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Abstract
Propensity score based-estimators are commonly used to estimate causal effects in eval-
uation research. To reduce bias in observational studies researchers might be tempted to
include many, perhaps correlated, covariates when estimating the propensity score model.
Taking into account that the propensity score is estimated, this study investigates how
the efficiency of matching, inverse probability weighting and doubly robust estimators
change under the case of correlated covariates. Propositions regarding the large sample
variances under certain assumptions of the data generating process are given. The propo-
sitions are supplemented by several numerical large sample and finite sample results from
a wide range of models. The results show that the correlation may increase or decrease
the variances of the estimators. There are several factors that influence how correlation
affects the variance of the estimators, including the choice of estimator, the strength of
the confounding towards outcome and treatment, and whether a constant or non-constant
causal effect is present.
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1 Introduction
A natural starting point in the evaluation of a treatment is to compare average outcomes

for treated and control units. When we have observational data, i.e. the assignment of

treatment is not randomised, we need to adjust for differences in background variables,

covariates, between the treated and controls. In causal inference this is sometimes referred

to as estimation of treatment effects under unconfoundedness, no unmeasured confound-

ing or selection on observables (see Imbens and Wooldridge, 2009, for a review). In

general, a test for unconfoundedness cannot be made with the available data and sub-

ject matter theory provides the key guidance. Thus, for an empirical researcher it might

seem reasonable to include many variables. The role of the covariates has been exten-

sively discussed in the literature from different aspects. Covariate selection and optimal

sets of covariates have been discussed both in parametric (Vansteelandt et al., 2010) and

non-parametric settings (Hahn, 2004; de Luna et al., 2011; White and Lu, 2011). For

propensity score models, simulation studies have been performed to investigate the ef-

fect of covariate selection (Brookhart et al., 2006) and ”over-modeling” of the propensity

score model by including higher-order terms (Millimet and Tchernis, 2009). Theoreti-

cal results on the inclusion of additional covariates have also been derived (Lunceford

and Davidian, 2004). The studies by Brookhart et al. and Lunceford and Davidian share

the same conclusion: adding extra information to the model brings about an increase in

efficiency if the additional variables are related to the outcome, but not otherwise.

In this paper we study the effect of correlation between covariates in propensity score

based-estimators. Correlation between variables that cause multicollinearity is a long-

familiar problem in regression analysis. Multicollinearity renders unstable matrix inver-

sion because the sizes of the numbers in the inverted matrix fluctuate wildly with only

small changes in the sizes of the elements of the correlation matrix of the covariates.

Propensity score-based estimators constitute a class of estimators that are widely used

among empirical researchers (Stürmer et al., 2006; Connors et al., 1996) studying causal

effects. It has been argued that multicollinearity does not affect the variance of an estima-

tor of the average causal effect Stuart (2010). This is because the main concern is not with

IFAU – Correlation and efficiency of propensity score-based estimators for average causal effects 3



the individual parameter estimates but with the predicted probabilities of the treatment

assignment. Pingel and Waernbaum (2014) show how correlation among the covariates

influences the large sample variance of a matching estimator and an inverse probabil-

ity weighting (IPW) estimator using the true propensity score. In the present study we

extend the results to estimated propensity scores . Here we investigate large and finite

sample variances of three estimators of an average causal effect: matching, IPW and a

doubly robust (DR) estimator. By assuming parametric models with normally distributed

covariates, linear outcome models and a logistic regression for the propensity score, we

give theoretical results on the effect of correlation on the efficiency. To generalise, we in-

vestigate a wider range of covariate distributions and outcome models showing numerical

results that in most cases are in the same direction. Further, finite sample variances for all

models are investigated in simulations.

Our study demonstrates that the efficiency of the DR estimator is only influenced by

the correlation matrix through the multiplication of the parameter vector in the propen-

sity score model. IPW and matching stand in contrast since the variances contain terms

including also a quadratic form of the outcome and the scalar formed by multiplying the

propensity score vector, the covariance matrix from the propensity score model, and the

parameter vector for the outcome. This means that the magnitude of the covariates’ in-

fluence on treatment assignment as well as on outcome interacts with the correlation in

the components of the variance of the estimators. We show analytically and in simulation

that the efficiency of the estimators are affected differently by the correlation.

In the next section we introduce the theoretical framework and notation, as well as

define the different estimators (matching, IPW and DR). In Section 3 we describe the ef-

fect of correlated covariates in a regression setting when the causal effect is a regression

coefficient. In Section 4 the propensity score-based estimators and their properties are de-

scribed. The theoretical properties under restricted assumptions are presented in Section

5. In Section 6 the assumptions are relaxed and we give numerical results and perform

simulation studies for a wider range of models. Section 7 contains an application and

Section 8 concludes with a brief discussion.

4 IFAU – Correlation and efficiency of propensity score-based estimators for average causal effects



2 Framework
Consider a random sample of N units assigned to either a treatment group, W = 1, or a

control group, W = 0, and that we wish to study how the treatment affects a response

variable of interest. Following the Neyman-Rubin framework with potential outcomes

(Neyman, 1923; Rubin, 1974), the unit-specific causal effect may be defined as Y1−Y0.

