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1 Introduction

The ambition to achieve an environmentally sustainable, cost-effective and secure
future energy supply has motivated greater use of renewable resources such as
wind for electricity generation (E.C., 2007; DCENR, 2010; DECC, 2011). The
total social cost of renewables investment may be split into the internal cost of
generation and any external costs. Common external costs include infrastructural
upgrade requirements (Hemmati et al., 2016; van der Weijde and Hobbs, 2012);
social impacts such as visual disamenity (Azadeh et al., 2014; Ladenburg and
Lutzeyer, 2012; Lang et al., 2014); and environmental/ecological impacts such as
habitat destruction (Bright et al., 2008; Hotker et al., 2006). Efficient deployment
requires the sum of these costs to be minimised (Baumol, 1972; Pigou, 1920).

Competitive auctions may minimise the internal cost of generation. Competi-
tive auctions usually take the form of a pay-as-bid auction, where investors reveal
the price at which they are willing to generate electricity and receive this price if
successful. This price is a signal for policymakers to choose the least-cost sched-
ule of deployment. Auction mechanisms have been receiving greater attention due
to the increasing cost of wind deployment (Chawla and Pollitt, 2013; Farrell and
Lyons, 2015; Kylili and Fokaides, 2015; Neuhoff et al., 2013) and have been imple-
mented with success in France, the US, Taiwan, India (Kylili and Fokaides, 2015)
and Brazil (Porrua et al., 2010).

Successful implementation has largely occurred in mature markets as imple-
mentation in immature markets has led to below-cost bidding. In such cases, in-
vestors faced uncertainty regarding their true investment cost and, combined with
relative inexperience and the existence of speculators, winning bids were often un-
viably low (Kylili and Fokaides, 2015; Shrimali and Tirumalachetty, 2013). This
occurred in Ireland, China and Cyprus (Kylili and Fokaides, 2015; O Gallachoir
et al., 2006).

Alongside mechanisms to minimise internal generation costs, many approaches
have been developed to both quantify and subsequently minimise external costs.
Drechsler et al. (2011) show how choice models and spatial modelling can be used
to optimise wind site selection such that external costs are minimised. Site se-
lection to minimise externalities has also been advocated by means of a weighted
checklist and /or ranking approaches (Chase et al., 2001; Azadeh et al., 2011), Data
Envelopment Analysis (Azadeh et al., 2014) and ranking based on Geographic In-
formation Systems (GIS) or geospatial optimisation techniques (Snchez-Lozano
et al., 2014; Voivontas et al., 1998; Ramachandra and Shruthi, 2007; Baban and
Parry, 2001; van Haaren and Fthenakis, 2011; Phillips and Middleton, 2012). For
infrastructure upgrades, Transmission Expansion Planning (TEP) models have
been used to efficiently upgrade a transmission system (e.g. Hemmati et al., 2016;
van der Weijde and Hobbs, 2012; Ugranli and Karatepe, 2014). A number of trans-
mission expansion planning models have considered investor-transmission planner
interactions (van der Weijde and Hobbs, 2012; Ng et al., 2006; Tor et al., 2008;
Sauma and Oren, 2006) in the pursuit of least cost generation expansion.

Despite the general concern surrounding external costs and methodologies to
both quantify and minimise their prevalence, they have not been incorporated
into competitive auction frameworks. It is the purpose of this paper to compare
different methods for such integration. Two primary approaches may be taken.
First, policymakers may employ a competitive auction to identify internal costs



of generation. This data may then be used in conjunction with information on
external costs such that both internal and external costs are minimised. Indeed,
the methodologies for minimising external costs, outlined above, take internal gen-
eration costs as a primary input (e.g. Drechsler et al., 2011).

Alternatively, policymakers may calculate the external cost of deployment at
each potential site and reveal this information to investors. Investors may then in-
corporate this information into their bidding strategy, thus internalising external
costs into the competitive auction. This follows the theory of Pigouvian taxa-
tion and allows private investment strategies to be aligned with the social opti-
mum (Baumol, 1972). Much literature exists to quantify environmental and social
externalities associated with renewables deployment (Longo et al., 2008; Owen,
2004). Calculating external infrastructure upgrade costs is less advanced. Shirmo-
hammadi et al. (1996) discuss a number of ‘transmission pricing paradigms’ that
may be employed to internalise such costs, whilst Roustaei et al. (2014) gives an
overview of the literature in this area. Adopting the concept of ‘cost causality’,
Dupont et al. (2014) and Ortega et al. (2008) suggest that external transmission
cost apportionment should reflect each site’s benefit of long term incremental in-
vestment costs (Dupont et al., 2014; Commission, 2011; Hogan, 2011; Munasinghe
and Warford, 1982; Roustaei et al., 2014; Shirmohammadi et al., 1996; Tabors,
1994). However, each site’s benefit of long term incremental investment costs is
determined by collective siting decisions, making ex-ante estimation difficult.

