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Abstract

This paper extends the popular Diebold-Mariano test to situations when the forecast error

loss di�erential exhibits long memory. It is shown that this situation can arise frequently,

since long memory can be transmitted from forecasts and the forecast objective to forecast

error loss di�erentials. The nature of this transmission mainly depends on the (un)biasedness

of the forecasts and whether the involved series share common long memory. Further results

show that the conventional Diebold-Mariano test is invalidated under these circumstances.

Robust statistics based on a memory and autocorrelation consistent estimator and an ex-

tended �xed-bandwidth approach are considered. The subsequent Monte Carlo study pro-

vides a novel comparison of these robust statistics. As an empirical application, we conduct

forecast comparison tests for the realized volatility of the Standard and Poors 500 index

among recent extensions of the heterogeneous autoregressive model. While we �nd that fore-

casts improve signi�cantly if jumps in the log-price process are considered separately from

continuous components, improvements achieved by the inclusion of implied volatility turn

out to be insigni�cant.

Key words: Equal Predictive Ability · Long Memory · Diebold-Mariano Test · Long-run Variance

Estimation · Realized Volatility.

JEL classi�cation: C22; C52; C53

1 Introduction

If the accuracy of competing forecasts is to be evaluated in a (pseudo-)out-of-sample setup, it has

become standard practice to employ the test of Diebold and Mariano (1995) (hereafter DM test).

∗We would like to thank Philipp Sibbertsen, Guillaume Chevillion, Mauro Costantini, Matei Demetrescu, Niels
Haldrup, Uwe Hassler and the participants of the 3rd Time Series Workshop in Rimini, the 2nd IAAE conference
in Thessaloniki, the Statistische Woche 2015 in Hamburg, the 4th Long-Memory Symposium in Aarhus, the 16th
IWH-CIREQ Workshop in Halle and the CFE 2015 in London for their helpful comments. Robinson Kruse
gratefully acknowledge support from CREATES - Center for Research in Econometric Analysis of Time Series
(DNRF78), funded by the Danish National Research Foundation.
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Let ŷ1t and ŷ2t denote two competing forecasts for the forecast objective series yt and let the loss

function of the forecaster be given by g(·) ≥ 0. Forecast errors are de�ned as eit = yt − ŷit for
i = 1, 2 and the corresponding forecast error loss di�erential is denoted by zt = g(e1t)− g(e2t).

By only imposing restrictions on the loss di�erential zt, instead of the forecast objective and the

forecasts, Diebold and Mariano (1995) test the null hypothesis of equal predictive accuracy, i.e.

H0 : E(zt) = 0, by means of a simple t-statistic for the mean of the loss di�erentials. In order to

account for serial correlation, a long-run variance estimator such as the heteroscedasticity and

autocorrelation consistent (HAC) estimator is applied (see Newey and West (1987), Andrews

(1991) and Andrews and Monahan (1992)). For weakly dependent and second-order stationary

processes this leads to an asymptotic standard normal distribution of the t-statistic.

Apart from the development of other forecast comparison tests such as those of West (1996)

or Giacomini and White (2006), several direct extensions and improvements of the DM test

have been proposed. Harvey et al. (1997) suggest a version that corrects for the bias of the

long-run variance estimation in �nite samples. A multivariate DM test is derived by Mariano

and Preve (2012). To mitigate the well known size issues of HAC-based tests in �nite samples

of persistent short memory processes, Choi and Kiefer (2010) construct a DM test using the

so-called �xed-bandwidth (or in short, �xed-b) asymptotics, originally introduced in Kiefer and

Vogelsang (2005) (see also Patton (2015) and Li and Patton (2015)). Another extension of the

DM test is proposed by Rossi (2005), who develops a DM test under near unit root asymptotics.

However, all of these extensions fall into the classical I(0)/I(1) framework.

In this paper, we study the situation if these assumptions on the loss di�erential do not apply and

instead zt follows a long memory process. Our �rst contribution is to show that long memory

can be transmitted from the forecasts and the forecast objective to the forecast errors and

subsequently to the forecast error loss di�erentials. We consider the case of a mean squared error

(MSE) loss function and give conditions under which the transmission occurs and characterize the

memory properties of the forecast error loss di�erential. As a second contribution, we show that

the original DM test is invalidated in this case and su�ers from severe upward size distortions.

Third, we study two simple extensions of the DM statistic that allow valid inference under

long (and short) memory. These extensions are the memory and autocorrelation consistent

(MAC) estimator of Robinson (2005) (see also Abadir et al. (2009)) and the extended �xed-b

asymptotics (EFB) of McElroy and Politis (2012). The performance of these modi�ed statistics

is analyzed in a Monte Carlo study. Since these tests build on a restriction on the mean, the

results allow broader conclusions about the relative performance of the MAC and the extended

�xed-b approach, which is an interesting topic in its own right. We compare several bandwidth

and kernel choices that allow recommendations for practical applications.

Our fourth contribution is an empirical application where we reconsider two recent extensions of

the heterogeneous autoregressive model for realized volatility (HAR-RV) by Corsi (2009). First,

we test whether forecasts obtained from HAR-RV type models can be improved by including in-

formation on model-free risk-neutral implied volatility which is measured by the CBOE volatility

index (VIX). We �nd that short memory approaches (classic Diebold-Mariano test and �xed-b

versions) reject the null hypothesis of equal predictive ability in favor of models including im-

plied volatility. On the contrary, our long memory robust statistics do not indicate a signi�cant
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improvement in forecast performance which implies that previous rejections might be spurious.

The second issue we tackle relates to earlier work by Andersen et al. (2007) and Corsi et al.