We need to also define the potential outcome means, E(Y1) = µY1 , E(Y0) = µY0 , and vari-

ances, V (Y1) = σ2
Y1

, V (Y0) = σ2
Y0

. The unit-specific effect is not estimable since only one

of the two potential outcomes is realised for each unit. However, the aim of this study

is not estimation of unit-specific effects, but estimation of the average causal (treatment)

effect, τ = E(Y1−Y0). The average causal effect is estimable under certain assumptions,

which, for instance, follows from a randomised experiment. In the event that the treat-

ment is not randomised and treatment assignment is affected by observed variables, X ,

the average causal effect can be identified under the assumption of strong ignorability

(Rosenbaum and Rubin, 1983).

Assumption 1 (Strong ignorability) (i) (Unconfoundedness)

(Y1,Y0)⊥⊥W | X, and (ii) (Overlap) 0 < Pr(W = 1|X)< 1.

Furthermore, the stable unit treatment value assumption holds (Rubin, 1980).

Since Rosenbaum and Rubin’s (1983) seminal paper, we now recognise that instead of

conditioning on the covariates directly, it is sufficient to condition on the propensity score.

In this paper the propensity score is formulated Pr(W = 1|X ,γ) = p(Z) = (1+ e−Z)−1,

where the logit Z = X ′γ includes γ , a k-dimensional parameter vector. Further, let E(Z) =

µZ and V (Z) = σ2
Z and define the covariances Cov(Y1,Z) = σY1,Z and Cov(Y0,Z) = σY0,Z .

To impose an intercept we simply put the unit vector as the first covariate. Note that

p′(Z) = p(Z)[1− p(Z)]. When estimating γ from a sample using maximum likelihood

estimation the Fisher information matrix for γ can then be formulated

I = E
[
p′(Z)XX ′

]
. (1)

IFAU – Correlation and efficiency of propensity score-based estimators for average causal effects 5



See Lee (1990) for details. Under certain regularity conditions, γ̂ is asymptotically nor-

mally distributed with the covariance matrix equal to the inverse of the information matrix.

Assumption 2 (Propensity score model) The propensity score is generated and consis-

tently estimated by a logistic regression model.

Furthermore, we denote the covariance matrix of the covariates Σ. The corresponding

correlation matrix is defined (ρst) = [diag(Σ)]−1/2Σ[diag(Σ)]−1/2, where diag(Σ) is the

diagonal matrix acquired by keeping the diagonal elements of Σ and replacing all other

elements with zero. The correlation between two covariates s and t is referred to as ρst .

Note that for brevity, the index is sometimes omitted.

3 A regression estimator
Having established the framework in Section 2, we are able to clarify the issue of cor-

related covariates and how this adds to the discussion of what is usually referred to as

multicollinearity. We do this by studying the ordinary least squares (OLS) estimator. As-

sume a standard bivariate normal distribution with variables X1 and X2 with correlation

ρ12. An outcome is generated by

Y = τW +β1X1 +β2X2 + ε, ε ∼ N(0,σ2
ε ),

with the parameters β1 and β2, and the error term ε . Typically, in textbooks multicollinear-

ity refers to the inflation of the variances V (β̂1) and V (β̂2) that is due to a large ρ12, where

β̂1 and β̂2 are least squares estimators of β1 and β2. However, interest lies in estimating

the average causal effect τ . Thus, the aim is to study how the variance V (τ̂) is affected by

ρ12, where in this case τ̂ is a least squares estimator of τ . Consider the latent treatment

variable

W ∗ = γ1X1 + γ2X2 +η , η ∼ N(0,σ2
η),

6 IFAU – Correlation and efficiency of propensity score-based estimators for average causal effects



and the variance decomposition

V (W ∗) =(γ2
1 + γ

2
2 +2ρ12γ1γ2)+σ

2
η = explained variance+ error variance.

For fixed σ2
η , an increase in ρ12 will decrease or increase the explained variance, R∗2, de-

pending on the signs of ρ12, γ1 and γ2. Defining Z∗ = γ1X1+ γ2X2, the explained variance

can be written R∗2 = cor(W ∗,Z∗)2.

However, in practice we only observe the binary treatment variable

W = 1[W ∗ > 0],

where 1[·] denotes the indicator function. The variance of τ̂ is

V (τ̂) =
σ2

ε

(1−R2)∑
N
i=1(Wi−W̄ )2

,

where W̄ = N−1
∑

N
i=1Wi and R2 is the explained variance of the observed variable. Ob-

serve that in this setting E(W ) = 0.5, rendering ∑
N
i=1(Wi−W̄ )2 to be unaffected by ρ12.

This implies that an increase in ρ12 will lead to an increase in V (τ̂) through R2. How-

ever, because W is binary we use the result in Cohen (1983) stating that for the case with

two normally distributed variables, such as W ∗ and Z∗, in which one is dichotomised into

equally sized groups, cor(W,Z∗) = 0.798 · cor(W ∗,Z∗). Thus, a change in ρ12 affects the

explained variance of the observed variable, R2, in the same direction as R∗2, but to a

lesser extent. Since the maximum value of R2 is approximately 0.64, the variance will not

be materially affected (i.e. inflated).

In this simple example we have established that an increase in the correlation between

two variables influences the variance of an estimator of the average causal effect through

the latent treatment variable structure. To our knowledge, this study and the study by

Pingel and Waernbaum (2014) are the only to address and formalise this issue. In the

remainder of this paper focus is not on the least squares estimator of the average causal

effect but on how correlation affects the variance of estimators using the propensity score.

