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Abstract

In prediction markets, investors trade assets whose values are contingent on the oc-

currence of future events, like election outcomes. Prediction market prices have been

shown to be consistently accurate forecasts of these outcomes, but we don’t know

why. I formally illustrate an information acquisition explanation. Traders with more

wealth to invest have stronger incentives to acquire information about the outcome,

thus tend to have better forecasts. Moreover, their trades have larger weight in the

market. The interaction implies that a few well-endowed traders can move the asset

price toward the true value. One implication for institutions aggregating information

is to put more weight on votes of agents with larger stakes, which improves on equal

weighting, unless prior distribution accuracy and stakes are negatively related.
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1 Introduction

In a 2003 forecasting tournament, participants predicted outcomes of football games through-

out a season to win prizes. Probability forecasts were rated with a quadratic scoring rule, so

only participants with consistently accurate forecasts would be in the top ranks. Two mock

entrants simply used the prices from two different prediction markets as their forecasts,

and placed 6th and 8th out of almost 2,000 participants (Servan-Schreiber et al., 2004).

More generally, prediction markets have been shown to provide better forecasts than polls

in political elections (e.g., Forsythe et al., 1992; Berg et al., 2008), expert forecasts in sports

(Spann and Skiera, 2009), or sales forecasts in business (Wolfers and Zitzewitz, 2004).

One kind of asset traded in these markets is called winner-take-all (WTA) contract. It

pays out 1 iff a pre-specified condition is fulfilled, otherwise it pays out 0. For example,

the IEM prediction market for the 2012 US Presidential election traded a Democratic and

a Republican contract, which would pay out $1 iff the respective candidate obtained the

majority of popular votes cast for the two major parties. Consequently, the price of a WTA

contract may be interpreted as the market probability estimate that the respective candidate

wins the election. With similar contracts, market-based predictions can be obtained for

virtually all areas beyond politics.

Why do these markets predict so accurately? There are no satisfying explanations so

far. As Berg and Rietz (2006) state, “exactly how prediction markets become efficient is

something of a mystery.” The main goal of this paper is to provide and formally illustrate

a theory. In what I shall call information acquisition explanation, traders have stronger

incentives to acquire information about the unknown outcome the larger their endowment.

Consequently, high endowment traders are better informed. Moreover, high endowment

traders have larger impact on the market price, because they can buy more assets. This in-

teraction implies that few, but well-endowed traders can move the market price—interpreted

as prediction—in the right direction, thereby explaining the observed accuracy. Unlike many

financial market models, the explanation does not rely on the existence of rational expec-

tations, nor on the presence of insiders or the ability of traders to infer information from

asset prices. Even markets with traders who have systematically biased opinions about

the outcomes can produce accurate forecasts, because of effective incentives for information

acquisition and endogenous weighting by investment volume.

In my model, traders start out with an initial opinion about the outcome of the election.

Based on this prior belief, endowment and asset prices, they decide whether to acquire

information, whose accuracy depends on their information acquisition effort. Consequently,

informed traders and noise traders (driven by opinion) evolve endogenously, which explains

partially where beliefs originate and when beliefs (and market forecasts) tend to be accurate.

I establish that traders with prior beliefs close to the ‘market estimate’ (price), or with

high endowment, have the strongest incentive to acquire information. The interpretation
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is that traders with extreme opinions about the outcome do not expect to be swayed by

evidence, and hence do not acquire it, while traders with opinions close to the market price

acquire information, because it might change their investment decision. High endowment

traders have more at stake and are willing to acquire costly information in order to safeguard

their investment. Comparative statics show that the bias of the market price is usually

reduced in response to an endowment increase of all traders, because information acquisition

is supported. It also shows that a shift of prior beliefs toward the true outcome usually

improves forecasts, but may in rare cases increase bias. Numerical examples give an idea

about the effect size of information acquisition and exogenous changes in the parameters.

One lesson for institutional design is that giving more weight to votes or investments of

high endowment agents might improve information aggregation. If accuracy of prior beliefs

and endowment are not negatively related, then high endowment agents tend to have better

information, which can be exploited via weighting. An empirically testable implication

is that forecasts should be better with weighting by stake rather than equal weighting.

Moreover, forecasts should be better if investment per trader is larger in the market.

WTA prediction markets are analytically identical to fixed-odds betting, provided odds

are set competitively. Prediction market prices are translated into odds like probabilities.

For example, if the price of the Democratic contract is π, and the complement is priced at

1 − π, then the odds of a Democratic victory are (1 − π)/π in the corresponding betting

market (ignoring fees). Thus, the results also apply to betting markets.

While the idea that prediction (or stock) markets provide incentives to search for infor-

mation is not new (e.g., Servan-Schreiber et al., 2004; Wolfers and Zitzewitz, 2004; Arrow

et al., 2008), this is the first paper to formalize it in order to explain prediction market

accuracy, and demonstrate its interaction with the endogenous weighting implied by market

clearing. Existing models are designed to address different questions (see next section).

They typically assume an arbitrary belief distribution or give traders informative signals by

default, so that forecast accuracy is a trivial consequence of the accuracy of these primitives.

In contrast, quality of information is endogenous in my model, so it is more suitable to ex-

plain the accuracy or inaccuracy of prediction markets. In a numerical example, the model

with information acquisition has a 10 percentage points smaller forecast bias on average

than a model without information acquisition (e.g., Manski, 2006), holding all exogenous

parameters constant. Moreover, the model motivates a different view on the interpretation

of prediction market prices (e.g., Manski, 2006, Wolfers and Zitzewitz, 2006). Instead of

comparing prices to statistics of the belief distribution, the key question is whether beliefs

are driven by information rather than opinion (section 3).
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1.1 Related literature

I confine attention to the relevant theoretical contributions in this section.1 An informal

explanation of prediction market accuracy was put forth by Forsythe et al. (1992). In what

they dub marginal trader hypothesis (MTH), they argue that “prices are determined by the

marginal trader” and that marginal traders are “free of judgment bias” (i.e., have accurate

beliefs about the outcome). According to their definition (p. 1158 and fn. 21), a marginal

trader is a trader who places limit orders within 2 cents of the current price. However, they

are vague on how marginal traders “set prices.” Why should they have the power to set

prices, while biased traders—who may be as convinced of the correctness of their beliefs

as unbiased traders—do not? Indeed, the existence of a group with perfect forecast is not

sufficient for an accurate market forecast if wealth is bounded. A small subset of informed

traders cannot always outbid hordes of biased traders to keep the price at the fair value.

Nor is their presence necessary—possible biases of Republicans and Democrats may cancel

out to accurately predict the election vote share. Consequently, the MTH does not explain

the consistently good performance of prediction markets.

My information acquisition explanation has similarities to the MTH, in that both imply

that a small group of well informed traders can influence the market price to the better.

Interestingly, Forsythe et al. (1992) find that marginal traders (with good forecasts about

the outcome) have higher investment than the rest, which is consistent with the information

acquisition explanation. However, the information acquisition explanation differs in that

informed traders need not be free from judgment biases, need not have the power to set

prices, and need not have beliefs equal to what is implied by the market price.

Instead of explaining predictive accuracy, most of the theoretical literature on betting

markets tries to explain the favorite long-shot bias, i.e., that favorites’ chances are often

underestimated, while long-shots’ chances are overestimated. Explanations for the bias

go back to at least Ali (1977) for horse race betting. He shows that market probabilities

are less extreme than objective probabilities in a market with risk neutral bettors, whose

median belief is equal to the objective probability. For parimutuel betting, Ottaviani and

Sørensen (2009) show that inaccurate odds until just prior to the “last call” can result

from bettors without rational expectations, i.e., bettors do not anticipate the final odds

and make no inferences about the true state of the world from them. In a model with

heterogeneous priors, Ottaviani and Sørensen (2013) show that the competitive equilibrium

price under-reacts to information, and the effect is exacerbated for more spread out priors.

Page and Clemen (2013) argue theoretically and empirically that prediction markets, while

“reasonably well calibrated” for predictions in the near future, can be less accurate if the

outcome to be predicted is far in the future. According to them, the loss of accuracy

1A good introduction to prediction markets with examples is provided by Wolfers and Zitzewitz (2004).
An overview of the large betting literature in economics can be found in Sauer (1998), and Thaler and Ziemba
(1988) provide an introduction to empirical anomalies in betting markets. Tziralis and Tatsiopoulos (2007)
give an extensive overview of the prediction market literature with categorization into subfields.
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is explained by reduced trading activity due to discounting of future gains. For a more

complete overview of explanations for the favorite long-shot bias, consult the references

in Ottaviani and Sørensen (2010). In all of these models, the origin of beliefs is either

unmodeled or informative signals are obtained by default with exogenous precision.

Another strand of literature focuses on how prediction market prices can be interpreted

(cf. Wolfers and Zitzewitz, 2004 for an overview of the different contracts traded in prediction

markets). Manski (2006) shows that the equilibrium price in a prediction market trading

WTA contracts with risk neutral traders does not generally correspond to the mean (or

median) probability estimate among traders, as conventional wisdom holds. In response,

Gjerstad (2005) and Wolfers and Zitzewitz (2006) show that the prediction market price is

close to the mean belief with risk averse traders. The model presented here proposes another

view on the issue (section 3). The question is not whether the price is close to the mean

or median belief, but whether it is close to the actual outcome. A distribution of opinions

may or may not have the correct mean or median. Instead, the key is whether beliefs and

consequently prices are informed or mere opinion, which can only be answered by specifying

how beliefs are formed. Endogenous information acquisition is one way to achieve this.