(2010), among others, who consider the decomposition of the quadratic variation of the log-price

process into a continuous integrated volatility component and a discrete jump component. Here,

we �nd that the separate treatment of continuous components and jump components signi�cantly

improves forecasts of realized variance for short forecast horizons even if the memory in the loss

di�erentials is accounted for.

The rest of this paper is organized as follows. Section 2 reviews the classic Diebold-Mariano test

and presents the �xed-b approach for the short memory case. Section 3 covers the case of long

range dependence and contains our theoretical results on the transmission of long memory to

the loss di�erential series. Two distinct approaches to design a robust t-statistic are discussed in

Section 4. Section 5 contains our Monte Carlo study and in Section 6 we present our empirical

results. Conclusions are drawn in Section 7. All proofs are contained in the Appendix.

2 Diebold-Mariano Test

Diebold and Mariano (1995) construct a test forH0 : E [g(e1t)− g(e2t)] = E(zt) = 0, solely based

on assumptions on the loss di�erential series zt. Suppose that zt follows the weakly stationary

linear process

zt = µz +
∞∑
j=0

θjvt−j , (1)

where it is required that |µz| < ∞ and
∑∞

j=0 θ
2
j < ∞ hold. For simplicity of the exposition we

additionally assume that vt ∼ iid(0, σ2
v). If ŷ1t and ŷ2t are performing equally good in terms of

g(·), µz = 0 holds, otherwise µz 6= 0. The corresponding t-statistic is based on the sample mean

z̄ = T−1
∑T

t=1 zt and an estimate (V̂ ) of the long-run variance V = limT→∞Var
(
T δ (z̄ − µz)

)
.

The DM statistic is given by

tDM = T δ
z̄√
V̂
. (2)

Under stationary short memory, we have δ = 1/2, while the rate changes to δ = 1/2 − d under

stationary long memory, with 0 < d < 1/2 being the long memory parameter. The (asymptotic)

distribution of this t-statistic hinges on the autocorrelation properties of the loss di�erential

series zt. In the following, we shall distinguish two cases: (1) zt is a stationary short-memory

process and (2) strong dependence in form of a long memory process is present in zt as presented

in Section 3.

2.1 Conventional Approach: HAC

For the estimation of the long-run variance V , Diebold and Mariano (1995) suggest to use the

truncated long-run variance of an MA(h − 1) process for an h-step-ahead forecast. This is
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motivated by the fact that optimal h-step-ahead forecast errors of a linear time series process

follow an MA(h− 1) process. Nevertheless, as pointed out by Diebold (2015), among others, the

test is readily extendable to more general situations, if for example, HAC estimators are used

(see also Clark (1999) for some early simulation evidence). The latter have become the standard

estimators for the long-run variance. In particular,

V̂HAC =
T−1∑

j=−T+1

k

(
j

B

)
γ̂z(j) , (3)

where k(·) is a user-chosen kernel function, B denotes the bandwidth and

γ̂z(j) =
1

T

T∑
t=|j|+1

(zt − z̄)
(
zt−|j| − z̄

)
is the usual estimator for the autocovariance of process zt at lag j. The Diebold-Mariano statistic

is given by

tHAC = T 1/2 z̄√
V̂HAC

. (4)

If zt is weakly stationary with absolutely summable autocovariances γz(j), it holds that V =∑∞
j=−∞ γz(j). Suppose that a functional central limit theorem applies for partial sums of zt,

so that 1√
T

∑[Tr]
t=1 zt ⇒

√
VW (r) where W (r) is a standard Brownian motion. Then, the tHAC-

statistic is asymptotically standard normal under the null hypothesis, i.e.

tHAC ⇒ N (0, 1),

as
√
V in (2) cancels out as long as V̂

p→ V holds. For the sake of a comparable notation to the

long memory case, note that V = 2πfz(0), where fz(0) is the spectral density function of zt at

frequency zero.

2.2 Fixed-bandwidth Approach

Even though nowadays the application of HAC estimators is standard practice, related tests are

often found to be seriously size-distorted in �nite samples, especially under strong persistence. It

is assumed that the ratio b = B/T → 0 as T →∞ in order to achieve a consistent estimation of

the long-run variance V (see for instance Andrews (1991) for additional technical details). Kiefer

and Vogelsang (2005) develop a new asymptotic framework in which the ratio B/T approaches

a �xed constant b ∈ (0, 1] as T → ∞. Therefore, it is called �xed-b inference as opposed to the

classical small-b HAC approach where b→ 0.

In the case of �xed-b (FB), the estimator V̂ (k, b) does not converge to V any longer. Instead,

V̂ (k, b) converges to V multiplied by a functional of a Brownian bridge process. In particular,

V̂ (k, b)⇒ V Q(k, b). Therefore, the corresponding t-statistic

tFB = T 1/2 z̄√
V̂ (k, b)

(5)
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has a non-normal and non-standard limiting distribution, i.e.

tFB ⇒
W (1)√
Q(k, b)

.

Here, W (r) is a standard Brownian motion on r ∈ [0, 1]. Both, the choice of the bandwidth

parameter b and the (twice continuously di�erentiable) kernel k appear in the limit distribution.

For example, for the Bartlett kernel we have

Q(k, b) =
2

b

(ˆ 1

0
W̃ (r)2dr −

ˆ 1−b

0
W̃ (r + b)W̃ (r)dr

)
,

with W̃ (r) = W (r)− rW (1) denoting a standard Brownian bridge. Thus, critical values re�ect

the user choices on the kernel and the bandwidth even in the limit. In many settings, �xed-b

inference is more accurate than the conventional HAC estimation approach. An example of its

application to forecast comparisons are the aforementioned articles of Choi and Kiefer (2010),

Patton (2015) and Li and Patton (2015), who apply both techniques (HAC and �xed-b) to

compare exchange rate forecasts. Our Monte Carlo simulation study sheds additional light on

their relative empirical performance.

