals do not perfectly know the
gross income they will earn when making their labor supply decision because gross income will be a function of
labor supply and a stochastic term.

15The reason is that the change in behavior has no first-order impact on individual utilities by the envelope
theorem and that there is no effect on the government budget because wealth taxes are zero. An equivalent
option would be to redistribute the lump sum in the first period. But also in the presence of a savings tax
a slightly related tax reform can be constructed to obtain the decomposition of the mechanical effect. See
Appendix A.2.5.

16This does not have to be the case. There could also be solely loser or solely winners. See the discussion
after Proposition 4.
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Given this decomposition, we now determine the overall welfare consequences of the two ef-
fects. We start with the insurance effect and ask the following question: If the government could
increase the lump-sum transfer in period two differently for each θ1-type such that expected
utilities are unchanged for all θ1-types ( i.e. by CU(θ1, θ2) respectively), how much resources
could the government save due to this insurance against income risk? Since CU(θ1, θ2) by defini-
tion does not change expected lifetime utilities it has no direct impact on welfare. However, this
reform has a resource savings effect. From each individual of type θ1, the government obtains
tax revenue of 1−F2(θ2|θ1)

1+r
in present value terms. To hold utility constant for that individual,

only CU(θ1,θ2)
1+r

of resources have to be spend (in present value terms). Formally, we write:

MI
2(θ2) =

λ

1 + r

∫
Θ

[(1− F2(θ2|θ1))− CU(θ1, θ2)] dF1(θ1) > 0. (11)

The more pronounced labor income risk, conditional on θ1, and the stronger risk aversion, the
larger is this insurance effect. Note, that it is – as one would expect – always positive.

However, the government cannot increase the lump-sum transfer differently for individuals
with different income histories. Thus, the government necessarily effectively redistributes be-
tween different θ1-types. We now derive the welfare consequences of this implied redistribution.
Note that R(θ1, θ2) measures the (possibly negative) expected utility increase of type θ1 in mon-
etary terms. This increase is valued β

∫
Θ
U ′(θ1, θ2)dF2(θ2|θ1)f̃1(θ1) − λ

1+r
f1(θ1) by the planner

for each type θ1. Thus, aggregating over all types and weighing by R(θ1, θ2), yields:

MR
2 (θ2) =

∫
Θ

(
λ

1 + r
− β

∫
θ2

U ′(R1(θ1, θ2))dF2(θ2|θ1)
f̃1(θ1)

f1(θ1)

)
× (CU(θ1, θ2)−∆L(θ2)) dF1(θ1).

The last term ∆L(θ2) can now be ignored since it is independent of θ1 and it is possible to
show that ∫

θ1

(
λ

1 + r
− β

∫
Θ

U ′(θ1, θ2)dF2(θ2|θ1)
f̃1(θ1)

f1(θ1)

)
dF1(θ1) = 0

based on the (9) and the Euler equation for each θ1-type. Thus, the following remains:

MR
2 (θ2) =

∫
Θ

(
λ

1 + r
− β

∫
Θ

U ′(θ1, θ2)dF2(θ2|θ1)
f̃1(θ1)

f1(θ1)

)
× CU(θ1, θ2)dF1(θ1). (12)

The CU(θ1, θ2)-term should be higher for high θ1-types typically because they are likely to
have a better shock in Period 2. Therefore, for redistributive Pareto-weights, the termMR

2 (θ2)

should be positive for each θ2. If Pareto weights are sufficiently strong in favor of high innate
types, however, the welfare effect can be negative. We will get back to this in our numerical
simulations. Note that this decomposition is defined exactly in such a way that:

M2(θ2) =MI
2(θ2) +MR

2 (θ2).
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Finally, the decomposition of the mechanical effect also applies for the case of age-independent
taxes since M2(θ2) also shows up in (10).

Two Pareto Tests. Instead of characterizing optimal tax schedules for given Pareto-weights,
our results from above can fruitfully be applied to derive a test for whether a given tax function
is Pareto optimal.

Werning (2007) has pioneered this approach for the static Mirrlees model.17 As he shows
Pareto-efficiency alone is a rather weak condition on static tax schedules. By contrast, in
dynamic environments efficiency alone places stronger bounds because of the insurance property
of taxation. We focus on deriving a lower bound on income taxes for the old; for the young
such a lower bound naturally does not exist as there is no insurance motive:18

Proposition 4. A marginal tax rate at income level y(θ2) is inefficiently low whenever:∫
Θ

(1− F2(θ2|θ̃1))dF1(θ̃1)− T ′2(y2(θ2))

1− T ′2(y2(θ2))

ε(θ2)

ε(θ2) + 1
θ2

∫
Θ

f2(θ2|θ̃1)dF1(θ̃1) > CU(θ1, θ2) ∀ θ1.

(13)

We omit a formal proof and rather provide a heuristic one in the following lines. The
LHS of (13) captures the change in tax revenue due to a marginal increase of T ′2 (y2(θ2)) such
that absolute tax payments for individuals with old age income > y2(θ2) is increased by one
dollar. The first term captures the mechanical gain. The second captures the loss due to
behavioral responses. Whenever the LHS is smaller than zero, the marginal tax rate is above
its Laffer bound.19 More interestingly in a dynamic environment, whenever the LHS is larger
than CU(θ1, θ2) for each θ1, the marginal tax rate T ′2 (y2(θ2)) is inefficiently low and an increase
of it combined with an increase in the lump sum transfer can make everybody better off. Why?
As the LHS is the gain in tax revenue, it is also the increase in the lump sum in period 2.
For example, assume that this increase is 5 and that the dollar amount that can compensate
for the second period tax increase is below 5 for everybody: this tax reform makes everyone
better off – even though it redistributes between ex-ante types. This condition can be tested
for a given elasticity and risk-aversion parameter, after backing out the skill distributions. In
addition, knowledge about income and consumption or savings would be required.

In addition, we can also derive a strong necessary condition on Pareto optimality for joint
design of taxes on the young on the old. This is again related to insurance role of taxes. To
derive this test intuitively, assume an increase of T ′2 (y2(θ2)) by an infinitesimal amount, while
decreasing the whole schedule T1 in a way that expected utilities of all θ1-types stay constant.
Whereas this reform (by definition) has no direct effect on welfare via individual utilities, it
has resource effects via the change in labor supply in both periods. Whenever the reform leads

17Scheuer (2013) derives a test for an occupational choice model with entrepreneurs and workers.
18A lower bound for age-independent taxes can be obtained similarly. Of course, it is slightly weaker.
19 Lorenz and Sachs (2012) derive such a condition for a static Mirrlees model with intensive and extensive

labor supply responses.
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to an increase in resources it yields a Pareto improvement. Whenever it leads to a decrease of
resources, a reform into the opposing direction yields a Pareto improvement. Thus, we obtain
the following necessary condition for the Pareto efficiency of age-dependent taxes:

Proposition 5. A sequence of age-dependent labor income tax functions {T1, T2} is second-best
Pareto efficient if and only if

∫
Θ

∫ θ

θ2

(
1− CU(θ1, θ̃2)

)
dF2(θ̃2|θ1)dF1(θ1)

− T ′2 (y2(θ2))

1− T ′2 (y2(θ2))
θ2

ε(θ2)

1 + ε(θ2)

∫
Θ

f2(θ2|θ1)dF1(θ1)

+

∫
Θ

T ′1 (y1(θ1))

1− T ′1 (y1(θ1))
θ1

ε(θ1)

1 + ε(θ1)

∂
∫ θ
θ2
U ′(θ1,θ̃2)dF2(θ̃2|θ1)

U ′(θ1)

∂θ1

dF1(θ1) = 0.

Proof. See Appendix A.2.6

Note that in the above formula, Pareto weights do not show up. The first line captures the
insurance gains, whereas the second and third reflect labor supply responses for both periods.
Summing up, our analysis shows that Pareto efficiency is a much stronger criterion in dynamic,
risky environments in comparison to the static tax model.

3.2 On the Optimality of Capital Taxes

If the government can tax savings, it will generally set a non-zero savings tax. The intuition
is that, starting from zero, a small change in the savings tax will always trigger a first order
redistributive gain, from individuals with higher savings to ones with lower savings. If the
government is interested in redistributing into the other direction, the same argument goes
through for a small decrease in the tax rate. Going against this, is an efficiency loss; this loss
will, however, be of second-order, starting from a zero tax.20 We will now build on this intuition
and derive a formula for the optimal linear tax rate.

In the two period model there is no difference between age-dependent and age-independent
capital taxation because young agents start with zero wealth and capital is only taxed in period
two. We will use a perturbation argument for pedagogical reasons, looking at a small change
in the capital tax rate dτ . In Appendix A.3.2, we provide a derivation of the formula with
Lagrangian methods .

The small change will increase government’s revenue in present value terms by∫
Θ

a2(θ1)dF1(θ1) (14)

20See equation (17). Evaluated at τ = 0 it is 0.
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and decrease utility of individuals, which is valued (in terms of public funds) by

−
∫

Θ

a2(θ1)β(1 + r)

∫ θ

θ2

U ′(θ1, θ̃2)

λ
dF2(θ̃2|θ1)dF̃1(θ1). (15)

It also discourages savings and thereby decreases tax revenue from the capital income tax.
This effect on public funds (in present value terms) is given by:

τ

∫
Θ

∂a2(θ1)

∂τ
dF1(θ1). (16)

Again, note that for τ = 0 this effect is of second order indicating that increasing or decreasing
τ from zero has no first-order incentive costs and a non-zero capital tax is desirable whenever
(14)|τ=0 + (15)|τ=0 6= 0.

For τ 6= 0,however, it holds that (16) 6= 0 . Note that ∂a2(θ1)
∂τ

is in general of ambiguous
sign. In fact, the total behavioral response could be decomposed into an income and into a
substitution effect. The substitution effect calls for lower savings due to an increase in τ . The
income effect is of opposite sign: the higher τ , the less after tax wealth one has tomorrow (for a
given amount of savings), which makes one save more. For expositional reasons, we now rewrite
(16) as

− τ
∫

Θ

ζa2,1−τ (θ1)
a2(θ1)

1− τ
dF1(θ1), (17)

where ζa2,1−τ (θ1) is the uncompensated elasticity of savings with respect to the net of tax rate
1− τ . If ∂a2(θ1)

∂(1−τ)
> (<)0, ζa2,1−τ (θ1) is positive if a2(θ1) > (<) 0.

The absence of income effects on labor implies that labor supply does not change in response
to a capital tax increase.21 Optimality of τ then requires (14) + (15) + (17) = 0, which yields
the following result, assuming β(1 + r) = 1 for simplicity in the exposition:

Proposition 6. The optimal linear capital tax rate τ satisfies

τ

1− τ
=

∫
Θ
a2(θ1)

[
f1(θ1)−

∫
Θ
U ′(θ1,θ̃2)f̃1(θ1)

λ
dF2(θ̃2|θ1)

]
dθ1∫

Θ
a2(θ1)ζa2,1−τ (θ1)dF1(θ1)

. (18)

Proof. See Appendix A.3.2.