To my knowledge, information acquisition has been incorporated only once in the context

of prediction markets. Hanson and Oprea (2009) investigate whether a manipulator can

drive the price away from the fundamental value of the asset. Since his presence as well

as the strength of the manipulation preference is common knowledge, informed traders

may react to the manipulation attempt by obtaining more precise signals, thus raising

prediction market accuracy on average. In contrast to my model, they use the quantal

response equilibrium concept, all distributions are assumed to be common knowledge, all

random variables are normally distributed, and there are no budget constraints.

Among the first to consider information acquisition in economics more generally, Gross-

man and Stiglitz (1980) show that a fully revealing rational expectations equilibrium with

costly information acquisition does not exist. The following literature (e.g., Verrecchia, 1982;

Barlevy and Veronesi, 2000; Peress, 2004) focuses on noisy rational expectations equilibria,

where the price is affected by noise and only partially revealing to retain the incentive

for information acquisition. In contrast to these papers, my model imposes no common

knowledge assumptions except for the observability of the price.

2 A model of costly information acquisition

An unknown state of the world (briefly ‘outcome’) from the set {A,B}, B = Ac, is exoge-

nously given, and will be publicly revealed in the future. For example, suppose a presidential

candidate (incumbent) faces a challenger in an upcoming election. Then A represents victory

by the incumbent in the election, whereas B means the challenger is victorious. Formally,

θ = 1 iff A and θ = 0 iff B, which is the parameter to be predicted.

5



The economy is populated by a continuum of risk-neutral traders.2 Traders may be

heterogeneous in their endowment ωi ∈ (0, ω], ω <∞, which is distributed with cdf W (ωi).

Moreover, each trader i is characterized by prior qi, drawn from a continuous cdf Q(qi|θ, ωi),
which is i’s subjective estimate of Pr(θ = 1). This is a deviation from the common prior

assumption imposed in the better part of the literature, and implies that traders may dis-

agree about prospects. Diversity of opinion allows for interpretations like wishful thinking,

where opinions are influenced by preferences (Forsythe et al., 1999). It also makes the expla-

nation stronger, because in spite of many traders having wrong priors about the outcome,

the market price may nevertheless be an accurate forecast. The specification of prior belief

distribution Q allows for a dependence with endowment ωi.

Traders do not receive an informative signal about θ by default. Instead, they may

acquire a private binary signal, which is costly in terms of effort. The precision of the

signal is a function of effort ei ≥ 0, ν(ei) = Pr(si = 1|θ = 1) = Pr(si = 0|θ = 0). The

interpretation is that a trader can run Internet searches or talk to experts (signal), which

influence his beliefs about the outcome (posterior). But the effort cost may be too high,

so a trader may rather rely on his opinion (prior) to make the investment decision. Effort

costs are not paid out of the endowment, but enter linearly in the utility function.

Two state-contingent futures contracts—also called winner-take-all contracts—are traded

in a prediction market. One A-contract pays 1 iff θ = 1 to the holder, and 0 otherwise.

Conversely, one B-contract pays 1 iff θ = 0. The contracts are issued by the market maker.

The prediction market is thus a complete one-period Arrow-Debreu security market, like the

IEM prediction market described in the previous section. Let the price of the A-contract be

π, and the price of the B-contract 1−π, to rule out arbitrage opportunities. The profit per

A-contract held if A occurs is the difference of 1 and the price π; the loss per A-contract if

B occurs is π, the price paid.

The timing of trader decisions is shown in Figure 1. Each trader first decides on in-

formation acquisition effort ei, or equivalently signal precision νi ..= ν(ei), for a given

price π (t = 0). Then he receives a signal with precision νi, and computes posterior

pi ..= Pr(θ = 1|si) using Bayes’ rule. The posterior is equal to the prior if zero effort,

i.e., νi = 1/2, is chosen. Based on posterior pi, endowment ωi, and price π, the trader

decides which option to invest in by specifying investment volume ai(pi, ωi, π), bi(pi, ωi, π)

(t = 1). Finally, the outcome θ is revealed and the assets pay out (t = 2).

The equilibrium price π∗ can be viewed as the market’s probability estimate that A

occurs. The more traders believe that A is going to occur, the more invest in A, thus raising

2As an alternative to risk neutrality, it is not clear whether agents should be modeled as risk averse or
risk loving in the context of betting. Almost all papers estimating risk preferences from betting data find
that traders are risk loving (e.g., Jullien and Salanié, 2000 or Snowberg and Wolfers, 2010), whereas people
exhibit risk aversion in most other contexts. Risk neutrality, then, is a robust compromise. The aggregate
behavior induced by risk neutrality has the desirable trait of strictly decreasing aggregate demand if beliefs
are unchanged, which is not guaranteed under strong risk aversion (e.g., Quah, 2003). The qualitative
results carry over for slight risk aversion or risk loving preferences.
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t
t = 0 t = 1 t = 2

Choose precision
νi(qi, ωi, π) ∈ [1/2, ν̂]

Observe si and
compute posterior
pi(qi, νi, si)

Choose investment
ai(pi, ωi, π), bi(pi, ωi, π)

Outcome θ is revealed,
assets pay out

Figure 1: Timing of decisions for trader i and payout.

the price (forecast) π∗. The bias of the market forecast is |π∗− θ|, so the best forecast is for

the market price to equal the fundamental value of the asset (i.e., 1 or 0). In competitive

equilibrium, the price equates the aggregate demand for A and B contracts, so that money

is redistributed from losers to winners, and the market operates at zero profit. Modeling

the market with the possibility to buy either of two complementary contracts is identical to

having just one contract with supply and demand side.

The competitive equilibrium concept used here requires that price π∗ induces information

acquisition, which leads to beliefs and asset demands clearing the market for that same price.

Definition 1. A competitive equilibrium with endogenous information acquisition requires

1. a precision level function νi(qi, ωi, π) for all i, which maximizes expected utility at t = 0

anticipating optimal behavior at t = 1,

2. posterior beliefs pi(qi, νi, si) for all i, computed via Bayes’ rule,

3. investment functions ai(pi, ωi, π), bi(pi, ωi, π) for all i, which maximize expected utility

subject to ai + bi ≤ ωi at t = 1, and

4. an equilibrium price π∗, which induces information acquisition νi(qi, ωi, π
∗) at t = 0,

leading to beliefs pi(qi, νi, si) and investments ai(pi, ωi, π
∗), bi(pi, ωi, π

∗) clearing the

asset market at t = 1, i.e.,∫ ω

0

∫ 1

0

ai(pi, ωi, π
∗)/π∗dQ(qi|θ, ωi)dW (ωi) =

∫ ω

0

∫ 1

0

bi(pi, ωi, π
∗)/(1−π∗)dQ(qi|θ, ωi)dW (ωi).

The difference to an Arrow-Debreu equilibrium is that the equilibrium price must si-

multaneously induce information acquisition levels νi and clear the market for the resulting

investment functions ai, bi. Consequently, the equilibrium concept yields a single equilib-

rium price, even though in principle the sequential decisions of the traders (Figure 1) allow

for different prices at t = 0 and t = 1. To motivate this equilibrium notion, suppose a

Walrasian auctioneer announces an initial price π0 at t = 0. Traders make their information

acquisition decision, update their beliefs and trade at t = 1, which leads to market clearing
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price π1 6= π0 if π0 does not fulfill the above definition. Thus, if we were to repeat the proce-

dure with π1 as initial price, traders might make different information acquisition decisions

and ultimately different investment decisions, possibly leading to yet another price. If this

tâtonnement procedure stops for some π0 = π1, then π0 = π∗ as defined above.

Many financial market models use rational expectations equilibria to explain the infor-

mativeness of asset prices. The involved assumptions are strong. As Radner (1979) writes,

traders require “‘models’ or ‘expectations’ of how equilibrium prices are related to initial

information,” in order to infer and pool information from the observable price. In contrast,

this model provides an explanation that does not rely on the strict common knowledge as-

sumptions of rational expectations equilibria. As in actual prediction markets, traders do

not know the beliefs or endowments of other traders, and do not know if trades are moti-

vated by hedging or manipulation motives, i.e., they do not have the necessary ‘models’ to

extract information from the price. But the price may nonetheless be correlated with the

true state of the world, because signals are informative. The explanation of why the market

price can be a good forecast relies on the realistic assumptions of endowment asymmetries,

endogenous information acquisition, and a competitive equilibrium, which approximates the

double auction mechanism used in asset markets.

2.1 Investment and information acquisition decision

In this section, I determine the optimal individual information acquisition and investment

decisions for a given price π. In the next section, individual decisions will be aggregated to

determine the equilibrium price π∗. Going backwards on the time line, taking posterior pi

and price π as given, the investment problem of the risk neutral trader at t = 1 is

max
ai,bi≥0

pi[(1− π)ai/π − bi] + (1− pi)[πbi/(1− π)− ai] s.t. ai + bi ≤ ωi.

That is, the trader believes A occurs with probability pi, yielding a profit of (1− π)ai/π on

the ai investment, and a loss of all B investment bi. Payoffs for B follow similarly. The linear

utility function yields a corner solution, which is ai = ωi, bi = 0 if pi > π and ai = 0, bi = ωi

if pi < π. Henceforth, I will use the short-hand αi(π) ..= ωi/π and βi(π) ..= ωi/(1 − π) to

denote the maximum amount of A or B-contracts bought, respectively.

