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This paper proposes a behavioral model of social learning that uni-
fies various forms of inferential reasoning in one hierarchy of types.
Iterated best responses that are based on uninformative level-0 play
lead to the following of the private information (level-1), to the follow-
ing of the majority (level-2), to a differentiated view on predecessors
(level-3), etc. I present evidence from three sources that these are
the prevalent types of reasoning in social learning: a review of social
learning studies, existing data from Celen and Kariv (2004) as well
as new experimental data that includes written accounts of reasoning
from incentivized intra-team communication.
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How does the observation of others’ choices influence a person’s vote for a
political candidate, a CEQ’s placing of a takeover bid or a doctor’s choice of a
medical treatment. In other words, how do people use information about others’
decisions when they have to decide on a similar matter? Can the iterated belief
structure of the level-k model for strategic decisions usefully describe how others’
decisions are fathomed in such a social learning context? This study aims to
illuminate these questions with the use of experimental data.

A first theoretical perspective on social learning was given by models of Bikh-
chandani, Hirshleifer and Welch (1992) and Banerjee (1992). In a sequence of
decision-makers that want to act according to the true but uncertain state of the
world, players hold private information and observe their predecessors’ decisions.
A striking conformity and a wasteful neglect of private information are predicted
to eventually emerge in form of an information cascade.

A large experimental literature, starting with Anderson and Holt (1997, AH
henceforth), set out to test the assumption of Bayesian inference within error-
rate or Quantal Response Equilibrium (QRE) models (for example, Celen and
Kariv, 2004; Drehmann, Oechssler and Roider, 2005; Goeree, Palfrey, Rogers and
McKelvey, 2007). Kiibler and Weizsécker (2004) estimate the depth of reasoning
in an error-rate model as they allow the error to depend on the level of reasoning.
The studies generally find substantial deviations from Bayesian inference, mostly
in that decision-makers overweight their own information.

Other studies try to explicitly model the deviations from Bayesian inference
and propose various types of players. Hung and Plott (2001) consider “truth-
ful, private-information revealers” and “naive Bayesians”, who think others are
truthful. Eyster and Rabin (2005) analyze “cursed” players who underinfer from
others actions and thus play truthful. Further, they propose “Best Response
Trailing Naive Inference”, a best response to cursed players (Eyster and Rabin,
2010). Dominitz and Hung (2004) consider Bayesians that deem off-equilibrium
play informative, an intuition already formulated by AH and predicted by the
error-rate models.

In this paper, I propose a behavioral model of social learning that unites a va-
riety of these types in one coherent framework. Inspired by the level of reasoning
model of strategic thinking (Nagel, 1995; Stahl and Wilson, 1995; Costa-Gomes,
Crawford and Broseta, 2001; Camerer, Ho and Chong, 2004), my model organizes
types by the number of iterated best responses to uninformative level-0 play.In

the resulting hierarchy, types are linked via the population belief so that lower



level types describe the model that higher types form of other decision-makers.

In particular, a level-1 player believes that all predecessors’ actions stem from
uninformative level-0 play; her best response is therefore to follow the private
signal. Believing all others to play according to their signal, the level-2 player
views all previous actions as equally informative as her own private signal. Level-
3 players realize that some level-2 actions do not reflect private signals and assess
them as uninformative. So does level-4 for level-3 play, etc.

The model as a whole is related to the incomplete information level-k model
which Crawford and Iriberri (2007) introduce to analyze data on common value
auctions. The most closely related model is by Brocas, Carillo, Wang and
Camerer (2010) who provide a level-k model in the context of zero-sum betting.
Both applications feature inference of private information as well as strategic
interaction. In contrast, looking at social learning puts the focus entirely on
inference and abstracts from strategic interaction.

Most of the experimental literature in social learning relates to the seminal
paper by Anderson and Holt (1997). In their experiment, subjects observe a
binary private draw that reveals the state of the world correctly with a probability
of % Before subjects choose a binary action to match the state, they can observe
the actions of all predecessors. Due to the coarse binary structure, this setting
provides only limited information about the reasoning underlying the observed
decisions. For example, level-2 or higher and Bayesian reasoning are predicted to
always play the same actions. For Eyster and Rabin (2010, p. 236), “the existing
experimental literature is generally not well-designed to differentiate among likely
hypotheses about the nature of observational learning.” In my analysis, I turn to
a different framework of social learning and a new experimental method in order
to be able to differentiate types.

First, I reconsider various experimental studies in the AH tradition and re-
late the findings to features of the proposed model. Second, I analyze the rich
data of a social learning experiment with continuous actions from Celen and
Kariv (2004, CK henceforth). Finally, I use the original AH and CK setups in
two experiments with intra-team communication as introduced by Burchardi and
Penczynski (2012).

In all instances, I find evidence in favor of the modeled heterogeneity in infer-
ential reasoning. In all analyses on the individual level, subjects of all types are
detected and the modal behavior turns out to be level-2. The arguments observed

in the team communication mirror the decision rules in the proposed hierarchy



of types.

I conclude that the level-k£ framework is a valid behavioral model of social
learning which explains occurring deviations from Bayesian play and rational
expectations (see Weizsdcker, 2010). The extension of the level-k concept to
social learning has the potential to contribute a similarly good understanding
of inferential reasoning as it achieves for strategic reasoning. Furthermore, this
extension highlights the empirical importance of the cognitive processes that are
modelled in the level-k literature and provides another view on how people form
models of others in their minds.

The paper is structured as follows. Section 1 introduces the general model. The
empirical part is started with a new look at past studies in section 2. The analysis
of CK’s data (section 3) and of the experiments with intra-team communication

(section 4) follows. Section 5 discusses the results before section 6 concludes.

1. The model

After a general introduction to the model, I apply it in sections 1.2 and 1.3 to

the social learning frameworks used in the studies by AH and CK.!

1.1. The general model

Consider a general social learning framework, in which players take actions se-
quentially and aim to match an uncertain state of the world w € €2. A player ¢
receives information about the state of the world via a private signal s; € S.
Furthermore, she observes the history of actions up to round ¢, denoted by
H; = (a1, as,...,a;—1). The strategy of a level-k type at position ¢ in the sequence
is o®(s;, Hy), mapping the observed history H; and the signal s; to an action a € A
in a way that the action maximizes the expected payoff under the information s;
and H,; and the belief that others follow the strategy o*~!. I introduce the model
using a degenerate population belief on level k — 1, p*!' =1 for [ = k — 1, and
discuss unconstrained population beliefs afterwards. In order to talk about the
inference from the action to the observed signal under a given strategy, I denote
the inverse image of a strategy as o* (a;, H;) = {s; € S : o*(sy, H;) = a;}, which
maps histories and actions into sets of signals.

As is common in the level-k literature, the model postulates a hierarchy of

!The application to the framework of Eyster and Rabin (2010) is shown in section A of the
supplementary material.



heterogeneous types. In my model, the hierarchy’s starting point is the level-
0 player that plays uninformatively and randomizes uniformly over the action

space,
O'O<St, Ht) ~ U(A)

Smith and Sgrensen (2000) model a related, uninformative type which I view
as nested in my specification. Their “crazy type” always chooses one and the
same action independently of signal and history. Intuitively, a level-0 player lacks
either an understanding of the game or the motivation to use any information for
his action.

The level-1 player assumes others to be level-0 players and best responds ac-
cordingly. Given the uninformativeness, the recovery of the private signals of
preceding level-0 players is not possible, % (a;, H;) = S is not informative.
Solely the own private signal is informative to level-1 players and enters their

strategy,
ol(sy, Hy) = o' (sy).

This player understands how her private signal is informative but either expects
others to play randomly or does not understand how others’ decisions can be use-
ful. This type has been discussed among others as “Truthful, private-information
revealer” (Hung and Plott, 2001), “Follow your own signal’-type (Kiibler and
Weizsicker, 2004, \; — oo, Ay = 0)?, and “Fully cursed player” (Eyster and
Rabin, 2005).

While level-1 players disregard the history of random actions, level-2 strate-
gies depend on it heavily since all earlier actions are believed to be informa-
tive of the private signals, with only a strict subset of S leading to each action,
o' (ay, Hy) G S. Call the set of predecessors whose actions are informative about
the signal under a level-k strategy Z = {i : 0" (a;, H;) S S Ai < t}. Tt follows
that Z' = {i : ¢ < t}, the set of all predecessors. The level-2 strategy simply

aggregates the own signal and the detailed information about the other signals,?
U2<St7 Ht) - U2<St7 {O-R_(ai’ Hi)}iell)-

This player expects others to play according to their signal and does not see how

they might be like him: influenced by their history. This type has been discussed

2)\; is the precision in a logistic choice function for the ith iterated best response.
3With slight abuse of notation, the argument H; is replaced by the inferred set of signals to
highlight the informational input of the strategy.



as “Naive Bayesian” (Hung and Plott, 2001), “counting heuristic”-type (Kiibler
and Weizsécker, 2004, A\; = Ay — 00, A3 = 0) and BRTNI (Eyster and Rabin,
2010, Best Response Trailing Naive Inference).

A level-3 player can infer the private signals from observed actions if the action
of level-2 players is dependent of their signal, i. e. the signal is not made irrelevant
by others’ actions and ¢° (a;, H;) & S. The level-3 strategy is based on an

inference from those predecessors’ actions that are informative,
3 H _ 3 24/ H.
o (St7 t) = 0 (St7{a ((IZ, Z)}iGIZ)‘

Level-3 players understand that others are influenced by their predecessors and
take this into account when inferring private signals. They are the lowest type in
the hierarchy that necessarily differentiate individual predecessors in their infer-
ence, like Bayesian players do. Unlike Bayesians, they attribute previous play to
level 2, and do not expect others to be like themselves. The level-3 type is some-
what related to the Bayesians that infer from off-equilibrium play as in Dominitz
and Hung (2004) and AH’s (p. 850) intuition.

The level-3 strategy will lead to a set of players Z° with informative actions
which level-4 players will exclusively use to infer private signals. Depending on
the informativeness of actions and signals, higher types’ strategies are more or
less different from lower types and strategies can be identical to Bayesian play.

The strategy of a general level-k type can be expressed as
O'k(St,Ht) = Uk(St,{O'k_h_(ai,Hi)}iezk—l).

The population beliefs in the level-£ literature are specified as either degenerate
on the next lower level £k — 1 (e.g. Nagel, 1995; Costa-Gomes and Crawford,
2006) or as a non-degenerate distribution on levels 0,...,k — 1 (e.g. Stahl and
Wilson, 1995; Camerer et al., 2004). They usually are not specified to differentiate
between individual opponents because in the common applications of the level-k
model players mostly face single individuals or homogeneous groups, like in the
beauty contest game, normal form games, or multi-player auctions.