3 Long Memory in Forecast Error Loss Di�erentials

3.1 Preliminaries

Under long-range dependence in zt, one has to expect that neither conventional HAC estimators

nor the �xed-b approach can be applied in this context without any further modi�cation, since

strong dependence such as fractional integration is ruled out by assumption. In particular,

we show that HAC-based tests reject with probability one in the limit (as T → ∞) if zt has

long memory. This claim is proven in our Proposition 5 (at the end of this section). As our

�nite-sample simulations clearly demonstrate, this implies strong upward size distortions and

invalidates the use of the classic DM test statistic. Before we actually state these results formally,

we �rst show that the loss di�erential zt may exhibit long memory in various situations.

We start with a basic de�nition of stationary long memory time series.

De�nition 1. A time series at with spectral density fa(λ), with λ ∈ [−π, π], has long memory

with memory parameter da ∈ (0, 1/2), if fa(λ) ∼ Lf |λ|−2da for da ∈ (0, 1/2) as λ → 0. Lf (·) is

slowly varying at the origin. We write at ∼ LM(da).

This is the usual de�nition of a stationary long memory process and Theorem 1.3 of Beran

et al. (2013) states that under this restriction and mild regularity conditions, De�nition 1 is

equivalent to γa(j) ∼ Lγ |j|2da−1 as j → ∞, where γa(j) is the autocovariance function of at

at lag j and Lγ(·) is slowly varying at in�nity. If da = 0 holds, the process has short memory.

Our results build on the asymptotic behavior of the autocovariances that have the long memory

property from De�nition 1. Whether this memory is generated by fractional integration can not

be inferred. However, this does not a�ect the validity of the test statistics introduced in Section
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4. We therefore adopt De�nition 1 which covers fractional integration as a special case. A similar

approach is taken by Dittmann and Granger (2002).1

Given De�nition 1, we now state some assumptions regarding the long memory structure of the

forecast objective and the forecasts.

Assumption 1 (Long Memory). The time series yt, ŷ1t, ŷ2t with expectations E(yt) = µy,

E(ŷ1t) = µ1 and E(ŷ2t) = µ2 are causal Gaussian long memory processes (according to De�nition

1) of orders dy, d1 and d2, respectively.

Similar to Dittmann and Granger (2002), we rely on the assumption of Gaussianity since no

results for the memory structure of squares and cross-products of non-Gaussian long memory

processes are available in the existing literature. It shall be noted that Gaussianity is only

assumed for the derivation of the memory transmission from the forecasts and the forecast

objective to the loss di�erential, but not for the subsequent results.

In the following, we make use of the concept of common long memory in which a linear combi-

nation of long memory series has reduced memory. The amount of reduction is labeled as b in

accordance with the literature (similar to the symbol b in ��xed-b�, but no confusion shall arise).

De�nition 2 (Common Long Memory). The time series at and bt have common long memory

(CLM) if both at and bt are LM(d) and there exists a linear combination ct = at − ψ0 − ψ1bt

with ψ0 ∈ R and ψ1 ∈ R\0 such that ct ∼ LM(d − b), for some d ≥ b > 0. We write at, bt ∼
CLM(d, d− b).

For simplicity and ease of exposition, we �rst exclude the possibility of common long memory

among the series. This assumption is relaxed later on.

Assumption 2 (No Common Long Memory). If at, bt ∼ LM(d), then at − ψ0 − ψ1bt ∼ LM(d)

for all ψ0 ∈ R, ψ1 ∈ R and at, bt ∈ {yt, ŷ1t, ŷ2t}.

In order to derive the long memory properties of the forecast error loss di�erential, we make use

of a result in Leschinski (2016) that characterizes the memory structure of the product series

atbt for two long memory time series at and bt. Such products play an important role in the

following analysis. The result is therefore shown as Proposition 1 below, for convenience.

Proposition 1 (Memory of Products). Let at and bt be long memory series according to De�-

nition 1 with memory parameters da and db, and means µa and µb, respectively. Then

atbt ∼



LM(max {da, db}), for µa, µb 6= 0

LM(da), for µa = 0, µb 6= 0

LM(db), for µb = 0, µa 6= 0

LM(max {da + db − 1/2, 0}), for µa = µb = 0 and Sa,b 6= 0

LM(da + db − 1/2), for µa = µb = 0 and Sa,b = 0,

1Sometimes the terms long memory and fractional integration are used interchangeably. However, a stationary
fractionally integrated process at has spectral density fa(λ) = |1 − eiλ|−2daGa(λ), so that fa(λ) ∼ G(λ)|λ|−2da

as λ → 0, since |1 − eiλ| → λ as λ → 0. Therefore, fractional integration is a special case of long memory, but
many other processes would satisfy De�nition 1, too. Examples include non-causal processes and processes with
trigonometric power law coe�cients, as recently discussed in Kechagias and Pipiras (2015).
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where Sa,b =
∑∞

j=−∞ γa(j)γb(j) with γa(·) and γb(·) denoting the autocovariance functions of at

and bt, respectively.

Proposition 1 shows that the memory of products of long memory time series critically depends

on the means µa and µb of the series at and bt. If both series are mean zero, the memory of

the product is either the maximum of the sum of the memory parameters of both factor series

minus one half - or it is zero - depending on the sum of autocovariances. Since da, db < 1/2,

this is always smaller than any of the original memory parameters. If only one of the series is

mean zero, the memory of the product atbt is determined by the memory of this particular series.

Finally, if both series have non-zero means, the memory of the product is equal to the maximum

of the memory orders of the two series.

It should be noted, that Proposition 1 makes a distinction between antipersistent series and

short memory series, if the processes have zero means and da + db− 1/2 < 0. Our results below,

however, do not require this distinction. The reason for this is that a linear combination involving

the square of at least one of the series appears in each case, and these cannot be anti-persistent

long memory processes (cf. the proofs of Propositions 2 and 4 for details).