Anticipating these investment decisions, the trader decides how much costly effort to

spend, which determines the precision of the signal. Note that the effort choice at t = 0 has

to induce investment behavior which depends on the signal at t = 1 (‘discriminating effort

level’), otherwise the effort cost is incurred for no benefit. For example, if the resulting

posterior is pi(si = 0, qi, ei) < pi(si = 1, qi, ei) < π, then exerting effort ei > 0 would not

make a difference in the investment decision—for either realization of the signal i invests in
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B—and therefore cannot be optimal. The minimum discriminating effort level is

ẽi = min
e
{e : pi(si = 1, qi, e) ≥ π ≥ pi(si = 0, qi, e)}.

The expected utility from choosing a discriminating signal precision before observing the

signal (t = 0) is

EU(ei ≥ ẽi) = qiν(ei)(1−π)αi− qi(1−ν(ei))ωi+(1− qi)ν(ei)πβi− (1− qi)(1−ν(ei))ωi−ei.

That is, from his prior perspective, trader i anticipates that he will invest in A iff si = 1

and in B iff si = 0, that the signal will be correct with probability ν(ei), and wrong with

probability 1− ν(ei), and he weighs each case according to his prior belief qi.

From the definition of ẽi, if qi > π, then pi(si = 1, qi, ẽi) > π, consequently pi(si =

0, qi, ẽi) = π, which implies the minimum discriminating precision level

ν̃i ..= ν(ẽi) =
qi/π

qi/π + (1− qi)/(1− π)
.

Similarly, if qi < π, then pi(si = 1, qi, ẽi) = π and pi(si = 0, qi, ẽi) < π, which implies

ν̃i =
(1− qi)/(1− π)

qi/π + (1− qi)/(1− π)
.

The expected utility of not acquiring information is

EU(ei = 0) =

qi(1− π)αi − (1− qi)παi = (qi − π)αi if qi > π,

(1− qi)πβi − qi(1− π)βi = (π − qi)βi if qi < π.
(1)

A trader prefers information acquisition, i.e., a positive effort level, only if the benefits

from the more informed investment decision exceed the effort costs. Hence, positive effort,

assuming νi ..= ν(ei) ≥ ν̃i, is incentive compatible iff for qi > π

qiνi(1−π)αi− qi(1− νi)παi + (1− qi)νiπβi− (1− qi)(1−π)(1− νi)βi− ei ≥ (qi−π)αi. (2)

Solving the first order condition (νee < 0) for the LHS, the unconstrained optimal positive

effort level is

e∗i = ν−1e

(
1

qiαi + (1− qi)βi

)
> 0,

where νe is the partial derivative with respect to effort. The optimal level exists under the

Inada conditions νe(e)→ 0 as e→∞ and νe(e)→∞ as e→ 0.

For explicit solutions, I assume a specific form for the effort-precision function, ν(e) =

min{1
2
(
√
e+ 1), ν̂}, ν̂ < 1, so that ν(e = 0) is normalized to 1/2 (an uninformative signal),

and a unique unconstrained optimum exists. Because the square root function is unbounded,
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I impose an upper bound ν̂ < 1, so that traders cannot learn the true state of the world per-

fectly by investing a lot of effort. In this specification, the optimal unconstrained precision

is

ν∗i
..= ν(e∗i ) =

qiαi + (1− qi)βi + 4

8
.

Formally, a marginal precision increase makes a correct investment (i.e., profits) in either

state of the world more likely, and a wrong investment (i.e., losses) less likely. Adding the

benefits of more likely gains and less likely losses, weighted by prior probability, gives the

marginal benefit qiαi+(1−q)βi. The marginal effort cost is 8ν−4, and the optimal precision

equates the two.

The upper and lower bound of incentive compatible precisions νi
..= ν(qi, ωi, π) and

νi ..= ν(qi, ωi, π) if qi > π and νi ≥ ν̃i are the solutions to the quadratic equation (2),

(νi, νi) =
qiαi + (1− qi)βi + 4

8
±
√

(qiαi + (1− qi)βi + 4)2

64
− 1/4(1 + qiαi). (3)

For qi < π, the RHS (expected utility without information acquisition) of (2) changes,

resulting in solutions

(νi, νi) =
qiαi + (1− qi)βi + 4

8
±
√

(qiαi + (1− qi)βi + 4)2

64
− 1/4(1 + (1− qi)βi). (4)

In short, i acquires information iff [νi, νi] ∩ [ν̃i, ν̂] 6= ∅, and chooses ν∗i if it is in the inter-

section. The following proposition characterizes the information acquisition decision.

Proposition 1.

i. Incentive compatible precision levels always discriminate, i.e., ν(qi, ωi, π) ∈ R =⇒
ν(qi, ωi, π) ≥ ν̃(qi, π).

ii. The incentive compatibility constraint to acquire information becomes less stringent as

|qi − π| decreases. If qi ≤ π ≤ 1/2 or 1/2 ≤ π ≤ qi, then ∂νi
∂|qi−π| ≤ 0. Moreover, if

prior beliefs in the economy are distributed according to a density q with full support on

[0, 1], then there exists a positive probability mass of traders with prior qi around π who

acquire information.

iii. The incentive compatibility constraint becomes less stringent as ωi increases for suffi-

ciently large ωi. If, for some ωi > 0, informative signals are acquired, then larger ωi

strictly increases signal precision until νi = ν̂. ( ∂νi
∂ωi
≥ 0)

Proof. See Appendix.

Traders who have a prior belief close to the price π are more likely to acquire information

(ii.). To understand the intuition, note that traders compute the expected utility based on

their prior belief when deciding about acquiring information. Whenever the prior deviates
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Figure 2: Information acquisition decision: optimal (solid line), incentive compatible (shaded

area) and minimum discriminating (dotted line) precision levels, with varying endow-
ment ω and price π, depending on prior belief qi.

considerably from the price, the trader expects large gains |qi−π| per contract held without

information acquisition (see (1)). This can be interpreted as a trader having a strong

opinion about the outcome, who does not expect to be swayed by evidence and hence does

not acquire it. Conversely, the trader expects only small gains if qi is close to π, so his

opinion about the outcome is not as strong, and he is willing to acquire information and

possibly revise his beliefs if there is evidence contradicting his prior.

All else equal, higher endowment makes information acquisition more likely, or increases

information seeking effort, if endowment is sufficiently large (iii.). The intuition is that,

while endowment (and thus potential gains and losses) scale up, the cost of acquiring in-

formation remains the same. Thus, due to higher stakes, traders want to be more certain

that their investment decision will be the right one. Peress (2004) obtains this comparative

static for the same reason in his rational expectations model.

Notice that the motivation of the traders is not to make the best prediction possible. If

that were the case, traders would also want to obtain information if the prior is far from

the price. Instead, the motivation is to maximize utility, and that might require saving on

effort costs and accepting inferior information.

These results are illustrated in Figure 2, in which the optimal precision level ν∗, the

range of incentive compatible precision levels [ν, ν] (conditional on being discriminating)

and the minimum discriminating precision level ν̃ for different values of ω, π, qi are plotted.
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It illustrates how a higher endowment increases the range of priors where information ac-

quisition is incentive compatible, and increases the chosen precision, until ν∗ reaches upper

bound ν̂ (which is not included in the figure for visibility). The figure also suggests that

the range of types qi investing effort is smaller if the market price deviates from π = 1/2.

2.2 Competitive equilibrium

How does the possibility of information acquisition affect the forecast of the prediction

market? The following example illustrates how information acquisition can improve the

forecast compared to a model without, as for example used in Gjerstad (2005), Wolfers and

Zitzewitz (2006), or Manski (2006).

Example. Suppose θ = 1, each trader has endowment ω = 1 and priors qi are uniformly

distributed, i.e., qi ∼ U [0, 1]. Without information acquisition, the equilibrium price is

π∗0 = 1/2, because at that price half of the population is willing to invest in A and half in

B, thus clearing the market. The equilibrium price divides the continuum in traders who

always invest in A (qi > π∗0), and traders who always invest in B (qi < π∗0). I shall call

these ‘categorical’ traders, because their decision is based solely on their prior, and therefore

independent of the true state of the world.

The previous section showed that information acquisition is incentive compatible only

for traders with prior close to the price. When allowing information acquisition (keeping

the price constant), traders with qi < π∗0 just left of 1/2 turn from categorical B traders into

discriminatory traders acquiring information (who trade contingent on signal), and the share

of those investing in the correct option A improves from 0 to νi(qi, ω, π
∗
0) > 1/2. Conversely,

traders with qi > π∗0 just right of 1/2 turn from categorical A traders into discriminatory

traders, and the share of those investing in A decreases from 1 to νi(qi, ω, π
∗
0) > 1/2. The

mass of traders turned into discriminatory traders is equal for both sides about 1/2 if π = 1/2

(Figure 2), so the mass of traders in the population willing to invest in the correct option

A increases. As a consequence, the equilibrium price must change. Indeed, if demand is

weakly decreasing in the price, it must increase toward the true value θ = 1, because a

larger mass than 1/2 is willing to invest in A at price π = 1/2.

As the example illustrates, the possibility of information acquisition can sway traders

with wrong opinion to invest in the correct outcome instead, thus improving the forecast.