IFAU – Correlation and efficiency of propensity score-based estimators for average causal effects 7



4 Propensity score-based estimators
We study three commonly used propensity score-based estimators: an IPW estimator, a

DR estimator and a propensity score matching estimator. Under Assumptions 1–2, the

estimators are consistent and approximately normally distributed in large samples. The

studied IPW estimator is the normalised IPW estimator proposed by Hirano et al. (2003):

τ̂IPW,p̂ =

(
N

∑
i=1

Wi

p̂(Zi)

)−1 N

∑
i=1

WiYi

p̂(Zi)
−

(
N

∑
i=1

1−Wi

1− p̂(Zi)

)−1 N

∑
i=1

(1−Wi)Yi

1− p̂(Zi)
. (2)

As described by Lunceford and Davidian (2004), the asymptotic variance of
√

N(τ̂IPW,p̂−

τ) is

σ
2
IPW,p̂ = σ

2
IPW−a′I−1a. (3)

The first part of the variance expression is the asymptotic variance when using the true

propensity score

σ
2
IPW = E

[
(Y1−µY1)

2

p(Z)
+

(Y0−µY0)
2

1− p(Z)

]
. (4)

The second part adjusts for the estimation of the propensity score and includes the k-

dimensional vector

a = E
[ (

Y1−µY1

p(Z)
+

Y0−µY0

1− p(Z)

)
p′(Z)X

]
. (5)

As an alternative to the IPW estimator we study the DR estimator (Robins et al.

(1994); Lunceford and Davidian (2004)). Let mw(X ,βw) = E(Y |W = w,X) denote the

regression of Y on X in group w and let β̂w be an estimator for the regression parameter

βw using subjects within group w only. The DR estimator is defined as

τ̂DR =
1
N

N

∑
i=1

WiYi− (Wi− p̂(Zi)) m̂1

(
Xi, β̂1

)
p̂(Zi)

− 1
N

N

∑
i=1

(1−Wi)Yi +(Wi− p̂(Zi)) m̂0

(
Xi, β̂0

)
1− p̂(Zi)

. (6)
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If the propensity score model and the regression models are correctly specified, the large

sample variance of
√

N(τ̂DR− τ) is

σ
2
DR = σ

2
IPW−b, (7)

where

b = E

(√1− p(Z)
p(Z)

[E (Y1|X)−µY1]+

√
p(Z)

1− p(Z)
[E (Y0|X)−µY0]

)2 (8)

is a positive scalar. The large sample variance of the DR estimator is the same irrespective

of using the known or the estimated propensity score (Lunceford and Davidian, 2004).

The third estimator we consider is a propensity score matching estimator with replace-

ment (e.g., Abadie and Imbens, 2006). We define the distance between two units i and

i′ from opposite treatment groups dii′ =| p̂(Zi)− p̂(Zi′) |. Thus, for each i there is a set

I = {1,2, . . . , i′, . . . ,M} of indices of the M individuals with the smallest order statistics

di(i′), i′ ≤M. The matching estimator matching treated and controls to a fixed number of

M matches can then be formulated

τ̂M =
1
N

N

∑
i=1

Wi(Yi− Ŷ0i)+(1−Wi)(Ŷ1i−Yi), (9)

where Ŷ0i = ∑i′∈I Yi′/M and Ŷ1i = ∑i′∈I Yi′/M are the means of the observed response

for the M matched individuals. Abadie and Imbens (2012) show that the large sample

variance of
√

N(τ̂M,p̂− τ) using the estimated propensity score is

σ
2
M,p̂ = σ

2
M− c′I−1c. (10)

IFAU – Correlation and efficiency of propensity score-based estimators for average causal effects 9



The first part,

σ
2
M = E

[
(E [Y |W = 1, p(Z)]−E [Y |W = 0, p(Z)]− τ)2

]
+E

[
V [Y |W = 1, p(Z)]

(
1

p(Z)
+

1
2M

(
1

p(Z)
− p(Z)

))]
+E

[
V [Y |W = 0, p(Z)]

(
1

1− p(Z)
+

1
2M

(
1

1− p(Z)
− (1− p(Z))

))]
(11)

is the asymptotic variance of the matching estimator when using the true propensity score.

The second part involves the k-dimensional vector

c =E
[(

Cov(X ,Y |p(Z),W = 1)
p(Z)

+
Cov(X ,Y |p(Z),W = 0)

1− p(Z)

)
p′(Z)

]
(12)

consisting of the weighted covariances between the covariates and the outcome condi-

tional on the propensity score and treatment.

The advantages and disadvantages of the estimators have been described elsewhere

(e.g., Lunceford and Davidian, 2004; Waernbaum, 2012). The main point is that although

all three estimators utilise the propensity score, they do so differently. Both the IPW and

DR estimator use the propensity score to reweight the data, creating a pseudo-population

with missing potential outcomes. The matching estimator uses the propensity score as a

balancing score, i.e. it imputes the unobserved potential outcome with the outcome on

units sharing similar characteristics in the opposite treatment group. All estimators are

easily implemented in practice, but the IPW estimator is sensitive when the propensity

score is too close to zero or one. The DR estimator performs much better when both

the outcome model part and the propensity score are correctly specified, but studies have

shown that it is not efficient when the outcome model is wrong (Waernbaum, 2012).

5 Analytic results on the asymptotic variance
In this section we present analytical results for how the asymptotic variances of the es-

timators are affected by the correlation ρst . To emphasise the role of the intercept we

choose not to include 1 in X in the following assumption.

