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Abstract

We use quantifiers and selection functions to generalize the clas-
sical economic approach to choice. Our framework encompasses pref-
erence and utility based approaches as special cases, but also extends
to non-maximizing behavior and context-dependent motives such as
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1 Introduction

We use quantifiers and selection functions to generalize the classical economic

approach to choice. The framework we use has been developed as a game

theoretical approach to proof theory1 [6, 7] and we adopt it to economics. We

introduce quantifiers to represent an agent’s goals and selection functions as

the behavior that achieves his goals represented as an algorithm.

As we will show, our framework encompasses preference and utility based

approaches as special cases, with quantifiers representing max and selection

functions arg max. But more importantly, we can go beyond these special

operators. First, it is possible to impose less structure on preferences, as

for instance incompleteness. Secondly, it is possible to consider alternatives

to maximization. Thirdly, goals can be implemented that take not only

the outcomes into consideration but also how outcomes come about from

actions. Our framework based on quantifiers and selection functions provides

a unifying framework for all these concerns.

Quantifers and selection functions are based on the theory of higher-order

functions, which in turn, form the foundation of functional programming

languages. Thus, our framework can be directly implemented in languages

such as Haskell in order to compute choices. The machinery we propose

is readily extendable to interactive situations in a game theoretical setting

which we explore in a companion paper [12]. In the current paper we set the

scene and take a look at the new formalism within the decision theoretical

and non-strategic setting.

The organization of the paper is the following. We first introduce the

formal concept of a quantifier and a selection function. We show that a

utility maximizing agent and his preferences can be instantiated as a special

form of a selection function and quantifier. Then, we show that the selection

function approach can be easily extended to choice behavior not covered by

utility functions. Moreover, we illustrate that selection functions are a very

1Proof theory is a branch of mathematical logic which investigates the structure and
meaning of formal mathematical proofs. It has been recently discovered that certain
proofs of high logical complexity can be interpreted as computer programs which compute
equilibria of suitable generalised games.
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natural way of describing choices in general, be it within the relatively narrow

frame of an only selfish, rational, and materially interested decision-maker

or within alternative settings.

2 Quantifiers and Selection Functions

In this section we give a brief overview of the theory of higher order func-

tions, i.e. functions that take other (possibly higher order) functions as input.

We then use this theory in order to define selection functions and quantifiers.

Subsequently, we represent the classical approach to decision theory via pref-

erence relations and argmax and max operators within the new formalism.

2.1 Higher Order Functions

A higher order function (or functional) is a function whose domain is itself

a set of functions. Given sets X and Y we denote by X → Y the set of

all functions with domain X and codomain Y (this is often denoted Y X

but we avoid this notation). A higher order function is therefore a function

f : (X → Y )→ Z where X, Y and Z are sets.

A simple example of a higher order function is the function that evalulates

its argument at a constant point. To give a specific example, we take the

sets R (real numbers) and Z (integers), and pick a constant real number,

such as π. We can then define a function Φ : (R→ Z)→ Z by the equation

Φ(f) = f(π). We can illustrate the behaviour of Φ by giving it a specific

function f : R → Z as an input. For example, let f be the function that

takes a real number to its integer lower bound. The integer lower bound to

π is 3, therefore Φ(f) = 3.

We will sometimes use a particular notation for higher order functions

called λ-notation. The example above would be written in λ-notation as

Φ = λf.f(π). The symbol λ denotes the abstraction or binding of the input

to the function, and the name of the variable that is bound is not important,

i.e. λf.f(π) and λg.g(π) represent the “same” function. There are familiar

examples of this, for example in the maximum operator the name of the
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variable which ranges over the set X is not relevant, i.e.

max
x∈X

f(x) = max
y∈X

f(y)

and similarly with the variable over which one performs integration, i.e.∫
f(x) dx =

∫
f(y) dy

(we will see later that it is not a coincidence: both of these examples turn out

to be special cases of λ expressions). We sometimes write the domain of the

function as a superscript, as in Φ = λfR→Z.f(π). λ-notation is also some-

times useful for writing functions which are not higher-order, for example

the function which inputs an integer and squares it can be written λnZ.n2.