Interpretation. The optimal taxation of capital follows a very simple and intuitive equity-
efficiency trade-off as is standard in the public finance literature. Capturing efficiency argu-
ments, the tax rate is decreasing in the weighted elasticity of savings with respect to the net
of tax rate 1 − τ . Capturing equity arguments, it is higher, the more the government values

21With income effects there would be two additional effects. If leisure is a normal good, labor supply in
period two would increase which would raise additional tax revenue. Labor supply in period 1, in contrast,
would decrease. Whether the presence of income effects makes the case for capital taxes more likely depends
on which of these effects dominates.
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redistribution from high savers to low savers, or in other words from the wealthy to the non-
wealthy. The numerator is similar to the mechanical effects as defined in Propositions 2 and
1. Without the term a2(θ1) the numerator in (18) would say by how much welfare (in terms
of public funds) increases if one dollar is redistributed in period two from all individuals to the
government. With the term a2(θ1), however, this effect is weighted for each θ1 by the amount of
savings. For reasonable conditional distribution functions F2(θ2|θ1), one can expect a′2(θ1) > 0

implying that individuals with higher innate ability θ1 save more and therefore are affected
stronger from the increase in the capital income tax rate τ . If in addition Pareto weights are
such that the government wants to redistribute from high innate types to low innate types, the
numerator of (18) is positive, yielding positive capital taxes. For a given set of Pareto weights,
capital taxes are then increasing in wealth inequality. Our numerical results in Section 5 will
confirm this intuition.

Relation To Previous Public Finance Literature. Our results for the taxation of savings
are different from other recent arguments in favor of capital taxation. In the NDPF -literature,
savings are distorted in order to relax incentive constraints via an income effect on labor supply.
They are not used to redistribute and are only used to provide labor incentives (see Kocherlakota
(2005)).22

The reason is that, capital taxes are superfluous for insurance/redistribution since history
dependent labor taxes can condition on the whole history of shocks θt and are sufficient for all
desired insurance/redistribution by the planner.

As we show, with simpler and more realistic policy instruments like standard income taxes
or age-dependent income taxes, capital taxes can provide additional redistribution.

A similar logic as in the NDPF arises in Blomquist and Micheletto (2008), who consider
age-dependent nonlinear taxes in a two period model with ex-ante homogenous agents, which
can end up as a high or low skilled agent in period 2. Savings are taxed to relax the incentive
constraint in period 2 due to an income effect on labor supply. Savings are not taxed for
redistributive issues because ex-ante homogeneous all save the same amount.23

Jacobs and Schindler (2012) show that in a two-period model with linear labor taxes, a similar
role for the capital tax as in the NDPF -literature arises as capital taxes have the positive effect
of boosting labor supply in the second period. In their framework, a positive capital tax also
provides insurance against idiosyncratic risk. In addition, their timing assumptions are also
different in that individuals make consumption and labor supply decisions before their shock
realizes.

Developing a novel dynamic tax reform approach, Golosov, Tsyvinski, and Werquin (2013)
look at the welfare effects of an increase of a linear capital tax rate starting from any given tax

22In Kocherlakota (2005), optimal wealth taxes are zero on average and raise no aggregate tax revenue.
23Bastani, Blomquist, and Micheletto (2013) numerically elaborate a similar discrete type model with ex-ante

heterogeneity and raise a similar argument for taxing savings in order to relax incentive constraints. Their focus
is more on the welfare gains from age-dependence and they do connect the desirability of capital taxation to
wealth inequality, risk aversion and the elasticity of savings.
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system and obtain a formula which is similar to (18). Finally, Piketty and Saez (2013) derive
a formula for the optimal linear inheritance tax in an overlapping generations framework. As
for the formulas presented in this paper, equity-efficiency considerations are key to understand
optimal bequest taxation.

3.3 Labor Income Taxes in the Presence of Capital Taxes

We now move on to labor taxes in the presence of capital taxation. The following proposition
summarizes our main result.

Proposition 7. In the presence of wealth taxes, Pareto optimal marginal labor income tax rates
for the young (t=1) and old (t=2) are given by

T ′t (yt(θt))

1− T ′t (yt(θt))
=

(
1 +

1

ε(θt)

)
ηt(θt)

λ 1
(1+r)t−1 θtgt(θt)

,

where

η1(θ1) =M1(θ1)−
∫ θ

θ1

µ1(θ1)U ′′(θ1)dθ̃1

η2(θ2) =M2(θ2) + β(1 + r)(1− τ)

∫
Θ

µ1(θ1)

∫ θ

θ2

U ′′(θ1, θ2)dF2(θ̃2|θ1)dθ1.

and
λ =

∫
Θ

U ′(θ1)dF̃1(θ1)−
∫

Θ

µ1(θ1)U ′′(θ1)dθ1. (19)

µ1(θ1) is the Lagrangian multiplier function on the Euler equation (5) and g1(θ1) = f1(θ1) and
g2(θ2) =

∫
θ1
f2(θ2|θ1)dF1(θ1).

Proof. See Appendix A.2.2.

In addition to the terms in Propositions 1 and 2, additional terms show up. µ(θ1) denotes
the Lagrangian multiplier on a type θ1. These additional terms capture the impact of changes
in savings behavior on capital tax revenue. In Appendix A.2.3, we show how these expressions
can be written as behavioral responses of savings, as in the next proposition.

Proposition 8. Pareto optimal marginal labor income tax rates for the young/old (t = 1, 2)
satisfy:

T ′t (yt(θt))

1− T ′t (yt(θt))
=

(
1 +

1

ε(θt)

)
1

λ
(1+r)t−1 θtgt(θt)

× [Mt(θt) + St(θt)] ,

where the savings tax effects equal

S1(θ1) = λτ

∫ θ1

θ1

∂a2(θ̃1)

∂T ′1 (y1(θ̃1))
dF1(θ̃1)
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and
S2(θ2) = λτ(1 + r)

∫
Θ

∂a2(θ1)

∂T ′2 (y2(θ2))
dF1(θ1).

The marginal value of public funds is defined by:

λ =

∫
Θ

U ′(θ1)dF̃1(θ1) + λτ

∫
Θ

∂a2(θ1)

∂T1(0)
dF1(θ1).

Proof. See Appendix A.2.3.

Comparing the optimal tax formula to the one from Proposition 1, the additional term
Si(θi) appears. We call Si(θi) the savings tax effect. Such a term has been discovered by
Golosov, Tsyvinski, and Werquin (2013) in a dynamic tax reform setting and by Blomquist and
Micheletto (2008) in an optimal age-dependent tax setting. The effect is proportional to the
savings tax τ . If capital taxes τ are different from zero, changes in savings caused by labor
tax changes have a first-order effect on the government’s budget. As can be seen, Si(θi) differs
across age groups. Higher labor taxes in the first period will unambiguously induce individuals
to save less and therefore S1(θ1) < 0 if τ > (<)0. This reduces capital tax revenue and is a
force towards lower labor taxes on the young. In contrast, higher labor taxes on the old will
increase savings and therefore S2(θ1) > 0 if τ > 0. Finally, the marginal value of public funds
λ now also takes into account how marginally increasing consumption for everybody in period
1 has an impact on the government budget via implied savings responses.

In the age-independent case, it is then possible to show that the following proposition char-
acterizes optimal tax rates:

Proposition 9. Age-independent Pareto optimal marginal labor income tax rates are given by:

T ′(y(θ))

1− T ′(y(θ))
=

(
1 +

1

ε(θ)

)
1

λθ(f1(θ) + 1
1+r

∫
Θ
f2(θ|θ1)dF1(θ1))

×

[
2∑
i=1

Mi(θ) + Si(θ)

]
.

Proof. See Appendix B.2.2.

The effect of labor taxes on savings will in general be ambiguous – as our discussion on
age-dependent labor taxes highlighted, higher taxes on the young reduce savings by an income
effect but higher taxes on the old also increase savings as individuals anticipate higher taxes
later in life. Determining the sign of S1(θ) + S2(θ) is, hence, a quantitative question.

Finally, also in the presence of wealth taxes, the lump sum elements of the tax code are
indeterminate.

Proposition 10. Lump sum elements of the labor income tax functions are indeterminate also
with savings taxes.

Proof. See Appendix A.4

Finally, note that the mechanical effect can also be decomposed into an insurance and a
redistribution component as in equations (11) and (12). The heuristic derivation via a tax
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reform argument is a bit more elaborate in the presence of wealth taxes. See Appendix A.2.5
for such a derivation.

4 The T -Period Case

We now present the generalization to the T -period case. Since most of the economic intuition
can be well-understood from the two period case, we keep the discussion brief. Also for brevity
and to avoid repetition, we representatively focus on age-dependent labor taxes and assume that
capital taxation is possible and age-dependent. First, using the first-order approach described
in Section 2, the following formula characterizes the optimal age-dependent marginal tax rate
in period t, see Appendix A.2.1:

T ′t (yt(θt))

1− T ′t (yt(θt))
=

(
1 +

1

ε(θt)

)
ηt(θt)

λ 1
(1+r)t−1 θt

∫
Θt−1 ft(θt|θt−1)ht−1(θt−1)dθt−1

, (20)

where

ηt(θt) = Mt(θt)−
∫

Θt−1

∫ θ

θt

µt(θ
t−1, θs)U

′′(θt−1, θs)dθ̃tdθ
t−1

+ β(1 + r)(1− τt)
∫

Θt−1

µt−1(θt−1)

∫ θ

θt

U ′′(θt−1, θt)dFt(θ̃t|θt−1)dθt−1.

The mechanical effect is defined similarly as in the two-period case:

Mt(θt) =
λ

(1 + r)t−1

∫
Θt−1

∫ θ

θt

dFt(θ̃t|θt−1)ht−1(θt−1)dθt−1

− βt−1

∫
Θt−1

∫ θ

θt

U ′(θt−1, θt)dFt(θ̃t|θt−1)h̃t−1(θt−1)dθt−1.

µt(θ
t) is the Lagrangian multiplier on the Euler equation of individuals with history θt. Note

that µ0(θ0) = µT (θT ) = 0 for all θ0 and θT . Analytical expressions for these multiplier functions
are provided in Appendix A.1.3.

Insurance versus Redistribution: The mechanical effect can again be decomposed into an
insurance and a redistribution effect. The insurance effect is given by

M I
t (θt) =

λ

(1 + r)t−1

∫
Θt−1

(
1− Ft(θt|θt−1)− CU(θt−1, θt)

)
ht−1(θt−1)dθt−1

where

CU(θt−1, θt) =

∫ θ
θt
U ′(θt−1, θ̃t)dFt(θ̃t|θt−1)∫ θ

θ
U ′(θt−1, θt)dFt(θt|θt−1)

.
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The redistribution effect is given by

MR
t (θt) =

∫
Θt−1

(
λ

(1 + r)t−1
− βt−1

∫
Θ

U ′(θt−1, θt)dFt(θt|θt−1)

)
CU(θt−1, θt)ht−1(θt−1)dθt−1.

(21)
For a formal derivation of this decomposition via a tax perturbation argument see Appendix

A.2.5.