10 IFAU – Correlation and efficiency of propensity score-based estimators for average causal effects



Assumption 3 (i) The covariates X follow a k-variate normal distribution with a zero

mean vector and covariance matrix Σ. (ii) The potential outcomes are generated by Y1 =

α1 +X ′β1 +ε1 and Y0 = α0 +X ′β0 +ε0, where β1, β0 are parameter vectors and ε1,ε0 ∼

N(0,σ2
ε ). The error terms are uncorrelated with each other and X. (iii) Constant causal

effect (i.e. β1 = β0).

Because of the linearity of the parameters, the variances and covariances of the potential

outcomes and the logit are

σ
2
Y1
= β

′
1Σβ1 +σ

2
ε , σ

2
Y0
= β

′
0Σβ0 +σ

2
ε , σ

2
Z = γ

′
Σγ,

and

σY1,Z = β
′
1Σγ, σY0,Z = β

′
0Σγ.

Proposition 1 Under Assumptions 1–3, the asymptotic variances of τ̂IPW,p̂, τ̂DR, and τ̂M,p̂

are

σ
2
IPW,p̂ = 2σ

2
Yw
+ e−µZ+

1
2 σ2

Z
(
σ

2
Yw
+σ

2
Yw,Z
)
+ eµZ+

1
2 σ2

Z
(
σ

2
Yw
+σ

2
Yw,Z
)

−

[(
σ2

Yw
−σ2

ε

)
E [p′(Z)]

−
σ2

Yw,Z

E [p′(Z)]σ2
Z
+

σ2
Yw,ZE [p′(Z)]

E [p′(Z)]E [p′(Z)Z2]− (E [p′(Z)Z])2

]
,

σ
2
DR =

(
2+ e−µZ+

1
2 σ2

Z + eµZ+
1
2 σ2

Z

)
σ

2
ε ,

σ
2
M, p̂ =

(
σ

2
Yw
−

σ2
Yw,Z

σ2
Z

)(
1+4M+(e−µZ+

1
2 σ2

Z + eµZ+
1
2 σ2

Z )(1+2M)

2M

)

− 1
E [p′(Z)]

(
σ

2
Yw
−σ

2
ε −

σ2
Yw,Z

σ2
Z

)
,

with the choice of w = 0,1 being arbitrary.

Proposition 1 allows us to establish the following corollary on the behaviour of the esti-

mators with respect to the correlation.
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Corollary 2 Under Assumptions 1–3, if all elements in γ and βw have equal signs, then

an increase in the correlation will lead to an increase in σ2
IPW,p̂, an increase in σ2

DR and an

increase or a decrease in σ2
M, p̂.

The behaviour of the IPW estimator is not straightforward and therefore a proof is pro-

vided in the appendix. The effect of correlation on the variance of the DR estimator is

obvious by inspection, due to the quadratic form of σ2
Z . The behaviour of the matching

estimator is easily shown by a numerical counter example, e.g., increasing the correlation

when β = (0.2,2) and γ = (0.3,0.3) gives a smaller σ2
M, p̂, while increasing the correlation

when β = (0.2,2) and γ = (0.8,0.8) gives a larger σ2
M, p̂.

Some of our findings deserve special mention. The results for the IPW estimator

are consistent with previous result for the IPW estimator using the true propensity score

(Pingel and Waernbaum, 2014). The DR estimator exhibits the same behaviour as the

IPW estimator with regard to direction, but we also observe that σ2
DR is only affected by

the correlation through the parameter vector γ in the treatment assignment. Finally, the

results for the matching estimator are similar to those for the matching estimator using the

true propensity score shown in Pingel and Waernbaum (2014) in that σ2
M, p̂ may increase

or decrease.

6 Numerical results and simulation studies
Because the analytic results are restricted to the assumed data generating process (DGP),

this section is devoted to numerical studies of the estimators where we relax some of the

previous assumptions. This includes studying the effect of correlation under different true

and assumed causal structures, for instance when not all covariates are confounders or

when we fail to include a confounder in the estimation model. Furthermore, the asymp-

totic results are extended through simulation to include the finite sample properties of

the estimators. The asymptotic behaviour of the estimators is evaluated using numerical

methods, while the finite sample properties are studied for the sample size of N = 1000,

using simulations with 5000 replicates.

12 IFAU – Correlation and efficiency of propensity score-based estimators for average causal effects
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Figure 2: Causal diagram 2

6.1 Case 1: Non-constant causal effect

The aim of Case 1 is to analyse the effect of correlation on the variances of the estima-

tors when varying the magnitude of the parameters in the outcome models and treatment

assignment model. This manipulation allows for investigation of how the strength of the

confounding towards the outcome and treatment assignment is related to the effect of the

correlation. Moreover, it enables us to study the effect of correlation when deviating from

the assumption of constant causal effect in Assumption 3.

Assume that Assumptions 1–3(i–ii) hold. The causal structure of this study design

consists of three standardised variables, X1, X2, X3, and is displayed in Figure 1. We let

the correlations take the values ρ13 = 0, ρ23 = 0, and ρ12 = 0,0.1, . . . ,0.9,0.95,0.97,0.99.