While this paper does not aim to quantify these externalities, it does seek to
identify how best to treat them with respect to competitive contract auctions. In
the pursuit of socially efficient renewables deployment, external costs may place
a considerable constraint on site selection. Under such circumstances, techniques
to minimise external costs may influence the probability of receiving a connection
offer. This may re-rank successful bids in a way that is unknown to the investor.
As a result, the investor’s probability of bid acceptance and thus the investor’s
optimal bidding strategy may change. Indeed, even if externalities are not con-
sidered by the modeller, they may affect the probability of eventual deployment.
Public opposition to any of the social, environmental and infrastructural exter-
nalities, following the competitive bidding process, may affect the probability of
successful deployment (Cohen et al., 2014; Devine-Wright, 2005; Valentine, 2010;
Warren et al., 2005; Wolsink, 2007). Thus, in the presence of social, environmental
or infrastructural constraints, a least cost bid in a competitive auction may not
necessarily be successful if it is likely to be affected by either ex-post opposition or
ex-post modelling to minimise external costs. This paper seeks to identify whether
the investor’s optimal bidding strategy differs when external costs are internalised
into the investment decision.

This analysis is carried out for mature markets where costs are known, and
immature markets where costs are uncertain and investors are averse to losing the
auction. Hao (2000) has shown that investors exhibit rent-seeking behaviour with
respect to their optimal strategy in first-price sealed bid auctions. Similar rent-
seeking has been shown to occur in different types of electricity market pay-as-bid
auctions (e.g. Nicolaisen et al., 2001; Rassenti et al., 2003). We thus analyse the
impact external costs may have on such rent-seeking under different degrees of
market competitiveness. With an increasing concern surrounding the cost of re-
newables deployment, these findings will be of increasing importance as renewables
deployment progresses. This contribution proceeds as follows. Section 2 discusses



the methodology employed. Section 3 presents the data used in this analysis. Re-
sults are presented in Sections 4 and 5 and some concluding comments are offered
in Section 6.

2 Methodology

The allocation of wind connection contracts is carried out by a policymaker who
wishes to minimise the total societal cost of achieving a renewables target. This
total cost includes both internal generation and any external costs. This may be
carried out by connection contract auction to identify internal costs, followed by a
separate cost optimisation procedure that takes into account external costs. Such
external costs may include transmission upgrades, environmental impacts and/or
social impacts such as visual disamenity. Alternatively, policymakers may identify
the incremental external cost incurred by investment at a given site and insist
that investors pay this cost if deployment occurs at that location. In this way,
site-specific external costs are internalised into their bids. Conditional on either of
these connection contract allocation strategies, the bidder will construct a bidding
strategy. The policymaker’s objective will now be formally outlined.

2.1 Policymaker’s objective

Policymakers wish to deploy a ¢ capacity of wind deployment such that they meet
a @ deployment target, while minimising the discounted sum of total social costs,
TC. An a spatial arrangement must be chosen to carry this out. As a different
spatial arrangement of wind deployment results in different sites being chosen and
thus different investment and external costs, a is the control variable that the
policymaker may alter to minimise costs, with a being an element of the set of
feasible actions A. This deployment decision may be formally represented as:

in {T 1
min {TC(a)]}, (1)

subject to the constraint
q=Qr. (2)

TC may be formally represented by equation (3):

I
TC = Z ¢i + D(a), (3)

where ¢; represents the discounted sum of deployment costs incurred by in-
vestor at site i for one MW of capacity (i.e. ¢ = 1) and D is the external cost
determined by the a spatial pattern of wind capacity installed. To facilitate inter-
nalisation of these external costs, policymakers must disaggregate total external
costs according to the external cost attributable to deployment at each site i.
Under such circumstances, D may be disaggregated to d; components such that



idi =D. (4)

To determine the optimal schedule a, the policymaker must quantify the cost of
deployment, both internal costs and external costs, for each potential arrangement.
To carry this out, the policymaker puts in place a pay-as-bid auction. Investors
bid the €/MWh price which they require to invest at site i. This bid may include
or exclude their share of incremental external cost. Policymakers minimise T'C' by
choosing the least cost combination of bid and external costs. Bidding strategies
under each auction specification will now be outlined.

2.2 Investor bidding strategies in a pay-as-bid auction

In a competitive pay-as-bid auction, investors bid the k; price they are willing to
receive per unit of electricity generated should they win a connection contract.
Policymakers choose the combination of sites from these bids that facilitates cost-
minimisation. As the policymaker will offer connection contracts to the combina-
tion of sites that minimises total cost, a lower bid signals lower cost at that site and
thus increases the probability of acceptance for the investor. However, a higher bid
will increase the potential revenue, conditional on acceptance, as the investor will
receive a higher price per unit of electricity generated. As Naert and Weverbergh
(1978) and Hao (2000) discuss, rational bidders will seek to maximise utility de-
rived from profits based on their private information, including their perception of
how others will bid. Bidders may thus seek a markup by bidding in excess of their
private breakeven costs. A Nash equilibrium will result when each bidder chooses
a strategy and no bidder wishes to change their strategy (Hao, 2000).

We consider bidding in risk-neutral and risk-averse settings. When uncertainty
surrounds the cost of the renewable energy installation, this affects the value of
winning the auction for the investor. The empirical and experimental literature
indicates that risk aversion is an important component of bidder behaviour under
such circumstances (Guerre et al., 2009; Hayashi and Yoshimoto, 2015; Holt and
Sherman, 2014) and has been used to explain the frequently observed overvalua-
tion of winning the bid (Cox et al., 1988; Guerre et al., 2009). Guerre et al. (2009)
give an overview of the literature in this field. In such cases, bidders are faced
with uncertainty surrounding a key parameter determining the value of their bid
and thus bidders prefer to raise probabilities of winning at the cost of lowering the
value of remuneration, conditional on winning (Hayashi and Yoshimoto, 2015). As
Guerre et al. (2009) discuss, risk aversion is generally modelled by parameteris-
ing a bidder’s utility function. To accommodate this, we assume investors wish
to maximise their utility according to a utility function U !. For the purposes of
this paper, investors’ utility is modelled using a power law utility function, where
we model risk aversion based on the utility of profit alone. Should the risk aver-
sion parameter be zero, the utility maximisation procedure is the same as profit
maximisation.