As discussed in Leschinski (2016), Proposition 1 is related to the results in Dittmann and Granger

(2002), who consider the memory of non-linear transformations of zero mean long memory time

series that can be represented through a �nite sum of Hermite polynomials. Their results include

the square a2
t of a time series which is also covered by Proposition 1 if at = bt. If the mean is

zero (µa = 0), we have a2
t ∼ LM(max {2da − 1/2, 0}). Therefore, the memory is reduced to zero

if d ≤ 1/4. However, as can be seen from Proposition 1, this behavior depends critically on the

expectation of the series.

Since it is the most widely used loss function in practice, we focus on the MSE loss function. Let

eit = yt − ŷit denote the i-th forecast error, then the quadratic forecast error loss di�erential is

given by

zt = e2
1t − e2

2t = (yt − ŷ1t)
2 − (yt − ŷ2t)

2

= ŷ2
1t − ŷ2

2t − 2yt(ŷ1t − ŷ2t). (6)

Note that even though the forecast objective yt as well as the forecasts ŷit in (6), have time

index t, the representation is quite versatile. It allows for forecasts generated from time series

models where ŷit =
∑T

s=1 φsyt−s as well as predictive regressions with ŷit = β′xt−s, where β is

a w × 1 parameter vector and xt−s is a vector of w explanatory variables lagged by s periods.

In addition to that, even though estimation errors are not considered explicitly, they would be

re�ected by the fact that E[yt|Ψt−h] 6= ŷit|t−h, where Ψt−h is the information set available at the

forecast origin t− h. This means that forecasts are biased in presence of estimation error, even

if the model employed corresponds to the true data generating process. The forecasts are also

not restricted to be obtained from a linear model. Similar to the Diebold-Mariano test, which is

solely based on a single assumption on the forecast error loss di�erential (6), the following results

are derived by assuming certain properties of the forecasts and the forecast objective. Therefore,

we follow Diebold and Mariano (1995) and do not impose direct restrictions on the way forecasts

are generated.
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3.2 Transmission of Long Memory to the Loss Di�erential

Following the introduction of the necessary de�nitions and a preliminary result, we now present

the result for the memory order of zt de�ned via (6) in Proposition 2. It is based on the memory

of yt, ŷ1t and ŷ2t and assumes the absence of common long memory for simplicity.

Proposition 2 (Memory Transmission without CLM). Under Assumptions 1 and 2, the forecast

error loss di�erential in (6) is zt ∼ LM(dz), where

dz =



max {dy, d1, d2} , if µ1 6= µ2 6= µy

max {d1, d2} , if µ1 = µ2 6= µy

max {2d1 − 1/2, d2, dy} , if µ1 = µy 6= µ2

max {2d2 − 1/2, d1, dy} , if µ1 6= µy = µ2

max
{

2 max {d1, d2} − 1/2, dy + max {d1, d2} − 1/2, 0
}
, if µ1 = µ2 = µy.

Proof: See the Appendix.

The basic idea of the proof relates to Proposition 3 of Chambers (1998). It shows that the

long-run behavior of a linear combination of long memory series is dominated by the series with

the strongest memory. Since we know from Proposition 1 that the means µ1, µ2 and µy play

an important role for the memory of a squared long memory series, we set yt = y∗t + µy and

ŷit = ŷ∗it + µi, so that the starred series denote the demeaned series and µi denotes the expected

value of the respective series. Straightforward algebra yields

zt = ŷ∗21t − ŷ∗22t − 2
[
y∗t (µ1 − µ2) + ŷ∗1t(µy − µ1) + ŷ∗2t(µy − µ2)

]
− 2
[
y∗t (ŷ

∗
1t − ŷ∗2t)

]
+ const. (7)

From (7) it is apparent that zt is a linear combination of (i) the squared forecasts ŷ∗21t and ŷ
∗2
2t ,

(ii) the forecast objective yt, (iii) the forecast series ŷ
∗
1t and ŷ

∗
2t and (iv) products of the forecast

objective with the forecasts, i.e. y∗t ŷ
∗
1t and y∗t ŷ

∗
2t. The memory of the squared series and the

product series is determined in Proposition 1, from which the zero mean product series y∗t ŷ
∗
it

is LM(max {dy + di − 1/2, 0}) or LM(dy + di − 1/2). Moreover, the memory of the squared

zero mean series ŷ∗2it is max {2di − 1/2, 0}. By combining these results with that of Chambers

(1998), the memory of the loss di�erential zt is the maximum of all memory parameters of the

components in (7). Proposition 2 then follows from a case-by-case analysis.

Proposition 2 demonstrates the transmission of long memory from the forecasts ŷ1t, ŷ2t and

the forecast objective yt to the loss di�erential zt. The nature of this transmission, however,

critically hinges on the (un)biasedness of the forecasts. If both forecasts are unbiased (i.e. if

µ1 = µ2 = µy), the memory from all three input series is reduced and the memory of the loss

di�erential zt is equal to the maximum of the maximum of (i) these reduced orders and (ii) zero.

Therefore, only if memory parameters are small enough such that dy + max {d1 + d2} < 1/2, the

memory of the loss di�erential zt is reduced to zero. In all other cases, there is a transmission of

dependence from the forecast and/or the forecast objective to the loss di�erential. The reason

for this can immediately be seen from (7). Note that the terms in the �rst bracket have larger
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memory than the remaining ones, because di > 2di − 1/2 and max {dy, di} > dy + di − 1/2.

Therefore, these terms dominate the memory of the products and squares whenever biasedness

is present, i.e. µi − µy 6= 0 holds. Interestingly, the transmission of memory from the forecast

objective yt is prevented, if both forecasts have equal bias - that is µ1 = µ2. On the contrary, if

µ1 6= µ2, dz is at least as high as dy.