The parameters β11, β12, β01, β02 take values from the set {0.5,2} and the parameters γ1

and γ2 take values from the set {0.2,0.4,0.8,1.2}. We include X3 as noise to ensure that

Cov(X ,Yw|p(Z)) will not approach zero when ρ12 tends to one. In addition, β13 = β03 = 1

and γ3 = 0.3. Thus, all covariates are confounders. The intercepts of the outcome models

are set to α1 = 5 and α0 = 0. Finally, we let σ2
ε = 1.

The results of the simulation study are displayed in Figure 3, which presents the

asymptotic standard errors and the finite sample standard errors of the estimators.

First, we observe that under non-constant causal effect, a change in ρ12 may in fact

decrease the asymptotic variances of the IPW and DR estimator. This behaviour is seen

for the case when β11 = 2, β12 = 0.5, β01 = 0.5, β02 = 1, γ1 = 0.2, and γ2 = 0.4. Second,

the variance of the IPW estimator, in comparison with the DR and matching estimators,

is more extremely affected by a change in ρ12. The DR and matching estimators exhibit

a similar degree of sensitivity to a change in ρ12, albeit in different directions. By visual

inspection we conjecture that ∂σ2
M,p̂/∂ρ12 < ∂σ2

IPW,p̂/∂ρ12, which was also suggested in

Pingel and Waernbaum (2014) through a series of examples. Third, the asymptotic and

IFAU – Correlation and efficiency of propensity score-based estimators for average causal effects 13



finite sample variances overlap in most cases, but when too much density is in the tails

of the propensity score distribution, the asymptotic distributions of the estimators fail to

approximate the finite sample distributions. This is in accord with the findings of Pingel

and Waernbaum (2014), which is related to Kahn and Tamer’s 2010 results. A conclusion

is that an increase in ρ12 may increase an already strong treatment assignment making

the asymptotic results no longer valid. As a remark, given that the asymptotic and finite

sample variances do not overlap, the finite sample variances of the IPW and matching

estimators tend to be smaller than the asymptotic variances, whereas for the DR estimator,

the asymptotic variance underestimates the finite sample variance.

Similar to Pingel and Waernbaum (2014), although some patterns can be observed

in how β and γ determine how ρ12 affects the variances concerning the direction and

magnitude, we conclude that predictions of the effect on the variances are difficult to

make in practice.

6.2 Case 2: Non-normal covariates

Case 2 concerns whether deviations from normality influence the effect ρ12 has on the

estimators. Here, we consider the DGP in Case 1, but only allow for a constant causal

effect. Further, let X1 and X2 follow a U(−1.5,1.5) distribution.

The following results can be seen in Figure 4. First, the curvatures of the standard

errors as functions of ρ12 are smaller than those in Figure 3. Second, the increase in the

standard error of the IPW estimator is not as extreme as that in Figure 3. An explanation

is that correlated variables with a finite support, such as uniformly distributed covariates,

can be bounded away from extreme values of the propensity score. Third, we observe that

the overall pattern for the direction of the effect is similar to Case 1.

Not shown in this paper but available from the authors upon request are results when

X1 follows a Poisson distribution and X2 follows a gamma distribution. Again, because

the support of X1 and X2 is infinite, a change in ρ12 may yield a large increase in the

variance of the IPW estimator. However, when the propensity score distribution is well-

behaved, the overall effect of ρ12 on the estimators is smaller compared to when X1 and

X2 are normally distributed.

14 IFAU – Correlation and efficiency of propensity score-based estimators for average causal effects
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Figure 3: Effect of ρ12 on asymptotic and finite sample standard errors in Case 1.
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asymptotic and finite sample
standard errors in Case 3.

6.3 Case 3: Non-constant error variance

In Case 3 we study whether non-constant variance of the error term in the outcome models

could change the results in Proposition 1. Consider the DGP in Case 1, but only allow

for a constant causal effect. Further, let the error variances in the outcome models be

generated according to

ε = ε
∗[0.5+3p(Z)], ε

∗ ∼ N(0,1).

Figure 5 shows that for β11 = 2, β12 = 0.5, β01 = 2, β02 = 0.5, γ1 = 0.4 and γ2 = 0.4

we have increasing variance of the matching estimator as a function of ρ12 instead of

decreasing variance, which was the result in Case 1. Thus, correlation between covariates

may affect the estimators through the error terms of the outcome models. We also see
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that when the treatment assignment is strong, the DR estimator displays some erratic

behaviour for the finite sample variance and that the asymptotic variance of the matching

estimator overestimates the finite sample variance.

6.4 Case 4: Omitting a confounder

Case 4 studies the effect of ρ12 on the behaviour of the estimators when a correlated con-

founder is omitted. This setting is different from Case 1–3 in that the unconfoundedness

assumption, Assumption 1(i), is not fulfilled. Case 4 is motivated by our previous findings

in which we discovered that an increase in ρ12 in some cases yielded a very large increase

in the variance of the IPW estimator. Because the increase is due to the correlation, omit-

ting a confounder will remove the effect that ρ12 has on the variance. The omission of a

confounder results in biased estimates; however, a large ρ12 implies that two confounders

share much of the same information, resulting in a trade-off between bias and variance.

We therefore study how the correlation affects the bias and mean squared error (MSE) of

the estimators when omitting a confounder.