More formally, let ν(qi, ωi, π) denote the precision level resulting from the endogenously

chosen information acquisition effort. For readability, I will omit the conditioning set of

cdf Q(qi|θ, ωi) in the following. Following definition 1, the equilibrium price π∗ is implicitly
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defined as the fixed point of (1{.} is the indicator function)∫ ω

0

∫ 1

0

ai(pi, ωi, π
∗)/π∗dQ(qi)dW (ωi) =

∫ ω

0

∫ 1

0

bi(pi, ωi, π
∗)/(1− π∗)dQ(qi)dW (ωi)

⇐⇒
∫ ω

0

ωi

(∫ 1

0

1{ν(qi, ωi, π
∗) = 1/2}1{qi ≥ π∗}+ 1{ν(qi, ωi, π

∗) > 1/2}

[θν(qi, ωi, π
∗) + (1− θ)(1− ν(qi, ωi, π

∗))]dQ(qi)− π∗
)
dW (ωi) = 0,

where 1{ν(π∗, qi) = 1/2}1{qi ≥ π∗} indicates categorical A traders, who do not acquire

information and always invest in A, and the remaining term is the contribution of discrim-

inatory traders to A demand, who invest according to their information. They invest in A

only in ν(qi, ωi, π
∗) of the cases if the true state of the world is A, otherwise in 1−ν(qi, ωi, π

∗)

of the cases. The equivalence is shown in the proof of Proposition 2 (ii.). Rewriting the

share of categorical A investors in the population at π∗,∫ 1

0

1{ν(qi, ωi, π
∗) = 1/2}1{qi ≥ π∗}dQ(qi) =

∫ 1

π∗
1{ν(qi, ωi, π

∗) = 1/2}dQ(qi) = 1−Q(tu(π
∗)),

where tu (tl) is the upper (lower) threshold for incentive compatible priors. Explicit expres-

sions for the thresholds, which depend on π and ωi, are derived in the appendix. Since the

precision is bounded by ν̂, for θ = 1∫ 1

0

1{ν(qi, ωi, π
∗) > 1/2}ν(qi, ωi, π

∗)dQ(qi) =

∫ tu

tl

min {ν∗(qi, ωi, π∗), ν̂} dQ(qi).

Hence, the equilibrium price π∗ if θ = 1 fulfills∫ ω

0

(
1−Q(tu) +

∫ tu

tl

min

{
qiαi + (1− qi)βi + 4

8
, ν̂

}
dQ(qi)− π∗

)
ωidW (ωi) = 0. (5)

The following proposition shows that an equilibrium always exists, and can be shown to be

unique in most cases.

Proposition 2.

i. There exists an equilibrium price π∗ fulfilling definition 1,

ii. which is implicitly defined as the fixed point of (5).

iii. Assuming homogeneous endowment (ωi = ω), the equilibrium is unique for ω such that

ν̂ is binding,

iv. and unique for ω such that ν̂ is non-binding if ω is small.

Proof. See Appendix.
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In most cases, A-demand decreases in response to a price increase, because categorical

A traders with qi close to tu are replaced by discriminatory traders, who only invest in A in

νi < 1 of the cases, and discriminatory traders with qi close to tl are replaced by categorical

B traders, who never invest in A. Let us call this the price effect. Still, the demand for the

A-contract need not necessarily be decreasing in the price. Since the precision chosen by

discriminatory traders ν∗(qi, ωi, π) increases for large π, a price increase may result in more

investments in A if θ = 1. However, this effect is strong enough to reverse the price effect

only if π is large and the distribution of priors is very unsmooth.3 Since this is a rather

artificial situation, in the following I assume demand to be weakly decreasing in the price.

The validity of this assumption is confirmed in all numerical examples.

In order to be more specific on how the distribution of priors affects the equilibrium

outcome, I consider two parametric forms of Q. First, priors may be distributed according

to normal distribution N (µ, σ2). For computational ease, instead of truncating at 0 and

1, any probability mass that would have been truncated is assumed to be located at the

corners.4 Second, the triangular distribution is a computationally simpler distribution that

also allows to shift probability mass closer to or farther away from the truth. This property is

important to answer how a change of opinion in the economy influences the market prediction

π∗ or whether a more informed public generates better forecasts. The triangular distribution

is easier to handle analytically and there are no boundary issues. It is distributed on the

interval [0, 1] with the density peak at d ∈ [0, 1] and density function

q(qi) =

2
d
qi if qi ≤ d,

2(1−qi)
1−d if qi > d.

The following proposition gives some comparative statics regarding the market price if

θ = 1. This condition is without loss of generality, since outcomes A and B can be redefined.

The results are sufficient conditions for a shift of priors toward the true value to reduce bias

(increase the equilibrium price), and for an endowment increase to reduce bias. Assumption

π∗ ≥ 1/2 means that ω,Q are such that the market correctly predicts the favorite A, i.e.,

π∗ is closer to θ = 1 than to 0, prior to the exogenous parameter change.

3For example, a distribution with small density for qi around tu and around tl and a large density for qi
between tl and tu leads to little loss of A-demand via price effect when the price increases, while all qi in
the interior increase their precision.

4In the comparative statics analysis, we are interested in how the market price changes if the prior belief
distribution changes. However, the cdf of the truncated normal distribution can be decreasing in µ at
some x ∈ (0, 1), because of truncation. This means the equilibrium price in the model without information
acquisition (Manski, 2006) can decrease in response to an increase of µ, so truncation introduces additional
effects depending on the parameters, which interacts with the comparative static effects to be analyzed.
For example, a negative response to a µ-increase could be due to changes in truncation, or due to reduced
information acquisition effort. To solve this problem, I assume any truncated mass is located at the corners,
so that the prior belief distribution in the interior is just the cdf of a normal distribution, which is always
decreasing in response to an increase of µ.
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Proposition 3. Comparative statics if demand is non-increasing in the price, ω is homo-

geneous and θ = 1.

i. Any change in the prior distribution from Q to R such that Q(qi) > R(qi) ∀qi ∈ (0, 1)

increases the market price π∗ if ν̂ is binding, unless all agents in the Q-economy already

acquire information.

ii. With priors qi ∼ N (µ, σ2) and ω < (1 − π∗)4, an upward shift of µ increases the

equilibrium price π∗ for each µ, σ if π∗ ≤ 1/2.

iii. With priors qi ∼ N (µ, σ2) and endowment ω < (1− π∗)4 sufficiently small, an upward

shift of µ increases the equilibrium price π∗ for each µ, σ and π∗.

iv. With priors from the triangular distribution, an increase in the mode value d leads to

an increase of the market prediction π∗ if d < tl or d > tu.

v. Higher endowment increases information in the economy as measured by

DA =

∫ tu

tl

min{ν∗(qi), ν̂}dQ(qi),

i.e., more traders obtain information of higher precision.

vi. For any distribution of priors with non-increasing density q the market prediction π∗

increases in response to a non-binding endowment increase if π∗ ≥ 1/2.

vii. With priors qi ∼ N (µ, σ2) the market prediction π∗ increases in response to an endow-

ment increase for π∗ ≥ 1/2, ν̂ non-binding and |µ− tl| < |µ− tu|.

Proof. See Appendix.

The market price increases if probability mass is shifted towards higher values of qi and

if the precision is unaffected by price (i.). In particular, this includes an increase of d for

the triangular distribution or an increase of µ for the normal distribution. However, if

the precision cap is not reached, this need not always hold. If π > 1/2, then the optimal

precision ν∗(qi, π) is decreasing in qi, because the profitable state B (price only 1−π < 1/2)

is considered less likely. Thus, if the mass of traders with high qi increases, then it can

decrease the mass of agents investing in A for a given price π. In particular, this occurs

for some parameter values using the triangular distribution with tl < d < tu, or for the

normal distribution, π > 1/2 and σ small. It is therefore possible that a population with

more accurate opinions produces worse forecasts, because it invests less in acquisition effort.

Still, in most cases the comparative static holds, because more weight on high values of qi

implies more categorical A traders and more weight on discriminatory traders, who favor A.

Moreover, small non-monotonicity is usually a local problem and vanishes for sufficiently
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large discrete changes of the exogenous variable. The price always increases in response to

increases of ω or µ in the numerical example using discrete changes (section 2.3).

Parts (ii.) and (iii.) state that a shift of µ toward the true value θ = 1 increases the

market price if endowments are sufficiently low or if π∗ < 1/2. Intuitively, if endowment

is low, then the mass of discriminatory traders is low and so the fact that the precision of

discriminatory traders may be reduced has little weight.

Parts (v.)-(vii.) consider an endowment increase in the economy. While higher endow-

ment always increases information in the economy as measured by investment from discrim-

inatory traders in the correct outcome A, this need not imply that the bias always decreases

in response to an endowment increase. After all, if opinions happen to be very accurate,

then correct opinions are replaced with information that is correct in only ν∗i < 1 of the

cases. Still, as with a shift of priors toward the correct outcome, this comparative static

holds in all numerical cases (section 2.3).

2.3 Numerical example

2.3.1 Preliminaries

The purpose of this section is threefold. First, it demonstrates that this model produces

better predictions than the model without information acquisition (Manski, 2006). Second,

it quantifies the impact of exogenous variables on π∗. And third, it shows the comparative

statics are less ambiguous for discrete changes than the theoretical results may let on.

I calculate the equilibrium price π∗ numerically for various parameter values. Priors

are assumed to be normally distributed, but any probability mass
∫∞
1
q(qi)dqi is bunched

at 1 (similarly all mass below 0 is bunched at 0). This is preferable to truncation, as the

truncated mass depends on parameters µ, σ, which hinders identification of comparative

static effects (see footnote 4). Consequently, µ 6= 1/2 is not actually the mean of the prior

distribution, but merely a position parameter.

The equilibrium price with information acquisition is defined in (5), where (Φ denotes

the cdf of the standard normal distribution, φ its density function)

Q(qi) = Φ

(
qi − µ
σ

)
, q(qi) =

1

σ
φ

(
qi − µ
σ

)
∀qi ∈ (0, 1).

The equilibrium price without information acquisition, where traders rely solely on their

priors, is given by (e.g., Manski, 2006)∫ ω

0

(1−Q(π∗0)− π∗0)ωidW (ωi) = 0.