1 The purpose of this analysis is to compare risk aversion with risk neutrality and a single
tractable utility function is chosen. Preliminary analyses have found that the general conclu-
sions of this analysis are not sensitive to the utility function chosen and for the purposes of
this paper, investors’ utility is modelled using a power law utility function



(ﬁ)(wf)l‘“ if a#1,
In(n) if a=1,

vf = (5)

where 7} represents the profit earned by investor 7 in cost scenario s as follows:
™ = kigi — ci, (6)

where g; and ¢ are the level of generation and costs associated with at site 4
respectively. Following Bushnell and Oren (1994) we focus primarily on investment
in risk-neutral settings for the majority of this analysis and thus the risk aversion
parameter o = 0. When markets are mature and investors know with certainty
the costs that they will face, then the assumption of risk neutrality (i.e. « = 0)
is appropriate. Positive risk aversion is most appropriate when the technology is
immature and there is uncertainty surrounding cost and thus the underlying value
of item being auctioned (Guerre et al., 2009). Investors may be averse to risk of
losing the auction created by uncertainty (Holt and Sherman, 2014). Under such
circumstances the parameter ¢ is stochastic and o > 0.

We consider a bidding strategy that is increasing continuous and differentiable
function of investment cost. Investor ¢ will submit a bid k; to maximise expected
utility, as outlined in Equation (7):

oo
max EU; = max / pcipa;(ki)ds. (7)
i i —0o0

where pc; represents the probability investor ¢ associates with cost scenario s and
pa; represents the probability of investor i’s bid being accepted. When costs are
deterministic, there is a single cost scenario s. When costs are stochastic, there
are S scenarios. It should be noted that pa; is a function of investor i’s bid k;
relative to all other bids and is assumed independent of the distribution of costs.
The optimal bid is obtained when:

OEU;
o =0 (8)

When investor i is assumed to be risk-neutral optimal (i.e., @ = 0) k; may be split
into two parts as follows:

k-:l - cicids — Opa; - a; 9)
? gl _oop (] akl p (

The first section of equation (9) represents the expected breakeven cost per
unit of electricity, with the second term representing the markup. Assuming that
there is a negative change in the probability of acceptance with an increase in bid
k;, then this markup will be positive. Furthermore, a greater rate of change in the
probability of acceptance due to a change in k; bid results in a higher markup.
Similarly, a higher probability of acceptance results in a higher markup, assuming
a negative %Ifj.

The profit 7§ may be comprised of private installation costs alone ( f;) or private
installation costs in addition to site i’s share of external costs (f; + d;). Bidding
strategies for either case will now be derived.




2.2.1 Policy cost and bidding strategy: internalised externality

If 7; includes site ¢’s share of the total externality, then being the nt" smallest bid
or smaller guarantees a successful bid and thus the probability of being the nth
smallest bid or smaller is equal to the probability of success. Under this scenario,
where external costs are incorporated into each investor’s bid, policy cost will
comprise

I

TC = Zkigi(’h’)- (10)

K3

where k; is as defined in (9), where ¢; = f; + d;, with f; corresponding to the
internal cost for site ¢ and d; corresponding to the incremental connection cost
apportioned to site i. In this way, external costs are now internalised into the bid.
Characterising the optimal bid by each investor requires information on the
costs faced by bidder i and the distribution of all other bids. Following the liter-
ature, we assume all other bids are drawn from a distribution with a probability
density function f(K) and Cumulative Distribution Function C DF (k) (Hao, 2000).
The probability that generator i’s bid is less than the bid of one of these other

bids is
Pr(ki Sk‘j) =1-CDF, (11)

where k; represents the bid from another investor j. Similarly, the probability that
generator i’s bid is greater than the bid of one of these other bids is

Pr(k; > k‘j) = CDF. (12)

Assuming there are N independent bids in total, the probability that there is
exactly n — 1 bids less than generator i’s bid and N — 1 — (n — 1) bids greater is

(Z_‘f) (CDF)" (1 — cDF)N-1-(=1), (13)

Furthermore the probability that there is n — 1 or less bids less than generator i’s
bid is
psilki) = (f o) ) (CDF)*™ (1 - CcDR)N =D

N-—-1

) (CDF)""%(1 - cpF)N-1=(n=2)
n—

(14)

(CDF)°(1 — cDF)N 1=,

+ (Nl_ 1) (CDF)'(1 —cDpF)N 1=



which is equal to

park) = 3 (N ; 1) (CDF)!(1 - DRV, (15)

=0

Equation (15) gives us the probability that k; is the nth smallest bid or smaller.
To specify the parameters of equation (8), the partial derivative of equation (15)
with respect to k; is required which is

n—1
Opa; _ N —-1)0CDF =1/ N—1—l_(nr_1_ Ly N-2-1
e =3 ( z ) o [Z(CDF) (1-CDF) (N-1-1)(CDF)(1-CDF) ]

(16)

2.2.2 Policy cost and bidding strategy: externality not internalised

If pa; does not include site i’s share of external costs, then being the n*" smallest
bid or smaller does not guarantee a successful bid. Under this scenario, policy costs
comprise

I
TC = Zkigi(qi) + d;(a), (17)

K2

where k; is determined by equation (9). When the externality is not inter-
nalised, ¢; = f;. f; is the internal generation cost for site ¢ and d; is the incremental
connection cost apportioned to site .