In social learning environments, differentiation enters naturally because players
differ in their location in the sequence and thus in the information they hold.
Since players know the entire public information available to their predecessors
they will differentiate between them when they expect predecessors’ strategies
to depend on this information. It follows that level-1 and level-2 players do not

differentiate predecessors because they believe them to play independently of their



idiosyncratic history. However, from level-3 onwards, the population belief, pf’l,
depends on the position of the predecessors i because, starting with level-2, the
players’ strategies depend on their history H;.

For ease of exposition, the model is so far formulated with a degenerate and
homogeneous population belief. In the non-degenerate model, the strategy o
would simply depend on inferences from lower level players o', [ =1,...,k—1
weighted by the population belief pf’l. The complete specification that I want to
put forward posits an initial homogeneous population belief (without subscript ),
but allows that the observed history can be used to update the beliefs in a way that
differentiates predecessors. Furthermore, I posit nearly degenerate population
beliefs with most of the probability mass on level £ — 1 and small probabilities
on the remaining levels. In particular, I assume that pf’k_l =1- Z;} e and
pf’l =kl for [ =0,...,k — 2, for a small and positive .

This specification is chosen for two reasons. First, if an observed action and
history rules out that the player is of level-k — 1, the update with Bayes’ rule for
this individual leads again to a nearly degenerate population belief on level k—2.4
Second, believing with small probability that a predecessor plays independently
of his signal and history, pf’o = ¢! works as a tie-breaker and rationalizes that
players follow their private information in case they would be indifferent between

two actions under pi® = 0,

1.2. Anderson and Holt (1997)

The framework used by AH has a simple binary information structure with states
of the world w € {A, B}, private signals s; € {A, B}, and actions a; € {A, B}.
Both states of the world are equally likely. The private signal is informative with
Pr(s=w)= % The payoff of player ¢ is positive when a; = w and 0 otherwise.
The level-0 player randomizes over the action space A = {A, B},
A, with Pr=0.5
0 _ ) )
o st Hi) = { B, with Pr=0.5.
As in the general case, the level-1 player best-responds by simply following his

signal,

o'(sy, Hy) = 0'(s4) =5, C S.

4For example, a level-3 player observes an action that cannot come from a level-2 player. Then
the updated population belief is again nearly degenerate: pf’o = 57 and p?’l = E_%l This

example reflects the intuition that breaks in a cascade are most likely informative, i.e. they
result from level-1 play.



The level-2 player thus deems previous decisions similarly informative as his own
signal and aggregates the information by counting the evidence C! for a given
state of the world,

CHwlsy, Hy) = 1(s; =w) + Z 1(c' (a;, H) = w).

i<t

The level-2 player plays according to the state with the most evidence,
A, if CY(Alsy, Hy) > CY(Blss, Hy),
UQ(StyHt) = B, if CI<A’8t,Ht) < CI<B’3t,Ht),

sy, otherwise.

Consequently, the level-3 player can infer the private signal from actions only if
a different signal had caused the level-2 player to choose a different action. A

level-3 player sums the evidence C? in favor of a given state of the world as follows

C*(w|sy, Hy) = 1(s; = w) + Z “(a;, H;) = w)) )

i€I?

The level-3 strategy is then

A, if 02(A|St, Ht) > 02(B|St, Ht)a
03<8t7Ht> = B, if 02(A|St, Ht) < 02(B|St, Ht)a

s;, otherwise.

In this environment, level-3 actions and beliefs about the state of the world are

2 and o? yield the same

identical to Bayesians’ for a given history. Strategies o
actions, hence higher level players only differ in the population belief and not in

their actions or beliefs about the state of the world.®

1.3. Celen and Kariv (2004)

The setting implemented in CK has discrete actions a; € {A, B}, but contin-
uous, uniformly distributed, bounded signals s; ~ U[—10,10], with the payoff
depending on the match of the action with the sign of the sum of all players’
signals Zthl s¢. For a positive sum, action A yields a positive payoff and action
B nothing, and vice versa for a negative sum.

Usually, a strategy would map from the space of the observed history and
the signal {A, B}'~! x [-10, 10] into the action space {A, B}. Since the expected

payoffs are monotonic in the private signal, the optimal strategies are summarized

5This shows why action data in this framework is not well-suited to distinguish certain forms
of behavior, as noted by Eyster and Rabin (2010).



in a threshold § € [—10, 10]. In the experiment, subjects choose a threshold before
seeing their own signal. After the realization of the signal, the computer derives

actions from the thresholds as follows,

oot = { o)

Since the action only indicates that the signal is above or below the threshold,
the inference about the signal from the action requires above all a belief about
the threshold 6. Then, in conjunction with the observed action, a range of the
possible signal realization can be inferred and leads to an expected value of the
signal.

A rational Bayesian player uses previous actions as well as beliefs about previ-

ous cutoffs to craft her optimal cutoff strategy,®
t—1
s
i=1

This kind of inference assumes rational expectations with respect to the thresholds

¢°(H,) = —-F

H,, eb] .

6° used by predecessors.

A natural choice for level-0 play is a uniform randomization of the cutoffs,
0°(H;) ~ U[-10,10].

Since the cutoff and the signal are automatically translated into an action, this
would be an atypical level-0 belief: the resulting action is as informative as a
cutoff of 0. As opposed to the level-O action, I will therefore model the level-0

belief as randomizing uniformly” over {—10, 10},

~ —10, with Pr=0.5
0 — ’ )
0°(Hy) = { 10, with Pr=0.5.

This level-0 belief reflects a uniform random choice of actions a; € {4, B}® and
the best response for a level-1 player is to follow the private signal and therefore

play the cutoff strategy

0'(H;) = 0.

6See equations 1 and 2 in CK.

"Any strategy is uninformative that exclusively involves the thresholds —10 and 10.

8Since the information content of the level-0 action is not obvious, it is potentially not uncov-
ered by a higher level player. Then, the level-0 action has the same effect in the minds of
higher level players as the modeled level-0 belief.



For a level-2 reasoner, the observation of one action resulting from such a level-
1 strategy leads to an expected signal of 5 after action A and —5 after action B.
It follows that £ [22_1 si|Hy, 0'] =5-#A—5-4B, where #a gives the number
of previously played A or B actions. It can be seen that level-2 players reach
the limits of the action space very quickly and play —10 or 10 once one action
was played in two more occasions than the other one. Here, the level-k model
predicts the information cascades in which own signals are entirely disregarded
(0 € {—10,10}) as analyzed in CK. Only five different actions are predicted to

be observed from a level-2 player,

t—1
s
i

The best response to level-2 play fully discounts actions that resulted from an

0°(H;) = —E

Ht,ell € {-10,-5,0,5,10}.

uninformative threshold of —10 or 10 and uses only the remaining actions to infer
signals. Therefore, the level-3 uses her own signal in addition to the information

from previous informative play,

t—1

>
i

Due to the continuous strategy and signal space in this framework, higher level

0*(H,) = —E

Ht,m] |

players can be differentiated. They form different beliefs about the informative-
ness of observed actions and therefore choose different thresholds. Denoting the
strategy of a level-k player by 6%, the strategies can be recursively expressed as

t—1

PO

%

0F(H,) = —E

H,, 9’6*] .

2. A new look at the literature

The large amount of data available from various implementations of the AH game
enables a first crude analysis of heterogeneity in terms of level-1 vs. level-2 and
higher. For that purpose, using the meta-dataset of Weizsicker (2010), I analyze
decision situations in which the private signal s; goes against the majority in
(Hy, s¢). Thus, the choice is between “following the own signal” (level-1) and
“following the majority” (level-2 or higher, 2+). For experiments with Pr(w =
A) = % and Pr(s, = w) = 2, the last column of Table 1 reports the fraction of
players in the respective study that follow the own signal, from lowest to highest.
This fraction varies between 36.9% and 63.4%.

10



Such heterogeneity resembles the results of “beauty contest” games where the
average level-k estimated in a cognitive hierarchy model depends on the subject
pool (Table II in Camerer et al., 2004). There, students from highly-ranked
or technical universities or professors and graduate students achieve on average
higher levels of reasoning than others. The same pattern is found here. The last
column implies a ratio of level-1 to level-2+ decisions between 0.59 and 1.74. For
a Poisson-distributed level of reasoning, this implies average level estimates in
the range 7 € [0.85,1.7]).7 In Camerer et al. (2004), estimated average levels have

a mean of 1.3 and a median of 1.61, the obtained range is therefore a plausible

one.
Source Subject pool N Level-1 (%)
Goeree et al. (2007) Caltech/UCLA 1575 36.9
Dominitz and Hung (2004) Carnegie Mellon 622 38.1
Hung and Plott (2001) Caltech 266 41.0
Ziegelmeyer et al. (2008) Strasbourg 202 43.1
N6th and Weber (2003) Mannheim 1479 43.1
Kiibler and Weizsacker (2004) Harvard 139 51.1
Alevy et al. (2007) Maryland/ 168 51.8

Professionals

Anderson (2001) Virginia 81 51.9
Cipriani and Guarino (2005) NYU, UCL 34 55.9
Oberhammer and Stiehler (2003) Humboldt Berlin 270 56.3
Drehmann et al. (2005) Well-educated public 95 62.1
Anderson and Holt (1997) U of Virginia 80 62.5
Willinger and Ziegelmeyer (1998) Strasbourg 93 63.4

Notes: Observations feature Pr(w = 0) = 0.5 and Pr(s; = w) = 2.

Exceptions are Ziegelmeyer et al. with Pr(w = 0) = 0.55, Noth and Weber with
Pr(s; = w) = 0.6, Cipriani and Guarino with Pr(s; = w) = 0.7 and Willinger and
Ziegelmeyer with Pr(s, = w) = 0.6.

Table 1: Fraction of decisions following the own signal, not the majority

Apart from the subject pool, the specific experimental implementation seems
to have an impact on the average level of reasoning as well. In particular, the
two studies from Strasbourg occupy very different ranks. One major difference
is that Ziegelmeyer, Koessler, Bracht and Winter (2008) elicit beliefs about true
states of the world and predecessors’ signals, while Willinger and Ziegelmeyer

(1998) do not. It is possible that this procedure fosters a good understanding of

9This range is in accordance with the limited depth of reasoning found in Kiibler and
Weizsécker (2004, A3 = 0).

11



the situation and allows more subjects to evaluate and make use of the public
information.*’

Overall, this table provides first suggestive evidence of a heterogeneity in in-
ferential reasoning analogue to the heterogeneity which the level-k literature has
identified in strategic settings.

Some progress in terms of differentiating between various ways of reasoning
behind one of the binary actions A and B has been made by collecting further
information on beliefs. Oberhammer and Stiehler (2003), Dominitz and Hung
(2004) and Ziegelmeyer et al. (2008) elicit beliefs and find that the beliefs be-
come more extreme during a cascade, a behavior that — in my model — would be
predicted by level-2 play but at odds with level-1, level-3 and Bayesian play. This
points to the important role of heterogeneity as established in my model and in

particular to the potential relevance of level-2 play.