Consider the DGP in Case 1 and let τ̂(X1,X2,X3) denote an estimator of τ using X1, X2

and X3 (i.e. all confounders) and let τ̂(X1,X3) denote an estimator of the average causal

effect using X1 and X3 only. To evaluate the estimators we estimate Relative MSE =

MSE[τ̂(X1,X3)]/MSE[τ̂(X1,X2,X3)] = E([τ̂(X1,X3)− τ]2)/E([τ̂(X1,X2,X3)− τ]2), and

Bias = E[τ̂(X1,X3)− τ]. The results for the relative MSE and bias are depicted in Fig-

ure 6 and Figure 7, respectively.

The conclusion for the DR and matching estimator when evaluating their MSE is

clear, that is all confounders should, for all models in the simulations, be included in the

propensity score model, no matter the correlation. As for the IPW estimator, we observe

that in some cases, when the treatment assignment is strong, it is beneficial in terms of

MSE to omit a confounder from the propensity score model. However, in most cases all

covariates should be included for the IPW estimator as well. We also observe that the

MSE of the studied IPW estimator is less negatively affected by an omitted confounder

than the other estimators, probably because of the large decrease in the variance. We

also included an OLS estimator as a comparison, which proved to be the estimator most

IFAU – Correlation and efficiency of propensity score-based estimators for average causal effects 17



negatively affected in terms of MSE when omitting a confounder.

Regarding bias, we observe a similar pattern for all estimators, i.e. an increased ρ12

leads to a non-linear decrease in bias. The bias for the matching estimator seems to be

slightly larger for some specifications of the treatment assignment model compared with

the other estimators.

6.5 Case 5: Inclusion of irrelevant covariates

Case 5 is an extension of the simulations studies by Brookhart et al. (2006) and Millimet

and Tchernis (2009), which, in turn, are related to the theoretical results in Rubin and

Thomas (1996). These studies concern the efficiency of propensity score estimators when

covariates related to only the outcome or the treatment assignment are included in the

propensity score model. To summarise their findings, it is beneficial in terms of MSE to

include covariates related to outcome, but not the treatment assignment. Covariates that

are only related to the treatment should not be included in the model. The purpose of this

paper is to study if and how these results are affected when correlation is included in the

analysis.

We use a simulation design that resembles those in Brookhart et al. (2006) and Mil-

limet and Tchernis (2009). Let X1, X2, X3 and X4 be distributed according to a standard

uniform distribution and consider the causal structure in Figure 2. The covariates X1 and

X4 are confounders and should always be included in the propensity score for the estima-

tors to be consistent. Although X2 is only related to the outcome, it should, according to

the findings in the aforementioned studies, be included in the propensity score in order to

gain efficiency. However, the covariate X3 that is only related to the treatment assignment

should not be included in the propensity score since that would incur some efficiency loss.

As seen in Figure 2, Case 5 includes two correlations and we study either the effect of

correlation between a confounder, X1, and the covariate related to the outcome only, X2,

or the effect of the correlation between a confounder, X1, and the covariate related to the

treatment only, X3. Let the correlation matrix in the DGP be either

18 IFAU – Correlation and efficiency of propensity score-based estimators for average causal effects



(ρst) =


1 ρ12 0 0

1 0 0

1 0

1

 or (ρst) =


1 0 ρ13 0

1 0 0

1 0

1

 ,

where ρ12 = ρ13 = 0,0.1, . . . ,0.9,0.95,0.99. The treatment assignment model is given by

logit(p) = 0.25[(−3+6X1)+(−3+6X3)+(−3+6X4)].

Compared with the design in Millimet and Tchernis (2009), the strength of the treatment

assignment is slightly reduced, so that min(p)≈ 0.1, max(p)≈ 0.9, instead of min(p)≈

0.05, max(p) ≈ 0.95. We study both a constant and a non-constant causal effect. The

potential outcome models yielding a constant causal effect are

Y1 = 0.87+2.47X1 +2.47X2 +2.47X4 + ε1,

Y0 = 2.54+2.47X1 +2.47X2 +2.47X4 + ε0,

while the potential outcome models resulting in a non-constant causal effect are

Y1 = 0.87+0.51X1 +0.51X2 +0.51X4 + ε1

Y0 = 2.54+2.47X1 +2.47X2 +2.47X4 + ε0.

In the outcome models, ε1,ε0 ∼ N(0,0.25). For each generated data set, we estimate

the five propensity score models including the covariates (1) {X1}, (2) {X1,X2}, (3)

{X1,X2,X3}, (4) {X1,X3} or (5) {X2,X3}. Because X4 is always included, we omit X4

in the notation. For the DR estimator, the same covariates are included in the regres-

sion parts as in the propensity score model. The estimators are evaluated by estimating

MSE = E[(τ̂− τ)2].
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Figure 6: Effect of ρ12 on Relative MSE in Case 4.
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Figure 7: Effect of ρ12 on bias in Case 4.
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Figure 9: Effect of ρ12 on MSE when having a non-constant causal effect.
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Figure 10: Effect of ρ13 on MSE when having a constant causal effect.
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Figure 11: Effect of ρ13 on MSE when having a non-constant causal effect.
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The results are displayed in Figures 8–11, which show that the estimators are most ef-

ficient when X1,X2 are included in the propensity score model. The matching estimator is

unique in that it, for a propensity score model that includes X1,X2, may become more ef-

ficient when ρ12 increases, as seen for the case with constant causal effect. Moreover, we

observe for the matching and IPW estimators that a large ρ12 can lead to that estimators

with X1 only become more efficient than estimators including X1,X2,X3. This behaviour

is not seen for the DR estimator. Instead, we see a small cost in terms of efficiency loss

by including an irrelevant covariate related to treatment in the DR estimator for all cor-

relations. This can be explained by the fact that the DR estimator has correctly specified

outcome models. Thus, a positive trade-off between bias and variance as the correlation

increases is absent.