As being the nt" lowest bid might not necessarily mean your bid gets accepted
we follow a procedure similar to Brock and Durlauf (2001) and represent the
probability that generator i’s bid will be accepted given there are [ bids lower
than theirs (i.e., given the rank of their bid) by a hyperbolic tangent function:

prill) = 201~ tanh(*5 ). (18)

This function models the probability of acceptance given the rank of bid such
that for low values of [ there is a high probability of acceptance and similarly for
high values of [ there is a low probability of acceptance. A shift from the high
probability regime to the low probability regime occurs over a range of magnitude
A, centered at [ = 8. The parameter ~ ensures that the probabilities are normalised
such that the expected total number of bids accepted is n, i.e., >, pri(l) = n. See
Figure 1 for a schematic of equation (18).

As X — 0, equation (18) tends towards a stepwise linear function where the
probability of acceptance is equal to one when [ < n and zero when [ > n which
results in the same situation as described in Section 2.2.1 where external costs are
internalised. As A — oo, equation (18) tends towards a uniform distribution such
that all values of I (0 <1< N — 1) have equal probability.



Fig. 1: Probability of acceptance given the rank of bid

Probability of acceptance

A
B

Rank of bid

Using this conditional probability, the probability that generator i’s bid is
accepted is

N—-1
%(1 — tanh( /\’3)) (N ; 1) (CDF) (1 —cDpR)N 7L (19)
=0

Equation (19) gives us the probability of acceptance when external factors
affect the ranking of successful bids. To specify the parameters of equation (8),
the partial derivative of equation (19) with respect to k; is required and this is
specified in equation (20):

N—1
3Paz _ Y O0CDF -1, N—1—-1
= ?_O 2 (1~ tanh( —)) 5 |(CDF) T (1~ ODF)

—(N-1-0)(CDF)'(1 - CDF)N_Q_I}
(20)

Given the complex nature of the problem formulation, analytical results are
not possible. We solve the problem numerically to give insight into the optimal
bidding strategy (9) when employing the specification of equations (15), (16), (19)
and (20). An application to wind energy deployment in Ireland is chosen and the
parameters for this application are outlined in the following section.

3 Data
3.1 Investment data

This auction framework may be applied to many contexts such as the deployment
of wind, wave and solar technologies. For the purposes of this paper, we apply the



framework to a wind energy example, taking installation data representative of an
Irish case study. We consider scenarios of 10 bidders in a market. Following Hao
(2000) we assume that each investor 7 has homogeneous expectations regarding the
distribution of all other bids, where all other bids (k;) follow a uniform distribution
according to the parameters of Table 1. This is predicated on different capital
investment costs, which are uniformly distributed about a mean of €1.76m/MW,
following Doherty and O’Malley (2011) and Farrell et al. (2013). All other wind
investment parameters are outlined in Table 1. It is important to note that, for
the presented simulations, total costs incurred by investors under each scenario are
the same (i.e. ¢; is the same, regardless of whether upgrade costs are internalised
or not). This allows for greater transparency as the only factor influencing bidding
behaviour is a difference in the probability of acceptance.

Table 1: Numerical application: parameters

Parameter Value
Internal investment cost parameters

Capital Cost (Wind, per MW) €1.408m-2.112m
Annual Operations & Maintenance Cost 2% of capital cost
Annual Generation (g) 2912.7 MWh*
Discount Rate (r) 0.06
Risk-aversion parameters

«: risk neutral scenario 0
«: risk aversion scenario 0.8

@ Assumes a capacity factor of 0.35 and availability factor of 0.95

3.2 Market concentration and probability of acceptance

Bidding strategy is influenced by the extent of competition in the market (market
concentration) and the degree with which externalities affect the probability of
acceptance. We consider two scenarios of market concentration and three scenarios
through which the probability of acceptance is affected. 10 bidders are present in
both scenarios of market concentration. For low concentration, three bidders of
ten are successful (i.e. the market is competitive). For high concentration, seven
bidders of ten are successful (i.e. the market is uncompetitive).

When analysing the probability of acceptance, we first consider the situation
where costs are fully internalised and there is no external effect impacting the
probability of acceptance. When external factors affect the probability of accep-
tance, we consider impacts of high or low influence. The parameters that define
such high and low influence and the resulting effect on acceptance probability are
illustrated in figures 2 and 3. When no external factors affect the probability of
acceptance, bid ranking is the sole determinant of acceptance. This is shown in
Figure 2(a) where we see that being within the lowest n = 3 bids gives a 100%
probability of being issued with a connection contract. This falls to 0 as soon as a
bid is ranked 4 or higher.

As figures 2(a) and 2(b) show, bid ranking still leads to a considerable dif-
ference in the probability of acceptance, however this is not the sole determinant
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of acceptance. When external factors have a low influence, bids that are ranked
below n still have a considerably high probability of acceptance, but normalisation
of probabilities has reduced this considerably to allow for the greater probability
of acceptance in the neighbourhood of n. We see the most change around the
neighbourhood of bid n. Increasing the influence of external factors lessens the
sharp decline in acceptance probability in the neighbourhood of n. Thus, bid posi-
tion still influences acceptance probability, but this influence is lessened with the
influence of external factors on the policymaker’s decision process.

