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1 Introduction

Electricity markets have undergone a process of liberalisation in recent years. The absence of

an active demand-side in electricity generation markets, along with the shared nature of the

network, means that generators face a ‘missing money’ problem in relation to recovering their

fixed costs (Stoft, 2002). Thus separate capacity remuneration mechanisms have been proposed

as a means of compensating generators for the cost of holding capacity, separate from providing

energy (Cramton and Ockenfels, 2012; Cramton and Stoft, 2008; Botterud and Doorman, 2008).

In compensating generators for providing capacity, over and above the energy they provide,

the market mechanism must differentiate between the rated capacity of the unit and the capacity

they can be expected to reliably provide. No generation unit is completely reliable, in that

there is always a non-zero probability that the unit will be on either scheduled or forced outage

when required. In the case of variable renewable generators, such as wind or photovoltaic

generators, their availability is obviously weather-dependent, as well as being subject to forced

or scheduled outage for maintenance. An efficient capacity payment mechanism will take this

inherent unreliability into account.

Several capacity remuneration mechanisms include different ways of ‘de-rating’ the unit’s

capacity to account for unreliability. For example, the Electricity Market Reforms (EMR) in

Great Britain have included a new capacity market incorporating a de-rating factor. The de-

rating factor of thermal generators is determined for each technology, based on their historic

availability during the last seven winters (National Grid, 2015b). In the electricity market of

Pennysylvania-New Jersey-Maryland (PJM) conventional generators are de-rated according to

their forced outage rates, while wind is de-rated to 13% of its installed capacity and solar gen-

eration is de-rated to 38% of installed capacity (Bowring et al., 2013). The Single Electricity

Market (SEM) of the island of Ireland is currently undergoing a redesign, including a new ca-

pacity remuneration mechanism. The regulators envisage that a capacity offered in the capacity

market shall be de-rated, and explicitly state that the method of de-rating capacity should be

“...reflective of its [the unit’s] ability to deliver capacity at times of system stress.” (CER and

NIAUR, 2015).

These examples are not exhaustive and do not cover all possible capacity mechanisms or de-

rating methodologies. However, the principle that installed capacity should be de-rated when
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considering appropriate revenues from capacity remuneration mechanisms has been established

in general. The methods currently used in, for example, Great Britain and PJM to determine

the de-rating can be viewed as somewhat ad hoc. They are based on historical data, which may

have been determined partly as a result of strategic withholding of capacity by firms. They are

calculated on a technology-basis, rather than on the basis of the individual units and/or the

firms that own them. For this reason, a firm that owns a unit with higher reliability than the

average unit of that particular technology (i.e. a lower than average forced outage rate) has a

diminished incentive to ensure the continuing reliability of that unit, while a firm with a unit

of less than average reliability (i.e. a higher than average forced outage rate) has a diminished

incentive to refurbish their unit and improve its forced outage rate. Finally the interaction

between units is not taken into account (ex ante, at least).

The issue of the appropriate de-rating factor to apply can be viewed as a problem of imperfect

information. The firm possesses the best information regarding the reliability of their particular

unit. Instead of estimating de-rating factors for entire technologies, the regulator may instead

wish to induce the firm to reveal their (best estimate of their) true reliability. Simply scaling

capacity payments according to a firm’s declared reliability will not induce firms to be truthful,

as they will declare the highest possible reliability and claim the highest possible capacity

payment. However, if the energy market includes a penalty that generators must pay for

those periods when they are unavailable for generation, it is possible to scale both the capacity

payment and the penalty by the firm’s declared level of reliability. If these payment and penalty

factors are well-chosen, the firm’s profit-maximising strategy will be that of truthful declaration

of their reliability.