3. Data from Celen and Kariv (2004)

(K implemented their social learning game as explained in section 1.3 in an
experiment at New York University with 40 undergraduate subjects that played
15 independent rounds in sequences of 8 players. After each completed sequence,
participants were informed whether their action coincided with the state of the
world and were paid $2 if it did.

I will use the 15 choices of each subject to investigate their individual type. Fol-
lowing Costa-Gomes and Crawford (2006), I compare the chosen cutoffs {6, }13,
to the cutoffs {#*}12, that an ideal level-k or rational type is predicted to choose
in the exact same 15 situations. I distinguish between the 4 types: level-1, level-
2, level-3, and Bayesian. Figure 1 illustrates “fingerprints” of ideal types and
selected subjects.

As the distance metric between fingerprints of subjects and ideal types I use the
sum of squared differences, SSD = 271»5:1(97“ — 0%)2. T use this measure because
calculating the expected payoff for a cutoff in a given situation is extremely
complex due to the payoff function and the uniformly distributed signals. It
can be observed, however, that the probability of playing the correct action is
quadratic in the cutoff because the cutoff linearly influences i) the probability of

playing a certain action and ii) the probability of playing the correct action given

10The experiments in Drehmann, Oechssler and Roider (2005) and Cipriani and Guarino (2005)
are framed in a more complex financial market context. This might be a reason for the
relatively low ranks despite their highly educated subject pool.

12
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Figure 1: Subjects’ and types’ “fingerprints” in the data of CK
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the action played.

Because of this complexity, it is difficult to craft an objective probability distri-
bution of choosing the correct threshold for different ideal types. I can, however,
calculate the distribution of SSDs resulting from random play and evaluate how
likely it is that random play leads to smaller SSDs than the subject’s SSD. With
random play under the null hypothesis, this tests whether the observed play is
significantly closer to the ideal type than random play. The distribution of SSDs
is type-specific since, for example, random play achieves lower SSDs with respect
to the level-1 strategy of always playing the midpoint of the action space (' = 0)
than under the level-2 strategy with frequent choices of 62 = |10|.!1

Using this data, I classify subjects into the type that gives the lowest significant
SSD (p-value < 0.05).!2 The six players that do not differ significantly from
random play for any type are reported as unclassified (NA). The resulting type

distribution is shown in Table 2a.

Type Frequency Fraction (%) Type Frequency Fraction (%)
1 6 15.0 1 6.42 16.0
2 20 50.0 2 18.61 46.5
3 ) 12.5 3 4.07 10.2
B 3 7.5 B 4.90 12.3
NA 6 15.0 NA 6.00 15.0
Total 40 100.00 Total 40 100.00
(a) Classification by lowest significant (b) Mixture classification
SSD

Table 2: Type overview for 40 subjects in CK

The table illustrates a pronounced heterogeneity of reasoning across the 40
subjects, with a distribution that has some similarities to commonly observed
distributions in the level-k literature. The levels 1 and 2 are present in significant
shares and also level-3 and Bayesian behavior is detected. The level-£ distribution
is hump-shaped, similar to estimated distributions in strategic interaction. By
a large margin, the modal behavior turns out to be level-2 play, supporting the
hypothesis that naive inference is an important element in social learning. The
results from my implementation of this framework in the experiment with intra-

team communication are very similar (section 4.2).

' Table 9 on page 32 reports the data for each subject and type.

12Tn the following, I will use the p-value not only in its original meaning in the hypothesis
tests, but with slight abuse also as my best type-independent measure of closeness between
fingerprints.
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Like subject 8 in Figure 1b, 7 players choose thresholds § € {—10,—5,0,5,10}
in all 15 situations. Players classified as level-2 account for 103 of the 136 instances
(75.7%) of cascading (# € {—10,10}). The model thus proposes a behavioral
explanation for the information cascading detected in CK.

The experiment was not designed to discriminate between types in the way I do.
The differences between types’ fingerprints in the occurring sequence of situations
are discriminating in the sense that the ideal fingerprints are never congruent and
the SSDs are always distinct. Still, I need to account for cases in which subjects’
fingerprints have a small SSD for more than one ideal type. To obtain a structure
similar to a mixture model I classify subjects that are significantly close to, say,
two types as partly one type and partly the other type. The share attributed to
each type is chosen anti-proportionally to the p-value. Table 2b shows that the
main results remain unchanged when taking into account how well types can be
discriminated.

Costa-Gomes and Crawford (2006) check for unknown types by testing whether
subject’s fingerprints are close to each other without being close to an ideal type.
Such “clusters” of multiple subjects would suggest a common, but not predicted
way of thinking about the situation. Unfortunately, such a specification test
is not feasible with the original CK-data since each subject decides in different
15 situations. My implementation of this game with intra-team communication
(section 4.2) confronts all subjects with the same situations. Further insights into
the reasoning will thus be provided from the messages as well as the specification
test.

4. Data from team communication

In order to put the results of the previous section under scrutiny and get a
better insight into the reasoning process, I conducted two experiments with an
intra-team communication protocol that yields incentivized written accounts of
subjects’ reasoning (see Burchardi and Penczynski, 2012).1% In these experiments,
teams of two players are confronted with 6 decisions that arose in the original
studies by AH and CK, respectively. In both cases, I chose decision situations
that occurred later in the sequence in order for a substantial history of public
information to exist.

The communication protocol incentivizes the individuals’ messages within the

BInstructions are reprinted in sections B and D of the supplementary material.
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team as follows. Participants are randomly assigned into teams of two players.
The two members are connected through the modified chat module of the exper-
iment software.!* Once the situation is observed, each team member can state
a so-called “suggested decision” and justify this in a written message. As soon
as this is done for the first three situations, the suggestions and messages get
exchanged simultaneously. In a next step, both team members individually state
their “final decision” for the three first decisions. It is known to them that for
each situation one of the two members’ final decisions will be chosen randomly
by the computer to count as the “team’s action”. This construction provides
incentives to state the full reasoning underlying the suggested decision in a clear
and convincing way.

In contrast to the original design in Burchardi and Penczynski (2012), subjects
first write suggested decisions for three situations before both the suggested deci-
sions and the messages are simultaneously exchanged. This ensures that the first
three messages are written prior to any communication with the team partner
and reflect only the individual’s reasoning. The same procedure is repeated for
the second three decisions.!®

The message is entered freely without space or time limitations. In the AH
experiment, apart from the suggested decision, another structured part of the
communication consists of quantifying the confidence in the suggested decision.
Subjects can put percentages between 50 and 100, indicating the subjective prob-
ability that their choice coincides with the true state of the world. As part of the
incentivized communication stage, this is similar to eliciting individual beliefs.

The messages are classified independently by two research assistants and yield
one main piece of information. For each individual message the RAs indicate the
level of reasoning that the message corresponds to most closely. For this task, the
RAs are introduced to the level-k model and receive detailed instructions about
characteristics of the individual types.!®

The following features of reasoning are derived from the model and should be
present for the message to be classified as a certain level. Random level-0 play
results from misunderstanding the nature of the game or from putting arguments

that are orthogonal to any reasonable inference from private signals and public

14The experiments were programmed and conducted with the software z-Tree (Fischbacher,
2007).

15Having messages exchanged after three rather than one suggested decision has the advantage
that all three messages are not “contaminated” by the team partner’s arguments. In the
original setup with an immediate exchange, this would only be true for the very first message.

16Instructions for the RAs are reprinted in sections C and E of the supplementary material.
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actions. Level-1 play features an open disregard of others’ actions or a strong
emphasis on the unambiguity of the own signal in contrast to others’ decisions.
Level-2 play requires that others’ actions are taken at face value as a signal and
predecessors are not differentiated. In contrast to this, level-3 play distinguishes
individual predecessors and evaluates the information content of the action for
each of them.

Both RAs first provide independent sets of classifications. After this, both
are anonymously informed about all classifications of the other RA and have the
possibility to revise their own classification. This iteration serves to reconsider
diverging classifications and to screen errors or misperceptions. The information
is merged by using only those classifications that coincide between the two RAs.
The RAs agree in a large majority of classifications (AH: 567 (541) out of 636,
89.2% (85.1%); CK: 218 (194) out of 252, 86.5% (77.0%); pre-revision in brackets).
Burchardi and Penczynski (2012) provide further evidence for the robustness and
replicability of this kind of classification. Overall, 17 out of 1272 individual
RA level classifications imply a different decision than observed in the suggested
decision. 10 of those come from 5 decisions in which the two RAs agree, suggesting

an irregularity on the subject side.

4.1. The Anderson and Holt framework

The experiment was conducted in 7 experimental sessions at the LEEDR Labora-
tory of Cornell University. 106 subjects in teams of two were taking decisions in 6
social learning situations that arose in the original experiment of AH.!" In the ex-
periment, the binary setting described in 1.2 has equally likely states w € {A, B}
reflected by two urns A and B. The signals s € {White, Black} are informative
draws from the urns, where urn A contains 2 white and 1 black ball and urn B
contains 1 white and 2 black balls. Possible actions are a € {A, B}.

Results. Table 3 gives an overview of the 6 urn choices. The first line gives the
information (history and signal) available to subjects. The next two lines give
means of the suggested decisions and confidences observed in the experiment.
The suggested decisions take values A or B and the confidences take values be-

tween 50 and 100. Urn choices 1 and 3 were least controversial with a large

1"Tn particular, subjects are told at the beginning that they will experience situations that
arose in a previous experiment which was played by individuals. Subsequently, the game is
explained in the instructions and finally they see the information about the specific situation
on the screen.
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majority choosing B and A, respectively, and high average confidences of nearly
70. Urn choice 4 was the most controversial with 53.8% choosing B. The lowest
confidence, however, was indicated for urn choice 2. The last four rows of the

table indicate the expected behavior of the types proposed in the model.

Urn choice
1 2 3 4 5 6
Information® BBAb BAABAb BAAa BBABa ABAAAb BAAAb
Suggested decision™  0.953 0.689 0.057 0.538 0.415 0.547
Confidence 69.76 60.75 69.14 64.27 67.17 64.68
Probability 0 0.5 0.5 0.5 0.5 0.5 0.5
of choice B 1 1 1 0 0 1 1
2/3/B 1 0.5 0 1 0 0

Notes: For information, A and B denote observed actions, a and b denote private
signals favoring A or B, respectively. Suggested decisions are reported in fractions of

choice B.