It is also possible for the bound variable to not appear in the body of the λ

expression, giving a constant function such as λx.5.

An important result, called combinatory completeness, is that the func-

tions that can be represented only using λ expressions and nothing else are

precisely the computable functions2. That is, λ expressions are a program-

ming language, equivalent in power to Turing machines and other standard

models of computation. However λ expressions have an advantage that it

is easy to extend them with noncomputable functions when necessary (for

example, a λ expression can refer to a known noncomputable function), and

in practice we will do this sometimes. For example, there is a noncomputable

function E which inputs a description of a finite game, and outputs a mixed

strategy Nash equilibrium of that game. This function can be freely com-

bined with λ expressions, for example λx, y.E(x). However, if we have a

function f which is defined entirely in terms of λ expressions and other func-

tions known to be computable, then we know that f is computable. This has

two important advantages: firstly, we can easily identify which objects we are

2One must distinguish at this point the typed from the untyped λ-calculus. For this
paper we will be mostly working with the typed version, where every term has a precise
type, and an application f(x) is only allowed when f has type X → Y and x has type X, so
that an application such as f(f) is not allowed. However, in order to obtain combinatorial
completeness one needs to work with the untyped λ-calculus, so as to obtain fixed point
operators such as Φ(f) = (λx.f(x(x)))(λx.f(x(x))).
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discussing are computable, and secondly, for those which are computable, we

can see the λ expression as an implementation in a proto-programming lan-

guage which can easily be converted into code of a suitable real programming

language such as Haskell.

2.2 Quantifiers

In this section we will define quantifiers and selection functions as particu-

lar classes of higher order functions. In subsequent sections we will obtain

quantifiers as a series of generalisations from utility functions.

Suppose we have an agent A. We know nothing about A’s motivations,

but we know that it is deterministic (or predictable) in the sense that its

moves are not dependent on chance (this is without loss of generality, be-

cause we can always allow the set of outcomes to be a set of probability

distributions). Consider A as a black box: we can insert it into any situation

and observe what it does.

We need to define what we mean by ‘situation’ here. A situation, which

we will from now on call a context, should be an object that encodes all

of the relevant information that the agent could consider when choosing a

move. Assume our agent is choosing a move in the set X, and the set of

possible final outcomes is R. The context will normally include other agents

and all the other choices that together with the choice of our agent A will

determine a final outcome. If all we care about is the final outcome, then our

context can be modelled simply by a function p : X → R that maps each of

the agent’s move to a specific outcome. In other words, to give the context

of an agent is the same as to define precisely what final outcomes will result

after each of the agent’s choice. That is all that our agent needs to know

about this “context” in order to make the good choice.

Therefore, for an agent choosing a move from a set X, having in sight a

final outcome in a set R, we call any function p : X → R a possible context

for that agent.

Suppose that A makes a decision in the context p. Then the agent will

consider some outcomes to be good (or acceptable), and other outcomes to

6



be bad. We are going to allow the set of outcomes that the agent considers

good to be totally arbitrary. Thus, to each context p : X → R, we associate

a set of outcomes ϕ(p) ⊆ R. This defines a higher order function

ϕ : (X → R)→ P(R)

where P(R) is the set of all subsets of R. The function ϕ is precisely what

is known as a quantifier. Considering our discussion above about contexts,

a quantifier can be seen as a description of what the good outcomes are for

each possible context. Our main objective in this paper is to convince the

reader that this is a general, modular, and highly flexible way of describing

an agent’s goal or objective.

For some quantifiers, there will always be exactly one good outcome. This

is the case for our motivating example, which is maximization. Suppose the

set of moves X is finite, and R = R is the real numbers, representing profit.

If a decision is made in the context p : X → R then the good outcome is

precisely the maximal one, i.e. given a context p : X → R, the outcome in

that context which our agent would consider good is the maximum value of

p. Thus our quantifier is defined by the equation

ϕ(p) = {max
x∈X

p(x)}

Often we will omit the set brackets when writing a single-valued quantifier,

so ϕ will be written

ϕ(p) = max
x∈X

p(x)

Another common situation is that there is at most one good outcome.