The challenges arising from informational asymmetries are a feature of many regulated

industries. One proposed solution is that of menu regulation, whereby firms are presented with

a choice of regulatory contracts. The firm picks the contract that will maximise their expected

revenue, and in so doing reveals information about their cost structures to the regulatory body

(see Laffont and Tirole (1993) for a more detailed discussion). In the case of the electricity

sector, Cossent and Gómez (2013) propose menu regulation for electricity distribution networks,

while Ajodhia and Hakvoort (2005) and Léautier (2000) consider other examples of regulatory

incentives for electricity network expansion. Menu regulation is currently employed by various
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regulators including in the UK for sectors such as water, gas and electricity distribution (Oxera,

2007). To the best of our knowledge, however, menu regulation has not been applied to the

case of electricity generation capacity as a means of determining the reliability of same.

In this paper, we propose a methodology for determining the scaling and penalty formulas

that will induce truth-telling by generation firms. The methodology draws on menu regulation

and is a means by which a regulator can construct an appropriate menu which will, in turn,

induce truth-telling. We do not address the related question of the optimal level of reliability for

the system, or how to incentivise generators to provide this optimal level. Rather we concentrate

instead on addressing the informational asymmetry between the regulator/market operator and

the firms regarding the reliability of each unit, and therefore the appropriate level of capacity

compensation for each firm. We apply the methodology to a stylised test system based on

the SEM of Ireland, but the method is readily applicable to any system. We demonstrate

that the profit-maximising strategy of firms is indeed to declare their best estimate of their

true reliability, relieving the regulator of any responsibility in this regard. We also examine

the impact of refurbishment of existing units, allowing firms to improve the reliability of their

generation portfolio, as well as investing in new generation or retiring old units.

We model the problem as a stochastic mathematical programme with equilibrium con-

straints. The stochasticity arises from the inherent unreliability of the units, each of which

has a probability of being unavailable (i.e. on forced outage) during any given period. Given

that refurbishing a unit will render a unit less likely to be on forced outage, the probabilities of

the scenarios in the stochastic problem are endogenous to the problem itself (in the case where

refurbishment is permitted).

2 Methodology

We formulate the problem as a bi-level game with n generation firms and a regulator. The reg-

ulator, the Stackelberg leader, firstly chooses the policy that induces truth telling knowing how

the generation firms (followers) will react, i.e., the regulator chooses the policy that minimises

the distance between the declared and actual reliabilities subject to the optimality conditions of

the generators. The firms’ objectives is to maximise expected profits, which they earn in both

energy and capacity markets. The capacity mechanism is a price-based mechanism, whereby
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a fixed sum of money to remunerate generators for capacity provision is determined admin-

istratively. We propose that sum be divided among generators on the basis of their declared

reliability as well as their installed capacities. In order to induce truth-telling by the generators,

the capacity payment mechanism must be a function both of the reliability declared by the gen-

erator, and of the actual level of reliability. We therefore include a penalty term whereby the

generator is penalised for periods of unavailability. This is a standard feature of many capacity

payment mechanisms, including the new mechanism in Great Britain. The generators’ capacity

payments are given by an exponential function and include a linear penalty function. The firms

are assumed to have the best knowledge of their units’ reliability and so the capacity pot is

divided on the basis of a declaration of reliability made by each firm.

The regulator’s objective function is to minimise the deviation of declared reliability from

actual reliability by choosing the penalty for being offline, subject to the firms’ expected profits

being maximised.

2.1 Firm f’s problem (lower level problem)

Generator f wishes to maximise the revenue they receive from the capacity and energy markets

less the cost of investment, refurbishment and maintenance as well as the penalty they must

pay in scenarios where their units are offline. Their problem is as follows:

max
invf,t,
genf,t,p,

R̂f,t,
refurbf,t

Πf = max
invf,t,
genf,t,p,

R̂f,t,
refurbf,t

∑
t

(invf,t + CAPf,t − exitf,t)
(
α(1− e−R̂f,t)

)

− (invf,tICOSTt)

− refurbf,tRCOSTt(CAPf,t − exitf,t)

− (CAPf,t − exitf,t)MCOSTt

−
∑
s

(
prs(1−Bf,t,s)(invf,t + CAPf,t − exitf,t)τtR̂f,t

)
+
∑
p,s

(
prsBf,t,sgenf,t,p,s(γp −MCf,t)