Table 3: Suggested decisions and confidences as well as choice probabilities for
different ideal types in the 6 urn choices (N = 106)

The messages from the intra-team communication give direct information about
individuals’ reasoning. In the upcoming analysis, I focus on the first three deci-
sions that were taken prior to any contact with the team partner.'® I pool the
information for the first three decisions by forming the union of the level classifi-
cations. Table 4 summarizes the data by giving the subjects’ lowest and highest
level over these three decisions.'? 29 subjects (27%) are not classified, mostly
because they did not write any message. 79% of the remaining 77 subjects are
attributed a constant level.

The overall picture of this table reflects a large heterogeneity of reasoning. Fo-
cusing on the numbers of subjects on the diagonal with coinciding lower and up-
per bound, there is a pronounced heterogeneity with a hump-shaped distribution

like in the previous analysis. Also, the marginal distributions are hump-shaped

18The classification for the last 3 decisions is reported in Table 10 on page 33. A Wilcoxon
signed-rank test does not reject the hypothesis that the level lower bounds or the level
upper bounds are different between decisions 1-3 (Table 4) and decisions 4-6 (Table 10,
Dlower = 0.515, pupper = 0.470). To control for order effects, the order of choices was
reversed in the last three sessions. If the choices are not numbered, the analysis presents
the temporal order of the decisions, i.e.the “first three decisions” will always refer to the
decisions taken without prior conversation with the team partner.

19The union excludes any outcome of a non-classification (NA). If all three decisions are clas-
sified differently or as NA by both RAs, the subject appears under NA. For more details,
Table 11 on page 33 reports this data by decision. Tables 12 and 13 on pages 34 and 35
report the data of both RAs on an individual level.
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Highest level (& 1.66)
0 1 2 3 NA Total
0O 8 3 3 1 O 15
Lowest level 1 12 6 0 0 18
(# 1.38) 2 40 3 0 43
3 1 0 1
NA 29 29

Total 8 15 49 5 29 106

Table 4: Level classification in first three decisions

and feature modes at level-2. The overall modal interval is {2} with 40 subjects

classified consistently as level-2.

Messages. With the classification being in accordance with the results in the
(CK-data, I want to illustrate each type’s qualitative features in detail with the
help of the messages. This will show how the subjects’ views on the inference
situation coincide with the kinds of reasoning that the model postulates. Tables

14 to 19 (pages 36 to 41) reproduce the messages of chosen subjects.

Level-0. The model is based on uninformative level-0 reasoning, which is mod-
eled by random play. The messages in Table 14 show that subjects misunderstand
the game or self-report to have no understanding of the game. Accordingly, they

predominantly report the lowest possible confidence in their suggested decision
of 50.

Level-1. The messages that are categorized as level-1 reasoning illustrate an
increment of understanding beyond level-0. Table 15 shows that subjects mostly
explain their understanding as to why the private draw is informative. Often, a
confidence of 66 or 67 is reported, which stems from the isolated understanding of
the one private draw that indicates the true urn with a probability of % Subjects
follow their signal without exception. The reasoning frequently does not include
the other players’ actions. If it does, then it expresses confusion or ignorance as
to how to make use of this information. In level-1 players’ minds, a model of other
players is not existing, but the understanding suffices to process the information

from the own private draw.
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Level-2. Moving on to messages that were classified to reflect level-2 reasoning,
Tables 16 and 17 show how the subjects take into account the history of others’
actions in addition to their private signal. However, this perception of other
players is not very differentiated as all observed actions A and B are given the
same weight. Often, the observed history is summarized in statistics reporting,
for example, that 3 out of 5 predecessors selected A, without taking into account
the predecessors’ choice situation. This information is mostly combined with the
odds of the private draw being correct. Importantly, this kind of reasoning is
exhibited irrespective of facing similar or mixed public information. As a result,

subjects can become very confident in their own choice.

Level-3. Finally, Tables 18 and 19 present communication that was classified as
reflecting level-3 reasoning. The messages show clearly how players differentiate
between predecessors. They do so by putting themselves in the shoes of their
predecessors, making use of the knowledge they have about their history and
trying to back out their private draws. It becomes apparent that the population
belief is updated using the public information available.

The model of their predecessors that these players have in mind takes into
account that the signal is only one ingredient in the decision process. The other
ingredient that influences the actions is the observed history. Thus, these players
are sophisticated enough to model processes in other players’ minds which — as
shown in earlier messages — some of these other players exhibit and some do not

achieve.

4.2. The Celen and Kariv framework

The experiment was conducted in 4 experimental sessions at the Laboratory of
the University of Mannheim. 42 subjects in teams of two were taking decisions
in 6 social learning situations that arose in the original experiment of CK. In
the experiment, the setting described in 1.3 has equally likely states w € {A, B}
determined by the sign of the sum of 8 continuous signals that are uniformly
distributed on [—10,10]. Subjects take decisions by entering a threshold in the
interval [—10,10]. For each subject, the computer uses the threshold and the

signal to determine the binary state that the subject chooses.

Results. Table 5 gives an overview of the 6 scenarios which were chosen to dis-

criminate between the different types. The first line gives the information about
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the history available to subjects. The following lines give mean and standard de-

viation of the choices in [—10, 10] as well as predicted play by level-k and Bayesian

players.

Round
1 2 3 4 5) 6
History AAB BBAA AAABA BBB AABA BABA
Sugg. decision (mean) 0.17 0.18 -3.52 429  -250 -0.48
Sugg. decision (s.d.) 4.20 3.95 526 5.43 4.84 3.02
Level-1 0 0 0 0 0 0
Predicted Level-2 -5 0 -10 10 -10 0
choice Level-3 -2.5 -5 -5 7.5 -5 -5

Bayesian 1.25 -5.625 -4.6875 8.75 -4.375 -3.125

Table 5: Empirical and theoretical decisions in the 6 rounds (N = 42)

Like in section 3, the 6 suggested decision per subject can be used to identify
their type as illustrated in Figure 2. The analysis of the SSD to the ideal type
of level-k and Bayesian reasoning yields the results illustrated in Table 6.2° The
individual weights in the mixture-type specification of Table 6b are reported in
Table 23 on page 44. Similar to the results in sections 3 and 4.1, pronounced

type heterogeneity and a mode behavior of level-2 can be observed.

Type Frequency Fraction (%) Type Frequency Fraction (%)
1 10 23.8 1 10.40 24.8
2 15 35.7 2 13.22 31.5
3 3 7.1 3 4.41 10.5
B 4 9.5 B 3.98 9.5
NA 10 23.8 NA 10.00 23.8
Total 42 100.00 Total 42 100.00
(a) Classification by lowest significant (b) Mixture classification
SSD

Table 6: Type overview for 42 subjects

Messages. Qualitatively, the messages in this experiment are very similar to

the ones reported previously. The level classification yields the results shown in

20The analysis of the first three decisions is less powerful and yields significant non-random
play only for slightly more than 50% of the players. Results for the first 3 and second
3 decisions are reported in Tables 20 and 21. Like in the AH experiment (section 4.1),
the communication has no detectable effect on the sophistication since the results are not
significantly different from each other (Wilcoxon rank-sum, p = 0.703.)
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Table 7. The reasoning is found to be heterogeneous and the mode behavior is

level-2 to a similar extent as before.

Highest level (& 2.03)

01 2 3 NA Total

0O 101 0 O 2

Lowest level 1 3 0 0 O 3
(7 1.86) 2 18 3 0 21

3 3 0 3

NA 13 13

Total 1 3 19 6 13 42

Table 7: Level classification in first three decisions

Specification Test. It is now possible to investigate whether types of reasoning
are common which have not been considered in the theory. In contrast to section
3, all subjects in this experiment face the same set of decisions. In a specification
test as in Costa-Gomes and Crawford (2006), all fingerprints in the data are used
as “pseudotypes” and compared to other subjects’ fingerprints. This potentially
identifies clusters of players that play similarly and therefore probably have a
similarly structured reasoning.

The clusters are formed according to the conditions given in Costa-Gomes
and Crawford (2006), who define a cluster “as a group of two or more subjects
such that: (a) each subject’s original estimated type has smaller likelihood than
the pseudotypes of all other subjects in the group; and (b) all subjects in the
group make ‘sufficiently similar’ guesses” (pp. 1761-1762). In my case, condition
(a) translates into the pseudotypes having a lower p-value in the comparison
with random play than the originally estimated ideal type. Condition (b) is
implemented by defining “sufficiently similar” as significantly closer than random
play (p < 0.05).

The analysis yields six clusters as shown in Table 8 (Table 23 reports cluster
affiliation by subject). It will be seen that it is mostly some kind of decision error
which is common among players in a cluster. Cluster D features four players who
would be categorized based on the SSD if they had not persistently put the wrong
sign on their thresholds, thus exhibiting probably the most simple and extreme
case of decision error (see Figure 2e for an example). By the messages, they
are indeed classified partially as level-1 or level-2. Clusters B, C, and F feature

players who are significantly closer than random play only to level-2 play. In each
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cluster, players’ thresholds have a common feature which makes them closer to
each other than to the ideal level-2 type. Players in cluster B and C start off
with higher numbers, in cluster B they play a moderate fourth action. Players in
cluster F start off with lower numbers.

Cluster E features four players who have mostly been classified as level-2 or
level-3 by the fingerprints and the messages and who share a pronounced tendency
towards negative numbers which is not featured by other player of the same
reasoning.

Although the decisions were chosen to discriminate as much as possible be-
tween level-2, level-3 and Bayesian, the specification test yields one large set A
of overlapping and non-nested clusters of 19 players. Most of these players are
classified by the fingerprints and messages as level-2, level-3 or Bayesian. This
suggests that while the data is theoretically able to discriminate between types,
due to decision noise this is only partially possible with the experimental data.
This is a clear limitation of the data in the CK framework, which is somewhat
alleviated in the original data due to a larger set of 15 decisions. In the setup with
team communication, the messages allow to take a closer look at the reasoning

and thus to investigate the validity of the fingerprint results.

Cluster Subjects Characteristic
A 2,6, 7,9, 12, 13, 14, 16, 21, 22, Level-2, Level-3 or Bayesian
23, 27, 29, 33, 34, 37, 38, 39, 42

B 4,17 Level-2 with higher round 1,
moderate round 4

C 5, 28, 31 Level-2 with higher round 1

D 11, 19, 35, 40 Mistaken sign

E 15, 18, 32, 41 Negative tendency

F 20, 30 Level-2 with lower round 1

Notes: A is not a proper cluster, it is the union of overlapping, non-nested clusters.