The motivating example for this case is maximization over an infinite set,

such as the unit interval [0, 1]. Then the maximum of p : [0, 1]→ R in general

exists only if p is a continuous function. Thus we can consider a partially

defined quantifier that only chooses good outcomes when given a continuous
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context, i.e.

ϕ(p) =

{maxx∈X p(x)} if p is continuous

∅ otherwise

We define the domain of a quantifier ϕ to be the set of all contexts p such that

ϕ(p) is nonempty, that is, p has a good outcome. In symbols the definition

is

dom(ϕ) = {p : X → R | ϕ(p) 6= ∅}

2.3 Selection functions

While considering ‘good’ outcomes may be considered problematic (since

they are subjective to the agent and cannot be observed) there is no problem

in observing the moves made by the agent. If the agent makes a decision in

the context p : X → R then it makes a move x ∈ X. This defines a higher

order function

ε : (X → R)→ X

which we call a selection function. In general, we consider a quantifier to

describe the goals or motivations of the agent (what the agent likes) and a

selection function to describe the behavior of the agent (what she would do to

get what she likes). We can give a very general definition of what it means for

an agent to be rational: their behavior is consistent with their motivation.

For any context, the move they make according to the selection function

should result in a good outcome according to their quantifier. Formally, for

every context p : X → R it should be the case that

p(ε(p)) ∈ ϕ(p)

However if p is a domain with no good outcomes then we cannot expect there

to be a good move. Thus we only require this condition to hold for contexts

p ∈ dom(ϕ). When this is the case we say that the selection function ε

attains the quantifier ϕ. The motivating example of a selection function is

8



arg max, which defines the selection function

ε(p) = arg max
x∈X

p(x)

Then ε attains the max quantifier.

Suppose we have a quantifier ϕ which describes the outcomes that an

agent considers to be good. The quantifier might be unrealistic in the sense

that it has no attainable good outcome. For example, in my current context I

would consider it a good outcome if I received a million dollars, but I have no

move at the moment which will lead to this outcome. Given a context p, the

set of attainable outcomes is precisely the image of p. A realistic quantifier

is simply a quantifier in which every context with a good outcome has an

attainable good outcome. We can write it in symbols as

ϕ(p) 6= ∅ =⇒ ϕ(p) ∩ Im(p) 6= ∅.

In fact the following are equivalent:

• ϕ is realistic

• there is a selection function which attains ϕ.

Thus selection functions are a way to describe realistic quantifiers.

The theory of quantifiers and selection functions has been developed in

stages. Selection functions and single-valued quantifiers first appeared in [6],

unifying earlier definitions in proof theory and type theory. The connection

between selection functions and game theory also first appeared there. Gen-

eral quantifiers appeared in [7], which allows us to capture more important

examples in a more natural way. The connections between selection func-

tions and game theory were explored in more depth in [8] and [10], and the

latter contains the definition of attainment given here. Finally [11] contains

the terminology context and the definition of a realistic quantifier.
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2.4 Context-Independent Quantifiers

Suppose R is the set of possible final outcomes, and each agent i has a partial

order relation �i on R, so that x �i y means that agent i prefers the outcome

x to y. These partial orders lead to choice functions fi : P(R)→ P(R) where

fi(S) are the maximal elements in the set of possible outcomes S with respect

to the order �i. Note that these fi satisfy fi(S) ⊆ S, and fi(S) 6= ∅ for

non-empty S.

Every such fi can be turned into a quantifier ϕi in a generic way, using

the fact that the image operator is a higher-order function Im : (X → R)→
P(R):

(X → R)
Im−→ P(R)

fi−→ P(R)

so that fi ◦ Im: (X → R) → P(R) are quantifiers. We call quantifiers

factoring as f ◦ Im as context-independent quantifiers. Player’s defined by

context-independent quantifiers are choosing the set of good outcome simply

by ranking the set of outcomes that can be achieved in a given game context.