)

(1)

subject to:
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genf,t,p,s ≤ invf,t + CAPf,t − exitf,t, ∀t, p, s (λ1
f,t,p,s), (2)

R̂f,t ≤ Rf,t ∀ t (λ2
f,t) (3)

Rf,t + refurbf,t ≤ Rf,t ∀ t (λ3
f,t) (4)

where t represents different energy technologies and p represents different time periods. The

decision variables for firm f are R̂f,t, invf,t, exitf,t, genf,t,p,s and refurbf,t representing declared

reliability, market investment, market exit, generation and refurbishment decisions respectively.

Each scenario s represents a different combination of units being on/offline. The energy price

at each period for scenario s is (γp,s) while α is the capacity price paid for each unit of installed

capacity. The prices γp,s and α are exogenous to firm f ’s problem but are variables of the

overall lower level problem. The parameters RCOSTt, ICOSTf,t, MCOSTt are the firm’s costs

of refurbishment, investment in new generation and the maintenance cost of existing generation1

for each technology respectively while CAPf,t and MCf,t are the initial endowment of generation

capacity and the marginal cost of production of each technology, respectively. The parameter

Bf,t,s is a binary indicator, describing whether firm f with technology t is online (Bf,t,s = 1) or

offline (Bf,t,s = 0) in scenario s. The reliability (or probability of being online) for firm f with

technology t is Rf,t + refurbf,t where Rf,t is a parameter representing initial reliability before

refurbishment. Hence the probability associated with scenario s is:

prs =
∏
f,t

(Rf,t + refurbf,t)Bf,t,s(1−Rf,t − refurbf,t)1−Bf,t,s . (5)

Constraint (2) ensures that generation for a given unit and time period cannot exceed the

amount of installed capacity while constraints (3) and (4) provide upper bounds for the declared

and actual reliability of each unit. The variables in brackets alongside constraints (2) - (4) are

the Lagrange multipliers associated with those constraints. All primal (decision) variables of

this problem are also constrained to be non-negative.
1New investments are considered to have a lower maintenance cost, and so MCOSTt can be thought of as the

premium on maintenance costs for existing capacity over and above new capacity.
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2.1.1 Market clearing conditions

The Market Clearing Conditions that combine each of the firms’ problems are

∑
f,t

Bf,t,s ∗ genf,t,p,s = DEMANDp + ELASγp,s, ∀p, s(γp,s), (6)

POT = α

(∑
f,t

(1− e−R̂f,t)(invf,t + CAPf,t − exitf,t)
)
, (α), (7)

where DEMANDp is the demand intercept for period p and ELAS is a parameter repre-

senting the elasticity of demand. Equation (6) specifies that total generation in each period p

and scenario s must match demand, while equation (7) specifies that the capacity pot, which

is set administratively and so is exogenous to the problem, should be divided evenly between

all installed generation. The prices γp,s and α are the free Lagrange multipliers associated with

these constraints.

The lower level problem is given by the KKT equations for each firm, along with the market

clearing conditions (6) and (7).

2.2 Regulator’s problem (Upper level problem)

In addition to the generation firms, there is a regulator, whose actions determine the parameters

of the capacity payment mechanism. The regulator’s objective is to minimise the deviation of

declared reliability from actual reliability. In order to do so the regulator chooses the penalty

(τt) for each technology, which is imposed on the firms in each period that their technology is

offline. The regulator’s objective function is

min
τt

= min
τt

∑
f,t

(R̂f,t −Rf,t − refurbf,t)2 ∀ f, t, (8)

subject to the KKT conditions of the generators plus the market clearing conditions, i.e.,

subject to the firms’ profits being maximised. Note that in order for the regulator to solve their

problem, we assume prior knowledge of the firms’ true levels of reliability, which we in fact

require the firms to provide. However, the regulator could in practice solve this problem for a

full set of reliability inputs within a realistic range, for example between 0.5 and 1. The values

of τt obtained from this optimisation ensure that the best response of a firm whose reliability
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takes any of these values will be to declare their true value of reliability. The regulator can

thus solve the problem without prior knowledge of the firms’ levels of reliability. The full model

takes the form of a Mathematical Program with Equilibrium Constraints (MPEC).