3.3 Memory Transmission under Common Long Memory

The results in Proposition 2 are based on Assumption 2 that precludes common long memory

among the series. Of course, in practice it is likely that such an assumption is violated. In fact,

it can be argued that reasonable forecasts of long memory time series should have common long

memory with the forecast objective. Therefore, we relax this restrictive assumption and replace

it with Assumption 3, below.

Assumption 3 (Common Long Memory). The causal Gaussian process xt has long memory

according to De�nition 1 of order dx with expectation E(xt) = µx. If at, bt ∼ CLM(dx, dx − b),
then they can be represented as yt = βy + ξyxt + ηt for at, bt = yt and ŷit = βi + ξixt + εit, for

at, bt = ŷit, with ξy, ξi 6= 0. ηt and εit are mean zero causal Gaussian long memory processes

with parameters dη and dεit ful�lling 1/2 > dx > dη, dεi ≥ 0, for i = 1, 2.

Assumption 3 restricts the common long memory to be of a form so that both series at and bt can

be represented as linear functions of their joint factor xt. This excludes more complicated forms

of dependence that are sometimes considered in the cointegration literature such as non-linear

or time-varying cointegration.

We know from Proposition 2 that the transmission of memory critically depends on the biasedness

of the forecasts which leads to a complicated case analysis. If common long memory according to

Assumption 3 is allowed for, this leads to an even more complex situation since there are several

possible relationships: CLM of yt with one of the ŷit, CLM of both ŷit with each other, but not

with yt, and CLM of each ŷit with yt. Each of these situations has to be considered with all

possible combinations of the ξa and the µa for all a ∈ {y, 1, 2}. To deal with this complexity, we

focus on two important special cases: (i) at least one forecast is biased and (ii) all forecasts are

unbiased (and ξa = ξb if at and bt are in a common long memory relationship).

Situation (i) is similar to the �rst four cases considered in Proposition 2. By substituting the

linear relations from Assumption 3 for those series involved in the CLM relationship in the loss

di�erential zt = ŷ2
1t − ŷ2

2t − 2yt(ŷ1t − ŷ2t) and again setting at = a∗t + µa for those series that

are not involved in the CLM relationship, it is possible to �nd expressions that are analogous to

(7). Since analogous terms to those in the �rst bracket of (7) appear in each case, it is possible

to focus on the transmission of memory from the forecasts and the objective function to the loss

di�erential. We therefore obtain the following result.
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Proposition 3 (Memory Transmission with Biased Forecasts and CLM). Under Assumptions

1 and 3, the forecast error loss di�erential in (6) is zt ∼ LM(dz), where

dz ≥


d1, if µ1 6= µy

d2, if µ2 6= µy

dy, if µ1 6= µ2.

Proof: See the Appendix.

Proposition 3 states that the transmission of memory remains the same as in the absence of

common long memory, given that the forecasts are biased. As in (7) before, if the forecasts are

biased (or have di�erent biases) the memory of the de-meaned series y∗t , ŷ
∗
1t and ŷ

∗
2t dominate

that of the other terms. However, if two of those terms appear, it is unclear which one of them

is larger - therefore the inequalities in Proposition 3.

The second special case (ii) refers to a situation of unbiasedness similar to the last case in Propo-

sition 2. In addition to that, it is assumed that ξa = ξb, if at and bt are in a common long

memory relationship. To understand the role of the coe�cients ξa and ξb of the common long

memory factor xt driving both series, note that the forecast errors yt − ŷit impose a cointe-

grating vector of (1,−1). A di�erent scaling of the forecast objective and the forecasts is not

possible. In the case of CLM between yt and ŷit, for example, we have from Assumption 3 that

yt−ŷit = βy−βi+xt(ξy−ξi)+ηt−εit, so that xt does not disappear from the linear combination if

the scaling parameters ξy and ξi are di�erent from each other. Hence, we have the following result.

Proposition 4 (Memory Transmission with Unbiased Forecasts and CLM). Under Assumptions

1 and 3, and if µy = µ1 = µ2 and ξy = ξa = ξb, then zt ∼ LM(dz), with

dz =



max {d2 + max {dx, dη} − 1/2, 2 max {dx, d2} − 1/2, dε1} , if yt, ŷ1t ∼ CLM(dx, dx − b̃)

max {d1 + max {dx, dη} − 1/2, 2 max {dx, d1} − 1/2, dε2} , if yt, ŷ2t ∼ CLM(dx, dx − b̃)

max {max {dx, dy}+ max {dε1 , dε2} − 1/2, 0} , if ŷ1t, ŷ2t ∼ CLM(dx, dx − b̃)

max {dη + max {dε1 , dε2} − 1/2, 2 max {dε1 , dε2} − 1/2, 0} , if yt, ŷ1t ∼ CLM(dx, dx − b̃)

and yt, ŷ2t ∼ CLM(dx, dx − b̃).

Here, 0 < b̃ ≤ 1/2 denotes a generic constant for the reduction in memory.

Proof: See the Appendix.

Proposition 4 shows that the memory of the forecasts and the objective variable can indeed

cancel out if the forecasts are unbiased and if they have the same factor loading on xt (i.e. if

ξ1 = ξ2 = ξy). However, in the �rst two cases, the memory of the error series ε1t and ε2t imposes

a lower bound on the memory of the loss di�erential. Furthermore, even though the memory can

be reduced to zero in the third and fourth case, this situation only occurs if the memory orders

of xt, yt and the error series are su�ciently small. Otherwise, the memory is reduced, but does

not vanish.
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The results in Propositions 2, 3 and 4 show that long memory can be transmitted from forecasts

or the forecast objective to the forecast error loss di�erentials. This situation can arise naturally

in many practical situations. First, of course the forecast objective might be a long memory

time series. Second, from Proposition 3 in Chambers (1998), forecasts that are based on linear

combinations - such as predictive regressions - exhibit long memory if they include a long memory

variable.