But are forgetting all the information about how each of the outcomes arise

from particular choices of moves. For instance, we might have a set of actions

that will lead us to earn some large sums of money. Some of these, however,

might be illicit. A maximising agent defined in a context-independent way

would choose the outcome that gives himself the maximum return. If we

have control over which actions lead to which outcomes, we might consider

other choices as preferable.

It is easy to show that whenever fi is a choice function arising from partial

order �i, then the a context-independent quantifier fi ◦ Im is realistic, in the

sense of the previous section.

2.4.1 Rational Preferences and Utility Functions as Special Cases

The usual approach to model behavior in economics is to either postulate a

preference relation on the set of alternatives or to directly assume a utility

function [14]. Typically, structure is imposed on preference relations. These

assumptions are made due to two reasons: either because additional structure

10



deems to be a characteristic of an agent’s rationality3 or because one wishes

to work with utility functions. It is a classical result that for utility functions

to exist, preferences relations have to be rational [14].

Now, rational preferences and utility functions are special cases of the

generic construction of a context-independent quantifier we outlined in the

last section. They are special because (i) we impose additional structure on

R, that is, �i is a total preorder and (ii) we focus on one particular fi, that

is, fi : P(R)→ P(R) defined by

fi(S) = {�i -maximal elements of S}

A rational preference relation can always be represented by a utility func-

tion. Translated into the selection function approach, the utility function can

be characterized as the environment which is a mapping p : X → R, attach-

ing a real number to each element of the set of choices X. So, we can define

the quantifier

φ(p) = max p

which is attained by the selection function

ε(p) = arg max p

Note the types φ : (X → R)→ P(R) and ε : (X → R)→ X respectively and

that p(ε(p)) ∈ φ(p). Thus, max and arg max operators, which are universally

used in economic literature, become the prototypical examples of an context-

independent quantifier and a selection function attaining it.

Minimizing Deviations from a Target or Ideal Point Preferences

Another example of a concern which is relevant for economics - in particular

in political economy - is a minimisation of a distance from a target. Such a

concern can be easily represented by a utility function but can be directly

represented by a quantifier as well.

Suppose the outcomes of a decision problem form a set R with a distance

3This issue has been intensely debated, see [17, 15, 14].
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measure d, a metric. For example Rn has a metric given by Euclidean dis-

tance, but there are many other examples including metrics on finite sets.

Suppose the decision maker identifies a set of outcomes S ⊆ R which are con-

sidered to be optimal outcomes. Then the distance of a particular outcome

r to the set S is defined by the equation

d(r, S) = inf
s∈S

d(r, s)

Now the decision maker can choose a move minimising the distance to the

target set:

ϕ(p) = min
x∈X

d(p(x), S)

Although this quantifier can be described by utility functions, it can po-

tentially simplify the modelling of several important situations. For example,

a decision maker focussing only on fairness, at the expense of profit, is equiv-

alent to minimising distance to the diagonal

S = {(x, . . . , x) ∈ Rn | x ∈ R}

2.4.2 Beyond Rational Preferences

The generic construction of context-independent quantifiers instantiates choices

based on rational preferences (or equivalently on utility maximization) as

special cases. In this section we show that we can go beyond these cases by

allowing for a different structure on R or by allowing for a different fi (or by

relaxing both).

Utility functions are considered as a very convenient tool to represent

and analyze choice behavior. Still, the assumption that the preorder is total,

which guarantees the existence of a utility function, is demanding and in fact

more demanding than is necessary to rationalize choice behavior [17]. Sec-

ondly, when taking the perspective of preferences, from a positive as well as

a normative viewpoint, there are good reason why a rational decision-maker

may exhibit “indecisiveness”, meaning that his preference for a pair of out-

comes is not defined [1]. Thirdly, consider a situation where the economist
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or some other agents/principal has only partial information about the pref-

erences of an agent and considers him “as if” he has incomplete preferences

[5]. Lastly, R may be a set of alternatives to be chosen by a group of agents.

Even if each individual’s preferences are complete, the aggregate social wel-

fare ordering does not have to be [16].