I fixed ν̂ = 0.95 as maximal signal precision, i.e., no trader can perfectly infer the
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Table 1: Equilibrium price with information acquisition π∗ for various parameter values.

ω µ σ θ π∗ DB CB π∗0

0.5 0.1 0.1 0 0.18 0.13 0.69 0.19
0.5 0.1 0.3 0 0.27 0.07 0.66 0.28
0.5 0.5 0.1 0 0.49 0.29 0.22 0.5
0.5 0.5 0.3 0 0.49 0.1 0.41 0.5
0.5 0.7 0.1 0 0.65 0.23 0.12 0.66
0.5 0.7 0.3 0 0.61 0.09 0.3 0.61
1 0.1 0.1 0 0.15 0.32 0.52 0.19
1 0.1 0.3 0 0.24 0.17 0.59 0.28
1 0.5 0.1 0 0.43 0.53 0.03 0.5
1 0.5 0.3 0 0.46 0.24 0.3 0.5
1 0.7 0.1 0 0.6 0.39 0.01 0.66
1 0.7 0.3 0 0.58 0.22 0.2 0.61
5 0.1 0.1 0 0.04 0.77 0.18 0.19
5 0.1 0.3 0 0.09 0.51 0.4 0.28
5 0.5 0.1 0 0.13 0.87 0 0.5
5 0.5 0.3 0 0.24 0.69 0.07 0.5
5 0.7 0.1 0 0.28 0.72 0 0.66
5 0.7 0.3 0 0.37 0.6 0.02 0.61

ω µ σ θ π∗ DA CA π∗0

0.5 0.1 0.1 1 0.2 0.12 0.08 0.19
0.5 0.1 0.3 1 0.28 0.07 0.21 0.28
0.5 0.5 0.1 1 0.51 0.29 0.22 0.5
0.5 0.5 0.3 1 0.51 0.1 0.41 0.5
0.5 0.7 0.1 1 0.67 0.25 0.42 0.66
0.5 0.7 0.3 1 0.62 0.09 0.53 0.61
1 0.1 0.1 1 0.22 0.22 0.01 0.19
1 0.1 0.3 1 0.3 0.17 0.13 0.28
1 0.5 0.1 1 0.57 0.53 0.03 0.5
1 0.5 0.3 1 0.54 0.24 0.3 0.5
1 0.7 0.1 1 0.71 0.54 0.17 0.66
1 0.7 0.3 1 0.65 0.22 0.43 0.61
5 0.1 0.1 1 0.44 0.44 0 0.19
5 0.1 0.3 1 0.45 0.45 0.01 0.28
5 0.5 0.1 1 0.87 0.87 0 0.5
5 0.5 0.3 1 0.76 0.69 0.07 0.5
5 0.7 0.1 1 0.93 0.93 0 0.66
5 0.7 0.3 1 0.85 0.66 0.19 0.61

Description: The table displays the equilibrium price with information acquisition π∗ and without (π∗0).
Priors are drawn from distribution N (µ, σ2), and endowment is ω. The true state of the world is θ, so
the bias is π∗ − θ. DA is the probability mass of discriminatory bettors betting on A in equilibrium, while
CA is the probability mass of categorical bettors betting on A. The upper bound of the signal precision is
ν̂ = 0.95.

true state of the world by investing sufficient information acquisition effort. Endowment is

homogeneous, with ω as a parameter to be varied. Finally, I confirmed numerically that the

equilibrium is unique.

Table 1 displays the equilibrium price with information acquisition (π∗), and without

(π∗0), as well as the corresponding parameter values µ, σ, ω, θ. The bias of the market

prediction π∗− θ can be easily computed. It also shows Dj, j = A iff θ = 1, j = B iff θ = 0,

which is the probability mass of discriminatory traders investing in the correct outcome in

equilibrium. This is a measure of information in the economy. A high value of Dj either

means many traders acquire information, or that information is good (i.e., signals with high

precision are acquired). For θ = 1, DA =
∫ tu
tl

min{ν∗(π∗, qi), ν̂}dQ(qi). Cj is the probability

mass of categorical traders investing in the correct outcome, i.e., the mass of traders that

does not acquire information in equilibrium, but has prior qi that makes them invest in the

correct option. For θ = 1, CA = 1−Q(tu). By definition of equilibrium, CA +DA = π∗.
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2.3.2 Numerical results

A higher endowment ω leads to smaller bias |π∗ − θ|. The reason is that, first, more

endowment leads to a higher mass of traders acquiring information. And second, traders

who do acquire information choose more precise information (i.e., higher precision). This

is reflected by Dj, the probability mass of discriminatory traders investing in the correct

outcome, which is increasing in endowment. Some correctly investing categorical traders

are turned into discriminating traders, who choose the wrong outcome in 1−νi of the cases,

but the net effect as represented by π∗ is nevertheless unambiguously bias reducing. As

endowment rises, the market price is more and more driven by information rather than

prior beliefs. For example, at ω = 5, θ = 1 and σ = 0.1, the probability mass of categorical

A traders CA is 0 (rounded), so it is almost exclusively discriminatory traders investing in

A and supporting the equilibrium, while CA is positive for lower endowment.

Further, µ closer to the true state θ decreases the absolute value of the bias. This not

surprising, since it means there is a larger probability mass of categorical traders for each

given price π willing to invest in the right choice, all else equal. And although the results in

Proposition 3 seemed to suggest that π∗ may not always be monotone in µ, these examples

show that for plausible cases it is.

The effect of σ is ambiguous. Generally, the parameter shifts probability mass closer to

or farther away from µ. If µ is small, then a higher σ means there is a larger probability

mass at high values of qi. Consequently, a higher σ increases bias for low µ and θ = 0, or

for high µ and θ = 1. That is, there are more wrongly investing categorical traders, which

drive the market price in the wrong direction. Similarly, a larger σ improves the prediction

if µ is far from θ, because it increases the mass of correctly investing categorical traders.

The effect is more pronounced with lower ω, where the prior has more influence on the

market price. With larger σ, the amount of information is reduced (with the exception of

θ = 1, ω = 5, µ = .1). This is because there is less probability mass for priors around the

market price, which is usually close to µ.

The prediction in the model without information acquisition π∗0 is unaffected by endow-

ment, because it does not influence beliefs. Moreover, the prediction is the same independent

of the state of the world, because investment decisions are not correlated with θ. Finally,

the forecasts in the model with information acquisition are never worse, and usually strictly

better than in the model without. Averaging over the 36 cases in Table 1, the forecast bias

in the Manski model is larger by 0.1, i.e., about 10.5 percentage points, given the same

endowment and prior distribution. Therefore, allowing for information acquisition goes a

long way in explaining forecast accuracy. But note that the model without information

acquisition may produce better forecasts for very unsmooth prior distributions Q, as the

following example shows.

Example. Take any ω and Q with non-increasing aggregate demand. Without loss of
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generality, consider θ = 1. Comparing the model without (no) information acquisition

(NIA) with equilibrium price π∗0 and the model with acquisition (IA), bias in IA is smaller

(π∗ > π∗0) if and only if A-investments by discriminatory traders in IA more than replace

investments by categorical A traders in NIA that are discriminatory traders in IA at π = π∗0.

That is, if and only if, evaluated at π∗0,∫ tu

tl

min

{
qiαi + (1− qi)βi + 4

8
, ν̂

}
dQ(qi) > Q(tu)−Q(π∗0). (6)

In this case, price π∗0 leads to excess demand for A in IA, so, because demand is non-

increasing, only π∗ > π∗0 clears the market. To construct a counterexample, consider the

piecewise uniform density function

q(qi) =

m, for qi ∈ [0, 1/4] ∪ (1/2, 3/4]

2−m, for qi ∈ (1/4, 1/2] ∪ (3/4, 1],

where 2 > m > 1. The equilibrium price without information acquisition is π∗0 = 1/2,

since 1 − Q(1/2) = 1/2. Just right of 1/2 is a higher density than just left of 1/2. By

symmetry, |tl − 1/2| = |tu − 1/2| for π = 1/2. Now, ω small enough such that tu ≤ 3/4

implies Q(tu)−Q(1/2) = (tu− 1/2)m, while the LHS of (6) is 2ν∗(tu− 1/2) (ν∗ is constant

for all qi ∈ [0, 1] at π = 1/2). Hence, the market price is larger (bias is smaller) in IA if and

only if ν∗(ω, π = 1/2) > m/2.

Intuitively, if there is a large probability mass of categorical A traders in NIA, who are

discriminatory traders with low signal precision in IA, while only a small probability mass

of categorical B traders is affected, then demand for the A-contract at π = 1/2 decreases

when allowing for information acquisition. By the demand monotonicity assumption, this

implies π∗ < π∗0, i.e., greater bias given θ = 1. Nevertheless, for large ω or smoother prior

distributions information acquisition improves the market forecast.

2.4 Endogenous weighting: endowment heterogeneity

In elections or votes, each “voice” has equal weight. For purposes of preference aggregation,

this may be just, but if voting is meant to determine an objectively correct state, then equal

weighting need not yield the best outcome. Indeed, if pooling of information is not possible,

the optimal weighting is to give full weight to the agent with the best information about

the state. However, it is usually not obvious who that agent is. In the asset market, this

dilemma is solved endogenously by weighting each bet with its wager, or each trade with

its volume (“weighting effect”). Combining with the earlier result that higher endowment

induces more information acquisition (“incentive effect”), the market endogenously gives

higher weight to traders with better forecasts, all else equal.
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This interaction of the incentive effect and the weighting effect is my main explanation

why prediction markets work. It is not necessary that all traders in the economy have

accurate beliefs about the outcome. Instead, it is sufficient to have a few high endowment

agents, who choose to be informed because of large stakes, and can drive the market price in

the right direction due to their large weight in the market. In conventional financial markets,

these high endowment agents may be hedge funds and investment banking divisions, who can

move millions of dollars and have access to research into potential investment opportunities

that smaller investors cannot afford.