Table 8: Clusters in the specification test

Level-3 and Bayesian types. Level-3 and Bayesians can be distinguished more
easily in the CK than in the AH framework. While the classification of the mes-
sages was only investigating level reasoning, the level-3 messages can be checked
for beliefs of rational play by others. To illustrate the functioning of the finger-
print analysis and the detailed insights of the messages, I want to discuss two
players who could exhibit Bayesian reasoning. Table 24 reports their messages in

the first three decisions translated from German.
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The first example, subject 26, starts out in the first message clearly stating
the assumption that predecessors played rationally. He is calculating correctly
the expected signals following the first two A’s in the history, but makes a rough
guess for the B in third position, which turns out too small a correction. Since
the sequences in decisions 2 and 3 are even longer, the subject contents himself
with guesses taking into account that later players in the sequence have a strong
signal when they play against the majority. The fingerprint analysis identifies
him as 80% level-3 and 20% Bayesian (Table 23). This follows from his guesses
being closer to level-3 guesses, despite his assumption of rational preceding play
(see Figure 1c).

The second example, subject 9, starts out relatively similar as subject 26. How-
ever, the forming of the expectation is biased towards 0 since a signal between
0 and 10 results in an expected threshold of 2. In the third message, this is
exhibited even stronger. In the second message, the reasoning is not differentiat-
ing predecessors at all and appears to be level-2. The very hesitant movements
away from 0 make her being classified as 53% level-1, with the remaining weight

distributed across level-2, level-3 and Bayesian (see Figure 2f).

5. Discussion

The fact that the level-k structure known from strategic thinking successfully
describes reasoning in social learning situations suggests that the model captures
general features of decision making processes. The insights from this study help
to flesh out some of these processes.

The results highlight how level-0, level-1, and level-2 are fundamentally differ-
ent: A level-0 player does not understand the game enough to even process her
own signal. Level-1 players understand the rules of the game and can use the
signal, but do not understand how to learn from others since no model of others
is conceived that tells what the history implies. Level-2 players then are able
to model others in probably the least sophisticated way by assuming they play
simply according to their own signal.

From level-2 onwards, the reasoning is characterized by the subjects’ ability
to model other peoples’ reasoning in their head. The view that the step from
level-1 to level-2 is a cognitively very important one has been put forward by
Coricelli and Nagel (2009), who show in a neuroeconomic study that the level-

2 reasoning involves activity in other parts of the brain than level-1 reasoning
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does. In particular, the additional activity is in the medial prefrontal cortex, an
area that is connected with mentalizing, i. e. thinking about the mental activity of
others. In the level-k framework, the model of others is reflected by the population
belief, which in the literature has been specified as degenerate on level k — 1 or
non-degenerate on levels lower than k.

The psychology literature suggests that a plausible starting point or anchor for
a model of others’ knowledge or reasoning is one’s own knowledge or reasoning,
which is then adjusted to the specific “other” (Tversky and Kahneman, 1974;
Gordon, 1986; Nickerson, 1999). In this light, a degenerate population belief can
be seen to reflect the first conceptualization of the other as someone that thinks
in the same way as oneself thought until now. Best responding to this view of
the other turns a level-k — 1 player into a level-k player who likens all others to
his past level-k — 1 self. This best response iteration might go on to level-k + 1,
etc. Alternatively, further deliberation might result in a more refined model of
others in the sense that they might be less sophisticated than the player just was,
making the (adjusted) population belief non-degenerate. This gives a cognitive
perspective on the two competing assumptions of degenerate and non-degenerate
population beliefs.

In any case, both the non-degenerate population belief and the additional best
response can be viewed as a refinement of the initial model of others. Such
refinements should occur in players of level-2 and higher. A possible reason for
the rare observation of levels beyond 3 (Arad and Rubinstein, 2012) might be
that eventually the correct specification of the population belief is deemed more

fruitful than mechanically thinking through further best responses.

6. Conclusion

This paper proposes a level-k model of social learning which introduces heteroge-
neous, hierarchical types in the context of inference. In contrast to much of the
social learning literature, the experimental investigation is able to differentiate
these various types thanks to two innovations. On the one hand, within the in-
formative framework of social learning introduced by Celen and Kariv (2004) the
predicted behavior differs by type, enabling an analysis of individual reasoning
on the basis of their data. On the other hand, independently of the framework,
the nature of reasoning can be investigated with the help of written accounts ob-

tained from incentivized intra-team communication as introduced by Burchardi
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and Penczynski (2012).

The analyses find strong new evidence for predictions of the model, in particular
the heterogeneity of reasoning across individuals and the presence of the particular
types of reasoning. Level-2 forms of reasoning are found to be the prevalent
nature of social learning, implying that subjects have simplified models of others
in their head and do not take into account others’ specific situation. Rational
expectations would imply that people hold the correct model of others in their
minds. The model and the results explain why rational expectations fail to hold
in a social learning context (Weizsécker, 2010).

The model captures subjects’ behavior well and gives a new interpretation
of the hierarchical structure of reasoning. In particular, it reflects the gradual
better understanding of the situation (level-0, 1, and 2) as well as the stepwise
refinement of the model held of others’ reasoning (level-2, 3, etc.). Applying the
concept of levels of reasoning to social learning is not only a useful extension of
this theory’s scope, it also highlights the importance and usefulness of iterated

best responses as a framework to think about reasoning in social settings.
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Subject Level 1 Level 2 Level 3 Bayesian

ID SSD  p SSD p SSD p SSD p

1 549.13 0.671 147583 0.801 1143.33 0.750  1255.61 0.697
2 522.00 0.585  1022.00 0.183 870.75 0.199 850.50 0.202
3 714.61 0.964 946.61 0.095 777.61 0.224 823.28 0.140
4 331.00 0.068 131.00 0.000 134.75 0.000 99.08 0.000
5 1500.00 1.000 375.00 0.000 656.25 0.107 610.19 0.040
6 289.86 0.029  1020.36 0.237 796.35 0.306 721.46 0.178
7 725.00 0.970 200.00 0.000 368.75 0.004 441.56 0.012
8 700.00 0.954 25.00 0.000 268.75 0.003 170.86 0.000
9 255.00 0.012 320.00 0.000 203.75 0.000 298.23 0.001
10 627.00 0.862 97.00 0.000 245.75 0.001 177.84 0.000
11 687.17 0.943 275.17 0.000 156.42 0.000 168.43 0.000
12 423.00 0.260 818.00 0.027 426.75 0.009 595.65 0.016
13 661.25 0.914 51.25 0.000 117.50 0.000 97.09 0.000
14 400.01 0.197 450.01 0.002 363.01 0.003 494.64 0.006
15 838.61 0.997 394.61 0.001 310.11 0.002 318.56 0.001
16 883.00 0.999 158.00 0.000 289.25 0.002 305.77 0.001
17 0.02 0.000 723.65 0.059 536.24 0.034 529.73 0.033
18 100.00 0.000 475.00 0.014 243.75 0.001 269.21 0.002
19 186.39 0.001 548.09 0.023 555.54 0.041 575.62 0.055
20 224.69 0.005 485.09 0.004 316.89 0.001 328.71 0.002
21 524.25 0.593 120.25 0.000 140.75 0.000 112.44 0.000
22 391.00 0.175 656.00 0.035 528.50 0.042 587.05 0.042
23 421.00 0.254 141.00 0.000 137.25 0.000 124.54 0.000
24 242.25 0.008 52.25 0.000 162.25 0.000 115.79 0.000
25 308.25 0.043 743.25 0.012 415.75 0.007 607.40 0.013
26 1386.52 1.000 783.02 0.062 929.27 0.552 936.15 0.324
27 1171.15 1.000 1182.65 0.163 845.15 0.150 947.88 0.159
28 444.25 0.324 194.25 0.000 209.25 0.000 214.01 0.000
29 1028.33 1.000 258.33 0.000 490.58 0.006 389.41 0.001
30 514.66 0.561 602.66 0.019 455.91 0.019 456.18 0.010
31 893.26 0.999 537.26 0.003 538.26 0.030 522.84 0.008
32 619.25 0.847 939.25 0.043 684.25 0.073 834.31 0.064
33 5.00 0.000 885.00 0.093 652.50 0.054 740.49 0.071
34 396.98 0.190 1331.88 0.579 1110.53 0.705 1001.84 0.453
35 899.00 0.999 389.00 0.001 521.50 0.045 494.42 0.016
36 500.00 0.511 175.00 0.000 243.75 0.001 168.24 0.000
37 197.13 0.002 659.63 0.011 268.38 0.001 475.27 0.005
38 103.00 0.000 768.00 0.156 545.50 0.127 723.30 0.202
39 1500.00 1.000 575.00 0.013 881.25 0.444 669.35 0.066
40 807.11 0.995 505.11 0.023 727.31 0.309 665.61 0.174

Table 9: Type analysis in data of Celen and Kariv (2004)
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Highest level (& 1.76)
0 1 2 3 NA Total
0O 50 6 0 O 11
Lowest level 1 13 5 0 0 18
(# 1.50) 2 42 3 0 45
3 2 0 2
NA 30 30

Total 5 13 53 5 30 106

Table 10: Level classification in second 3 decisions

Urn choice
1 2 3 4 5 6
Information BBAb BAABAb BAAa BBABa ABAAAb BAAAb
Level-0 5 7 7 8 5 8
Level-1 5 10 3 12 16 17
Level-2 40 29 44 39 40 36
Level-3 3 2 3 1 4 4
NA 53 58 49 46 41 41
Total 106 106 106 106 106 106

Table 11: Level classification by urn choice
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g 5
wn
S £ 2%
8 Sl
BEN op B Z
= ® 8 =
n (Hys))  Message n O O
27 BBAD I don’t know this is all probability so this is a guess B 50 0
BAABAD T have no clue. B 50 {0}
BAAa I have no clue. A 50 {0}
51 BBAD randomly choose my selection. i will choose B, uselect B 50 {0}
A and computer will take decison randomly on behalf
of us
BAABAD randomly choose my selection. i will choose B, uselect B 50 {0}
A and computer will take decison randomly on behalf
of us
BAAa randomly choose my selection. i will choose B, uselect B 50 {0}
A and computer will take decison randomly on behalf
of us
79 BAAADb  idk, just a guess B 50 {0}
ABAAAD just a guess B 50 {0}
BBABa just a guess A 50 {0}