Savings Tax Effects. As in the two period model, the µ-terms capture savings adjustments
of individuals and the fiscal effects of these adjustments have on the government budget. Alter-
natively, optimal marginal tax rates can also be expressed directly as functions of these savings
responses. This could be derived by maximizing the planner objective subject to constraint (1)
directly and invoking the envelope theorem, without making use of (5) and (7). All indirect
effects then cancel out, and what remains are the direct (mechanical) effects of labor taxes on
welfare as well as the effects on the government budget constraint (see Saez (2001) and Golosov,
Tsyvinski, and Werquin (2013)). Based on these perturbation arguments, one can write the
formula for optimal marginal tax rates as:

T ′t (yt(θt))

1− T ′t (yt(θt))
=

(
1 +

1

ε(θt)

)
1

λ
(1+r)t−1 θtft(θt)

× [Mt(θt) + St(θt)] , (22)

where

St(θt) = λ
T∑
j=1

τj(1 + r)j−1

∫
Θj−1

∂aj(θ
j−1)

∂T ′t (yt(θt))
hj(θ

j)dθj.

The difference to the two period model is just that labor taxes influence savings at all points
in time. While the formula (22) provides a superior economic intuition compared to (20), it is
very hard to get analytical expressions for responses of savings with respect to taxes. For the
three period case, we analytically derive formulas for these savings responses and demonstrate
the equivalence between (20) and (22), see Appendix A.2.7. This formal proof is already quite
involved, as the savings choices are made at different points in time (and for different shock
realizations). Further, these savings choices at different points in time are interlinked with each
other. The big advantage of formula (20) is therefore that it can be more readily used for
numerical simulations.
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Capital taxes: For optimal capital taxes, analogously to labor taxes, the following condition
characterizes Pareto optima as a function of the multiplier functions of the Euler equations, see
Appendix A.3.1:

(1− τt) =
1

β(1 + r)2µt−1(θt−1)
∫

Θ
U ′′(θt−1, θt)at(θt−1)dFt(θt|θt−1)dθt−1[

− λ

(1 + r)t−2

∫
Θt−1

at(θ
t−1)ht−1(θt−1)dθt−1

+ βt−1(1 + r)

∫
Θt−1

at(θ
t−1)

∫
Θ

U ′(θt−1, θt)dFt(θt|θt−1)h̃t−1(θt−1)dθt−1

+ (1 + r)

∫
Θt−1

at(θ
t−1)

∫
Θ

µt(θ
t−1, θt)U

′′(θt−1, θt)dθtdθ
t−1

−
∫

Θt−1

µt−1(θt−1)

∫
Θ

U ′(θt−1, θt)dFt(θt|θt−1)dθt−1

]
, (23)

We will use the above formula for our computations. It is equivalent to the optimal tax formula
expressed in terms of behavioral responses, expressed here with β(1 + r) = 1 :

τt
1− τt

=

∫
Θt−1 at(θ

t−1)
[
ht−1(θt−1)−

∫
Θ
U ′(θt−1,θ̃t)h̃t−1(θt−1)

λ
dFt(θ̃t|θt−1)

]
dθt−1∫

Θt−1 at(θt−1)ζat,1−τt(θ
t−1)ht−1(θt−1)dθt−1

+

∑T
j=2,j 6=t τt

∫
Θt−1

∂at(θt−1)
∂τt

ht−1(θt−1)dθt−1∫
Θt−1 at(θt−1)ζat,1−τt(θ

t−1)ht−1(θt−1)dθt−1
.

As in the two period model, the numerator in the first line captures the redistribution effect
of savings taxes, from the wealthy to individuals with low assets. In the T period model, the
numerator in the second line captures that age-dependent savings taxes will have cross-price
effects on savings in other periods, which in turn will have an effect on the government budget
constraint. This effect was naturally not present in the 2-period case. Note that in line with
the general idea behind a first-order approach, we check numerically whether the first-order
conditions behind the optimal capital tax rate are not only necessary, but also sufficient.

5 A Numerical Exploration

We now simulate optimal policies for a T = 3 period economy. The formulas derived in Section
4 will be the basis for our numerical simulation. In Section 5.1 we explain our parameterization.
In the following subsections, we present the results for optimal taxes.

5.1 Inequality over the Life Cycle and Parameters

There is large literature on the estimation of earnings dynamics over the life cycle – see Meghir
and Pistaferri (2011) and Jappelli and Pistaferri (2010) for recent surveys. For the parameteri-
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Figure 1: Income Distribution for Each Age Group

zation of our model, we use the recent empirical approach taken by Karahan and Ozkan (2013).
In their analysis, they estimate the persistence of permanent shocks as well as the variance of
permanent and transitory income shocks for US workers. Innovatively, and in contrast to most
previous work in this strand of the literature, they allow these parameters to be age-dependent
and to change over the life cycle. They find two structural breaks in how the key parameters
change over the life cycle, giving three age groups, in which income dynamics are governed by
the same risk parameters.

We base our parameterization on their results. Given the estimates of Karahan and Ozkan
(2013) for the evolution of income over the life cycle24, we simulate millions of labor income
histories. We describe this in more detail in Appendix C. After having simulated those earnings
histories using a sufficient number of draws, we partition individuals into three age-groups,
namely 24-36, 37-49 and 50-62, which represent periods one, two and three respectively. Last,
we calibrate the cross sectional income distributions for each age group and the respective
transition probabilities. Figure 1 shows the three cross-sectional income distributions for each
age group. It becomes clear how inequality evolves over the life cycle. In the middle age
group there are much more people with high incomes relative to the young and old. The
income distribution first fans out, going from young to middle, and then compresses again in
the last part of the life cycle. Figure 2 shows three conditional income distributions for the
middle age-group, conditioning on earnings of $14,000, $30,000 and $100,000 in the previous
period respectively. The roles of both persistence and risk for earnings become very clear from

24We gratefully acknowledge that they shared some estimates with us that are not directly available from
their paper.
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Figure 2: Conditional Income Distributions, Middle Aged Workers

this picture. To complete the parametrization of the model, we calibrate all conditional skill
distributions from their income counterparts, as pioneered by Saez (2001).25

We assume that the utility function is of the form

U(c, y, θ) =

(
c− ( yθ )

1+ε

1+ε

)1−γ

1− γ
.

For the benchmark, we set ε = 3, implying a labor supply elasticity of 0.33 (Chetty 2012) and
set γ = 1.5 (Chetty 2006).26. The annual interest rate is 3% so in our simulations, we set the
interest rate to (1.03)13 and adjust the discount factor such that β(1 + r) = 1.

5.2 Results in the Benchmark Case

We present results for a Utilitarian social welfare function. We calculate optimal policies for
four cases: age-dependent taxes are available or not and, for both cases, wealth/capital income
taxes are available or not.

Optimal Labor Tax Schedules. In Figure 3, we plot optimal marginal labor income tax
rates, both age-dependent and age-independent, for the case when wealth taxation is available
to the government. First, all marginal tax rates are decreasing over the income distribution,
reflecting that the income distributions have a log-normal shape. This marginal tax rate re-

25We back out the skill from the first-order condition of individual labor supply given a rough approximation
of the current US-tax system, a linear tax rate of 30 %.

26 Our most important qualitative results are not sensitive to the choice of the labor supply elasticity. We
conduct sensitivity analysis w.r.t. risk-aversion below.
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Figure 3: Optimal Utilitarian Marginal Tax Rates

gressivity is well-understood from the static literature on optimal income taxation (Diamond
1998).27

Second, labor income taxes are lowest for the young. The other tax schedules for the middle,
old and the age-independent one lie closer to each other. Taxes on the middle-aged are higher
than on the old for most of the income support, but the quantitative difference is smaller.
What are the underlying economic intuitions for these results? The first driving force for the
pattern of age-dependent taxes reflects a hazard-rate argument. A well known result in optimal
nonlinear taxation is that the hazard rates of the income and skill distributions are both very
informative statistics for the optimal pattern of marginal tax rates (Diamond 1998, Saez 2001).
The higher the ratio 1−F

fθ
, the higher are optimal tax rates, ceteris paribus. In the calibration

based on age-dependent income risk processes, these ratios are highest for the middle, lowest
for the old, and lie in-between for the young for most parts of the income support, see Figure
4.

Solely based on this reasoning, it seems desirable to tax the old the least and the middle-aged
the most, since this would minimize labor supply distortions. But, as we described in theory
part of the paper, in a dynamic and risky economy, age-dependent taxation has the additional
power to provide insurance against income shocks. This counteracts the hazard-rate force for
low taxes on the old and explains that taxes on the old are higher than taxes on the young. Our
results proof that, in a world with income risk, the gains and forces behind age-dependency
go beyond a pure hazard-rate logic. In the following, we illustrate this exploiting our novel
decomposition of the mechanical effect into an insurance and a redistribution component.

27Notice that our income distributions have no Pareto tails.

26



0 50 100 150 200
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

In
v
e
rs

e
 H

a
z
a
rd

 R
a
ti
o

Income, 1000s

 

 

24−36

37−49

50−62

Figure 4: Ratio 1−F
fθ

Insurance Versus Redistribution. Figure 5 displays the insurance and redistribution com-
ponents of the mechanical effect (equations (11) and (12) and their counterparts for period
three.) For the middle-aged, the redistribution part is more important than the insurance part.
In contrast, for the old, the insurance part dominates the redistribution part. This helps to
understand that the insurance motive drives up taxes on the old.28 Taxes on the young have
no insurance value by definition, explaining why the old are taxed heavier than the young.
Concerning the difference between the middle-aged and the old, the hazard-rate effect and the
insurance effect almost cancel each other out. As taxes on the middle-aged are still higher, the
hazard-rate effects is a bit more powerful in this case.

Savings Taxes. The optimal age-independent wealth tax is 4.73%. Optimal age-dependent
taxation implies a wealth tax of 0.06% for the middle-aged and of 12.42% for the old. We
rephrase these results in terms of a capital income tax.29 In the age-independent case the
optimal capital income tax is 14.82%. For age-dependent taxes the numbers are 0,18% for
the middle-aged and 38.93% for the old. The first lesson is that the desire to tax capital in
the age-independent case, is almost exclusively driven by the desire to tax the old. This can
be understood with the help of our formulas for optimal capital taxes provided in the theory
section. Wealth inequality is increasing over the life cycle; the standard deviation of wealth is
twice as high for the old. In addition, note that there is also an interaction between capital

28 Note that for the lowest income levels, the mechanical effect is negative. This follows from the combination
of a positive savings effect and no distortion at the bottom.

29The simple transformation is: τ r = τw 1+r
r , where τw is the wealth tax. The capital income tax implements

the same allocation as the wealth tax.
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Figure 5: Insurance and Redistribution Part of Optimal Taxes

taxes in period two and three. Given high capital taxes in period three, the government has
the incentivize to tax period two capital less heavily because this increases savings from period
two to three, which in turn yields tax revenue at the margin.30

Varying the yearly interest rate has only very small effects on the optimal wealth tax as
long as we adjust the discount factor such that β(1 + r) = 1. This implies in turn that capital
income taxes are higher (lower) if interest rates are lower (higher).

The Effect of Savings Taxes on Labor Taxes. An interesting question is to what extent
the presence of capital taxes influences optimal labor income taxes, or in other words how large
the savings effects in the optimal labor income tax formulas turn out quantitatively. Figure
6 shows optimal taxes in the presence of a capital tax and for the case where we constrained
capital taxes to be zero. Age-independent taxes are almost equivalent in both cases; the solid
green line and the dotted green line are almost indistinguishable. For age-dependent taxes, we
find that the presence of positive capital taxes leads to slightly higher labor income taxes on
the old and slightly lower labor income taxes on the young and middle-aged. This is in line
with our interpretations of the theoretical formulas in Section 3 and the findings by Golosov,
Tsyvinski, and Werquin (2013). Summing up, however, we only find small quantitative effect
of the savings tax effect on optimal labor taxes.