As for the effect of ρ13 on the MSE of the estimators, the behaviour is the same for

the constant and non-constant causal effect, i.e. an increase in ρ13 results in most of

the estimators becoming less efficient. Particularly noteworthy is that the estimator that

includes X2,X3 (i.e. omitting one of the confounders) is actually more efficient for large

ρ13 than estimators that include X1 or X1,X3.

7 Conclusions
In this study we examine how correlation affects commonly used propensity score-based

estimators of the average causal effect. This examination involve formalising how correla-

tion between observed covariates influences the variance of the estimators for the average

causal effect.

We then proceed to show under specific model assumptions (such as constant causal

effect and normally distributed covariates) that an increase in the correlation leads to an

increase in the asymptotic variance of the IPW and DR estimator if the model parameters

in the outcome and treatment models share the same sign. The variance of the propensity

score matching estimator, however, can both decrease and increase.

To extend the analytic results we perform numerical and finite-sample investigations

for a wide range of models. Here, we see results in different directions. For instance, if
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the causal effect is heterogeneous, the variance of the IPW estimator can both increase

and decrease, although for the models under study the overall impression is that the IPW

estimator shows the most instability with respect to the change in correlation.

We also study the bias-variance trade-off by omitting a correlated confounder in the

propensity score model. For some cases in this scenario we observe a decrease in the

MSE, but only when the propensity scores are extreme, i.e. close to zero or one.

Finally, we see that including an irrelevant but correlated covariate affects the ef-

ficiency of the estimators, something that could influence covariate selection. These

findings contributes to the results by Brookhart et al. (2006) and Millimet and Tchernis

(2009).

Although it is difficult to rationalise guidelines based on the results of this study, we

were able to demonstrate that the correlation between covariates could prove to be an

important aspect to consider when modelling the propensity score.
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Appendix
Assume that Assumptions 1–3 hold. We omit, for brevity, the unit vector in X when we describe

the multivariate normal (MVN) distribution. Following the properties of the MVN distribution

(e.g., Mardia et al., 1979), X , Z and a potential outcome, Yw, have a k + 2 dimensional MVN

distribution with covariance matrix

Λ =


Σ σX ,Yw σX ,Z

σ ′X ,Yw
σ2

Yw
σYw,Z

σ ′X ,Z σYw,Z σ2
Z

=


Σ Σβw Σγ

β ′wΣ β ′wΣβw +σ2
ε β ′wΣγ

γ ′Σ β ′wΣγ γ ′Σγ

 ,

where Σ denotes the k×k covariance matrix of X with variances σ2
Xs

and covariances σXs,Xt . Also,

σ ′X ,Yw
= (σX1,Yw , . . . ,σXk,Yw) and σ ′X ,Z = (σX1,Z, . . . ,σXk,Z). The MVN distribution has the condi-

tional moments E(Yw|Z)= µYw +σYw,Z (Z−µZ)/σ2
Z , E(X |Z)=σX ,Z (Z−µZ)/σ2

Z and Cov(X ,Yw|Z)=

σX,Yw−σX ,ZσYw,Z/σ2
Z .

Theorem 1 in Pingel (2014) states that if X is MVN (and including the unit vector), the inverse

of information matrix in Equation (1) can be written

I−1 =

 I11 I12

I21 Σ−1

E [p′(Z)]
− γγ ′

E [p′(Z)]σ2
Z
+

γγ ′E [p′(Z)]

E [p′(Z)]E [p′(Z)Z2]− (E [p′(Z)Z])2

 .

Observe that because p(Z) = eZ/(1+ eZ), we have that p′(Z) = eZ/(1+ eZ)2.

Recall the large sample variances in Pingel and Waernbaum (2014) and reformulate them

without assuming that µZ = 0,

σ
2
IPW = 2σ

2
Yw
+ e−µZ+

1
2 σ2

Z
(
σ

2
Yw
+σ

2
Yw,Z
)
+ eµZ+

1
2 σ2

Z
(
σ

2
Yw
+σ

2
Yw,Z
)
,

σ
2
M =

(
σ

2
Yw
−

σ2
Yw,Z

σ2
Z

)(
1+4M+(e−µZ+

1
2 σ2

Z + eµZ+
1
2 σ2

Z )(1+2M)

2M

)
.
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Proof of Proposition 1. To find a′I−1a, we rewrite Equation (5):

a =E
[(

Y1−µ1

p(Z)
+

Y0−µ0

1− p(Z)

)
eZ

(1+ eZ)2 X
]

=E
[

E
(

XY1

1+ eZ +
eZXY0

1+ eZ −µY1

X
1+ eZ −µY0

eZX
1+ eZ |Z

)]
=E [(1− p(Z))(Cov(X ,Y1|Z)+E(Y1|Z)E(X |Z)−µY1E(X |Z))

+ p(Z)(Cov(X ,Y0|Z)+E(Y0|Z)E(X |Z)−µY0E(X |Z))]

=E
[
(1− p(Z))

(
Cov(X ,Y1|Z)+

σY1,Z

σ2
Z

(Z−µZ)E(X |Z)
)

+ p(Z)
(

Cov(X ,Y0|Z)+
σY0,Z

σ2
Z

(Z−µZ)E(X |Z)
)]

= σX ,Yw .