3 Input data

To illustrate the methodology, we solve the model for a simplified market with three genera-

tion technologies, five time periods and four generation firms. We construct the case study

as a stylised example not intended to replicate any particular market, and use generic or

internationally-applicable data when possible. In the case of the reliability of the units and

the elasticity of demand, we use data from the Irish electricity market, as it was publicly avail-

able, and in the case of elasticity, is in line with international estimates. Using alternative

reliability/de-rating data from Great Britain (National Grid, 2015a) produces similar results.

The five time periods represent summer low demand, summer high demand, winter low demand,

winter high demand and winter peak demand. Inter-temporal constraints are not considered

and so the sequence of the demand periods is not relevant; for simplicity we show the demand

in each period in ascending order:

Period 1 2 3 4 5
Demand (MW) 300 500 750 900 1500

Table 1: Demand level in each period

We consider three generation technologies which we denote as baseload, midmerit and peak-

ing capacity. We consider pulverised coal to be roughly representative of baseload units, com-

bined cycle gas plants as representing midmerit units and open cycle gas turbines as the peaking

technology for this study. We assume that the investment and maintenance costs are fixed, as

per Shortt et al. (2013) and Hirth (2013) respectively, and use the marginal costs of production

from Shortt et al. (2013). Sensitivities were conducted using different marginal costs and they

did not significantly affect the final results. The cost characteristics are given in table 2.

Firm one is an integrated firm, with investments in all three generation technologies. Firm

two has baseload capacity only, firm three has midmerit capacity only and firm four has peaking

capacity only. The quantities of each are given in table 3.

The total generation capacity is 1400MW, which falls 100MW short of peak demand in
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Technology Investment Maintenance Marginal cost
(âĆň/MW) (âĆň/MW) (âĆň/MWh)

Baseload 100000 25 65
Mid merit 65000 12 40

Peaking 45000 7 83

Table 2: Generation cost characteristics

Firm 1 Firm 2 Firm 3 Firm 4
Baseload 300 300 0 0

Mid merit 200 0 200 0
Peaking 200 0 0 200

Table 3: Initial capacities of each firm (MW)

period 5. Thus 100MW of investment will be required.

The initial levels of reliability of installed capacity are considered fixed for each technology

and firm. These reliability levels can be thought of as the forced outage rates of the units

and are based on forced outage rates of units found on the Irish system as per the regulators’

validated model for studying the Irish system (CER and NIAUR, 2013). The forced outage

rate takes a value between zero and one, where zero indicates no reliability (i.e. the unit will

be continually on forced outage) and one indicates guaranteed reliability (the unit will always

be available when required). These initial levels are given in table 4. Midmerit units have

slightly lower levels of reliability than baseload units as they are cycled more frequently (Troy

et al., 2010), adding to wear and tear on the units, and lower reliability than peaking units,

as midmerit plants are online more frequently. Peaking units are used least often and so have

lower wear and tear and higher reliability.

Baseload Midmerit Peaking
Reliability 0.965 0.955 0.985

Table 4: Initial levels of reliability for each technology and firm

The cost of refurbishment is a continuous variable assumed to be the same as the investment

cost. Thus to increase a unit’s reliability from 0.4 to 0.5 costs one tenth of the investment cost.

While this is a simplification, the rationale for this is that no increase in reliability should cost

nothing, and to raise the reliability of a unit from zero to one entails building a new unit. This

assumption is sufficient for our illustrative model but can of course be updated with information

relevant to the system in question should this methodology be employed by a regulator. The
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reliability of new investments is assumed to be equal to one, i.e., a new build is as reliable as

any unit can be expected to be.

The elasticity of demand on the island of Ireland is calculated in Di Cosmo and Hyland

(2013) as -0.16, which is in line with international estimates. Following the methodology in

Walsh and Malaguzzi Valeri (2014) we use the elasticity of demand for the wholesale electricity

market of −0.11.