Table 14: Examples of messages classified as level-0
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g -
a £ g 2
— L g g
2 » £ 2
n (Hys)  Message n O O
58 BBADb since the private draw is black, urn b is more likely to B 50 {1}
be the true urn.
71 BAAAD  The ball picked was black, right? So, there’s a greater B 67 {1}
chance that it came from urn B than urn A
ABAAAD The ball picked was black. There are two black balls B 66 {1}
in urn B and only one black ball in urn A. Therefore,
there’s a 2/3 chance the ball came from urn B and a
1/3 chance it came from urn A.
BBABa  Urn A contains two white balls and urn B contains one. A 67 {1}
Therefore, there’s a 2/3 chance the ball came from urn
A.
72 BAAAD Tt would be foolish not to choose the urn with the B 67 {1}
greater proportion of black balls.
81 BAAAD it doesnt matter what the other teams found there is B 66 {1}
still a higher probability that a black ball is chosen from
the urb B therefore i would choose b
ABAAAD there is still a higher chance that the black ball is cho- B 66 {1}
sen (2/3 versus 1/3) therefore i would still choose B it
doesnt matter what the other teams chose
BBABa it doesnt matter the order of sequence of the other A 66 {1}
teams 1 would still choose A since the probability of
choosing a white ball is twice that of a black ball (2/3
vs. 1/3) therefore, i would still choose A
84 BAAAD  1don’t see how the previous draws affect anything. We B 67 {1}
got black, it’s 2/3 chance from B, 1/3 chance from A
unless I'm completely confused.
ABAAAD 2/3 chance that black ball is from B, 1/3 chance from B 67 {1}
A
85 BAAAD  there is a 66.7% chance that the ball is black. im not B 66 {1}
sure how the previous draws would affect our guess
ABAAAD T think it would be the best to stick with urn B since B 66 {1}
the probability is in favor of that.
BBABa I went with A because the chances it came from A are A 66 {1}
more likely that B.
97 BAAAD  If the other teams are mostly going with A, and we have B — {1}
a black ball, I think our best choice is B.
ABAAAD I think we have a better chance selecting urn B. B 50 0
BBABa I think since we are drawing a white ball, our best A 100 {1}
chance is to select from urn A.
98 BAAAD  Urn B has the most black balls B 60 0
ABAAAD Even though th teams before mostly picked A, Tdon’t B 60 {1}

think that should have a bearing on the choice here; B
still has the higher statistical probability of having a
black ball

Table 15: Examples of messages classified as level-1
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g =
a 4 g 3
— 5 = g
I < g
L = I
= ® 8 =
n (Hys))  Message n O O
1 BBAb It is more likely that a black ball came from Urn B,and B 75 {2}
2/3 of the other teams have made this same choice.
BAABAD A black ball is more likely to have come from Urn B. B 60 {2}
Not enough teams have gone before us to be affected
by the fact that 3/5 of them selected A
BAAa A white ball is more likely to be from Urn A, and 2/3 75 {2}
of the previous teams have selected this urn as well
8 BBAb Since 2 out of 3 of the previous teams chose urn B, and 70 {2}
our draw corresponds to that choice, I'd say that urn b
is a good bet.
BAABAD this is a tough one, but based on our draw, B is a good 55 {2}
choice. Also, 2 out of 5 other teams chose B
BAAa 2 out of 3 previous teams chose A and our draw corre- A 70 {2}
sponds to A as well.
56 BAAa I'm choosing this based on the other teams and our A 75 {2}
draw. Also, I think I forgot to press enter for the last
message... So for the last one, I made that decision
based on the other teams draws not ours.
80 BAAAD 3 out of 4 previous teams are picking A so that is more A 90 {2}
likely they probably decide to pick A because see a
white ball drawn
ABAAAD there are 5 teams before us and 4 of them choose A, A 98 {2}
so i am confident that it is A most of them must see a
white ball from A
BBABa 4 teams before us and 3 of them picked B so I would B 85 {2}
pick B
82 BAAAD  Most people must have seen a white draw for there to A 75 {2}
be predominatley A being chosen.
ABAAAD Tt seems that most people saw a white ball in their A 60 {2}
private draw.
BBABa Hard to say, still though most people seem to have seen B 55 {2}
a black ball.
86 BAAAD  Only because 3 teams chose A A - {2}
ABAAAD 4 out of 5 say A A 60 {2}
88 BAAAD 3 white balls in a row from the black urn is only a A 75 {2}
(1/3)times(1/3) times (1/3) chance - therefore, very
low. I suspect that people chose urn A if they got a
white ball
ABAAAD T assume teams chose urn A if they drew white. The A 75 {2}
chance of getting 4 whites from Urn B is very low there-
fore I believe it is urn A. Even though we drew a black,
it’s still greater probability that it is A
BBABa It appears from previous teams choices that 3 of the B 70 {2}

4 balls were black. Therefore, even though we drew a
white ball, it’s more likely that our urn is B

Table 16: Examples of messages classified as level-2 (continued next table)
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Message

Classification

since 3 of the teams before us chose A, we might assume
that they got a white ball. we may have just gotten a
black ball by chance from urn A

since most teams before us have chosen A, we may as-
sume that most of them got the white ball from their
drawing. using probability, it’s more likely that we got
a black by with 1/3 chance than the previous teams
getting a white ball from uwrn B with much lower prob-
ability

we can assume that team 1 got the black ball, team 2
probably also got the black ball, and team 3 probably
got the white ball. probability wise, it’s more likely

that its from urn B

»>| Sugg. Decision
K| Confidence

—
[\
—

Okay so the teams before us chose A more frequently,
which means they private draw must have been white,
with one black. We got a black one, but since its a 50%
chance that both urns could be the true urn, we can
attribute ours to simple probability Thus, we have a
75% chance of it being A More frequency-better chance
it comes from one urn than the other

Frequency of a is greater than B, thus, it’s a good
chance its urn A because although we picked black 4
whites to two blacks shows a 2 to 1 ratio meaning that
for everty 3 balls, 2 are white and one is black this
reflects the probabilty of urn A

The first team must have seen a black ball and chose
B second team probably got black as well so chose B
third team probably got white and decided to go with
A 4th team got black again and went with B Thus if
we assume all the choices before are rational then the
choices are more black than white thus B MUST be
the rationally right answer as in if you don’t pick B, it

would be quite irrational

2

E

g

@ (Hy,s)

100 BAAAD
ABAAADb
BBABa

101 BAAAD
ABAAAbD
BBABa

106 BAAAD

Given that we were shown a black ball, there is a 2/3
chance that it is in B. However, the other teams chose
A, which means that they were given a white ball,

meaning that there is a greater chance of A

A 80 {2}
B 80 {2}
A 75 {2}
A 90 {2}
B 80 {2}
A 90 {2}

Table 17: Examples of messages classified as level-2
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(Hy, st)

Message

| Subject ID

BBAbDb

BAABAb

BAAa

The first team definitely saw a black ball, they went in
blind and chose B The second team must have also saw
a black ball, and corroborated with what team 1 saw,
the 3rd team saw a white ball, which contradicted what
the previous team saw It is possible that the 2nd team
saw white, but just went along with team 1 so, I would
say, out of 4 draws, there’s certainly 1 black, 1 maybe
black, and 1 white our draw is a black one I am pretty
confident that we should vote on urn B

team 1 saw black team 2 saw white, for sure team 3 saw
white for sure, since it could be influenced by either
team 1 or 2, but chose to go with white team 4 saw
black team 5 saw white team 5 has 2 guaranteed black
before it, and 2 guaranteed white before it, but chose
white, so probably got white our draw is black, there’s
3 white, 2 black before us I'd say its 50 50, let’s go with
black, urn B since we’re sure about what we saw

same logic, lets go with A since majority came out as

white

46 BBAD

BAABAb

BAAa

Teams 1 and 2 probably saw a black ball, and team 3 a
white ball 3 blacks and 1 white is much more likely for
urn b

Team 1 probably drew a black ball, as they have no
information Team 2 must have drawn white, if they
chose A despite team 1’s decision to choose black Team
3 probably drew white as well, as the previous teams
decisions are split so they decide on their own team 4
must have drawn black, as them drawing white would
be totally agains ttheir choice to choose B It’s 50-50
draws are almost purely based on the individual ball
draw, as the disparity of information in the teams pre-
vious theirs indicates 3 white balls to 1 black ball, ba-

sically

74 ABAAAD

BBABa

It seems the other teams saw more white balls though
it is possible the third and the fourth team actuall saw
black balls but they had to make a random choince.

team 1 and team 4 drew black balls and team 3 and

team 5 drew white. therefore it is a 50/50 chance.

[}

.S -
n )
= £
£ £ 2
nn O @)
B 100 {3}
B 70 {2,3}
A 100 {2}
B 75 {2}
A 50 {2,3}
A 75 )
A 50 {3}
A 50 {0}

Table 18: Examples of messages classified as level-3 (continued next table)
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Message

=

E

g

N (Ht ) St)

93 BAAAD
ABAAAD
BBABa

Well, from our observations it seems that we would
be choosing Urn B. However, if we look at previous
guesses, a desire may be made to choose Urn A from be-
lieivng that other people must be drawing white balls.
We have to consider the fact that other teams are also
being influenced by previous decisions. For example,
team 4 may have drawn a black ball and wanted to
choose Urn B, but didn’t in order to match the previ-
ous people. Therefore, I still think we should choose
Urn B.

Even though we drew a black ball, feel that for 80% of
people to have chosen A, this may indicate that white
is the majority. However, I'm not sure at all, due to
previous people also being influenced by previous deci-
sions. We know that the first decision is not based off
of previous decisions, therefore we can assume that the
first person drew a white ball. The second person con-
trasted the first person so we can assume they went by
their ball and chosen B. The third person was going off
of a balanced group where half of the people had chosen
whtie and half of the people had chosen black, therefore
their decision is valid too. After that it was based on
how people analyzed it somewhat. I believe the fourth
person would still have stayed with what they got so I
think A is better.

We know that the first person would stick to what ball
they drew, therefore it can be decided to be B. The
second person would have no reason to follow the first
person since its just one statistic so they are probably
accurate too. The third person needed a reason to devi-
ate so they were definitely A. The last person probably
would have stayed with what they got so I think it was

B, regardless of our drawing.

=]
.2 =
[5) o
B E £
jo;—4
n O O
B 50 {3}
A 50 {3}
B 70 {2}
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Type Frequency Fraction (%)

(0) 17 105
1 12 28.6
2 10 23.8
3 2 48
B 1 2.4
Total 42 100.00

(a) Classification by lowest significant

SSD

Type Frequency Fraction (%)

(0) 17.00 405
1 12.00 28.6
2 10.00 23.8
3 1.89 45
B 1.11 2.6
Total 42 100.00

(b) Mixture classification

Table 20: Type overview for 42 subjects in decisions 1-3

Type Frequency Fraction (%)

(0) 18 42,9
1 9 21.4
2 8 19.0
3 0 0.0
B 7 16.7
Total A2 100.00

(a) Classification by lowest significant
SSD

Type Frequency Fraction (%)

(0) 18.00 42,9
1 9.00 21.4
2 8.55 20.4
3 0.33 0.8
B 6.11 14.6
Total 42 100.00

(b) Mixture classification

Table 21: Type overview for 42 subjects in decisions 4-6
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Highest level (& 2.11)

01 2 3 NA Total

0O 101 2 0 4

Lowest level 1 2 2 0 0 4
(# 1.68) 2 15 2 0 17

3 3 0 3

NA 14 14

Total 1 2 18 7 14 42

Table 22: Level classification in second 3 decisions
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Sugg. Decision|
Classification

(Hy) Message

8| Subject ID

|
N}
—
w
—

AAB Hello. I propose that we assume that all participants
before decided rationally. The sequence suggests that
at action 1 y > 0. Expected value would so far be
5. Was this considered in action 2, the decision for all
numbers greater than —5 would be A too. Expected
value (5+2,5)/2=3,75. Was this considered in action
3, b was chosen only for strongly negative numbers.
This is why I would propose b as well, that is to say a
negative number.