Our results also show that the biasedness of the forecasts plays an important role for the transmis-

sion of dependence to the loss di�erentials. In practical situations, it might be overly restrictive

to impose exact unbiasedness (under which memory would be reduced according to Proposition

4). Our empirical application regarding the predictive ability of the VIX serves as an example

since it is a biased forecast of future quadratic variation due to the existence of a variance risk

premium (see Section 6).

It is well established that estimation errors might imply biased forecasts. This issue might be of

less importance in a setup where the estimation period grows at a faster rate than the (pseudo-)

out-of-sample period that is used for forecast evaluation. For the DM test however, it is usually

assumed that this is not the case. Otherwise, it could not be used for the comparison of forecasts

from nested models due to a degenerated limiting distribution (cf. Giacomini and White (2006)

for a discussion). Instead, the sample of size T ∗ is split into an estimation period TE and a

forecasting period T such that T ∗ = TE +T and it is assumed that T grows at a faster rate than

TE so that TE/T → 0 as T ∗ →∞. Therefore, the estimation error shrinks at a lower rate than

the growth rate of the evaluation period and it remains relevant, asymptotically.

Finally, even optimal forecasts can be strongly persistent for long forecast horizons. It is well

known that the forecast errors of an optimal h-step-ahead forecast follow an MA(h− 1) process.

The coe�cients of this process are given by the �rst h−1 coe�cients in the MA(∞) representation

of the objective series yt. Therefore, forecast errors of the h-step forecast for h → ∞ have long

memory if the underlying series yt has long memory as well. For larger forecast horizons long

memory processes are therefore a better approximation to the true dependence structure than

short memory processes.

3.4 Asymptotic and Finite-Sample Behaviour under Long Memory

After con�rming that forecast error loss di�erentials can exhibit long memory, we now consider

the e�ect of long memory on the HAC-based Diebold-Mariano test. The following Proposition

5 establishes that the size of the test approaches unity, as T →∞. Thus, the test indicates with

probability one that one of the forecasts is superior to the other one, even if both tests perform

equally in terms of g(·).

Proposition 5 (DM under Long Memory). For zt ∼ LM(d) with d ∈ (0, 1/4) ∪ (1/4, 1/2), the

asymptotic size of the tHAC-statistic equals unity as T →∞.

Proof: See the Appendix.
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Figure 1: Size of the tHAC- and tFB-tests with T = 50 for di�erent values of the memory
parameter d.

This result shows that inference based on HAC estimators is asymptotically invalid under long

memory. At the point d = 1/4, the asymptotic distribution of the tHAC-statistic changes from

normality to a Rosenblatt-type distribution which explains the discontinuity, see Abadir et al.

(2009). In order to explore to what extent this �nding also a�ects the �nite-sample performance of

the tHAC- and tFB-statistics, we conduct a small-scale Monte Carlo experiment as an illustration.

The results shown in Figure 1 are obtained withM = 5000 Monte Carlo repetitions. We simulate

samples of T = 50 observations from a fractionally integrated process using di�erent values of the

memory parameter d in the range from 0 to 0.4. The HAC estimator and the �xed-b approach

are implemented with the commonly used Bartlett- and Quadratic Spectral (QS) kernels.2

As demonstrated by Kiefer and Vogelsang (2005), the �xed-b approach works exceptionally well

in the case of d = 0, with the Bartlett and QS kernel achieving approximately equal size control.

The tHAC-statistic behaves more liberal than the �xed-b approach and, as stated in Andrews

(1991), better size control is provided if the Quadratic Spectral kernel is used. If the memory

parameter d is positive, we observe that both tests severely over-reject the null hypothesis. For

d = 0.4, the size of the HAC-based test is approximately 65% and that of the �xed-b version

using the Bartlett kernel is around 40%. We therefore �nd that the size distortions are not only

2The bandwidth parameter of the �xed-b estimator is set to b = 0.8, since using a larger fraction of the
autocorrelations provides a higher emphasis on size control (cf. Kiefer and Vogelsang (2005)). Other bandwidth
choices lead to similar results.
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an asymptotic phenomenon, but they are already severe in samples of just T = 50 observations.

Moreover, even for small deviations of d from zero, both tests are over-sized. These �ndings

motivate the use of long memory robust procedures.

4 Long-Run Variance Estimation under Long Memory

Since conventional HAC estimators lead to spurious rejections under long memory, it is necessary

to consider memory robust long-run variance estimators. To the best of our knowledge only two

extensions of this kind are available in the literature: the memory and autocorrelation consistent

(MAC) estimator of Robinson (2005) and an extension of the �xed-b estimator from McElroy

and Politis (2012). Note that we do not assume that forecasts are obtained from some speci�c

class of model. We merely extend the typical assumptions of Diebold and Mariano (1995) on the

loss di�erentials so that long memory is allowed.

4.1 MAC Estimator

The MAC estimator is developed by Robinson (2005) and further explored and extended by

Abadir et al. (2009). Albeit stated in a somewhat di�erent form, the same result is derived

independently by Phillips and Kim (2007), who consider the long-run variance of a multivariate

fractionally integrated process.

Robinson (2005) assumes that zt is linear and that for λ→ 0 its spectral density ful�lls

f(λ) = b0|λ|−2d + o(|λ|−2d),

with b0 > 0, |λ| ≤ π, d ∈ (−1/2, 1/2) and b0 = limλ→0 |λ|2df(λ) (cf. Assumption L, Abadir et al.