4 Results

4.1 Without refurbishment

In this subsection we solve the model without the variable refurbf,t, i.e., refurbishment of units

is not included. The declared reliability for each technology and firm are given in table 5 while

the costs, total profits and investment are shown in table 6 (note: any investment that takes

place is in peaking capacity).

Firm 1 Firm 2 Firm 3 Firm 4
Baseload 0.965 0.965
Midmerit 0.955 0.955

Peak 0.985 0.985

Table 5: Declared reliability for each technology and firm without refurbishment.

Firm 1 Firm 2 Firm 3 Firm 4 Total
Profit (e) 1356000 565000 398000 397000 2716000
Cost (e) 1883000 1260000 1060000 523000 4726000

Investment (MW) 0 95 110 0 215

Table 6: Profits, costs and investment for each technology and firm without refurbishment.

τt
Baseload 75014
Midmerit 58930

Peak 171567

Table 7: Penalty for being offline for each technology.

The firms were induced to reveal their true reliability for each technology. This led to a very

low value for the regulator’s objective solution (< 10−6), which suggests that the solution is a

global optimum as the regulator’s objective function cannot be negative. The total investment
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across all firms was higher than the 100MW shortfall seen on the system; however given the

imperfect reliability of the existing units a margin of excess capacity is optimal. No firms retired

generation units.

Table 7 displays the penalty (τt) for each technology. These figures show that the optimal

values for τt are larger for higher values of initial relabilities. In fact, assuming the initial

reliability is neither zero nor one, the value for τ∗t that ensures declared and actual reliability

are the same is:

τ∗t = αe−Rf,t

1−Rf,t
. (9)

This relationship was obtained using optimality condition (13). Figure 1 displays the relation-

ship2 and shows that for units with low reliability, a relatively small penalty is needed in order

to incentivise truth-telling. For units with high reliability, much larger penalties are needed in

order to ensure firms declare their actual reliability. This is because these units are much less

likely to be offline and without a large penalty they would only be encouraged to overestimate

their reliability in order to increase the proportion of the pot they receive.

4.2 With refurbishment

In this subsection we solve the model with the variable refurbf,t, i.e., refurbishment of units is

included. The declared reliability for each technology and firm are given in table 8 while the

costs, total profits and investment are shown in table 9 (investment again takes place in peaking

capacity only).

Firm 1 Firm 2 Firm 3 Firm 4 Total
Profit (e) 3171000 1343000 919000 909000 6342000
Cost (e) 295000 370000 361000 32000 1058000

Investment (MW) 0 44 56 0 100

Table 8: Profits, costs and investment for each technology and firm with refurbishment.

Firm 1 Firm 2 Firm 3 Firm 4
Baseload 1 1
Midmerit 1 1

Peak 1 1 1 1

Table 9: Delared reliability for each technology and firm with refurbishment.
2For Figure 1, α = 6891.39 which was the optimal value obtained for the results shown in Table 6.
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Figure 1: Values for the penalty (τ∗t ) that ensures declared and actual reliability are the same
for varying levels of initial reliability.

When refurbishment is allowed, firms take full advantage, as shown in table 10.

Firm 1 Firm 2 Firm 3 Firm 4
Baseload 0.035 0.035
Midmerit 0.045 0.045

Peak 0.015 0.015

Table 10: Refurbishment for each technology and firm.

Truth-telling is again induced, with a similarly low level for the regulator’s objective solution

(< 10−6). This again suggests that this model arrived at a global optimum. The firms invest

to the maximum extent possible in refurbishment to make their units as reliable as possible,

and the market-clearing level of investment sees a corresponding drop relative to the case with

no refurbishment. All firms earn higher profits when refurbishment is allowed. This is due to

the decrease in penalty payments incurred by the firms due to their increased reliability, which

outweighs the refurbishment costs incurred.
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5 Discussion and conclusions

This paper used stochastic mathematical programming with equilibrium constraints and en-

dogenous probabilities to demonstrate that it is possible to induce electricity generation firms

to truthfully declare the reliability of their units. This removes the need for the regulator to

dedicate resources to calculating appropriate de-rating factors for capacity markets, and op-

timises the scaling of capacity payments at the level of the individual firm, rather than at

technology-level. The results above show that for this simplified stylised system, it is possible

to induce firms to declare their best estimate of their true reliability by choosing an appropriate

method of scaling both capacity payments and penalties for non-delivery.