There have been various attempts to change standard formalisms to allow

for a utility theory without the need to fulfill the completeness assumption.4

When working with quantifiers and selection functions, the set of out-

comes R can have any order. In particular, the preference relation does not

have to be complete. That is, given any preference relation �⊆ R × R, an

agent chooses the best alternatives as outlined in Section 2.4 above. So, one

can very easily consider choices not in the scope of utility functions without

the need to change the framework.

2.4.3 Beyond Maximization and Standard Rationality

The utility approach is intimately linked to the assumption that the agent

fully optimizes. The behavioral economic literature as well as the psycho-

logical literature have documentated deviations from optimizing behavior,

and have collected various decision “heuristics” [3, 13]. Quantifiers provide

a nice way to model such deviations. Morover, even situations that can be

modelled with utility functions may have (more) natural representations in

the quantifier framework.

Decisions Heuristic Consider a simple heuristic of a person ordering wine

in a restaurant. Suppose he always chooses the second most-expensive wine.

In terms of selection functions, let X be the set of wines available in a restau-

rant, and p : X → R the price attached to each wine xi (i = 1, ..., N) on

the menu. Denote with ri the price of wine xi. Given a maximal chain

rn > rn−1 > . . . > r1 in R, let us call rn−1 a sub-maximal element. The

4For an important early contribution see [1]. More recent contributions include [16]
for utility representations in certain environments and [5] for uncertain environments. See
also references in [16].
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“goal” of the agent can be described by the quantifier

φ>(pX→R) = {sub-maximal elements with respect to > within img(p)}.

Such quantifiers are attainable with selection function

ε>(pX→R) = any x such that p(x) is a sub-maximal element of img(p)

since clearly p(ε>(p)) ∈ φ>(p).

2.5 Context-Dependent Quantifiers

So far, we have focused only on the generic context-independent quantifier.

As the last examples illustrate with this construction we can already go

beyond choices motivated by rational preferences. Yet, we can do more. We

can allow for quantifiers that do not only take the image of p as input but

the complete function. Next, we provide several examples to illustrate that

this opens up a complete new dimension. Indeed, with context-dependent

quantifiers it is possible to go far beyond what can be modelled using utility

functions.

Majority and minority The majority quantifier selects outcomes which

are “most unavoidable”. Given a function p : X → R, where X and R are

finite sets, we can rank the elements r ∈ R by number of different way it can

be achieved:

nr = |{x ∈ X | p(x) = r}|

If some r has nr > nr′ for all r′ 6= r then we can say that r is the most

unavoidable outcome. If there is a tie we can simply select the set of all

outcomes which are tied for most unavoidable. This defines a quantifier

ϕ : (X → R) → P(R), which is attained by a selection function because

we only consider outcomes in the image of p. Technically, this quantifier

depends on the multiset image of p: not just which outcomes are attainable,

but how many ways they can be attained. Later we will consider quantifiers

even more general than depending on the multiset image of p.
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To illustrate this quantifier, suppose there are 3 identical beaches, and the

agent is indifferent between them. The first can be reached by one highway,

the second by two highways and the third by three highways. The agent

must choose which highway to take, and the outcome is the beach that the

agent goes to. The agent decides to visit the beach which can be reached by

the most different routes, which is the third, for example to avoid the risk of

being stuck in a traffic jam.

Just as easily we can define the minority quantifier, which selects the set

of all outcomes that are easiest to avoid, as they have the least number of

moves which lead to them (ignoring outcomes which are never chosen).

Average Given a finite set X and a function p : X → R, the average value

of p is given by the quantifier

ϕ(p) =
1

|X|
∑
x∈X

p(x)

Unfortunately this quantifier is not realistic. However if we replace X with

the unit interval [0, 1] then the average value of a continuous function p :

[0, 1]→ R is given by the integral

ϕ(p) =

∫ 1

0

p(x) dx

Moreover there is a selection function which attains this quantifier, since by

the mean value theorem for every continuous function p : [0, 1] → R there

always exists a point a such that

p(a) =

∫ 1

0

p(x) dx

Fixed points Consider an agent who is part of a group that has to choose

an element of out of a set X. Assume that he observes the choices of other

people and wants to make the same choice that the majority makes. One

example for such goals is Keynes’s Beauty contest where the agent is only

interested in voting for the winner of the contest and he has no preferences
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for the contestants per se. The set of all possible choices that can be made

by the group is Xn, and the outcome of the contest is the majority function

maj : Xn → X which selects the most common element of the tuple (this

outcome function should not be confused with the majority quantifier con-

sidered above, which is different). Thus the outcome is the most popular

choice.