In the following, I assume for simplicity there are two endowment groups (ω1, Q1) and

(ω2, Q2), represented by endowment and prior distribution. The share of traders of group

1 in the economy is 1 > γ > 0. The equilibrium price in a hypothetical market populated

only by group 1 is π∗1, and the price in the hypothetical low endowment market is π∗2,

which is a way of expressing prior distribution and endowment of the group in terms of

a forecast. Lemma 4 in the Appendix shows that the market price in the economy with

both groups is strictly between π∗1 and π∗2 if demand is non-increasing in the price, i.e.,

min{π∗1, π∗2} < π∗ < max{π∗1, π∗2}. An immediate consequence of this result is the following.

Corollary 5. If the economy consists of two endowment groups ω1 > ω2, and demand is

non-increasing in the price for both groups, then the market price π∗ has a smaller bias than

the price in a market consisting only of the low endowment group π∗2 if and only if the bias

in the high endowment economy is smaller (|θ − π∗1| < |θ − π∗2|).

This corollary implies that if one could add a group of high endowment traders or traders

with better information to the market, then the market prediction improves as a result. To

analyze the weighting effect, consider an equal weight price I∗, defined in the general case

as ∫ 1

0

1{ai(qi, ωi, I∗) > bi(qi, ωi, I
∗)}dQ(qi) = I∗.

The price is determined by equating the share of the number of investments in A (instead

of the share of dollars in A) with the price I∗ that induces these investments. This method

gives equal weight to every trader, but it is not a market clearing price whenever it diverges

from π∗. Thus, the market maker might have to use his own funds to pay the winners, or

he might make a profit. If endowment is homogeneous or if π∗1 = π∗2, then π∗ = I∗.

Proposition 6. Suppose the economy consists of two endowment groups ω1 > ω2, and

demand is non-increasing in the price for both groups. If π∗1 > π∗2, then π∗ > I∗. Similarly,

π∗1 < π∗2 implies π∗ < I∗.

Proof. See Appendix.

Corollary 7. If |π∗1 − θ| < |π∗2 − θ|, then endogenous weighting compared to equal weighting

is unambiguously bias reducing, i.e., |π∗−θ| < |I∗−θ|, but the improvement is smaller than

for optimal weighting, i.e., |π∗1 − θ| < |π∗ − θ|.
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As shown in the previous sections, a larger endowment leads to smaller bias |θ − π∗|.
Thus, the endogenous weighting implied by market clearing is bias reducing if prior beliefs

and endowment are independent in the economy, or if higher endowment groups tend to

have more accurate priors. An evolutionary argument makes the latter condition plausi-

ble: traders with better priors have better forecasts, so they increase their endowment by

making the right investments. Hence, over time high endowment traders are the ones with

better priors (e.g., Servan-Schreiber et al., 2004). Conversely, traders with bad priors “die

out,” be it because they go broke or because they recognize their inability to forecast and

stop investing. Endogenous weighting increases bias only if the low endowment group has

considerably better priors to compensate for the inferior information due to the incentive

effect, so that π∗2 is closer to θ than π∗1. In summary, the endogenous weighting of the market

improves on the effect of information acquisition by giving more weight to better forecasts.

3 Discussion: Interpreting prediction market prices

Several authors have asked what prediction market prices represent. Contrary to common

interpretation, Manski (2006) shows that an equilibrium price with risk neutral traders,

interpreted as probability forecast, may be far from the mean belief in the economy. Gjerstad

(2005) and Wolfers and Zitzewitz (2006) demonstrate that this disparity is smaller for risk

averse agents. They use a non-Bayesian set-up with arbitrary distribution of beliefs, which

may or may not be close to the actual outcome. Consequently, the mean belief is a convenient

summary statistic, but it may not be a good predictor of the outcome. What we are instead

interested in is how price π∗ relates to the outcome θ. The key question is whether the

price is driven by opinion, which may be close or far from the truth, or by information

and evidence, which is correlated with the outcome and therefore more reliable. Even

if initial beliefs about the outcome are off, the prediction market may generate a good

forecast if agents have sufficient incentives to seek out information and revise their beliefs

and investments. Of course, it is possible to interpret the belief distribution of Manski

et al. as posterior distribution after information acquisition. Any information acquisition

equilibrium based on prior distribution Q can be reached in the model without information

acquisition and distribution R such that (assuming homogeneous endowment)

1−R(π∗) = 1−Q(tu) +

∫ tu(π∗)

tl(π∗)

min

{
qiαi(π

∗) + (1− qi)βi(π∗) + 4

8
, ν̂

}
dQ(qi) = π∗.

Yet, merely assuming such a distribution without modeling its generation does not give any

insights into its informational content. Moreover, meaningful comparative static analysis

is not possible, as R is fixed for ω and Q, and changes in information acquisition (e.g.,

incentive compatibility) would not be captured.

To understand the role of information in the price, suppose all traders acquire signals of
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equal precision ν > 1/2, and invest according to their signal, i.e., in A iff si = 1 and in B iff

si = 0. Then the unique equilibrium price for the case θ = 1 is π∗ = ν, because exactly the

fraction ν of the population invests in A. Hence, the equilibrium price represents the quality

of information in this economy and the prediction market favorite would perfectly forecast

the outcome. But traders do not always invest based on solid information. In the general

model with equilibrium (5), the price represents a mixture of information and opinion.

Taking only the investments of informed traders, DA/DB reveals the true state of the world

perfectly in the continuum (DA/DB > 1 iff θ = 1), but in anonymous markets these can

hardly be told apart from investments driven by opinion. Thus, if neither endowments ωi

nor the distribution of priors Q in the economy are known, the price could be anything

from an aggregation of wrong opinions to a very precise forecast. If at least endowments

were known, then an outside observer would infer, ceteris paribus, that the price is a better

predictor the larger the endowments.

A market observer, who knows that accuracy of priors and endowment are not negatively

correlated, can improve on the market forecast by giving more weight to large investments.

In theory, he could perfectly infer the true state of the world by observing the difference of

investment behavior (conditional on price) of high endowment and low endowment traders

as the number of traders becomes large, because investments from high endowment traders

are more likely to be correct. However, analyzing investment behavior of traders, Rothschild

and Sethi (2013) note that motives other than maximizing financial returns may play a role

in practice. Hence, inferring information in favor of A from a large investment in A may

not be valid. For example, Rothschild and Sethi (2013) speculate that large investments in

the Romney contract in the 2012 US presidential election may have been a manipulation

attempt to keep the price from plummeting. This is likely not a large concern for accuracy,

otherwise predictions would not be as accurate as we observe. Nevertheless, there is more

to a prediction market price than the mean belief of traders.

4 Conclusion and future research

Costly information acquisition explains the existence of uninformed traders, who do not ac-

quire information and rely only on their opinion when investing, and of informed traders. In

my model, noise traders, whose existence is usually just assumed to avoid the implications

of no trade theorems, and informed traders evolve endogenously from an initial distribution

of opinions and endowment. Thus, good forecasts are not explained merely by the exis-

tence of insiders in the market (and bad ones by their absence). Rather, the information

acquisition explanation implies that accurate initial beliefs as well as large endowment—

improving incentives for information acquisition—can lead to good forecasts, but low stakes

and inaccurate beliefs may also lead to bad ones. It also implies that larger weight on bets

or votes of high endowment agents may improve information aggregation, at least as long
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as pooling of information is difficult and other motives such as manipulation (Rothschild

and Sethi, 2013) play a minor role. Endogenous weighting has a bias reducing effect, unless

endowments and priors are negatively related.

There appears to be only one empirical paper that attempts to shed light on the role of

money as incentive in futures markets. Servan-Schreiber et al. (2004) compare predictions of

a play money prediction market and a real stakes prediction market. They find no significant

difference in forecast accuracy, but stress that the play money market has stronger selection

of good forecasters, because large ‘play endowment’ can only be obtained with a record of

correct predictions. Moreover, the top traders could redeem play money for prizes, thus

providing different (rank order) incentives for information acquisition. A direct test of the

information acquisition explanation, e.g., by endowing traders with play money randomly

to rule out selection effects, is yet to be done.

An evolutionary explanation is not just compatible, indeed it complements the infor-

mation acquisition explanation. Successful investing increases endowment, which improves

incentives for information acquisition and thereby future success, along with weight in the

market. Recently, Blume and Easley (2006) asked whether agents with more accurate beliefs

survive over time in the market, whereas agents with inaccurate beliefs vanish. In an infinite

horizon consumption model, they show that risk averse agents in complete markets indeed

survive only if they have correct beliefs, given that someone else does. If no one has accurate

beliefs, then those with beliefs closest to the truth survive, assuming homogeneous discount

factors. However, their results may not be directly applicable to prediction markets. For

instance, they do not model entry of new traders. And if there is continuous entry of new,

biased traders, then the population will never be completely free of biased beliefs. Moreover,

selection with respect to beliefs is retroactive, i.e., survivors have had correct forecasts. Con-

sequently, selection need not guarantee accurate forecasts in the future if novel events come

up for prediction. A question for empirical research is whether there is a forecasting ability,

so that past accuracy is positively related to future accuracy, or whether selection just favors

those who “got lucky,” in which case there would be a regression-toward-the-mean effect.