(2009)).3 Among others, this assumption covers stationary and invertible ARFIMA processes.

A key result for the MAC estimator is that as T →∞

Var
(
T 1/2−dz̄

)
→ b0p(d)

with

p(d) =


2Γ(1−2d) sin(πd)

d(1+2d) if d 6= 0 ,

2π if d = 0 .

The case of short memory (d = 0) yields the familiar result that the long-run variance of the

sample mean equals 2πb0 = 2πf(0). Hence, estimation of the long-run variance requires esti-

mation of f(0) in the case of short memory. If long memory is present in the data generating

process, estimation of the long-run variance additionally hinges on the estimation of d. The

MAC estimator is therefore given by

V̂ (d̂,md,m) = b̂m(d̂)p(d̂) .

3For notational convenience, here we drop the index z from the spectral density and the memory parameter.
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In more detail, the estimation of V works as follows: First, if the estimator for d ful�lls the

condition d̂ − d = op(1/ log T ), plug-in estimation is valid (cf. Abadir et al. (2009)). Thus,

p(d) can simply be estimated through p(d̂). A popular estimator that ful�lls this rather weak

requirement is the local Whittle estimator with bandwidth md = [T q], where 0 < q < 1 de-

notes a generic bandwidth parameter. Many other estimation approaches (e.g. log-periodogram

estimation, etc.) would be a possibility as well.

Next, b0 can be estimated consistently by

b̂m(d̂) = m−1
m∑
j=1

λ2d̂
j IT (λj) ,

where IT (λj) is the periodogram (which is independent of d̂),

IT (λj) = (2πT )−1

∣∣∣∣∣
T∑
t=1

exp(itλj)zt

∣∣∣∣∣
2

and λj = 2πj/T are the Fourier frequencies for j = 1, ..., bT/2c. Here, b·c denotes the largest
integer smaller than its argument. The bandwidth m is determined according to m = bT qc such
that m→∞ and m = o(T/(log T )2).

The MAC estimator is consistent as long as d̂
p→ d and b̂m(d̂)

p→ b0. These results hold under

very weak assumptions - neither linearity of zt nor Gaussianity are required. Under somewhat

stronger assumptions the tMAC-statistic is also normal distributed (see Theorem 3.1. of Abadir

et al. (2009)):

tMAC ⇒ N (0, 1) .

The t-statistic using the feasible MAC estimator can be written as

tMAC = T 1/2−d̂ z̄√
V̂ (d̂,md,m)

,

with md and m being the bandwidths for estimation of d and b0, respectively.

It shall be noted that Abadir et al. (2009) also consider long memory versions of the classic HAC

estimators. However, these extensions have two important shortcomings. First, asymptotic

normality is lost for 1/4 < d < 1/2 which complicates inference remarkably as d is generally

unknown. Second, the extended HAC estimator is very sensitive towards the bandwidth choice

as the MSE-optimal rate depends on d. On the contrary, the MAC estimator is shown to

lead to asymptotically standard normally distributed t-ratios for the whole range of values d ∈
(−1/2, 1/2). Moreover, the MSE-optimal bandwidth choice m = [T 4/5] is independent of d.

Thus, we focus on the MAC estimator and do not consider extended HAC estimators further.

4.2 Extended Fixed-Bandwidth Approach

Following up on the work by Kiefer and Vogelsang (2005), McElroy and Politis (2012) extend

the �xed-bandwidth approach to long range dependence. Their approach is similar to the one of

Kiefer and Vogelsang (2005) in many respects, as can be seen below. The test statistic suggested
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by McElroy and Politis (2012) is given by

tEFB = T 1/2 z̄√
V̂ (k, b)

.

In contrast to the tMAC-statistic, the tEFB-statistic involves a scaling of T
1/2. This has an e�ect

on the limit distribution which depends on the memory parameter d. Analogously to the short

memory case, the limiting distribution is derived by assuming that a functional central limit

theorem for the partial sums of zt applies, so that

tEFB ⇒
Wd(1)√
Q(k, b, d)

,

where Wd(r) is a fractional Brownian motion and Q(k, b, d) depends on the fractional Brown-

ian bridge W̃d(r) = Wd(r) − rWd(1). Furthermore, Q(k, b, d) depends on the �rst and second

derivatives of the kernel k(·). In more detail, for the Bartlett kernel we have

Q(k, b, d) =
2

b

(ˆ 1

0
W̃d(r)

2dr −
ˆ 1−b

0
W̃d(r + b)W̃d(r)dr

)
and thus, a similar structure as for the short memory case. Further details and examples can be

found in McElroy and Politis (2012). The joint distribution of Wd(1) and
√
Q(k, b, d) is found

through their joint Fourier-Laplace transformation, see Fitzsimmons and McElroy (2010). It is

symmetric around zero and has a cumulative distribution function which is continuous in d.

Besides the similarities to the short memory case, there are some important conceptual di�erences

to the MAC estimator. First, the MAC estimator belongs to the class of �small-b� estimators

in the sense that it estimates the long-run variance directly, whereas the �xed-b approach leads

also in the long memory case to an estimate of the long-run variance multiplied by a functional

of a fractional Brownian bridge. Second, the limiting distribution of the tEFB-statistic is not a

standard normal, but rather depending on the chosen kernel k, the �xed-bandwidth parameter b

and the long memory parameter d. While the �rst two are user-speci�c, the latter one requires

a plug-in estimator, as does the MAC estimator. As a consequence, the critical values are

depending on d. McElroy and Politis (2012) o�er response curves for various kernels.4

5 Monte Carlo Study

In this section we analyze the �nite-sample performance of the procedures discussed above by

means of a simulation study. As in our motivating example, we conduct all size and power

simulations for the tMAC- and tEFB-tests with M = 5000 Monte Carlo repetitions and the

nominal signi�cance level is set to 5%. For both tests, the plug-in estimation of d is done via

local Whittle (LW) with md = bT 0.65c which is similar to the simulation setup in Abadir et al.