The most notable difference between scenarios where external factors have
low or high influence is that the decline in acceptance probability is less steep
with a greater degree of uncertainty, with bids of different rankings having closer
probabilities of acceptance. Figures 2(b) 3(b) shows how this affects the probability
of acceptance for each bid value, where we see that this translates into a lower
probability of acceptance for lower bids and a higher probability of acceptance for
higher bids.

These scenarios are first analysed in the presence of deterministic internal
costs, representing mature markets where investors are certain of their generation
costs. Alongside this, these scenarios are analysed under stochastic generation
costs to represent an immature market where investors are uncertain as to their
true internal costs. When investors are uncertain as to their investment costs, we
assume that they are averse to losing the auction, following observed behaviour
when pay-as-bid auctions have been implemented in immature markets (Kylili and
Fokaides, 2015).

Fig. 2: Competitive market: acceptance probabilities

(a) Probability of acceptance: bid position (b) Probability of acceptance: bid price
P 1 e
i ---Noinfluence ---Noinfluence
! —High influence| —High influence|
g 08 ! - - Low influence g 08 N - - Low influence
g g
[ e Y \
8 0.6 b go_s, \
< <
k] K<}
>
204 = 04r
i !
£ £
0.2r 0.2¢
0 9 : : e ‘
0 2 4 6 8 10 40 50 60 70 80 %0
Position of Bid Bid

Parameters: High influence: 8 = 2, prob = 0.8; Low influence: 8 = 4, prob = 0.6

4 Results I: Mature technology

Assuming the considered renewable technology is mature, costs are deterministic
and thus investors are risk-neutral in the formulation of their bidding strategy.
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Fig. 3: Uncompetitive market: acceptance probabilities

(a) Probability of acceptance: bid position (b) Probability of acceptance: bid price
Lpmmmmm o 14
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Parameters: High influence: 8 = 5, prob = 0.55; Low influence: § = 5, prob = 0.7

This section identifies the impact uncertainty of bid acceptance has on the optimal
bidding strategy in that scenario. This is carried out for the scenarios outlined in
Section 3.

4.1 High level of competition for bid acceptance and expectation of competitive
bid price

We first consider the case of a competitive market where all investors have similar
costs in the range of +/-10% around the mean value given in Table 1. Each investor
has the same level of information regarding the costs faced by other competi-
tors, with expected bid values uniformly distributed in the range of €49/MWh to
€82/MWh. This range covers breakeven bids expected by investors, ranging from
€50 to €72/MWh, whilst also incorporating the expectation that other bidders
may incorporate a markup into their strategy.

Table 2 shows the bids for all investors in this scenario. First, we see that,
under all scenarios, all investors place a markup on their breakeven costs, following
the expected bidding practice found by Hao (2000). This markup is lowest when
external costs have zero influence, and greatest under the scenario where external
costs have greatest influence. As all investors face a concave profit function the
bid chosen is the optimal strategy given their expectations regarding the bidding
behaviour of all other investors. As such, a Nash equilibrium exists.

External factors do not affect bid rank when each bidder’s expectation is influ-
enced to the same extent. However, if investors have differing expectations, then
the ranking of potential outcomes will change. To illustrate, if investor 1 expected
that external factors would have a high degree of influence on the probability of
acceptance, while investor 2 expected a low degree of influence, then the ranking
of received bids would change. Thus, non-internalised external costs may yield
an inefficient selection of sites should investors have heterogeneous expectations
regarding their influence.
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Table 2: Optimal bids: High level of competition for bid acceptance and expectation
of competitive bid pricing

Bid: influence of external factors

Investor  Breakeven Cost  None High Low
1 60.31 64.88 69.43 66.12
2 61.62 65.76 70.41 66.93
3 62.93 66.67 71.40 67.76
4 64.24 67.60 72.40 68.63
5 65.55  68.57 73.42 69.53
6 66.87 69.56  74.45 70.45
7 68.18 70.57 75.48 71.39
8 69.49 71.60 76.53 72.35
9 70.80 72.64 77.59 73.34

10 72.11 73.70 78.66 74.33

These results allow for the merits of a pay-as-bid auction to be compared to
a centrally-planned connection allocation. While investors seek a markup, this
markup is relatively low and potentially lower than any bias likely to result from
policymaker estimation. In Table 2, costs are between 2-8% greater under a com-
petitive framework when external costs exert no influence on bidding strategy. A
greater level of rent seeking exists for sites with lower costs. To put this rent-
seeking into perspective, misspecifying an investor’s capacity factor by 1% results
in a difference of 3% in the required breakeven FiT. Given this high degree of
sensitivity, it is highly likely that bias due to policymaker estimation may exceed
the potential deviation due to market-based rent-seeking.

Figure 4 gives insight into the effect external factors have on the optimal bid-
ding strategy under this competitive environment. Externalities increase the prob-
ability of acceptance for bids ranked > n + 1, while also lowering the probability
of acceptance should a bid be ranked < n. Given this change in acceptance proba-
bility, the expected profit for higher bids is raised by a small amount and thus the
optimal bid is raised. This higher optimal point is shown in Figure 4 and is greater
with a greater degree of externality influence as there is a higher probability of
success for higher bids. As investors can no longer identify with great precision
the point at which their probability of being accepted is maximised, there is an
incentive for investors to seek a higher markup. This is a Nash equilibrium as this
maximises expected profit and thus there is no incentive to change.