Appendix A: Upper and lower threshold of incentive

compatible priors

The goal is to find tu, the upper threshold of prior belief qi, where information acquisition is

just incentive compatible. Note that, for large ωi, precision levels ν∗i may be greater 1 and

therefore violate the axioms of probability. Moreover, for large ωi, there is no type qi ∈ [0, 1]

for which no information acquisition is preferable (i.e., there is no real solution for ql, qu

below). This requires case distinctions. Ignoring constraints, the type that is indifferent

between information acquisition and relying on his prior knowledge is found by setting the
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square root term in (3) equal to zero, which gives qu, and including constraints we obtain

tu =

qu(π) =
−y−
√
y2−4xz

2x
if ν∗(qu) ≤ ν̂, qu ≤ 1 and qu ∈ R,

q : ν(q) = ν̂ ∧ q ≥ π otherwise,

where x = (α − β)2, y = −2β2 − 8α − 8β + 2αβ, z = β2 + 8β. qu is the smaller of the two

solutions of the U-shaped quadratic equation. Only the case qi ≥ π has to be considered

here, because at qi = π information acquisition is always incentive compatible (Proposition

1), so the upper threshold must be larger than the price. For the lower threshold type ql,

the square root term in (4) is similarly set to zero, resulting in

tl =

ql(π) =
−y+
√
y2−4xz

2x
= 1− qu(1− π) if ν∗(ql) ≤ ν̂, ql ≥ 0 and ql ∈ R,

q : ν(q) = ν̂ ∧ q ≤ π otherwise,

where x = (α − β)2, y = −2β2 + 8α + 8β + 2αβ, z = β2 − 8β. This is the larger of the

two solutions to the U-shaped quadratic equation. The following properties of the threshold

functions are used in the proofs. With respect to the price,

∂qu
∂π

> 0,
∂ql
∂π

> 0, and
∂qu
∂π

>
∂ql
∂π
⇐⇒ π < 1/2,

∂qu
∂π

<
∂ql
∂π
⇐⇒ π > 1/2.

Using symmetry,

∂qu
∂π

= (1− ql(1− π))′ = q′l(1− π) = q′u(π), q′l(1/2) = q′u(1/2).

Moreover,

∂qu
∂ω

> 0,
∂ql
∂ω

< 0, and
∂qu
∂ω

> −∂ql
∂ω
⇐⇒ π < 1/2,

∂qu
∂ω

< −∂ql
∂ω
⇐⇒ π > 1/2.

Appendix B: Proofs

Proposition 1.

i. Incentive compatible precision levels always discriminate, i.e., ν(qi, ωi, π) ∈ R =⇒
ν(qi, ωi, π) ≥ ν̃(qi, π).

ii. The incentive compatibility constraint to acquire information becomes less stringent as

|qi − π| decreases. If qi ≤ π ≤ 1/2 or 1/2 ≤ π ≤ qi, then ∂νi
∂|qi−π| ≤ 0. Moreover, if

prior beliefs in the economy are distributed according to a density q with full support on

[0, 1], then there exists a positive probability mass of traders with prior qi around π who

acquire information.
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iii. The incentive compatibility constraint becomes less stringent as ωi increases for suffi-

ciently large ωi. If, for some ωi > 0, informative signals are acquired, then larger ωi

strictly increases signal precision until νi = ν̂. ( ∂νi
∂ωi
≥ 0)

Proof. i. Setting qi = π, both ν and ν̃ take value 1/2, the global minimum. The former

increases faster as qi deviates, hence the result follows.

ii. From i., νi ≥ ν̃ for qi close to π for any ωi > 0. Since νi(π = 1/2) = 1/2 and νi(π)

is continuous with finite slope, there exists a neighborhood around qi = π such that

νi < ν̂ whenever ν̂ > 1/2.

Setting qi = π, νi − νi =
√
ωi/2 > 0. Since νi, νi are continuous in qi, there exists a

neighborhood around qi = π such that [νi, νi]∩ [ν̃i, ν̂] 6= ∅. Because the density of qi is

strictly positive everywhere, there is a positive probability mass of traders with qi such

that information acquisition is incentive compatible.

The term within the square root of (3) or (4) is strictly decreasing in qi if qi > π and

strictly increasing if qi < π. If the term is negative, then information acquisition is

not incentive compatible. Thus, the incentive compatibility constraint becomes less

stringent as qi approaches π.

Because ν∗i is increasing in qi whenever π < 1/2 and decreasing whenever π > 1/2, the

chosen precision is increasing in qi for qi ≤ π ≤ 1/2 and decreasing for 1/2 ≤ π ≤ qi.

Together with the effect on the stringency of the IC, ∂νi
∂|qi−π| ≤ 0 if 1/2 ≤ π ≤ qi or

qi ≤ π ≤ 1/2.

iii. I first show that the range of incentive compatible effort levels is nondecreasing for

sufficiently large ωi > 0. Incentive compatible positive effort levels exist iff the term

within the square root in (3) or (4) is nonnegative. This term becomes positive for

sufficiently large ωi, because all squared ωi terms have positive sign, while one (linear)

ωi term has a negative sign.

To be shown: choice set [νi, νi] ∩ [ν̃i, ν̂] is nondecreasing and non-empty as ωi → ∞.

Since i. states ν̃i ≤ ν, it remains to be shown that sufficiently large ωi implies νi < ν̂.

Claim: limω→∞ νi → ν̃. To see this,5 apply a Taylor approximation for νi (see (3), (4)),

which is of the form y −
√
y2 − z ≈ z/(2y) and holds for y >> z. Then, as ωi →∞,

z

2y
=

1 + qiωi/π

ωi[qi/π + (1− qi)/(1− π)] + 4
→ qi/π

qi/π + (1− qi)/(1− π)
= ν̃i.

The above approximation is obtained by Taylor expanding
√

1− x at 1,
√

1− x ≈
1 − 1/2x (omitting higher order terms, as these vanish asymptotically for x small).

5I am grateful to Ron Gordon for this idea.
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Then, using x = z/y2,

y −
√
y2 − z = y − y

√
1− z/y2 ≈ y − y

(
1− z

2y2

)
=

z

2y
.

The Taylor approximation becomes arbitrarily accurate as ωi →∞, since 1−z/y2 → 1.

It is easy to verify that νi converges from above. Therefore, the range of incentive

compatible effort levels is nondecreasing for sufficiently large ωi, so the choice set does

not decrease. Consequently, νi increases as ωi increases until νi = ν̂, because ν∗i is

strictly increasing in ωi.

Proposition 2.

i. There exists an equilibrium price π∗ fulfilling definition 1,

ii. which is implicitly defined as the fixed point of (5).

iii. Assuming homogeneous endowment (ωi = ω), the equilibrium is unique for ω such that

ν̂ is binding,

iv. and unique for ω such that ν̂ is non-binding if ω is small.

Proof. i. The maximization problem for each i is continuous, with maximizer ai, bi from

the compact set ωi ≥ ai+bi ≥ 0. Applying Berge’s maximum theorem, the demand cor-

respondence is upper hemi-continuous (uhc) in the parameters, non-empty and compact-

valued. This implies that aggregate demand is uhc in the parameters (Aumann, 1976).

Given risk-neutrality, demand is multi-valued if and only if pi = π. In this case, demand

is the budget line, which is a convex set. Writing (5) as mapping [0, 1]→ [0, 1],∫ ω

0

(
1−Q(tu) +

∫ tu

tl

min{ν∗(qi, π), ν̂}dQ(qi)

)
ωidW (ωi)/

∫ ω

0

ωidW (ωi) = π,

Kakutani’s fixed point theorem guarantees the existence of π fulfilling definition 1.

ii. In equilibrium, the number of contracts demanded for either outcome must be identical,

so that investments from the losers are identical to earnings of the winners. Without

loss of generality, suppose θ = 1. Then, denoting the mass of categorical traders buying

A-contracts at price π∗ by CA and the mass of discriminatory A traders by DA (similarly

for B), the equilibrium price fulfills∫ ω

0

ωi
CA +DA

π∗
dW (ωi) =

∫ ω

0

ωi
CB +DB

1− π∗
dW (ωi)

⇐⇒
∫ ω

0

ωi(CA +DA)(1− π∗)− ωi(CB +DB)π∗dW (ωi) = 0

⇐⇒
∫ ω

0

ωi(CA +DA − π∗)dW (ωi) = 0,
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because CA + CB + DA + DB = 1, and because risk neutral agents invest the entire

endowment ωi. Replacing the CA, DA terms, this is the desired expression.

iii. Rewriting,
∫ tu(π)
tl(π)

min{ν∗, ν̂}dQ = ν̂[Q(tu) − Q(tl)], since ν̂ is binding. A change in π

changes this term by ν̂[t′uq(tu) − t′lq(tl)], and changes 1 − Q(tu) by −t′uq(tu). Hence,

ν̂[t′uq(tu)− t′lq(tl)]− t′uq(tu) < 0, since ν̂ ≤ 1 and t′u, t
′
l > 0. Thus, the probability mass

investing in A is strictly decreasing in π, so there is a unique π∗ fulfilling equality (5).

iv. For ω with non-binding ν∗i = qiω
8π

+ (1−qi)ω
8(1−π) + 1/2, the precision has to be constrained for

π → 1 and π → 0 nonetheless. Thus

∂α/8

∂π
=

− ω
8π2 if ν∗i < ν̂

0 if ν∗i ≥ ν̂.
,
∂β/8

∂π
=

 ω
8(1−π)2 if ν∗i < ν̂

0 if ν∗i ≥ ν̂.