BBAA Decider 3 and 4 had more information, expected value —3 {3}
consequently positive. Would therefore tend to A. At
each x > —3 jump to A.

AAABA Last participant has again most information. Appar- —5 {3}
ently participant 4 had a strongly negative number.

Still, T would be to chose A at negative numbers up
to —5.

9 AAB Purely mathematically assumed: ;-) I am fourth and -2 {2,3}

have information A A B. The first should have set 0 as
marginal point to have a 50 50 chance. The second
can thus be sure that the first had a positive number.
He thus sets his point a bit higher at 2. With two
A decisions the third can assume that both previous
numbers were positive, so he can courageously bet on A
with —2. This might be too courageous, he has maybe
a negative number. Long speech, short meaning A with
still high risk -2

BBAA I am fifth with B,B,A,A as information. This give a 0 {2}
50:50 chance so I would guess a 0.

AAABA 6. with information A,A,A,B,A assume: 1. chooses 0 — -3 {3}
positive number, 2. chooses 0 as well — positive num-
ber, 3. becomes more courageous chooses -2 — possibly
small negative number but in sum still everything posi-
tive, 4. still more courageous -3, now we would be back
in the area around zero, so 5 chooses 0 again — has a
positive number. Means we should be more courageous
:D hehe I think this makes little sense

Table 24: Examples of messages potentially reflecting Bayesian reasoning
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SUPPLEMENTARY MATERIAL

A. The model in the Eyster and Rabin framework

The social learning environment used in Eyster and Rabin (2010) has continuous
signals s; € [0,1] and actions a; € [0,1]. The signal obeys s = Pr{w = 1]s].
Given an assumed payoff function g;(as;w) = —(a; — w)?, player ¢+ maximizes her
expected payoff by setting a; = E|w|s;, Hy].

Level-0 play is random and not connected to the private signal. The level-0
strategy is hence

o' (e, Hy) ~ U0, 1].

In the notation of Eyster and Rabin (2010), random play over [0, 1] leads to an
expectation of the log odds of In <1f—tat = 0.

The best response to uninformative preceding play is to follow the private
information. A level-1 player t thus follows strategy

O'1<St, Ht) = S¢.

Due to the equivalence of level-1 actions and signals, a level-2 player combines
the private information with predecessors’ actions. The strategy o?(s;, Hy) is

implicitly defined as
St
1 .
+m (1 — St)

52 t—1 o
| = | .
n(l—o'Q) [;n(l—a)

Given o'(s;, Hy), the actions of predecessors a; are taken at face value and
processed as if they reflected the private information. This level-2 specification
is Eyster and Rabin’s (2010, p. 230) specification of BRTNI play. If all players
t in a sequence follow this strategy and take previous actions at face value, the
early signals will be overweighted as follows

St
+1In (1 — St) .

0_2 t—1 . 50
1 = 27171 d
n(1—0'2) LZI n<1—8i>

The best response to such behavior is to undo the overweighting, back out the
true signals of predecessors, and combine them with the own signal. Given the
public history and the informative action space, the individual signal s;, Vi < ¢
can be backed out perfectly. Level-3 ends up playing like a rational Bayesian
player that combines all information in strategy o3(s;, H;) so that

0'3 ! S;
In (1_03) —;ln <1_3i)

Of course, this hinges on the assumption that the population belief of this level-
3 player is indeed correct and would deliver different results if the predecessors




were actually level-0 or level-1 players. In this rich-information setup it is always
possible to back out the private signals of non-level-0 players. The prerequisite
for doing this correctly is to have a correct population belief of player ¢, that
is, to know how player ¢ used her signal when choosing her action. Then, the
signal can be backed out by simply observing her action and all prior actions.
This framework features the possibility to back out any signal that was used in a
deterministic strategy. In other words, any level-£ play, k& > 0, is fully informative
given the correct population belief about it.

Like in the Anderson and Holt setup, higher levels of reasoning are conceivable
but are only interesting because of their population belief. In particular, level-4
might believe that players’ actions simply summarize the previous signals in an
optimal fashion (level-3). Beyond this self-awareness of level-3, no further insights
are obtained when considering higher levels.

B. Experiment instructions (AH framework)

Welcome to the experiment!

Introduction

You are about to participate in an experiment in team decision making. The experiment is funded
by Cornell University. Please follow the instructions carefully.

In addition to the participation fee of $5, you may earn a considerable additional amount of
money. Your decisions determine the additional amount. You will be instructed in detail how your
earnings depend on your decisions. All that you earn is yours to keep, and will be paid to you in
private, in cash, after today's session.

It is important to us that you remain silent and do not look at other people’s screens. If you
have any questions or need assistance of any kind, please raise your hand, and an experimenter will
come to you. If you talk, shout out loud, etc., you will be asked to leave. Thank you.

The experiment consists of a test round and 2 parts. Part | is designed as a warm-up with 3
trivia questions. Part Il consists of 2 rounds of 3 decisions each. In all 6 decisions your task will be
identical and success is identically rewarded.

Since this is a team experiment, you will be randomly matched with another participant in this
room, to form a team that plays as one entity. Your teammate will change every round, so please
do not assume content of previous communication to be known by your new partner. The way you
interact as a team to take decisions will be the same throughout all rounds.

Now, let me explain how your Team’s Action is determined. In fact, both your teammate and
you will enter a Final Decision individually and the computer will choose randomly which one
of your two final decisions counts as your team’s action. The probability that your teammate'’s
final decision is chosen is equal to the probability that your final decision will be chosen (i.e. your
chances are 50:50). However, you have the possibility to influence your partner’s final decision in the
following way: Before you enter your final decision, you can propose to your partner a Suggested
Decision and send him one and only one text Message. Note that this message is your only
chance to convince your partner of the reasoning behind your suggested decision. Therefore, use
the message to explain your suggested decision to your teammate. After you finish entering your
suggested decision and your message, these will be shown to your teammate. Simultaneously, you
will receive your partner’s suggested decision and message. Both of you will then make your final
decision. As outlined above, once you both enter your final decision, the computer chooses randomly
one of your final decisions as your team's action.



If you have any questions at this point, please raise your hand. In order for you to get familiar
with the messaging system, you will now try it out in a Test Period. Please turn the page for
further instructions.

Test period

A participant in this room is now randomly chosen to be your teammate. The Test Period has
two rounds, with communication in each round. Since this is only a test, your earnings will not
depend on anything that happens now. In both test rounds you will need to send and receive pieces
of information. The information consists of the answer to a question and one given phrase. After
the successful exchange, you will enter the number again. This way, the communication structure
is identical to the one in the experiment rounds.

The messenger allows Messages of any size. However, you have to enter the message line by line
since the input space is only one line. Within this line you can delete by using the usual “Backspace”
button of your keyboard. By pressing “Enter” on the keyboard, you add the written sentence to
the message. Please note that only added sentences will be sent and seen by your partner. The
words in the blue input line will not be sent. You can always delete previously added sentences by
clicking the “Clear Input” button. The number of lines you send is not limited. You can therefore
send messages of any length. You finally send the message to your partner by clicking the “Send
Message” button.

If you have any questions at this point, please raise your hand. When you are ready, please click
the “Ready” button to start the Test Period.

Experiment - Part |l

You are about to start Part Il of the experiment.?! This part consists of 2 periods of 3 decisions
each.?? In each period you will team up with a different, randomly chosen participant. Therefore
you will make 3 urn choices with a given partner.

The 6 scenarios for your urn choices are taken from another experiment. They are randomly
chosen and simply allow me to confront you with more scenarios than if we played it out ourselves.
I will now explain the setup to you in the same fashion the participants of the original experiment
were instructed. The original experiment was not done by teams, but | will explain it with teams
for simplicity.

In each urn choice your task is the following:

Your team is asked to predict from which randomly chosen urn a ball was drawn. It is equally
likely that urn A or urn B will be the true urn. That is, there is a 50 percent chance that Urn A is
the true urn, and a 50 percent chance that Urn B is the true urn. Urn A contains 2 white balls,
and 1 black ball. Urn B contains 1 white ball and 2 black balls. Therefore, there is a % chance
that a white ball comes from urn A and a % chance that a black ball comes from urn B.

To help determine which urn is the right one in a given scenario, you will see one ball, drawn at
random, from the urn. Only your team will see the outcome of this private draw. And your team
will only see this one draw, you will get the same information as your teammate. After each draw,
the ball is returned to the container before making the next draw. Therefore, each team will have
one private draw, with the ball being replaced after each draw. This way each team draws from
an urn that contains 3 balls in total.

21The experiment consists of two parts, part I being independent of part II.
22Table 25 was shown to give an overview.



When it is your turn to decide, bold text in the top of your screen will give you information about
your draw. If the ball the computer has randomly drawn for you is white, your window will read,
“Your team'’s private draw from the urn is WHITE.” Your window will read, “Your team'’s
private draw from the urn is BLACK.", if the ball the computer has randomly drawn for you is
black.

In each scenario, decisions are made sequentially, i.e. one team after the other. The order
in which teams decide in a given scenario is determined randomly. Once the first team has agreed
on its action based on its private draw, the second team will be asked to make its decision. The
members of team 2 will see their private draw, and also which urn was chosen by the first team.
Until the end of the round, all following teams will be informed about the chosen urns of all
earlier teams, but not about the other teams’ draw from the urn.

In each round, you see the three scenarios and will write down your Suggested Decision and
Message for each of them. After that you see your partner’'s Suggested Decision and Message
for each of the three scenarios and will make your Final Decisions. Finally, you will be informed
about your Team’s Action and the true urn. The order of events is illustrated in the table below.
For each of the 6 scenarios, if your team's action and the chosen urn coincide, you will individually
earn $1.00 (your teammate will get $1.00 as well).

As described earlier, you will send your teammate a Suggested Decision and a Message.
Remember to explain in the message your reasoning behind your suggested decision. (And note
again that the words in the blue input line will not be sent. Press “Enter” to add them to the
message.) After this information is exchanged, both of you enter your Final Decision, from which
the computer randomly chooses the Team’s Action.

As part of the communication, you can quantify your Confidence for each choice you make. You
can put numbers between 50% and 100%, where 50% implies that you think both urns are equally
likely and higher numbers reflect your higher confidence in your choice, up to certainty (100%).