This is evidence to suggest that integrating external costs into pay-as-bid re-
newables connection auctions reduces rent-seeking and thus the cost of deployment
for consumers. However, there are some scenarios where this may not prevail. These
will now be analysed.

4.2 High level of competition for bid acceptance and expectation of
uncompetitive bid price

Section 4.1 has shown how bidders use information asymmetries with respect to
cost to extract informational rents. In this section, we consider how this rent-
seeking is affected when further information asymmetries exist. In particular, we
consider the scenario whereby the expected range of bids is considerably higher
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Fig. 4: Investor 1 bid: high level of competition for bid acceptance and expectation
of competitive bid pricing
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than investor cost, thus resulting in an added opportunity to seek informational
rents.

A number of factors may lead to this occurring. First, there may be a sudden
change in technological development, where investors are aware of lower costs but
preceding auctions and prevailing market prices suggest bids will be in a higher
range. This is similar to the step change in renewables costs that were experienced
in Spain and Germany due to technological developments. When this occurred,
prevailing Feed-in Tariff prices remained at higher levels, resulting in investor
costs being much less than received prices (del Rio and Mir-Artigues, 2014; Poser
et al., 2014). Secondly, an information asymmetry may arise where an individual
investor’s costs are less than all other competitors and thus the expected range of
bids is greatly in excess of their breakeven costs. Such investors may have a cost
advantage derived from factors such as economies of scale or experience, however,
given cost constraints, all other investors are expected to bid within a higher range.

Table 3 shows the optimal bidding strategies for a bidder in either of these
scenarios. Each bidder expects bids to be in the range specified in Section 4.1,
however, breakeven cost values are considerably diminished. Once again, we see
that investors seek a markup, with a higher markup for those with lower costs.
However, a number of differences exist.

First, we find that the optimal bid strategy varies relatively little with respect
to the underlying cost value. As predicted by (Swider and Weber, 2007), all par-
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ticipants bid close to what they expect the a priori unknown marginal bid will be.
Bids are similar as the profit-maximising bid is no longer constrained by internal
generation costs. When external factors influence acceptance probability to a small
extent, investor markup increases, similar to that predicted by Section 4.1. This
is to a much lesser magnitude, by 1.7% to 2.3% in Table 3.

The markup is lower under a scenario of high external influence than when
no influence is present. This may be explained by comparing the bid functions of
Figures 4 and 5. As costs are much lower for the scenario represented by Figure
5, we find that a change in bid results in a much greater change in profit and thus
the expected profit when weighted by probability of occurrence. For a scenario
of high external influence, the rate of change of expected profit with respect to a
change in bid is very high. As such, when bid price is increasing, the reduction in
probability outweighs the additional potential revenue, and expected profit falls.
This results in the profit maximising bid being lower than under a scenario of no
uncertainty.

Table 3: Optimal bids: High level of competition for bid acceptance and expectation
of uncompetitive bid pricing

Bid: influence of external factors

Investor  Breakeven Cost None  High Low
1 27.53 55.13  50.26 56.08
2 28.84 55.26  50.79 56.24
3 30.16 55.39 51.34 56.42
4 31.47 55.54 51.91 56.60
5 32.78 55.69 52.50 56.79
6 34.09 55.86 53.12 56.99
7 35.40 56.04 53.75 57.21
8 36.71 56.23 54.41 57.45
9 38.02 56.44 55.09 57.70

10 39.33  56.67 55.79 57.96

The findings of this analysis give insight into how policymakers may wish to
treat external costs when they expect one or more bidders to extract excessive in-
formational rents due to the reasons cited above. We see that the rent-reducing ef-
fects of external cost influence are greater when a greater cost difference is present.
Also, only high levels of external influence induce a lower markup.

Whether it is worthwhile to retain this external influence is predicated on the
expected market environment. When there is one player with a low cost, uncer-
tainty will decrease the markup sought by the low cost bidder and increase the
markup for investors with higher costs (as outlined in Table 2). Introducing uncer-
tainty thus redistributes economic rents by eroding the rent-seeking for dominant,
low-cost market participants and enhancing the rent-seeking for market players
bidding in the neighbourhood of their breakeven costs. Comparing the magnitude
of markups sought under Tables 2 and 3, the sum total of investor rents may
increase with uncertainty under such a scenario. However, should there be a con-
siderable number of investors with costs much lower than the range of expected
bids, instigated by factors such as historical precedent, adding uncertainty may
lower the sum total of investor rents. Thus, non-internalisation of external costs
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is only likely to yield an efficiency gain when the majority of market participants
enjoy a cost advantage relative to the expected range of bids.

Fig. 5: Investor 1 bid: High level of competition for bid acceptance and expectation
of uncompetitive bid pricing
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4.3 Low level of competition for bid acceptance

The second scenario analysed in this paper is related to the number of competitors
in the market relative to the number of successful bids. Once again, we consider
a scenario of 10 bidders, but this time there are 7 successful bids. As there are 7
winners of 10, this market is less competitive than the preceding analyses when
only 3 bids were successful.

We first consider the optimal bidding strategy when expected bids are in a
similar range to breakeven costs. Table 4 shows that a higher markup results, rela-
tive to the results of Table 2, as investors have a greater probability of acceptance
with higher bids. A marginally higher markup occurs when external costs have
low influence, with Figure 6 showing that this is due to a shift in the bid curve.
This shift is due to a greater probability of acceptance at higher bid prices.