The demand for contract A (for the case θ = 1) is

1−Q(tu) +

∫ tu

tl

qiα + (1− qi)β + 4

8
dQ(qi) = 1−Q(tu) +

[
β

8
+

1

2

]
(Q(tu)−Q(tl))

+
α

8

[
tuQ(tu)− tlQ(tl)−

∫
Q(qi)dqi

]
− β

8

[
tuQ(tu)− tlQ(tl)−

∫
Q(qi)dqi

]
using integration by parts. Differentiating with respect to π using Leibniz’ integral rule

and simplifying,

∂

∂π
=q(tu)t

′
u

[
−1

2
+ tu

α

8
+ (1− tu)

β

8

]
+ q(tl)t

′
l

[
−1

2
− α

8
tl − (1− tl)

β

8

]
+
∂β/8

∂π

[
Q(tu)(1− tu)−Q(tl)(1− tl) +

∫
Q(qi)dqi

]
+
∂α/8

∂π

[
tuQ(tu)− tlQ(tl)−

∫
Q(qi)dqi

]
.

(7)

Now, −1
2

+ tu
α
8

+ (1 − tu)
β
8
≤ 0, since 1

2
≤ ν∗ = qiα+(1−qi)β+4

8
≤ ν̂ ≤ 1 ∀qi ∈ [0, 1].

Therefore, the first two terms are negative (t′u, t
′
l > 0). The remaining two terms

have a positive upper bound of −∂α/8
∂π

+ 2∂β/8
∂π

, because 0 ≤
∫ tu
tl
Q(qi)dqi ≤ 1 and

0 ≤ Q(tu) − Q(tl) ≤ 1. This upper bound can be decreased arbitrarily by reducing ω.

For ω → 0, the entire expression converges to −1/2(q(tu)t
′
u + q(tl)t

′
l) < 0, so demand is

decreasing in response to a decreasing π for small ω, and uniqueness follows.

Proposition 3. Comparative statics if demand is non-increasing in the price, ω is homo-

geneous and θ = 1.

i. Any change in the prior distribution from Q to R such that Q(qi) > R(qi) ∀qi ∈ (0, 1)

increases the market price π∗ if ν̂ is binding, unless all agents in the Q-economy already

acquire information.
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ii. With priors qi ∼ N (µ, σ2) and ω < (1 − π∗)4, an upward shift of µ increases the

equilibrium price π∗ for each µ, σ if π∗ ≤ 1/2.

iii. With priors qi ∼ N (µ, σ2) and endowment ω < (1− π∗)4 sufficiently small, an upward

shift of µ increases the equilibrium price π∗ for each µ, σ and π∗.

iv. With priors from the triangular distribution, an increase in the mode value d leads to

an increase of the market prediction π∗ if d < tl or d > tu.

v. Higher endowment increases information in the economy as measured by

DA =

∫ tu

tl

min{ν∗(qi), ν̂}dQ(qi),

i.e., more traders obtain information of higher precision.

vi. For any distribution of priors with non-increasing density q the market prediction π∗

increases in response to a non-binding endowment increase if π∗ ≥ 1/2.

vii. With priors qi ∼ N (µ, σ2) the market prediction π∗ increases in response to an endow-

ment increase for π∗ ≥ 1/2, ν̂ non-binding and |µ− tl| < |µ− tu|.

Proof. i. Not all agents acquire information, which implies tl ∈ (0, 1) or tu ∈ (0, 1). The

demand for the A-contract is 1−Q(tu)+
∫ tu
tl
ν̂q(qi)dqi = 1−Q(tu)+ ν̂[Q(tu)−Q(tl)]. For

any change Q(qi) > R(qi) ∀qi ∈ (0, 1), the demand changes by Q(tu)−R(tu)+ ν̂[R(tu)−
Q(tu)− R(tl) +Q(tl)] > 0, since [1− ν̂]Q(tu) ≥ [1− ν̂]R(tu) and Q(tl) ≥ R(tl) with at

least one strict inequality, as tl or tu is in the interior. The increase of the equilibrium

price is implied by the implicit function theorem and non-increasing demand.

ii. Defining E(qi) ..=
∫ tu
tl
qiφ((qi − µ)/σ)/σdqi, the definition of the equilibrium price (5)

(assuming non-binding ν̂) with normally distributed priors is

1 + Φ

(
tu − µ
σ

)[
β

8
− 1

2

]
+ E(qi)

[
α

8
− β

8

]
+ Φ

(
tl − µ
σ

)[
−β

8
− 1

2

]
− π∗ = 0.

By the implicit function theorem,

dπ∗

dµ
= − ∂(5)/∂µ

∂(5)/∂π∗
= −

>0 since ω<(1−π∗)4︷ ︸︸ ︷
− 1

σ
φ

(
tu − µ
σ

)
β − 4

8

≤0 if π∗≥1/2︷ ︸︸ ︷
+E(qi)

′α− β
8

>0︷ ︸︸ ︷
− 1

σ
φ

(
tl − µ
σ

)
−β − 4

8

∂(5)/∂π∗︸ ︷︷ ︸
<0

> 0.

(8)

The weight of the E(qi)
′ term can be scaled down arbitrarily by lowering ω, while the
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weight of the φ-terms in the numerator converge to 1/(2σ), showing iii. The E(qi)
′ term

is always non-positive for π∗ ≤ 1/2, thus showing ii.

iii. Shown in ii.

iv. For case d < tl

CA +DA =
(1− tu)2

1− d
+

∫ tu

tl

min{ν∗, ν̂}2(1− qi)
(1− d)

dqi > 0,

∂(CA +DA)

∂d
=

(1− tu)2

(1− d)2
+

∫ tu

tl

min{ν∗, ν̂}2(1− qi)
(1− d)2

dqi > 0.

Consider next the case d ≥ tu

CA +DA = 1− t2u
d

+

∫ tu

tl

min{ν∗, ν̂}2qi
d
dqi,

∂(CA +DA)

∂d
=
t2u
d2
−
∫ tu

tl

min{ν∗, ν̂}2qi
d2
dqi ≥

t2u
d2
− ν̂

[
t2u
d2
− t2l
d2

]
> 0,

because ν̂ < 1. The comparative static is implied by non-increasing demand and the

implicit function theorem.

v. Using Leibniz’ integral rule,

∂DA

∂ω
=

∫ tu

tl

(
qi

8π∗
+

(1− qi)
8(1− π∗)

)
q(qi)dqi

+
tuα + (1− tu)β + 4

8
q(tu)t

′
u −

tlα + (1− tl)β + 4

8
q(tl)t

′
l > 0,

because ∂tl/∂ω < 0 and ∂tu/∂ω > 0.

vi. Using Leibniz’ integral rule,

∂(5)

∂ω
=

>0︷ ︸︸ ︷∫ tu

tl

(
qi

8π∗
+

(1− qi)
8(1− π∗)

)
q(qi)dqi

+
tuα + (1− tu)β − 4

8︸ ︷︷ ︸
<0,>−1/2

q(tu)t
′
u −

tlα + (1− tl)β + 4

8︸ ︷︷ ︸
<1,>1/2

q(tl)t
′
l.

Since t′u > 0, t′l < 0, but t′u < −t′l ⇐⇒ π∗ > 1/2 when ν̂ is not binding, and since

density q is non-increasing, the expression is positive.

vii. Whenever µ is closer to tl than to tu, the former point has higher density by symmetry.

The rest follows from the proof of the previous result.
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Lemma 4. If the economy consists of two groups with π∗1 6= π∗2, and demand is non-

increasing in the price for both groups, then the unique market price π∗ fulfills min{π∗1, π∗2} <
π∗ < max{π∗1, π∗2}.

Proof. If θ = 1, the equilibrium price is

γω1

[
1−Q1(tu(π

∗, ω1)) +

∫ tu(ω1)

tl(ω1)

min{ν∗(π∗, ω1, qi), ν̂}dQ1(qi)− π∗
]

+(1− γ)ω2

[
1−Q2(tu(π

∗, ω2)) +

∫ tu(ω2)

tl(ω2)

min{ν∗(π∗, ω2, qi), ν̂}dQ2(qi)− π∗
]

= 0.

(9)

Suppose without loss of generality π∗1 > π∗2. By monotonicity of demand, the LHS when

evaluated at π = π∗2 is positive and therefore cannot be a market clearing price. Since

demand for the A-contract is weakly decreasing in π in both groups, the LHS is strictly

decreasing in π. Thus, the unique market clearing price must fulfill π∗ > π∗2. Similarly, the

LHS evaluated at π = π∗1 is positive, which implies π∗ < π∗1.

Proposition 6. Suppose the economy consists of two endowment groups ω1 > ω2, and

demand is non-increasing in the price for both groups. If π∗1 > π∗2, then π∗ > I∗. Similarly,

π∗1 < π∗2 implies π∗ < I∗.

Proof. For θ = 1, I∗ is defined as

γ

[
1−Q1(tu(I

∗, ω1)) +

∫ tu(I∗,ω1)

tl(I∗,ω1)

min{ν∗(I∗, ω1, qi), ν̂}dQ1(qi)− I∗
]

+(1− γ)

[
1−Q2(tu(I

∗, ω2)) +

∫ tu(I∗,ω2)

tl(I∗,ω2)

min{ν∗(I∗, ω2, qi), ν̂}dQ2(qi)− I∗
]

= 0.

Setting the price equal to π∗, which fulfills π∗1 > π∗ > π∗2 (Lemma 4), the first term within

brackets is positive, while the second is negative. Since the relative weight of the first term is

reduced compared to (9), because ω1 > ω2, while the relative weight of the second is larger,

the LHS is negative. Consequently, the unique solution I∗ must be smaller than π∗.
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