5.3 Welfare Gains, Comparative Statics and Risk Aversion

We now construct comparative static exercises changing the CRRA coefficient. We present
results for optimal savings tax rates and the welfare gains from being able to tax capital. As it
turns out, the conclusions regarding optimal labor tax schedules remain largely unaffected, so
we refrain from showing them here.

30Age-dependent capital taxes may be ineffective if arbitrage is possible. In this case, the results on age-
dependent capital taxes still give guidance on what drives age-independent capital taxation.
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Figure 6: Illustration of Savings Effect

Capital Taxes and Risk-Aversion. Panel A of Figure 7 shows that capital tax rates (in
the graph illustrated as taxes on wealth) are increasing in γ.31 Next, notice that the optimal
age-independent and the tax rate for the old are sensitive to the choice of the parameter. The
tax rate for the middle-aged remains relatively stable and comparably small. This reinforces
the idea the desire to tax capital, is mainly driven by the desire to tax the old. Interestingly, the
slope is almost linear for all three functions. Finally, notice that for all levels of risk-aversion,
age-independent tax rates are positive and significant, starting from a lower bound of about
0.03.

Welfare Gains of Capital Taxation. Panel B of Figure 7 plots the welfare gains of being
able to tax capital, using the standard measure of a percentage consumption increase. For each
value of γ we compute four optimal allocations, allowing the government to condition on age
or not, and tax capital or not. We then compute the welfare gains from capital taxation under
both scenarios.

The welfare gains are sizable in all cases. They range from a lower bound of about 0.02%
(age-independence, γ ≈ 1) to up to 0.7% (age-dependence, γ ≈ 4). The gains are larger for
age-dependence, in line with the previous results that capital tax rates for the old are much
higher than for the middle-aged. Finally note that the welfare gains are convexly increasing in
γ, with steeper increases in the case of age-dependent taxation.

31Note that γ controls risk-aversion as well the intertemporal elasticity of substitution; both can concenptually
influence the optimal capital tax rate.
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Figure 7: Capital Income Taxes
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Figure 8: Rawlsian Social Welfare Function

5.4 Exploring the Pareto Frontier

In this subsection, we also explore other points on the Pareto-frontier. We first start with an
often used social welfare function – the Rawlsian one. Afterwards we look at a case, which is
rarely considered in the literature. We investigate Pareto weights that are less redistributive
than Utilitarian weights; in fact we will consider Pareto weights that would yield the laissez-faire
outcome with zero tax rates in a related static economy.

Rawlsian Optimum. The optimal labor income tax rates are plotted in Figure 8(a). The
shape looks similar as in the Utilitarian optimum, however, taxes in general are – not surpris-
ingly – larger. Figure 8(b) shows the decomposition of the mechanical effect for the old. As
can be seen, redistribution here plays a much stronger role as compared to insurance. Whereas
the insurance effect is of similar amount in absolute terms as in the Utilitarian case (see Figure
5(b)), the gains from redistribution are significantly larger which drives up marginal tax rates.
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Figure 9: Illustration ‘Laissez-Faire’ Weights

For the optimal age-independent wealth tax, we obtain a rate of 4.3%. One might wonder
why this number is lower than in the Utilitarian case. The reason is that in the Rawlsian
equilibrium, rich individuals save less, because more of their labor income is already taxed.
For age-dependent wealth taxes, we obtain the surprising result that the savings decision of
the young individuals is subsidized because the wealth tax for the middle age individuals is
−2.56%. To understand the intuition behind this result, it is necessary to take the wealth tax
rate for the old into account which stands at 14.78%. Subsidizing young individuals at the
margin also induces higher savings later in their life cycle which are then taxed heavily.

Laissez-Faire Weights. In a framework with heterogeneous agents, there is no correct or
wrong normative objective. Typically the literature focuses on the Utilitarian and Rawlsian
objective, or intermediate cases. We leave this path and instead also ask the following question:
To what extent can redistributive taxation be grounded on the idea of social insurance? We
therefore make the following thought experiment: We consider a static economy where pro-
ductivities are distributed as in the first period of our dynamic economy. We then consider
a static Mirrlees problem and back out the Pareto weights that would yield the laissez-faire
equilibrium as the optimum, i.e. the Pareto weights that would lead to zero redistribution in
a static economy. The respective Pareto weights are illustrated in Figure 9; richer individuals
obtain a higher weight as compared to their population share.

Figure 10(a) contains the results for optimal marginal tax rates. In case the government
is restricted to use age-independent labor income taxes, the government imposes marginal
tax rates that are significantly larger than zero, which can be attributed to the insurance
value of taxation. With age-dependent instruments, taxes rates are large in period two and
three of the life cycle; this is clearly driven by the insurance effect of taxation. See Figure
10(b) for the decomposition of the mechanical effect in period three. The insurance effect
is of the same size as in the Utilitarian and the Rawlsian cases, compare Figures 5(b) and
8(b). However, the fact that this insurance also implies redistribution from ex-ante high to
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Figure 10: ‘Laissez-Faire’ Pareto Weights

ex-ante to low types, is valued negatively by the ‘Laissez-Faire’ planner. To counteract this
undesired redistribution, the planner therefore sets negative marginal tax rates in the first period
throughout the whole income distribution. With age-dependent taxes, the planner can provide
(i) insurance for individuals which is in general efficient independently from Pareto weights and
(ii) avoid (too much) redistribution from ex-ante rich to ex-ante poor by counteracting (i) via
negative marginal tax rates in period one. For this reason, welfare gains from age-dependence
are much higher in this case (about 2% of life-time consumption) compared to the Utilitarian
(0.1%) and the Rawlsian (0.5%). Finally, the age-independent wealth tax is −0.26% and the
age-dependent wealth tax increases from −11.49% to 7.80% over the life cycle.

6 Conclusion

This paper analyzes Pareto optimal nonlinear taxation of annual labor income as well as linear
taxation of capital in a framework with heterogenous agents whose skills evolve stochastically
over time. This method can be used to study age-dependent and age-independent taxes. By
focusing on preferences without income effects on labor supply, we developed a first-order ap-
proach to make this problem tractable for a continuous type space. The paper can be seen
as providing a missing link between the static optimal taxation literature and dynamic public
finance models: whereas we explicitly take into account dynamics and idiosyncratic uncer-
tainty, we optimize over simple tax functions instead of looking at optimal history-dependent
distortions.

We have also shown that in the presence of simple labor income taxes on the one hand
and uninsurable idiosyncratic risk on the other hand, optimal capital taxes are typically non-
zero. Our formula for the optimal capital tax highlights a classical equity-efficiency trade-off.
This implies that capital taxes increase the redistributive power of the government. In our
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quantitative section, we have shown that the use of capital taxes yields significant welfare
gains.

It is likely that our method to study simple history-independent tax instruments in dynamic
environments can also be applied more broadly in other contexts.32 For example, we have left
out an explicit role for retirement savings and different sources of capital income, potentially
with stochastic returns. Shourideh (2013) investigates such a model with risk-return trade-offs
for different kinds of capital. We further have focused on labor supply incentives along the
intensive margin and have neglected labor market participation decisions. Jacquet, Lehmann,
and Van der Linden (2013) provide a state of the art treatment of a static Mirrlees model with
labor market participation decisions in addition to intensive labor supply decisions. Incorpo-
rating such realistic features into the life cycle framework with labor income risk and taxation
seems to be a fruitful and promising avenue for future research.

32In Findeisen and Sachs (2013), we use this approach to study optimal education-independent income taxes.
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A Age-Dependent Taxes

A.1 Lagrangian, First-Order Conditions and Multipliers

A.1.1 The Lagrangian

Define Mt(θt) = yt(θt)− Tt(yt(θt)). Then, the Lagrangian reads as

L =

T∑
t=1

βt−1

∫
Θt
U

(
Mt(θt)− at+1(θt)

+ (1− τt)(1 + r)at(θ
t−1)−Ψ

(
yt(θt)

θt

))
h̃t(θ

t)dθt

+ λ

T∑
t=1

1

(1 + r)t−1

∫
Θt−1

∫
Θ

yt(θt)−M(θt) + τt(1 + r)at(θ
t−1)dFt(θt|θt−1)ht−1(θt−1)dθt−1

+

T−1∑
t=1

∫
Θt
µt(θ

t)

[
U ′
(
Mt(θt)− at+1(θt) + (1− τt)(1 + r)at(θ

t−1)−Ψ

(
yt(θt)

θt

))

− β(1 + r)(1− τt+1)

∫
Θ

U ′

(
Mt+1(θt+1)− at+2(θt, θt+1)

+ (1− τt+1)(1 + r)at+1(θt)−Ψ

(
yt+1(θt+1)

θt+1

))
dFt(θt+1|θt)

]
dθt

+

T∑
t=1

∫
Θ

ηt(θt)
∂
(
Mt(θt)−Ψ

(
yt(θt)
θt

))
∂θt

dθt −
T∑
t=1

∫
Θ

ηt(θt)Ψ
′
(
yt(θt)

θt

)
yt(θt)

θ2
t

dθt.

Partially integrating
∫

Θ
ηt(θt)

∂
(
Mt(θt)−Ψ

(
yt(θt)
θt

))
∂θt

dθt yields

ηt(θ)

(
Mt(θ)−Ψ

(
yt(θ)

θ

))
− ηt(θ)

(
Mt(θ)−Ψ

(
yt(θ)

θ

))
−
∫

Θ

η′t(θt)

(
Mt(θt)−Ψ

(
yt(θt)

θt

))
dθt,

which can then be replaced yielding
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L =

T∑
t=1

βt−1

∫
Θt
U

(
Mt(θt)− at+1(θt)

+ (1− τt)(1 + r)at(θ
t−1)−Ψ

(
yt(θt)

θt

))
h̃t(θ

t)dθt

+ λ

T∑
t=1

1

(1 + r)t−1

∫
Θt−1

∫
Θ

yt(θt)−M(θt) + τt(1 + r)at(θ
t−1)dFt(θt|θt−1)ht−1(θt−1)dθt−1

+

T−1∑
t=1

∫
Θt
µt(θ

t)

[
U ′
(
Mt(θt)− at+1(θt) + (1− τt)(1 + r)at(θ

t−1)−Ψ

(
yt(θt)

θt

))

− β(1 + r)(1− τt+1)

∫
Θ

U ′

(
Mt+1(θt+1)− at+2(θt, θt+1)

+ (1− τt+1)(1 + r)at+1(θt)−Ψ

(
yt+1(θt+1)

θt+1

))
dFt(θt+1|θt)

]
dθt

−
T∑
t=1

∫
Θ

η′t(θt)

(
Mt(θt)−Ψ

(
yt(θt)

θt

))
dθt −

T∑
t=1

∫
Θ

ηt(θt)Ψ
′
(
yt(θt)

θt

)
yt(θt)

θ2
t

dθt.

+

T∑
t=1

ηt(θ)

(
Mt(θ)−Ψ

(
yt(θ)

θ

))
− ηt(θ)

(
Mt(θ)−Ψ

(
yt(θ)

θ

))
.