If external factors have a high degree of influence, bidder markup varies by their
place on the expected distribution of bids. Relative to the no uncertainty scenario,
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we see that bidders with costs in the lower portion of the expected range add a
lesser markup to their bids, while investors with costs in the higher portion of the
distribution add a greater markup. For sites with lower costs, investors maximise
their profits at a lower bid as the greater probability of acceptance at lower bids,
coupled with the relatively greater profitability relative to higher cost bids, results
in a more profitable bid. For higher costs, investors do not have this great degree
of profitability at lower bids and thus it is optimal to seek a higher markup to
compensate for the lower profit margin, at the expense of a lower probability of
acceptance. This is displayed in Figure 6 where we see that under high uncertainty,
the optimal bid is considerably different for bidder 1 (low cost) than it is for bidder
10 (high cost).

Table 4: Optimal bids: Low level of competition for bid acceptance and expectation
of competitive bid pricing

Bid: influence of external factors

Investor  None High Low
1 7276 70.60 75.17
2 73.07 71.35 75.61
3 7341 7212 76.07
4 73.76 7291 76.54
5 74.15 73.72 77.02
6 74.56 74.55 77.53
7 75.00 75.39 78.06
8 7547 76.26 78.60
9 7598 77.14 79.16

10 76.53 78.04 82.94

Table 5 shows bidding strategies when costs much lower than the range of
expected bids and seven bidders of ten are successful. We see a similar impact
on the optimal bidding strategy as that observed in Table 4 when low levels of
uncertainty are present, with low cost bidders reducing their markup and high
cost bidders increasing their markup, relative to a no uncertainty scenario. Under
a high uncertainty scenario, investors lower their bids for all cost values. The bid
curve of Figure 7 shows a similar pattern to Figure 5, albeit more pronounced,
where high levels of uncertainty result in a steeper decline in expected profit as
bids are increased. Because of this, the optimal bid is lower under a high uncer-
tainty case than under a case of no uncertainty, when prices and expectations are
uncompetitive.
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Fig. 6: Comparing bidder 1 and bidder 10: Low level of competition for bid accep-
tance and expectation of competitive bid pricing
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Thus, should policymakers be faced with an uncompetitive market, external
costs have potential to lower investor markup and thus the total societal cost.
When the expected bid price range is competitive with breakeven costs, external
factors with high levels of influence have the potential to lower bids for costs in
the lower portion of the expected distribution. As those in the lower portion are
winners of the auction, this is more likely to yield a reduction in policy cost. For
scenarios of uncompetitive market prices and uncompetitive expectations, high
levels of uncertainty result in reductions in rent-seeking across all bidders and
thus a greater reduction in rent-seeking and policy cost.

Table 5: Optimal bids: Low level of competition for bid acceptance and expectation
of uncompetitive bid pricing

Bid: influence of external factors

Investor None  High Low
1 68.57 58.15 68.07
2 68.67 58.45 68.25
3 68.77 58.77 68.45
4 68.87 59.10 68.65
5 6898 59.45 68.85
6 69.09 59.81 69.06
7 69.20 60.18 69.28
8 69.32 60.56 69.50
9 6945 60.97 69.74

10 69.58 61.38 69.97
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Fig. 7: Investor 1 bid: Low level of competition for bid acceptance and expectation
of uncompetitive bid pricing
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5 Results II: Immature technology and risk-averse investors

Results presented so far have assumed deterministic costs and risk neutrality on
the part of the investor. Such assumptions are relevant for mature markets where
costs and acceptance probabilities can be reliably estimated. However, in immature
markets, costs are subject to uncertainty and investors have displayed aversion to
losing the auction (Guerre et al., 2009; Hayashi and Yoshimoto, 2015; Holt and
Sherman, 2014; Kylili and Fokaides, 2015; O Gallachoir et al., 2006; Shrimali and
Tirumalachetty, 2013). As such, this section repeats the analysis of Section 4.1 and
characterises the optimal bidding strategies when costs are assumed stochastic, in
the region of +/-25% around each breakeven cost value, and investors are risk
averse, with a risk aversion parameter of o = 0.8 2.

When external impacts do not influence acceptance probability, and bidders
are averse to losing the auction, we find that investor’s optimal bids are in the
region of the breakeven cost. However, we find that a negative markup exists.
This is because investors are averse to losing the auction and thus maximising the
probability of acceptance takes greater weight. This is evidenced by the fact that
investors with higher costs shade their bid by a greater extent, as the influence of

2 For brevity, a single risk aversion parameter is chosen to illustrate the effect risk aversion
has on bids. The general conclusions concerning the impact of risk aversion holds for all risk
aversion parameters, although the magnitude of effect will differ as discussed.
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Table 6: Optimal bids for risk averse investors

Bid: influence of external factors

Investor  Expected Breakeven Cost None  High Low
1 60.31 59.87 67.57 65.96
2 61.62 60.34 68.65 66.87
3 62.93 60.66 68.53 66.63
4 64.24 61.07 69.63 67.25
5 65.55 61.83 70.41 67.87
6 66.87 62.12  71.60 68.15
7 68.18 62.46 71.81 68.61
8 69.49 63.33 72.46 68.68
9 70.80 63.56  73.05 69.40

10 72.11 64.28 73.75 69.45

Note: Investors expect cost values to be in the range of +/-25% of each breakeven value. Risk
aversion parameter («) of 0.8 assumed. High level of competition for bid acceptance and
expectation of competitive bid pricing also assumed.

maximising acceptance probability erodes profitability to a greater extent when
higher internal costs are present. Thus, investors place greater weight on low cost
outcomes when constructing their utility maximising bid. These utility maximising
bids are below those when costs are known for certain under a risk neutral setting
(Table 2).