The last equality is due to the constant causal effect. From the constant causal effect it follows,

after substituting the first element in X with unity representing the intercept, that the first element

in a is 0. After some basic algebra

a′I−1a =
σ2

Yw
−σ2

ε

E [p′(Z)]
−

σ2
Yw,Z

E [p′(Z)]σ2
Z
+

σ2
Yw,ZE [p′(Z)]

E [p′(Z)]E [p′(Z)Z2]− (E [p′(Z)Z])2 .

To find b, let Y ∗w ≡ E(Yw|X)−µw, where Y ∗w ∼ N
(
0,σ2

Yw
−σ2

εw

)
, w = 0,1. Equation (8) is writ-

ten b=E
[
eZ(Y ∗0 )

2 +2Y ∗0 Y ∗1 + e−Z(Y ∗1 )
2
]
. Since E(Yw|X) =αw+β ′wX , E(Y ∗0 Y ∗1 ) = σ2

Y0,Y1
= β ′1Σβ0.

Next, we use that E
(
YweZ

)
= eµZ+

1
2 σ2

Z (µYw +σYw,Z) and E
(
Ywe−Z

)
= e−µZ+

1
2 σ2

Z (µYw−σYw,Z), as

shown in Pingel and Waernbaum (2014), and b can be formulated

b = eµZ+
1
2 σ2

Z
(
σ

2
Y0
−σ

2
ε0
+σ

2
Y0,Z
)
+2σY0,Y1 + e−µZ+

1
2 σ2

Z
(
σ

2
Y1
−σ

2
ε1
+σ

2
Y1,Z
)
.

To find c′I−1c, observe that due to the constant causal effect Cov(X ,Y1|p(Z))=Cov(X ,Y0|p(Z))=

Cov(X ,Yw|p(X)). Hence, after simplification of Equation (12), c = E[Cov(X ,Yw|p(X)]. Since As-

sumption 3 implies a constant variance,

c = σX,Yw−σX ,ZσYw,Z/σ
2
Z .

Including the unit vector in X , the first element in c is equal to 0. After some algebra

c′I−1c =
(
σ

2
Yw
−σ

2
ε −σ

2
Yw,Z/σ

2
Z
)
/E
[
p′(Z)

]
.
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After subtraction of the adjustment terms from σ2
IPW and σ2

M and simplifying we arrive at Proposi-

tion 1.

Proof of Corollary 1 (IPW estimator). Define the integrals

A≡
∫

∞

−∞

ez

(1+ ez)2 e
− (z−µZ )2

2σ2
Z dz, B≡

∫
∞

−∞

zez

(1+ ez)2 e
− (z−µZ )2

2σ2
Z dz,

C ≡
∫

∞

−∞

z2 ez

(1+ ez)2 e
− (z−µZ )2

2σ2
Z dz.

Rewriting σ2
IPW,p̂ we have

σ
2
IPW,p̂ =(σ2

Yw
−σ

2
ε )

(
2+ e−µZ+

1
2 σ2

Z + eµZ+
1
2 σ2

Z −
√

2πσZ

A

)

+σ
2
Yw,Z

(
e−µZ+

1
2 σ2

Z + eµZ+
1
2 σ2

Z +

√
2π

AσZ
+

A
√

2πσZ

B2−AC

)
+
(

2+ e−µZ+
1
2 σ2

Z + eµZ+
1
2 σ2

Z

)
σ

2
ε .

After evaluation of this expression we see that without loss of generality we can assume that

µZ = 0, since for µZ = 0 the exponential parts e−µZ+
1
2 σ2

Z + eµZ+
1
2 σ2

Z , that dominate the increase,

have the smallest growth relative to the other terms. Rewriting we get

σ
2
IPW,p̂ =(σ2

Yw
−σ

2
ε )

(
2+2e

1
2 σ2

Z −
√

2πσZ

A

)
︸ ︷︷ ︸

Ψ

+σ
2
Yw,Z

(
2e

1
2 σ2

Z +

√
2π

AσZ
+

A
√

2πσZ

B2−AC

)
︸ ︷︷ ︸

Ω

+
(

2+2e
1
2 σ2

Z

)
σ

2
ε .

First, we note that σ2
Z , σ2

Yw
and σ2

Yw,Z are increasing functions of ρ when all elements in γ and

βw have equal signs. We also note that σ2
ε is a constant independent of ρ . Since we aim at

investigating the behaviour of σ2
IPW,p̂ as ρ increases it is sufficient to estimate the contribution of

the components inside the parentheses when σZ increases, given that σ2
Yw

> σ2
ε . There are no

closed form expressions for A, B and C, instead we use definite integrals with large limits which

serves as approximations. We write A(σZ), B(σZ), C(σZ) to emphasise the integrals as functions
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of σZ .

Evaluating the first parenthesis, Ψ, we see that for σZ > 0, Ψ is an increasing function of σZ

(Figure A.1). Similarly, we investigate the second parenthesis, Ω, which increases with σZ (Figure

A.2). Since σε > 0 and a constant we see that the third term is an increasing function of σZ . Hence,

we conclude that σ2
IPW,p̂ increases with ρ .
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Figure A.1: Ψ(σZ)
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Figure A.2: Ω(σZ)
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