The agent in the Keynes beauty contest can be described by a quantifier

which is a fixed point operator. Let X be any set. A fixed point of a function

f : X → X is a point x ∈ X satisfying the equation f(x) = x. We can define

a multi-valued quantifier ϕ : (X → X) → P(X) which selects the set of all

fixed points of a function:

ϕ(p) = {x ∈ X | p(x) = x}

In practice, most functions do not have a fixed point and so this quantifier

will often give the empty set. For the purposes of modelling a particular

situation we might want to ‘complete’ ϕ in different ways, describing what

an agent might do in the event that no fixed point exists. The simplest

situation is that we fix a ‘default option’ x0 ∈ X, and define a multi-valued

quantifier by

ϕ(p) =

{x ∈ X | p(x) = x} if p has a fixed point

{x0} otherwise

There are other possibilities, such as the agent having a preference ordering

on X and choosing the maximum in the event of there being no fixed point.

Suppose the other votes (x2, . . . , xn) are fixed, so the context of the agent’s

move is λx1.maj(x1, x2, . . . , xn). Thus the agent will aim to find an x1 that

satisfies the equation

x1 = maj(x1, x2, . . . , xn)

where the decisions x2, ..., xn are exogenously given. The situation becomes

far more interesting when considered as a game in which several agents are

voting. We analyse this in detail in the follow-up paper [12].
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Another possibility is to work in an alternative foundation to set theory,

such as domain theory or a specific programming language, in which every

function has a canonical fixed point. Such a foundation relies on every set

having an element ⊥, which represents a computer program which does not

terminate. Such an element can be interpreted as the ‘move’ of an agent who

is indecisive. We leave this discussion for future work.

2.6 Trading off between selection functions and con-

text

Modelling a decision problem using a selection function introduces an ad-

ditional degree of freedom over utility functions, namely we can trade off

between a selection function and a context. Suppose we have a set of moves

X, a set of outcomes R and a context p : X → R. Consider an agent who

acts according to the selection function ε : (X → R) → X, so the move the

agent will make in this particular situation is ε(p).

However, we can model the same situation in a different way. Suppose the

set of outcomes is also X, and the context is the identity function X → X, so

the outcome of a move is the move itself. Now consider a selection function

δ : (X → X)→ X defined by

δ(id) = ε(p ◦ id)

The move made by an agent playing this selection function is

δ(id) = ε(p ◦ id) = ε(p)

Thus we have moved all the information encoded by the context ‘inside’ the

selection function δ.

In the other direction, when we have a selection function that can be

modelled using utility functions then we can move some of the information

contained in the selection function into the context, which is the utility func-

tion, reducing the selection function to arg max at the expense of a more

complicated context. This can be used to characterise the quantifiers that
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are equivalent to utility functions.

Usually there will be an infinite variety of ways to make this trade off. To

some extent this also occurs when considering interactions between several

agents.

In practice we resolve this by using selection functions and contexts to

model different aspects. Roughly speaking, quantifiers and selection func-

tions should be used to model what is intrinsic to the agent, while contexts

should be used to model what is intrinsic to the situation. So long as the

move sets and outcome sets are equal we can then consider different agents

making the same decision, and the same agent making different decisions.

A simple example of this is modelling fairness concerns, which we consider

in the next section. What is intrinsic to the situation is the amount of profit

that the agent receives. What is intrinsic to the agent is whether the agent

cares only about profit or will take fairness into consideration. A suitable

context is p : X → Rn, where the tuple p(x) represents the profits received

by n recipients after the move x. An agent who cares only about his own

profit p(x)i will use the quantifier

ϕi(p) = max
x∈X

p(x)i

An agent who cares only about fairness will use the quantifier

ϕj(p) = min
x∈X

f(p(x))

where f : Rn → R is a function that the agent uses to measure the unfairness

of an outcome. We can then consider different agents who measure unfairness

by different criteria. In the next section we will consider ways of combining

these quantifiers to take both concerns into consideration.