A.1.2 First-Order Conditions

The derivatives with respect to the endpoint conditions yield ∀t : ηt(θ) = ηt(θ) = 0. The first-order conditions
read as

∂L
∂Ms(θs)

=− λ

(1 + r)s−1

∫
Θs−1

fs(θs|θs−1)hs−1(θs−1)dθs−1

+ βs−1

∫
Θs−1

U ′(θs−1, θs)fs(θs|θs−1)h̃s−1(θs−1)dθs−1

+

∫
Θs−1

µs(θ
s−1, θs)U

′′(θs−1, θs)dθ
s−1

− β(1 + r)(1− τs)
∫

Θs−1

µs−1(θs−1)U ′′(θs−1, θs)fs(θs|θs−1)dθs−1

− η′s(θs) = 0 (24)

∂L
∂ys(θs)

=
λ

(1 + r)s−1

∫
Θs−1

fs(θs|θs−1)hs−1(θs−1)dθs−1

− βs−1

∫
Θs−1

U ′(θs−1, θs)Ψ
′
(
ys(θs)

θs

)
1

θs
fs(θs|θs−1)h̃s−1(θs−1)dθs−1

+

∫
Θs−1

µs(θ
s−1, θs)U

′′(θs−1, θs)Ψ
′
(
ys(θs)

θs

)
1

θs
dθs−1

− β(1 + r)(1− τs)
∫

Θs−1

µs−1(θs−1)U ′′(θs−1, θs)Ψ
′
(
ys(θs)

θs

)
1

θs
fs(θs|θs−1)dθs−1

− η′s(θs)Ψ′
(
ys(θs)

θs

)
1

θs
− ηs(θs)

(
Ψ′
(
ys(θs)

θs

)
1

θ2
s

+ Ψ′′
(
ys(θs)

θs

)
ys(θs)

θ2
s

)
= 0 (25)
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∂L
∂as+1(θs)

=
λ

(1 + r)s−1
τs+1hs(θ

s)− µs(θs)U ′′ (θs)

− (1− τs+1)2β(1 + r)2µs(θ
s)

∫
Θ

U ′′(θs, θs+1)dFs+1(θs+1|θs)

+ (1− τs)β(1 + r)µs−1(θs−1)U ′′ (θs) fs(θs|θs−1)

+ (1− τs+1)(1 + r)

∫
Θ

µs+1(θs, θs+1)U ′′(θs, θs+1)dθs+1 = 0 (26)

∂L
∂τs

=
λ

(1 + r)s−2

∫
Θs−1

at(θ
s−1)hs−1(θs−1)dθs−1

− βs−1(1 + r)

∫
Θs−1

as(θ
s−1)

∫
Θ

U ′(θs−1, θs)dFs(θs|θs−1)h̃s−1(θs−1)dθs−1

− (1 + r)

∫
Θs−1

as(θ
s−1)

∫
Θ

µs(θ
s−1, θs)U

′′(θs−1, θs)dθsdθ
s−1

+ β(1 + r)2(1− τs)
∫

Θs−1

µs−1(θs−1)

∫
Θ

U ′′(θs−1, θs)as(θ
s−1)dFs(θs|θs−1)dθs−1

+ β(1 + r)

∫
Θs−1

µs−1(θs−1)

∫
Θ

U ′(θs−1, θs)dFs(θs|θs−1)dθs−1 = 0 (27)

A.1.3 Multiplier Functions

Use (24) to obtain

ηs(θs) =
λ

(1 + r)s−1

∫
Θs−1

∫ θ

θs

dFs(θ̃s|θs−1)hs−1(θs−1)dθs−1

− βs−1

∫
Θs−1

∫ θ

θs

U ′(Rs(θ
s−1, θs))dFs(θ̃s|θs−1)h̃s−1(θs−1)dθs−1

−
∫

Θs−1

∫ θ

θs

µs(θ
s−1, θs)U

′′(Rs(θ
s−1, θs))dθ̃sdθ

s−1

+ β(1 + r)(1− τs)
∫

Θs−1

µs−1(θs−1)

∫ θ

θs

U ′′(Rs(θ
s−1, θs))dFs(θ̃s|θs−1)dθs−1. (28)

Next, we derive µt. Use (26) to obtain, with SOCs(θs) being the second-order condition for savings from the
individuals problem:

µs(θ
s) =

λ
(1+r)s−1 τs+1h(θs−1) + (1− τs)β(1 + r)µs−1(θs−1)U ′′ (θs) fs(θs|θs−1)

SOCs(θs)

+
(1− τs+1)(1 + r)

∫
Θ
µs+1(θs, θs+1)U ′′(θs, θs+1)dθs+1

SOCs(θs)
. (29)

Therefore, we define some terms that make notation less burdensome:

As(θ
s) =

λ
(1+r)s−1 τs+1h(θs−1)

SOCs

Bs(θ
s) =

(1− τs)β(1 + r)U ′′ (θs) fs(θs|θs−1)

SOCs
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Cs(θ
s, θs+1) =

(1− τs+1)(1 + r)U ′′(θs, θs+1)

SOCs
,

then, we can rewrite (29) as

µs(θ
s) = As(θ

s) +Bs(θ
s)µs−1(θs−1) +

∫
Θ

Cs(θ
s, θs+1)µs+1(θs, θs+1)dθs+1.

Or, more concretely for s = T − 2:

µT−2(θT−2) =AT−2(θT−2) +BT−2(θT−2)µT−3(θT−3)

+

∫
Θ

CT−2(θT−2, θT−1)µT−1(θT−2, θT−1)dθT−1. (30)

For s = T − 1, we get:

µT−1(θT−1) =AT−1(θT−1) +BT−1(θT−1)µT−2(θT−2). (31)

Now insert (31) into (30). Omitting arguments, this yields:

µT−2 =
AT−2 +BT−2µT−3 +

∫
Θ
CT−2AT−1dθT−1

1−
∫

Θ
CT−2(θT−2, θT−1)BT−1(θT−1)dθT−1

.

Now insert this into µT−3

µT−3 =AT−3 +BT−3µT−4 +

∫
Θ

CT−3

AT−2 +BT−2µT−3 +
∫
θT−1

CT−2AT−1dθT−1

1−
∫

Θ
CT−2BT−1dθT−1

dθT−2, (32)

yielding

µT−3 =
AT−3 +BT−3µT−4 +

∫
Θ
CT−3

AT−2+
∫
Θ
CT−2AT−1dθT−1

1−
∫
Θ
CT−2BT−1dθT−1

dθT−2

1−
∫

Θ
CT−3BT−2

1−
∫
Θ
CT−2BT−1dθT−1

. (33)

Now insert this into µT−4

µT−4 =AT−4 +BT−4µT−5

+

∫
Θ

CT−4

AT−3 +BT−3µT−4 +
∫

Θ
CT−3

AT−2+
∫
Θ
CT−2AT−1dθT−1

1−
∫
Θ
CT−2BT−1dθT−1

dθT−2

1−
∫

Θ
CT−3BT−2

1−
∫
Θ
CT−2BT−1dθT−1

dθT−3. (34)

Rewrite to obtain
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µT−4 =

1−
∫

Θ

CT−4BT−3

[
1−

∫
θT−2

CT−3BT−2

[
1−

∫
Θ

C2BT−1dθT−1

]−1
]−1

−1

(
AT−4 +BT−4µT−5

+

∫
Θ

CT−4

AT−3 +
∫

Θ
CT−3

AT−2+
∫
Θ
CT−2AT−1dθT−1

1−
∫
Θ
CT−2BT−1dθT−1

dθT−2

1−
∫

Θ
CT−3BT−2

1−
∫
Θ
CT−2BT−1dθT−1

dθT−3

)
. (35)

Finally, calculate µT−5, after which the pattern should become clear.

µT−5 =

1−
∫

Θ

CT−5BT−4

[
...

[
1−

∫
Θ

CT−2BT−1dθT−1

]−1

....

]−1
−1

(AT−5 +BT−5µT−6

+

∫
Θ

CT−5

AT−4 +
∫

Θ
CT−4

AT−3+
∫
Θ
CT−3

AT−2+
∫
Θ CT−2AT−1dθT−1

1−
∫
Θ CT−2BT−1dθT−1

dθT−2

1−
∫
Θ

CT−3BT−2
1−
∫
Θ CT−2BT−1dθT−1

1−
∫

Θ
CT−4BT−3

1−
∫
Θ

CT−3BT−2
1−
∫
Θ CT−2BT−1dθT−1

 . (36)

Now define

Ds =

1−
∫

Θ

CsBs+1

1−
∫

Θ

Cs+1Bs+2

[
...

[
1−

∫
Θ

CT−2BT−1dθT−1

]−1

....

]−1

dθs+2

−1

dθs+1


−1

.

Using this definition, we can write µT−5 as

µT−5 =
AT−5 +BT−5µT−6 +

∫
Θ
CT−5

AT−4+
∫
θT−3

CT−4

AT−3+
∫
Θ CT−3

AT−2+
∫
Θ CT−2AT−1
DT−2

DT−3

DT−4

DT−5
. (37)

It now turns out helpful to make another definition:

Es =

∫
Θ

Cs
As+1

∫
Θ
Cs+1

As+2+
∫
Θ
Cs+2

As+3+
∫
Θ Cs+3

As+4......

Ds+4
Ds+3

Ds+2

Ds+1
.

Then we can write µT−5 as

µT−5 =
AT−5 +BT−5µT−6 + ET−5

DT−5
.

In genereal, we thus obtain:

µs =
As +Bsµs−1 + Es

Ds
.

For the second period, we obtain
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µ2 =
A2 +B2µ1 + E2

D2
. (38)

and get

µ1 =
A1 + E1

D1
. (39)

Now we can recursively calculate all other µt for t = 2, ..., T .
In equation (39) one can see that the µ1(θ1) = 0 if savings taxes are zero. Recursive calculation reveals that

all µt are equal to zero.

A.2 Labor Income Taxes

A.2.1 T Periods

Dividing (25) by Ψ′ 1
θs

and adding (24) yields

T ′s (ys(θs))

1− T ′s (ys(θs))
=

(
1 +

1

ε(θs)

)
ηs(θ

s)

λ 1
(1+r)s−1 θs

∫
Θs−1 fs(θs|θs−1)hs−1(θs−1)dθs−1

. (40)

Inserting (28) in (41) yields (20).

A.2.2 Two Periods

Dividing (25) by Ψ′ 1
θs

and adding (24) yields

T ′s (ys(θs))

1− T ′s (ys(θs))
=

(
1 +

1

ε(θs)

)
ηs(θ

s)

λ 1
(1+r)s−1 θs

∫
Θs−1 fs(θs|θs−1)hs−1(θs−1)dθs−1

. (41)

Inserting (28) in (41) and taking into account the fact that µ2(θ2) = 0 as period 2 is the terminal period yields
Proposition 7.