Let me summarize the main points: (1) In each scenario, it is equally likely that urn A or urn B
is the true urn. (2) There is a 2 chance that a white ball came from urn A and a 2 chance that
a black ball came from urn B. (3) In the knowledge of the previous teams’ actions and your draw,
choose either urn A or urn B. (4) Like you, other teams saw one draw from the true urn and their

predecessors’ urn choice. (5) If your team chooses the true urn, you will earn $1.00.

If you have any questions at this point, please raise your hand. When you click the “Ready”
button, you will start the first round of the experiment.

C. Classification instructions (AH framework)

In the following | will describe the classification process for the analysis of an experiment. Subjects
play a game of incomplete information. Their reasoning will be classified along the lines of a model
of level of reasoning, which will be laid out in the first section. It is set up in analogy to the level-k
model in complete information settings as introduced by Nagel (1995) and Camerer et al. (2004).

Follow the instructions of this booklet. Read them entirely to get an overview and then start the
classification. The game is the social learning experiment as implemented by Anderson and Holt
(1997), which | assume you are fully familiar with. The subjects were put in 6 different situations
that occurred in the original study by Anderson and Holt (1997) and decided in a team about their
action, which would be remunerated according to the true urn in Anderson and Holt (1997).

The model will introduce four different ways of reasoning in the context of this game. The aim
of the classification is to take a look at the 6 messages per player and connect him/her with one or



Round | Urn choice Action
{ 1
i 2 Suggested Decision
l 3
l 1
1 1 2 Final Decision
{ 3
{ 1
+ 2 Get result
l 3
1 4
4 5 Suggested Decision
{ 6
d 4
4 2 5 Final Decision
l 6
i 4
4 5 Get result
i} 6

Table 25: Order of events in Part I1.

more types. Details will be explained below. Please limit yourself to making inferences only from
what can clearly be derived from the message stated, i.e. do not try to think about what the player
might have thought.

Reasoning types in the model

In the context of social learning, reasoning types differ in the ways they process private information
(in form of draws from an urn) and public information (in form of actions of predecessors). A natural
model of level of reasoning starts out with a random level-0 type and builds a hierarchy based on
the number of iterated best responses. In this game, this hierarchy turns out as follows:

Level-0 Randomizing between A and B, irrespective of own private signal.

Level-1 If others’ signal is not informative, like level-0 random play, then the best response is to
get informed by the own signal. Therefore, level-1 players are following their own private
signal.

Level-2 Since level-1 play is fully informative about the private signals, the best response in light
of this is to follow the majority if it is ahead by more than one signal difference. A level-2
player will thus only follow his signal if the previous actions were split equally between the
two urns or one urn was chosen just one time more often.

Level-3 Since level-2 play is as informative as Bayesian play, level-3 play, a best-response, is like
original Bayesian play. This implies that the play and beliefs of level-3 players are identical
to play and beliefs in the Bayesian equilibrium if everybody is level-3.

Starting from this model, | will now explain some expected message contents for the individual
levels of reasoning.

Level-0 Random play should result from messages that clearly do not understand the nature of
the game or put reasons for play that are orthogonal to any reasonable inference using private
signal and previous actions.

Level-1 Level-1 is characterized by disregarding others’ signal. In the message, this can be an
open disregard of others' actions or an emphasis on the unambiguity of the own signal.



Level-2 A level-2 players with a degenerate population belief (as introduced in the model above)
implies that all others’ actions are taken at face value like a signal. It follows that the
ratio of As vs. Bs in the previous actions might weighted against the 2/3 chance of the
own signal to be correct. In any case, a level-2 player never engages in a differentiation
of individual predecessors. If everybody is assumed to play their signal, this implies that
others are regarded as a homogeneous crowd that simply differs in the signals they received
not in their position in the sequence. Alternatively to a degenerate population belief, a level-2
player might think that some players played random, like level-0. Then, the signals are not
taken at full face value and probably the own signal is valued more than the observed actions.

Level-3 heterogeneity Under a degenerate population belief, only level-3 players distinguish in-
dividual predecessors in the extent to which their actions reflect their private signals. It
is therefore a characteristic of level-3 players to differentiate informative and uninformative
observed actions depending on the position of predecessors in the sequence. One example
is that a level-3 player will note in a history of AAAA that the later players might just have
followed the majority, he therefore does not infer those players signal with certaint. Put
starkly, observing BBBA implies that a level-3 player rules out the fourth player to be level-2,
an observation only level-3 will make.

The data

You will see different situations in which the players decided to choose urn A or urn B.

Each situation is explained in brackets by the information available to the subject. The capital
letters indicate previous players' actions. The small letters indicate the private signal received by
the player at hand. In addition to the sent message, you see the suggested decision, which is 1 for
urn A and 2 for urn B. The communication was structured in the sense that it gave the players the
possibility to indicate the confidence in the own urn choice. This number is given to you as well.

The classification

| would like you to classify messages into one of the 4 levels described above. Indicate the closest
type under ‘level’ in the according space.

Indicate whether the population belief is degenerate on the next lower level or non-degenerate.
If it is non-degenerate, denote which types (in terms of levels) are assumed to be present.

In addition to this classification, | ask you to indicate any difference between the observed
reasoning and the type given. This might include differences in the belief about when others
start imitating others’ actions, the weight the public information receives compared to the private
information, the way the population updating is done by a level-3 player, etc. Also, if you think the
potential level could be more than one, indicate your considerations here.

D. Experiment instructions (CK framework)

The experiment instructions in German combine the communication instructions (see Introduction
and Test period above) with instructions from Celen and Kariv (2004) translated to German and
adapted to the team setting. A translation is available upon request.

E. Classification instructions (CK framework)

In the following | will describe the classification process for the analysis of an experiment. Subjects
play a game of incomplete information. Their reasoning will be classified along the lines of a model
of level of reasoning, which will be laid out in the first section. It is set up in analogy to the level-k
model in complete information settings as introduced by Nagel (1995) and Camerer et al. (2004).



Follow the instructions of this booklet. Read them entirely to get an overview and then start
the classification. The game is the social learning experiment as implemented by Celen and Kariv
(2004), which | assume you are fully familiar with. The subjects in my experiment were put in 6
different situations that occurred in the original study by Celen and Kariv (2004) and decided in
a team about their action, which would be remunerated according to the true signal in Celen and
Kariv (2004).

The model will introduce five different ways of reasoning in the context of this game. The aim
of the classification is to take a look at the 6 messages per player and connect him/her with one or
more types. Details will be explained below. Please limit yourself to making inferences only from
what can clearly be derived from the message stated, i.e. do not try to think about what the player
might have thought.

Reasoning types in the model

In the context of social learning, reasoning types differ in the ways they process private information
(in form of draws from an urn) and public information (in form of actions of predecessors). Celen
and Kariv (2004) analyse Bayesian behavior, which is fully rational and believes others to be fully
rational. Please consult the paper to get a thorough understanding of this kind of reasoning in this
context.

A natural model of level of reasoning starts out with a random level-0 type and builds a hierarchy
based on the number of iterated best responses. In this game, this hierarchy turns out as follows:

Level-0 Playing a random threshold on the action space.

Level-1 If others’ signals are not informative, like level-0 random play, then the best response is
to get informed by the own signal. Therefore, level-1 players are following their own private
signal and set a threshold of 0.

Level-2 With a threshold of 0, the observed action of a predecessor indicates whether the signal
was in [—10,0) or [0,10]. With this information, the best response is to add 5 or subtract
5 for each previous action A or B in the expected value of the sum of the signals. A level-2
player will thus expect a sum of signals of 0 if the history has equally many A’s as B's and,
e.g., 5 if one more B's than A’s have been observed and 10 if two more B's than A’s have
been observed. The threshold will be set as the negative of the expected sum.

Level-3 Thresholds of —10 or 10 lead to uninformative play since the action is decided irrespective
of the signal. Level-3 players hence only use information from level-2 players that are not
cascading, i.e. play —5, 0, or 5.

Level-4 Level-4 players only use information from level-3 players that are not cascading. Although
level-4 play is distinct from level-3, we will not pursue this or higher levels in our classification.

Starting from this model, | will now explain some expected message contents for the individual
levels of reasoning.

Level-0 Random play should result from messages that clearly do not understand the nature of
the game or put reasons for play that are orthogonal to any reasonable inference using private
signal and previous actions.

Level-1 Level-1 is characterized by disregarding others’ action. In the message, this can be an
open disregard of others’ actions or an emphasis on the unambiguity of the own signal.

Level-2 A level-2 player with a degenerate population belief (as introduced in the model above)
implies that all others’ actions are equally informative and indicative of the sign of the
signal and thus each one changes the expected sum of signals by +5 or —5. It follows that the
relative number of As vs. Bs in the previous actions determine the threshold. In any case, a
level-2 player never engages in a differentiation of individual predecessors. If everybody
is assumed to play their signal, this implies that others are regarded as a homogeneous crowd
that simply differs in the signals they received not in their position in the sequence.



Level-3 heterogeneity Level-3 players are the first in the hierarchy to distinguish individual pre-
decessors in the extent to which their actions are informative about their private signals. In
particular, level-2 actions might be completely uninformative if they result from a threshold
of 10 or —10. At the same time, actions that result from a signal below a threshold of —5
or above a threshold of 5 induce a strong change in the expected sum of signals. Therefore,
sum actions might have a stronger influence on the level-3's threshold than others. It is
therefore a characteristic of level-3 players to differentiate more or less informative observed
actions depending on the position of predecessors in the sequence and the likely threshold
they had set. One example is that a level-3 player will note in a history of AB that the
second player's signal must have been very low since a threshold of —5 was still undercut.
This informativeness changes to uninformativeness when the threshold is expected to be 10
or —10. Then, the action is uninformative.

Bayesian More than level-3 players, Bayesian players realize that every predecessor has most likely
set a different threshold. This way, particular later actions in the sequence can have a strong
influence on the expected sum of signals and thus the set threshold.

The data

You will see different situations in which the players observed histories of A's and B's and set a
Suggested Decision between —10 and 10.

Each situation is described by the information available to the subject. In addition to the sent
message, you see the suggested decision.

The classification

| would like you to classify messages into one of the 5 levels described above. Indicate the closest
type under ‘level’ in the according space.

Indicate whether the population belief is degenerate on the next lower level or non-degenerate.
If it is non-degenerate, denote which types (in terms of levels) are assumed to be present.

In addition to this classification, | ask you to indicate any difference between the observed
reasoning and the type given. This might include differences in the belief about what threshold is
assumed to be behind others actions, the way the population updating is done by a level-3 player,
etc. Also, if you think the potential level could be more than one, indicate your considerations here.

Please also note that some messages contain considerations regarding the threshold to set etc.
which are orthogonal to the inferential considerations. Please make sure to only classify according
to the strategic content.
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