3 Combining Quantifiers

Quantifiers allow for a flexible modelling of choice behavior. But there is the

additional important aspect of compositionality. We can combine different
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agents/goals into new agents/goals by building the product of quantifiers.

Thereby we can make explicit the way in which differing motives interact.

In this section, we show the general approach to composition and we apply

it to an example where an agent cares for his and another agents’ payoffs.

There is one important way of combining single-valued quantifiers, called

the product of quantifiers, and a corresponding operation on selection func-

tions called the product of selection functions. These are central to the ap-

plications of selection functions to proof theory [6], but as they are closely

connected to extensive-form games of complete information we will not con-

sider them in this paper. Another method of combining selection functions

appears in [10], called the binary Berardi-Bezem-Coquand functional, is also

directly based on the needs of proof theory and is connected to normal-form

games, so they will also not be considered.

3.1 Example: Social Preferences

A standard assumption in economics is that people are selfish. Accordingly,

they only care for their own private benefit. However, experimental evidence

as well as evidence from the field indicates that individuals regularly deviate

from selfish decisions. The evidence has triggered a theoretical literature

which tries to incorporate social concerns into agents’ motivation. We will

focus on this example here. Our approach is not limited to this particular

application but we consider the issue of social preferences to by prototypical.

A prominent class of models assumes that individuals take the allocative

consequences of their decisions for others into account [2, 4, 9]. Consider a

set of agents {1, ..., N}. One agent, 1, has to make a decision x ∈ X which

potentially influences the outcomes R for all agents. The type of outcomes

is then R = R1 × · · · ×RN .

The models of [2, 4, 9] are restrictive in two dimensions. First, they focus

only on outcomes which involve monetary transfers, that is Ri = R. Secondly,

they only consider standard utility functions. Hence, they are restricted to

depict social behavior by agents as a maximization of some utility function,

usually of the following form: U(r1, ..., rN) = f(r1) + g(r1, ..., rN), where
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ri ∈ Ri for all i and the functional form of f and g depends on the motives

of agent i.

3.1.1 Social Concerns I

Suppose we have n agents, together with one benevolent agent who must

choose a move in a set X. We can describe the goals of this agent by a

quantifier ϕ : (X → Rn) → Rn. A simple situation is that the agent moves

to maximise the sum of all payoffs (see, for instance [4]):

ϕ(p) = max
x∈X

n∑
i=1

p(x)i

However we can just as easily describe more complex behaviors for the agent,

for example minimising inequality.

3.1.2 Social Concerns II

Consider an agent be interested in both a fair allocation and in maximizing

his payoffs. Suppose he must make a move which determines a split of a fixed

pie π between himself and another recipient5, so the context is p : X → R2.

Hence, if the agents decides to allocate x to himself, then the recipient receives

π − x. So, it holds that p(x) = (x, π − x).

Suppose we consider the agent to have two aspects to his personality,

one which cares only about profit and one which cares only about fairness.

In general, such an agent may have a pair of quantifiers ϕ, ψ : (X → R) →
P(R). After making a move in the context p, the ‘first personality’ is satisfied

with those outcomes in ϕ(p), and the ‘second personality’ is satisfied with

those outcomes in ψ(p). Therefore the moves which satisfy both personality

aspects are precisely the elements of ϕ(p) ∩ ψ(p). This is captured by a new

quantifier ϕ ∩ ψ by

(ϕ ∩ ψ)(p) = ϕ(p) ∩ ψ(p)

5In the literature, this type of situation is often referred to as a “Dictator Game”. See
[3] for an overview of the empirical evidence.
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However typically this new quantifier will not be realistic, even if ϕ and ψ are

both realistic. Therefore the agent will often face a conflict between the two

aspects of his personality. Thus, we have to resort to resolving the conflict

in different ways for each agent and for each situation.