A.2.3 Two Periods - Relation to Savings Responses

For the multiplier function µ1(θ1) we have (see Appendix A.1.3):

µ1(θ1) =
λτ

SOC(θ1)

where SOC(θ1) are the second-order conditions of the savings decision for an individual of type θ1. Thus we
obtain:

η1(θ1) = λ(1− F1(θ1))−
∫ θ

θ1

U ′(θ̃1)dF̃1(θ̃1)− λτ
∫ θ

θ1

U ′′(θ̃1)

SOC(θ1)
dF1(θ̃1) (42)

and

η2(θ1, θ2) =
1

1 + r

∫
Θ

∫ θ

θ2

dF2(θ̃2|θ1)dF1(θ1)− β
∫

Θ

∫ θ

θ2

U ′(θ1, θ̃2)dF2(θ̃2|θ1)dF̃1(θ̃1) (43)

+ λτ

∫
Θ

∫ θ
θ2
U ′′(θ1, θ̃2)dF2(θ̃2|θ1)

SOC(θ1)
dF1(θ1). (44)

42



By implicitly differentiating the Euler equation of an individual of type θ1, one can show that the last terms in
(42) and (44) capture the impact of savings responses on the government budget and therefore one arrives at
the results in Proposition 8.

A.2.4 Two periods and no Capital Tax

Dividing (25) by Ψ′ 1
θs

and adding (24) yields

T ′s (ys(θs))

1− T ′s (ys(θs))
=

(
1 +

1

ε(θs)

)
ηs(θs)

λ 1
(1+r)s−1 θs

∫
Θs−1 fs(θs|θs−1)hs−1(θs−1)dθs−1

. (45)

with s = 1, 2. Now insert ηs(θs) (for s = 1, 2) as defined in (28). Then first use the fact that µ2(θ2) = 0 as
period 2 is the terminal period and the fact that µ1(θ1) = 0 if capital taxes are zero; for the latter see the
arguments in Appendix A.1.3.

A.2.5 Derivation of Insurance vs. Redistribution Decomposition in the Presence
of Wealth Taxes

In this appendix we show how the decomposition of the mechanical effect can intuitively derived via a tax
reform as described in Section 3.1.2. We will directly look at the case of T periods. The two period result is
then a special case. We look at a reform, where we increase the marginal tax rate for individuals with income
yt(θt) such that all individuals with income yt > yt(θt) will pay exactly one more dollar of income taxes. This
will cause a labor supply response which will have a first-order impact on public funds and savings effects that
will also have first-order effects on public funds. In addition, it will have a mechanical effect on public funds
given by

Mt(θt) =
λ

(1 + r)t−1

∫
Θt−1

∫ θ

θt

dFt(θ̃t|θt−1)ht−1(θt−1)dθt−1

− βt−1

∫
Θt−1

∫ θ

θt

U ′(θt−1, θt)dFt(θ̃t|θt−1)h̃t−1(θt−1)dθt−1.

We now show how this mechanical effect can be decomposed into a redistribution and an insurance effect as
in Section 3.1.2. We therefore (as in Section 3.1.2) assume that the raised tax revenue will then be lump sum
redistributed to all individuals in period t. As in Section 3.1.2, we will define a constant utility term:

CU t(θt−1, θt) =

∫ θ
θt
U ′(θt−1, θ̃t)dFt(θ̃t|θt−1)∫ θ

θ
U ′(θt−1, θ̃t)dFt(θ̃t|θt−1)

.

Similarly, we can now define an insurance term that gives the welfare gain from the increase in resource due
to the additional insurance provided by the tax reform:

MI
t (θt) = λ

∫
Θt−1

(
1− Ft(θt|θt−1)− CU t(θt−1, θt)

)
ht−1(θt−1)dθt−1.

Not every type θt−1 will receive the additional transfer that would leave his utility constant, however.
Instead everyone receives ∆L(θt) =

∫
Θt−1

∫ θ
θt
dFt(θ|θt−1)ht−1(θt−1)dθt−1. Thus the reform implies the following

monetary gain for each θt−1: ∆L(θt)− CU t(θt−1, θt). For some θt−1 this term will be positive, for some it will
be negative. The impact on welfare of these utility changes is given by
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MR
t (θt) =

∫
Θt−1

(
λ

(1 + r)t−1
− βt−1

∫
θt

U ′(θt−1, θt)dFt(θt|θt−1)

)(
CU(θt−1, θt)−∆L(θt)

)
ht−1(θt−1)dθt−1.

Now, however, the lump sum redistribution will cause an additional savings response. The reinterpretation
of the reform will now additionally affect the Euler equations of all agents in period t. This has the following
welfare implications:

MS1
t (θt) = ∆L(θt)

∫
Θt−1

∫
Θ

µt(θ
t−1, θt)U

′′(θt−1, θt)dθtdθ
t−1.

The reinterpretation of the reform will now additionally affect the Euler equations of agents in period t − 1.
This has the following effect on welfare:

MS2
t (θt) = −∆L(θt)(1− τt)β(1 + r)

∫
Θt−1

µt−1(θt−1)∆L(θt)

∫
Θ

U ′′(θt−1, θt)dFt(θt|θt−1)dθt−1.

Now we use (28) and the transversality condition, i.e. ηt(θ) = 0 to obtain that

MR
t (θt)+M

S1
t (θt)+M

S2
t (θt) =

∫
Θt−1

(
λ

(1 + r)t−1
− βt−1

∫
θt

U ′(θt−1, θt)dFt(θt|θt−1)

)
CU(θt−1, θt)−ht−1(θt−1)dθt−1,

which is the redistribution term (21).

A.2.6 Proof of Proposition 5

Consider the following small perturbations of the labor income tax schedules

• Increase the marginal tax rate in period 2 in some small income interval around y2(θ2) with length
∆y2(θ2) by ∆T ′(y2(θ2).

• Then change the tax function in period 1 such that the expected lifetime utilities of all θ1-types stay
unaffected.

• By definition this has no direct welfare consequences

• However its effects on the resource constraint that should all cancel out for the tax schedule to be optimal.
Those three effects are:

1. Insurance effect: Note that the marginal tax rate increase in period 2 affected the expected utility for
each θ1-type as follows:

−∆y2(θ2)∆T ′(y2(θ2))β

∫ θ

θ2

U ′(θ1, θ̃2)dF2(θ̃2|θ1)

Hence, the change in period 1 taxes that leaves expected lifetime utility unaffected must obey:

∆y2(θ2)∆T ′(y2(θ2))
β
∫ θ
θ2
U ′(θ1, θ̃2)dF2(θ̃2|θ1)

U ′(θ1)

for each θ1. These resources must be less than the additional mechanical tax revenue in period 2 because
of risk aversion. Formally this overall insurance effect reads as

dWI(θ2) = ∆y2(θ2)∆T ′(y2(θ2))λ

∫
Θ

∫ θ

θ2

1−
β
∫ θ
θ2
U ′(R(θ1, θ̃2))

U ′(R(θ1))

 dF2(θ̃2|θ1)dF1(θ1).
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2. Behavioural Effect in Period 2: This is rather standard. We know that all individuals with skill θ2

will change their labor supply by

∂y2(θ2)

∂T ′(y2(θ2))
·∆T ′(y2(θ2)) = ε

y2(θ2)

1− T ′(y2(θ2))
∆T ′(y2(θ2)).

The mass of those individuals is

∆θ2

∫
θ1

f2(θ2|θ1)dF1(θ1) = f2(θ2|θ1)∆y2(θ2)
θ2

y2(θ2)

1

εy2,θ2

.

Hence the impact on welfare of this behavioral effect reads as

dWB2(θ2) = ∆y2(θ2)∆T ′(y2(θ2))λ
T ′

1− T ′
θ2

ε

ε+ 1

∫
θ1

f2(θ2|θ1)dF1(θ1)

because εy2,θ2(θ2) = 1 + ε(θ2).

3. Behavioural Effect in Period 1: This effect is rather complex. We know that the tax function in
period 1 is changed by this reform such that the lifetime utilities are unchanged. We therefore have
to calculate the changes in marginal tax rates that result from this perturbation. Then we can easily
calculate the effects on public funds due to the resulting change in labor supply.

We know that the change in the tax payment for each agent in period 1 is

β
∫ θ
θ2
U ′(θ1, θ̃2)dF2(θ̃2|θ1)

U ′(θ1)

The question is how marginal tax rates have to change such that these changes in tax payments result.
The following formula tells us how marginal tax rates for each θ1 have to change

∂

∫ θ
θ2
U ′(θ1,θ̃2)dF2(θ̃2|θ1)

U ′(θ1)

∂θ1
= ∆T ′(θ1) ∗ ∂y1(θ1)

∂θ1

Hence,

∆T ′1(θ1) =
∂

∫ θ
θ2
U ′(θ1,θ̃2)dF2(θ̃2|θ1)

U ′(θ1)

∂θ1

∂θ1

∂y1(θ1)

Hence, individuals change labor supply as follows:

∂y1(θ1)

∂T ′
×
∂

∫ θ
θ2
U ′(θ1,θ̃2)dF2(θ̃2|θ1)

U ′(θ1)

∂θ1

∂θ1

∂y1(θ1)
= −ε y

1− T ′
∂θ1

∂y1(θ1)

∂

∫ θ
θ2
U ′(θ1,θ̃2)dF2(θ̃2|θ1)

U ′(θ1)

∂θ1

Hence, the effect on the government budget for each type θ1 reads as

−f1(θ1)
T ′

1− T ′
θ1

ε

ε+ 1

∂

∫ θ
θ2
U ′(θ1,θ̃2)dF2(θ̃2|θ1)

U ′(θ1)

∂θ1
.

The overall welfare effect is thus:

dWB1(θ2) = λ

∫
Θ

− T ′

1− T ′
θ1

ε

ε+ 1

∂

∫ θ
θ2
U ′(θ1,θ̃2)dF2(θ̃2|θ1)

U ′(θ1)

∂θ1
dF1(θ1).
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For the sequence of tax function T1, T2 to be efficient, these effects have to add up to zero. dWB1(θ2) +

dWB2(θ2) + dWI(θ2) = 0 the yields the condition in Proposition 5.

A.2.7 Relation Between µ-Formula and Savings Tax Effect formula in a Three-
Period Economy

Formulas for Savings Responses We now derive a formula for the savings responses due to an
increase of the marginal tax rate T ′2 (y2(θ2)).

To get a formula for the savings responses ∂a3(θ2)
∂T ′2 (y2(θ2)) and ∂a2(θ1)

∂T ′2 (y2(θ2)) is not simple because the savings
choices are made at different points in time (and for different shock realizations). Further, these savings choices
at different points in time are interlinked with each other. The way we proceed is the following: We look at
agents with certain histories as agents that decide independently from each other. E.g., we look at the savings
adjustment of an agent with history θ2 = (θ1, θ2) who ignores that his savings change will also change savings
behavior of agents of type θ1, i.e. himself one period ago. We will then, in a second step, ask how type θ1 will
react to the savings change of type θ2. But of course this reaction of type θ1 will cause a reaction of type θ2

again and so on and so forth. This will thus lead to an infinite adjustment of savings in all periods. As we show
now, thinking about this like that can yield formulas for change of equilibrium savings behavior. We therefore
proceed step by step and look at the adjustments in the first round of this game between the agents at different
points in time, then at the second round and so on and so forth.