This presents the possibility of an unviably low bid if investors win with a
shaded bid and the eventual cost is similar to the expected breakeven level. This
is similar to the pattern of bidding observed in many markets such as Ireland,
China and Cyprus when unviably low bids occurred due to cost uncertainty and
loss aversion amongst bidders (Kylili and Fokaides, 2015; O Gallachoir et al., 2006).
While Table 6 represents findings in relation to a single assumed degree of risk
aversion and cost uncertainty, the magnitude of bid shading will increase with the
level of risk aversion and cost uncertainty. The degree to which this occurs must
be considered by policymakers when implementing a pay-as-bid auction.

Policymakers must also consider the prevalence of loss aversion. Should all
bidders have the same degree of loss aversion, then the relative ranking of bids
will be unaffected, however, winning bids have a considerable risk of being unviably
low. Should loss aversion be heterogeneous, the degree of bid shading will vary and
this may result in a re-ordering of winning bids with unviable bids being accepted,
along with many that are not amongst the least cost sites.

As has been observed in the deterministic analyses of Section 4, we find that
the markup is greater when external factors influence investor bidding strategy.
The extent to which external factors influence bidding strategy determines the
additional markup sought, and, for the presented example, influence of a high
magnitude results in all bids being viable.

Thus, when pay-as-bid auctions are introduced to immature markets with het-
erogeneous levels of risk aversion amongst market participants, potential exists
for unviable bids to become accepted by a pay-as-bid auction. This occurs when
high cost investors are risk-averse and indulge in ‘bid shading’, resulting in a re-
ranking of successful bids to include unviably low winning bids. As bid shading is
more prevalent amongst bidders at the upper end of a potential cost distribution,
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heterogeneity of risk aversion presents the possibility of high cost sites submitting
unviably low bids and winning the auction ahead of sites with a lower true cost.
The influence of external factors counteracts this potential for bid shading. Should
policymakers consider the possibility of accepting unviable bids to be of greater
concern than the possbility of investors seeking a markup, the influence of external
factors may thus have desirable effects.

6 Discussion and Conclusion

With an increasing level of renewables deployment comes an increasing focus on
the design of efficient market mechanisms. Competitive pay-as-bid auctions are
becoming increasingly widespread. Alongside this, many methodologies exist to
quantify and minimise external costs. To date, separate methodologies have been
proposed to analyse each of these costs. It is the purpose of this paper to explore
the impact that the use of separate methodologies may have on competitive wind
connection contract auctions. Insight is given into how policymakers should treat
external costs in the pursuit of minimising bid markup and ensuring that viable
bids are successful.

In accordance with the findings in the literature to date, we find that scope
for rent-seeking exists in competitive pay-as-bid auctions. However, the magnitude
of rent-seeking is found to be small compared to the potential magnitude of cost
misspecification on foot of policymaker estimation. This suggests that, even in
imperfect markets, competitive auctions for renewable energy connection contracts
can yield efficiency gains.

Of primary interest is the impact that acceptance uncertainty, due to non-
internalised externalities, may have on bidding strategy. We show that the inter-
nalisation of externalities is important for total cost minimisation when internal
costs are known with certainty and expected bids are competitive with breakeven
cost. This is the primary finding of this paper. This is evidence to suggest that
integrating external costs into pay-as-bid renewables connection auctions reduces
rent-seeking and thus the cost of deployment for consumers.

However, there are some scenarios where internalisation may not be preferable
and these have been explored by this paper. When investors have potential to
earn a high markup, introducing uncertainty has the beneficial effect of reducing
the markup sought. This potential may be brought about by a relatively low
number of competitors or when the majority of market participants enjoy this
power, perhaps when a step change in technology has occurred and expected bid
prices are likely to be greatly in excess of breakeven costs due to information
asymmetries. Introducing uncertainty is also found to be beneficial when markets
are immature and bid shading is likely to occur. In such circumstances, costs are
uncertain and investors are averse to losing the auction.

While this paper has focussed on the impact on the optimal bidding strategy,
the influence this may have on the eventual portfolio of investment is determined
by the heterogeneity of expectations surrounding uncertainty and risk aversion.
If expectations are homogeneous, the impact of uncertainty is to affect the total
cost of deployment, the ranking of successful bids being the same. Should investors
have heterogeneous expectations, not dealing with the influence of external costs
in the optimal way outlined can result in an ordering of successful bids such that
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additional economic rents are offered to investors, at the expense of the policy-
maker/consumer. In immature markets, this may result in unviable bids being
successful, resulting in the potential for missed deployment targets. Should policy-
makers consider the possibility of accepting unviable bids to be of greater concern
than the possbility of investors seeking a markup, the influence of external factors
may thus have desirable effects.

This paper has provided evidence to suggest that integrating external cost-
minimisation strategies with pay-as-bid auctions can lead to less rent-seeking by
investors, and thus minimise the social cost of renewables deployment. Given the
increasing levels of renewables deployment and the greater attention being paid to
the cost of achieving energy and environmental policies, the findings of this paper
will be of increasing importance as the pursuit of efficient renewables deployment
grows.
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