In our specific example, the first personality cares only about own payoff,

and so uses the single-valued quantifier

ϕ(p) = max
x∈X

p(x)1

Suppose the second personality has identified a set of outcomes F ⊆ R2

which are deemed to be fair. The second personality is then satisfied with

any fair outcome:

ψ(p) = F

One way in which the agent may resolve the conflict is to choose a maximal

fair outcome:

χ(p) = max(F ∩ Im(p))1

For a pair of selection functions (or single-valued quantifiers) there is a

very general way of resolving the conflict by introducing an ‘arbiter’. Suppose

the agent consists of a committee of two decision-makers, each of which

suggests a course of action. The committee members are described by the

selection functions ε, δ : (X → R)→ X, so given the context p : X → R the

first member will suggest the move ε(p) and the second will suggest the move

δ(p). The arbiter will decide based on the outcomes which would result from

these moves.

In general, the arbiter will be described by a binary relation A on R. If

the moves suggested are x1 and x2 respectively, the arbiter will check whether

the relation (x1, π − x1)A(x2, π − x2) holds. If it does, the move x1 will be

selected, otherwise the move x2 will be selected.

In our example, there are several criteria which the arbiter could use to se-

lect moves. For example, there could be a maximum amount of profit c which

is considered acceptable to lose in the name of fairness. Then given outcomes

(x1, π − x1) /∈ F and (x2, π − x2) ∈ F , the relation (x1, π − x1)A(x2, π − x2)
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will hold iff the loss incurred by the fair outcome is too great, that is,

(x1, π − x1)A(x2, π − x2) ⇐⇒ x1 − x2 > c

Another possibility is to use lexicographic preferences, in which case

(x1, π − x1)A(x2, π − x2) holds iff one of the following holds:

• (x1, π−x1) ∈ F and (x2, π−x2) /∈ F (prefer a fair outcome to an unfair

one)

• (x1, π − x1) ∈ F ⇐⇒ (x2, π − x2) ∈ F and x1 ≥ x2 (all other things

equal, prefer greater profit)

We can consider an arbiter to be unbiased if the result does not depend

on the order of ε and δ, which is equivalent to the formal condition of anti-

symmetry: x1Ax2 holds iff x2Ax1 does not hold. This method thus allows us

to consider biased arbiters, by considering relations which are not antisym-

metric. There is also no formal need to require that A is transitive. For any

arbiter A, the resulting behavior of the agent as a whole is described by the

selection function

ε′(p) =

ε(p) if p(ε(p))Ap(δ(p))

δ(p) otherwise

4 Discussion and Conclusions

In this paper we propose the use of quantifiers and selection functions to

model individual choices. Our framework instantiates the standard approach

in economics, preferences and utility functions, as one special case. In our

framework we can also model agents whose preferences are incomplete, who

deviate from maximization, whose motives are not only influenced by the

outcome but also by the way outcomes realize, or any combination thereof.

Typically, economists restrict themselves to choice settings where an equiv-

alence between the preference and the utility maximization approach holds
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[14]. In practice, this results in the tendency to use utility functions which ex-

cludes interesting choice phenomena from analysis. Quantifiers and selection

functions provide means to address such phenomena.

Even when considering questions in the realm of the standard framework,

where formal equivalence between different approaches exists, the natural-

ness of one form versus the other may be different. While representing choice

problems as a maximization problem of a utility function is typically consid-

ered to be advantageous as the mathematical toolbox economists are used

to can be applied, representing choices in a different form may be more nat-

ural and more insightful nevertheless. With the developments in modern

theoretical computer science many of the supposedly benefits of sticking to

optimization methods deem less advantageous to us.

Our approach is based on higher-order functions which also form the

foundation for high-level functional programming languages. The idea be-

hind these languages is that they represent mathematical objects themselves.

Having common ground has the consequences that the models within our

framework are implementable in these languages.

Lastly, the roots of the quantifier and selection functions approach with

respect to economics are in game theory, that is, interaction between different

agents. What we have presented in this paper is readily extended to interac-

tions. It is here, where we think the expressiveness of this approach as well

as its implementability in programming languages will come to particular

fruition.
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