One obvious drawback that may occur to the reader is that our method assumes the regulator

has prior knowledge of the reliability of the units, and uses this knowledge in determining the

optimal levels of α and τt. However, this difficulty may be overcome by the regulator solving the

model for many different levels of reliability, and thereby obtaining values for α and τt that will

induce truth-telling for all initial levels of reliability. Given these values, the generators’ profit-

maximising strategies are those of truth-telling, regardless of their actual reliability. Sensitivity

testing performed on this model yielded an objective function very close to zero for any set of

initial reliabilities, inducing truth-telling for any initial levels of reliability chosen.

Further work will consider the impact of multiple time scales, which may induce investment

in generation units other than peaking plants. A more sophisticated treatment of renewable

generation may also be required if this method of declaration of reliability for wind and solar

generation is to be included.
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Appendix

5.1 KKT conditions for lower level problem

The Karush-Kuhn-Tucker optimality conditions for all firms are given below using “perb” no-

tation, where 0 ≤ a ⊥ b ≥ 0 is equivalent to a ≥ 0, b ≥ 0 and a.b = 0.

0 ≤ invf,t ⊥ −α(1− e−R̂f,t) + ICOSTt +
∑
s

prs(1−Bf,t,s)τtR̂f,t −
∑
p,s

λ1
f,t,p,s ≥ 0, ∀f, t, (10)

0 ≤ genf,t,p,s ⊥ −prsBf,t,s(γp −MCt) + λ1
f,t,p,s ≥ 0, ∀f, t, p, s, (11)

0 ≤ exitf,t ⊥ α(1− e−R̂f,t)−MCOSTt − refurbf,tRCOSTt −
∑
s

prs(1−Bf,t,s)τtR̂f,t +
∑
p,s

λ1
f,t,p,s ≥ 0, ∀f, t, (12)

0 ≤ R̂f,t ⊥ −(invf,t + CAPf,t − exitf,t)αe−R̂f,t +∑
s

(
prs(1−Bf,t,s)(invf,t + CAPf,t − exitf,t)τt

)
+ λ2

f,t ≥ 0, ∀f, t, (13)

0 ≤ refurbf,t ⊥ RCOSTt(CAPf,t − exitf,t) + λ3
f,t +∑

s

∂prs
∂refurbf,t

(
(1−Bf,t,s)(invf,t + CAPf,t − exitf,t)τtR̂f,t −Bf,t,sgenf,t,p,s(γp,s −MCt)

)
≥ 0, ∀f, t,(14)

0 ≤ λ1
f,t,p,s ⊥ −genf,t,p,s + invf,t + CAPt − exitf,t ≥ 0, ∀f, t, p, s, (15)

0 ≤ λ2
f,t ⊥ −R̂f,t +Rf,t ≥ 0, ∀f, t, (16)

0 ≤ λ3
f,t ⊥ −Rf,t − refurbf,t +Rf,t ≥ 0, ∀f, t, (17)

where

∂prs
∂refurbf,t

= (−1)1−Bf,t,s
∏
f̂ ,t̂

f̂ 6=f
t̂6=t

(Rf̂ ,t̂ + refurbf̂ ,t̂)
Bf̂ ,t̂,s(1−Rf̂ ,t̂ − refurbf̂ ,t̂)

1−Bf̂ ,t̂,s , (18)

where f̂ and t̂ are dummy indices representing each firm and technology respectively except

firm f and technology t. Equations (10)-(17), along with market clearing conditions (6) and

(7), represent the full mixed complementarity problem for the lower level problem.
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