First Round Effects: In period 2, individuals with income higher than y2(θ2) will change savings as their
net income is decreased. The formula for this savings change can be obtained by implicitly differentiating the
respective Euler equation:

a′3(θ2) ≡ − U ′′(θ2)

SOC2(θ2)
, (46)

where SOCt(θt) is the second-order condition for savings of an agent with history θt. But also individuals in
period one will react to the small tax reform. The increase in taxes tomorrow will make them save more today.
To obtain the respective formula, implicitly differentiate the respective Euler equation and obtain:

A1(θ1) ≡
β(1 + r)(1− τ2)

∫ θ
θ2
U ′′(θ1, θ̃2)dF2(θ̃2|θ1)

SOC1(θ1)
. (47)

Note that both of these tax changes are of hypothetical nature as they are computed as if the savings
decisions were not interlinked. However, they are connected and thus (46) and (47) will trigger second-round
effects.

Second Round Effects: The savings adjustment of period 2, (46), will make individuals in period 1 adjust
savings:

A2(θ1) ≡
β(1 + r)(1− τ2)

∫ θ
θ2
U ′′(θ1, θ̃2)a′3(θ1, θ̃2)dF2(θ̃2|θ1)

SOC1(θ1)
. (48)

The first round savings adjustment in period 1, captured by (47), will trigger savings adjustments in period
2 for all θ2:

U ′′(θ1, θ2)(1 + r)(1− τ2)A1(θ1)

SOC2(θ2)
= a′3(θ1, θ2)(1 + r)(1− τ2)A1(θ1). (49)

Third Round Effects: The savings adjustment of period 2 (49) will now trigger savings adjustments in
period 1

β(1 + r)2(1− τ2)2
∫

Θ
U ′′(θ1, θ2)a′3A1(θ1)dF2(θ2|θ1)

SOC1(θ1)
= A1(θ1)A3(θ1), (50)
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where A3(θ1) is defined such that the equal sign holds.
The savings adjustment of period 1 (48) will now trigger savings adjustments in period 2

a′3(θ1, θ2)(1 + r)(1− τ2)A2(θ1). (51)

Fourth Round Effects: The savings adjustment of period 2 (51) will now trigger savings adjustments in
period 1

β(1 + r)2(1− τ2)2
∫

Θ
U ′′(θ1, θ2)a′3A2(θ1)dF2(θ2|θ1)

SOC1(θ1)
= A2(θ1)A3(θ1) (52)

The savings adjustment of period 1 (52) will now trigger savings adjustments in period 2

a′3(θ1, θ2)(1 + r)(1− τ2)A1(θ1)A3(θ1) (53)

One could now repeat this until infinity. It is easy to show that savings responses in period 2 for all types
with income lower than y2(θ2) add up to

∂a3(θ2)

∂T ′2 (y2(θ2))
= a′3(1 + r)(1− τ2)(A1 +A2)

∞∑
i=0

Ai3. (54)

and for all types with income higher than y2(θ2) add up to

∂a3(θ2)

∂T ′2 (y2(θ2))
= a′3 + a′3(1 + r)(1− τ2)(A1 +A2)

∞∑
i=0

Ai3. (55)

Further, period 1 savings adjust according to:

∂a2(θ1)

∂T ′2 (y2(θ2))
= (A1 +A2)

∞∑
i=0

Ai3. (56)

Relation to µ-formulas To show the relationship between the µ-formula and the one with savings-tax
effects, we have to show that

−
∫

Θ

∫ θ

θ2

µ2(θ1, θ̃2)U ′′(θ1, θ̃2)dθ̃2dθ1

+ β(1 + r)(1− τ2)

∫
Θ

µ1(θ1)

∫ θ

θ2

U ′′(θ1, θ̃2))dF2(θ̃2|θ1)dθ1 (57)

which is the term appearing in the optimal tax formula in Appendix A.2.1 is equal to

λτ2
1 + r

∫
Θ

(
(A1(θ1) +A2(θ1))

∞∑
i=0

A3(θ1)i

)
dF1(θ1) + τ3

λ

(1 + r)2

(
a′3 + a′3(1 + r)(1− τ2)(A1 +A2)

∞∑
i=0

Ai3

)
.

Using (39) and evaluating for T = 3, yields

µ1(θ1) =
λ

(1−τ2)
∫
Θ
τ3a
′
3dF2(θ2|θ1)f1(θ1)

SOC1
+ λ f1(θ1)τ2

SOC1

1− (1−τ2)2(1+r)2
∫
Θ
a′3U

′′(θ1,θ2)dF2(θ2|θ1)

SOC1

and then inserting into (38), yields
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µ2(θ1, θ2) = µ1(θ1)β(1− τ2)(1 + r)
U ′′ (θ1, θ2) f2(θ2|θ1)

SOC2
+

λ

1 + r

h2(θ2)τ3
SOC2

(58)

Inserting these two terms into (57) yields

− λτ3
1 + r

∫
Θ

∫ θ

θ2

U ′′(θ1, θ̃2)

SOC2
dF2(θ̃2|θ1)dF1(θ1)

+ β(1 + r)(1− τ2)

∫
Θ

µ1(θ1)

∫ θ

θ2

U ′′(θ1, θ̃2)

(
1− U ′′(θ1, θ̃2)

SOC2

)
dF2(θ̃2|θ1)dθ1 (59)

λτ3
1 + r

∫
Θ

∫ θ

θ2

a′3(θ1, θ̃2)dF2(θ̃2|θ1)dF1(θ1)

+ λτ2β(1 + r)(1− τ2)

∫
Θ

( ∞∑
i=0

Ai3

)∫ θ

θ2

U ′′(θ1, θ̃2)

SOC1
(1 + a′3) dF2(θ̃2|θ1)dF1(θ1)

+ λτ3β(1 + r)(1− τ2)∫
Θ

(
(1− τ2)

∞∑
i=0

Ai3

)(∫
θ2

a′3dF2(θ2|θ1)

)∫ θ

θ2

U ′′(θ1, θ̃2)

SOC1
(1 + a′3) dF2(θ̃2|θ1)dF1(θ1) (60)

Using the definitions of A1 and A2, this can be rewritten as

λτ3
1 + r

∫
Θ

∫ θ

θ2

a′3(θ1, θ̃2)dF2(θ̃2|θ1)dF1(θ1)

+ λτ2

∫
Θ

( ∞∑
i=0

A3(θ1)i

)
(A1(θ1) +A2(θ1))dF1(θ1)

+ λτ3

∫
Θ

( ∞∑
i=0

A3(θ1)i

)
(A1(θ1) +A2(θ1))

∫
Θ

(1− τ2)a′3(θ1, θ2)dF2(θ2|θ1)dF1(θ1) (61)

which completes the proof. The formulas for the optimal marginal labor income tax rates in period 1 and 2
read as:

T ′1 (y1(θ1))

1− T ′1 (y1(θ1))
=

(
1

ε(θ1)
+ 1

)
1

θ1λf1(θ1)[
λ

∫ θ

θ1

dF1(θ̃1)−
∫ θ

θ1

U ′(θ̃1)dF̃1(θ̃1)−
∫ θ

θ1

µ1(θ̃1)U ′′(R1(θ̃1))dθ̃1

]

and in period 3 it reads as

T ′2 (y3(θ3))

1− T ′3 (y3(θ3))
=

(
1

ε(θ3)
+ 1

)
1

θ3λ
∫
θ2 f3(θ3|θ2)h2(θ2)dθ2

×

[
λ

(1 + r)2

∫
θ2

∫ θ

θ3

dF3(θ̃3|θ2)h2(θ2)dθ2 − β2

∫
θ2

∫ θ

θ3

U ′(θ2, θ̃3)dF3(θ̃3|θ2)h̃2(θ2)dθ2

+ β(1 + r)(1− τ3)

∫
θ2

µ2(θ2)

∫ θ

θ3

U ′′(θ2, θ̃3)dF3(θ̃3|θ2)dθ2

]
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Using the definition of µ1 and µ2 from above, one can show that the ‘µ-terms’ in these optimal tax formulas
reflect the fiscal externalities from the savings adjustment.

A.3 Capital Taxes

A.3.1 Capital Income Taxes: T Periods

Simply rearranging (27) yields formula (23).

A.3.2 Capital Income Taxes: Two Periods

In case of two periods, (27) reads as (after inserting µ1(θ1))

0 =λ

∫
Θ

a2(θ1)dF1(θ1)

− β(1 + r)

∫
Θ

a2(θ1)

∫
Θ

U ′(θ1, θ2)dF2(θ2|θ1)dF̃1(θ1)

+ λτβ(1 + r)2(1− τ)

∫
Θ

∫
Θ
U ′′(θ1, θ2)a2(θ1)dF2(θ2|θ1)

SOC(θ1)
dθ1

+ λτβ(1 + r)

∫
Θ

∫
Θ
U ′(θ1, θ2)dF2(θ2|θ1)

SOC(θ1)
dθ1 = 0. (62)

By implicitly differentiating the Euler equation, one can show that line three and four of (62) capture the impact
of savings responses on the government budget, where line three captures the income effect on savings and line
four captures the price effect. Simple rearranging then yields the formula as in Proposition 6.

A.4 Indeterminacy of Transfers
Assume that a tax system T1, T2 implements a certain allocation. Then there always exists the following tax
system that also implements the desired allocation:

• T ∗1 (0) = T1(0)−X

• T ∗2 (0) = T2(0) + (1− τ)X

If the Euler equation of individuals was fulfilled at the original tax system with savings a2(θ1), then the euler
equation is also fulfilled under the new tax system with savings a∗2(θ1) = a∗2(θ1) + X. In addition, the impact
on the government budget of this reform is zero. The impact of transfer changes is (1− τ)X −X. However the
government also obtains higher revenue via savings, which is given by τX.

B Age-Independent Taxes

B.1 Lagrangian, First-Order Conditions and Multipliers

B.1.1 The Lagrangian

Here we have yt(θt) = y(θt) and Mt(θt) = M(θt). The Lagrangian then reads as
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L =

T∑
t=1

βt−1

∫
Θt
U

(
M(θt)− at+1(θt)

+ (1− τ)(1 + r)at(θ
t−1)−Ψ

(
y(θt)

θt

))
h̃t(θ

t)dθt

+ λ

T∑
t=1

1

(1 + r)t−1

∫
Θt−1

∫
Θ

y(θt)−M(θt) + τ(1 + r)at(θ
t−1)dFt(θt|θt−1)ht−1(θt−1)dθt−1

+

T−1∑
t=1

∫
Θt
µt(θ

t)

[
U ′
(
M(θt)− at+1(θt) + (1− τ)(1 + r)at(θ

t−1)−Ψ

(
y(θt)

θt

))

− β(1 + r)(1− τt+1)

∫
Θ

U ′

(
M(θt+1)− at+2(θt, θt+1)

+ (1− τ)(1 + r)at+1(θt)−Ψ

(
y(θt+1)

θt+1

))
dFt+1(θt+1|θt)

]
dθt

+

∫
Θ

η(θ)
∂
(
M(θ)−Ψ

(
y(θ)
θ

))
∂θ

dθ −
∫

Θ

η(θ)Ψ′
(
y(θ)

θ

)
y(θ)

θ2
dθ.

Partially integrating
∫

Θ
η(θ)

∂(M(θ)−Ψ( y(θ)
θ ))

∂θ dθ yields

η(θ)

(
M(θ)−Ψ

(
y(θ)

θ

))
− η(θ)

(
M(θ)−Ψ

(
y(θ)

θ

))
−
∫

Θ

η′(θ)

(
M(θ)−Ψ

(
y(θ)

θ

))
dθ.

Inserting then yields:

L =

T∑
t=1

βt−1

∫
Θt
U

(
M(θt)− at+1(θt)

+ (1− τ)(1 + r)at(θ
t−1)−Ψ

(
y(θt)

θt

))
h̃t(θ

t)dθt

+ λ

T∑
t=1

1

(1 + r)t−1

∫
Θt−1

∫
Θ

y(θt)−M(θt) + τ(1 + r)at(θ
t−1)dFt(θt|θt−1)ht−1(θt−1)dθt−1

+

T−1∑
t=1

∫
Θt
µt(θ

t)

[
U ′
(
M(θt)− at+1(θt) + (1− τ)(1 + r)at(θ

t−1)−Ψ

(
y(θt)

θt

))

− β(1 + r)(1− τt+1)

∫
Θ

U ′

(
M(θt+1)− at+2(θt, θt+1)

+ (1− τ)(1 + r)at+1(θt)−Ψ

(
y(θt+1)

θt+1

))
dFt+1(θt+1|θt)

]
dθt

−
∫

Θ

η′(θ)

(
M(θ)−Ψ

(
y(θ)

θ

))
dθ −

∫
Θ

η(θ)Ψ′
(
y(θ)

θ

)
y(θ)

θ2
dθ

+ η(θ)

(
M(θ)−Ψ

(
y(θ)

θ

))
− η(θ)

(
M(θ)−Ψ

(
y(θ)

θ

))
.

B.1.2 First-Order Conditions

The derivatives with respect to the endpoint conditions yield ∀t : ηt(θ) = ηt(θ) = 0. The first-order conditions
read as
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∂L
∂M(θ)

=−
T∑
t=1

λ

(1 + r)t−1

∫
Θt−1

ft(θ|θt−1)ht−1(θt−1)dθt−1

+

T∑
t=1

βt−1

∫
Θt−1

U ′(θt−1, θ)ft(θ|θt−1)h̃t−1(θt−1)dθt−1

+

T−1∑
t=1

∫
Θt−1

µt(θ
t−1, θ)U ′′(θt−1, θ)dθt−1

−
T∑
t=2

β(1 + r)(1− τ)

∫
Θt−1

µt−1(θt−1)U ′′(θt−1, θ)ft(θ|θt−1)dθt−1

− η′(θ) = 0 (63)

∂L
∂y(θ)

=

T∑
t=1

λ

(1 + r)t−1

∫
Θ

ft(θ|θt−1)ht−1(θt−1)dθt−1

−
T∑
t=1

βt−1

∫
Θ

U ′(θt−1, θ)Ψ′
(
y(θ)

θ

)
1

θ
ft(θ|θt−1)h̃t−1(θt−1)dθt−1

+

T−1∑
t=1

∫
Θt−1

µt(θ
t−1, θ)U ′′(θt−1, θ)Ψ′

(
y(θ)

θ

)
1

θ
dθt−1

−
T∑
t=2

β(1 + r)(1− τ)

∫
Θt−1

µt−1(θt−1)U ′′(θt−1, θ)Ψ′
(
y(θ)

θ

)
1

θ
ft(θ|θt−1)dθt−1

− η′(θ)Ψ′
(
y(θ)

θ

)
1

θ
− η(θ)

(
Ψ′
(
y(θ)

θ

)
1

θ2
+ Ψ′′

(
y(θ)

θ

)
y(θ)

θ2

)
= 0 (64)

∂L
∂as+1(θs)

=
λ

(1 + r)s−1
τhs(θ

s)− µs(θs)U ′′ (θs)

− (1− τ)2β(1 + r)2µs(θ
s)

∫
Θ

U ′′(θs, θs+1))dFs+1(θs+1|θs)

+ (1− τ)β(1 + r)µs−1(θs−1)U ′′ (θs) fs(θs|θs−1)

+ (1− τ)(1 + r)

∫
Θ

µs+1(θs, θs+1)U ′′(θs, θs+1)dθs+1 = 0 (65)
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∂L
∂τ

=

T∑
t=2

λ

(1 + r)t−2

∫
Θt−1

at(θ
t−1)ht−1(θt−1)dθt−1

−
T∑
t=2

βt−1(1 + r)

∫
Θt−1

at(θ
t−1)

∫
Θ

U ′(θt−1, θt)dFt(θt|θt−1)h̃t−1(θt−1)dθt−1

−
T−1∑
t=1

(1 + r)

∫
Θt−1

at(θ
t−1)

∫
Θ

µt(θ
t−1, θt)U

′′(θt−1, θt)dθtdθ
t−1

+

T∑
t=2

β(1 + r)2(1− τt)
∫

Θt−1

µt−1(θt−1)

∫
Θ

U ′′(θt−1, θt)at(θ
t−1)dFt(θt|θt−1)dθt−1

+

T∑
t=2

β(1 + r)

∫
Θt−1

µt−1(θt−1)

∫
Θ

U ′(θt−1, θt)dFt(θt|θt−1)dθt−1 = 0. (66)

B.1.3 Multiplier Functions

Use (63) to obtain

η(θ) =

T∑
t=1

λ

(1 + r)t−1

∫
Θt−1

∫ θ

θ

dFt(θ̃|θt−1)ht−1(θt−1)dθt−1

−
T∑
t=1

βt−1

∫
Θt−1

∫ θ

θ

U ′(θt−1, θt)dFt(θ̃|θt−1)h̃t−1(θt−1)dθt−1

−
T∑
t=1

∫
Θt−1

∫ θ

θ

µt(θ
t−1, θ̃)U ′′(θt−1, θ̃)dθ̃dθt−1

+

T∑
t=1

β(1 + r)(1− τ)

∫
Θt−1

µt−1(θt−1)

∫ θ

θ

U ′′(θt−1, θ̃)dFt(θ̃|θt−1)dθt−1. (67)

Obtaining µt is equivalent to the age-dependent case in Appendix A.1.3.

B.2 Labor Income Taxes

B.2.1 Labor Income Taxes: T Periods

Dividing (64) by Ψ′ 1θ and adding (63) yields

T ′(y(θ))

1− T ′(y(θ))
=

(
1 +

1

ε(θ)

)
η(θ)

λθ
∑T
t=1

1
(1+r)t−1

∫
Θt−1

∫
Θ
ft(θt|θt−1)ht−1(θt−1)dθt−1

. (68)

Inserting (67) into (68) yields the formula for optimal labor tax rates.

B.2.2 Labor Income Taxes: Two Periods

As in Appendix A.2.3, for the multiplier function µ1(θ1) we now have:

µ1(θ1) =
λτ

SOC(θ1)
.

For η(θ) we then have
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η(θ) =λ(1− F1(θ))−
∫ θ

θ

U ′(θ̃1)dF̃1(θ̃1)− λτ
∫ θ

θ

U ′′(θ̃1)

SOC(θ1)
dF1(θ̃1)

1

1 + r

∫
Θ

∫ θ

θ

dF2(θ̃2|θ1)dF1(θ1)− β
∫

Θ

∫ θ

θ

U ′(θ1, θ̃2)dF2(θ̃2|θ1)dF̃1(θ̃1) (69)

+ λτ

∫
Θ

∫ θ
θ
U ′′(θ1, θ̃2)dF2(θ̃2|θ1)

SOC(θ1)
dF1(θ1). (70)

By similar reasoning as in Proposition A.2.3, we arrive at Proposition 9.

B.2.3 Two Periods without Capital Taxes

Dividing (64) by Ψ′ 1θ and adding (63) yields

T ′(y(θ))

1− T ′(y(θ))
=

(
1 +

1

ε(θ)

)
η(θ)

λθ
∑T
t=1

1
(1+r)t−1

∫
Θt−1 ft(θt|θt−1)ht−1(θt−1)dθt−1

. (71)

with s = 1, 2. Now insert η(θ) (for s = 1, 2) as defined in (67). Then first use the fact that µ2(θ2) = 0 as period
2 is the terminal period and the fact that µ1(θ1) = 0 if capital taxes are zero; for the latter see the arguments
in Appendix A.1.3.

B.3 Capital Income Taxes
Rearranging (66) would yield the age-independent equivalent to the age-dependent formula A.3.1.

C Details on Numerical Simulations
We use the empirical model from Karahan and Ozkan (2013), who estimate their model using PSID-data. yih,t
denotes log income of individual i at age h in period t. To obtain residual log incomes ỹih,t, the authors regress
log earnings on some observables (age and education):

yih,t = f(Xi
a; θt) + ỹih,t,

where f(Xi
a) is a function of the observable characteristics. Residual income is then decomposed into a fixed

effect (αi), an AR(1) component (zih,t) and a transitory component (φtεih):

ỹih,t = αi + zih,t + φtε
i
h,t,

where the AR(1) process is given by
zih,t = ρh−1z

i
h−1,t−1 + πtη

i
h,

and where the error term ηih captures persistent shocks, πt is a time dependent loading factor and ρh−1 measures
the persistence of these shocks.

Based on non-parametric estimates, Karahan and Ozkan (2013) divide individuals into three age groups:
24-33 (young), 34-52 (middle age) and 53-60 (old). In the following, we list the values they obtain for the
different parameters, where the indices Y,M,O correspond to the three age groups from their paper.
Age-dependent parameters:

• Persistence parameters: ρY = 0.88, ρM = 0.97 and ρO = 0.96,
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• Variances of the persistent error terms: σ2
η,Y = 0.027, σ2

η,M = 0.013 and σ2
η,O = 0.026

• Variances of the transitory shock: σ2
ε,Y = 0.056, σ2

ε,M = 0.059 and σ2
ε,O = 0.068

Age-independent parameters:

• Variance of individual fixed effect: σ2
α = 0.0707

• Variance of z1 (i.e. the starting value of the persistence term): σ2
z = 0.0767

Time-dependent parameters:

• As we consider only one cohort, we assume the time dependent loading factors πt and φt to be constant.
Indeed, we set them to π = 1.1253 and φ = 1.1115 which corresponds to the values from 1996 as they lie
in the middle of all estimates for the years from 1968-1997.

Parameters in f(Xi
a; θt):

• The function takes the form of a 3rd order polynomial in age. The coefficients are 0.0539713 for age,
-0.153567 for (age/10)2 and 0.0111291 for (age/10)3.

• As Karahan and Ozkan (2013), we distinguish three education groups: individuals without high school
degree, high school graduates and college graduates. The education dummies take on the values 9.570346,
9.916471and 10.26789 respectively.

Based on all these parameters, one can now simulate the evolution of the earnings distribution. We simulated
millions of lives such that a law of large numbers applies. For each simulated life, we then have the income for
each year, which allows us to calculate the average income of one individual for all three parts of his life. For
our simulations these are the age groups 24-36, 37-49 and 50-62 – see main text. We set the initial share of non
high-school graduates to 0.15, for high-school graduates to 0.60 and for college graduates to 0.15. This matches
well US numbers – see, for example, the NLSY97.

We next discretize the earnings distribution. Thus for each simulated life, we then have 3 grid points; one
for each period. With a standard kernel smoother (bandwidth of $2,500), we then smoothed the unconditional
earnings distributions over this grid space as well as the conditional earnings distributions and therefore the tran-
sition probabilities. The final step was then to calibrate the skill distributions from the earnings distributions,
as is commonly done (Saez 2001).
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