(2009). In the case of the extended �xed-b approach, we consider the Bartlett and the Modi�ed

4All common kernels (e.g. Bartlett, Parzen) as well as others considered in Kiefer and Vogelsang (2005) can be
used. In addition to the aforementioned, McElroy and Politis (2012) use the Daniell, the Trapezoid, the Modi�ed
Quadratic Spectral, the Tukey-Hanning and the Bohman kernel.
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Quadratic Spectral (MQS) kernel as used in Politis and McElroy (2009) and McElroy and Politis

(2012).5

Note that even though the theoretical results in Section 3 are based on assumptions on the

forecasts and the forecast objective, the modi�ed DM tests proposed in Section 4 are based

solely on assumptions on the time series properties of the loss di�erentials. Since these tests are

the subject of this Monte Carlo study, we also take this perspective for the simulation design

and generate the loss di�erential series zt directly from standard time series models.

The results reported below are generated for the following two DGPs. DGP1 is a fractional

Gaussian white noise process with memory parameter d = {0, 0.05, 0.1, ..., 0.45}, while DGP2

contains an additional �rst-order autoregressive component with parameter φ = 0.6.

If the loss di�erential series has zero mean, this represents a situation where both forecasts are

equally good. For non-zero means one of the forecasts outperforms the other. Since the DM test

is essentially a test on the mean, the results presented below can not only be interpreted with

regard to forecast comparisons. Instead, they can also be considered as a general comparison of

size and power between statistics using the MAC estimator and tests employing the extended

�xed-b asymptotics. To the best of our knowledge, such a comparison has not been conducted

in the existing literature before.

In regard of the fact that optimal forecasts are MA processes the attentive reader might wonder

why the results presented do not include MA dynamics. However, the derivative of the spectral

density of MA processes in the vicinity of the zero frequency tends to be much smaller than that

of AR processes, so that the spectral density at the origin is more �at and has a less severe e�ect

on the �nite-sample performance of the estimators for the long memory parameters. We therefore

decide to present the results for the situation that is more challenging for the methods employed,

but additional results under MA dynamics are available from the authors upon request. In

addition to that, the important special case of optimal one-step-ahead forecasts is represented

by DGP1 for d = 0.

Figure 2 shows a comparison of the size of both tests for di�erent degrees of long memory and

sample sizes of T ∈ {50, 250}. In the case of DGP1, all tests are liberal and the size tends to

increase with increasing d. The tEFB-statistic obtained with the MQS kernel gives the best size

control, whereas the tMAC-statistic shows the highest rejection frequencies.

In larger samples of T = 250 observations the dependence of the size on d is reduced and both

tests approach their nominal signi�cance level. However, for both sample sizes the tEFB-statistics

are notably closer to their nominal level of 5% than the MAC-based statistic and among the

tEFB-statistics, the one obtained with the MQS kernel performs best. As observed by Kiefer and

Vogelsang (2005), there is a trade-o� in terms of size and power in the choice of the bandwidth

parameter b. Larger bandwidths generally improve the size and reduce the power. However, as

can be seen from the results below, the kernel choice has a more severe e�ect than the bandwidth

choice. Especially in larger samples the size is nearly identical for all bandwidths.

5The MQS kernel is a modi�ed version of the usual QS kernel used in Kiefer and Vogelsang (2005), but
restricted to x ∈ [−1, 1]. The kernel is given by k(x) = 3(sin(πx)/(πx) − cos(πx))/(πx)2 for x ∈ [−1, 1] and
k(x) = 0 for |x| > 1, where x = j/B, if the kernel is employed for the long-run variance estimation as in (3).
Further kernels, including �at-top tapers, are analyzed as well but yield slightly inferior results to those reported
here.
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Figure 2: Size of the tMAC- and tEFB-statistics for di�erent degrees of long memory d, sample
sizes T and bandwidth parameters q and b.

DGP2 contains short memory in�uences and the results shown here are obtained with an autore-

gressive coe�cient of φ = 0.6. Interestingly, in the presence of short memory components, the
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Figure 3: Power comparison of the robust statistics tEFB and tMAC with their short memory
counterparts when d = 0.

results change notably. Already in small samples of T = 50 observations both tests are conser-

vative. For large values of d, we can observe that the tEFB-test becomes slightly liberal again.

Several further simulations are conducted, considering a wide range of di�erent autoregressive

and moving average components. Qualitatively, this does not alter the �ndings, even though

the conservativeness of the procedure becomes stronger with increasing φ and moving average

components tend to have a less severe impact compared to autoregressive components for the

reasons discussed above.

Additional simulation studies using the true - but in practical applications unknown - memory

parameter d, reveal that the tests are no longer conservative. Consequently, the e�ect can be

attributed to the �nite-sample bias of the local Whittle estimator that occurs if short memory

dynamics are present. This is in line with the results of McElroy and Politis (2012), who also
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Figure 4: Power comparison of the tMAC- and tEFB-statistics for d = 0.2 and sample sizes
T ∈ {50, 250}.

note that their results are strongly in�uenced by the performance of the estimation procedure

for the memory parameter d.

Our simulation study suggests that a �xed-bandwidth choice of b = 0.8 provides a good balance

in the size-power trade-o� under both DGPs, for both kernels, and for all considered memory

parameters. Concerning the MAC estimator, the MSE-optimal choice mopt = bT 0.8c derived in

Abadir et al. (2009) indeed provides the best results under DGP2. In this situation, it gives a

size close to the nominal level and is better than that of the tEFB-test. However, in the case of

DGP1 the bandwidth m = bT qc with q = 0.7 seems more adequate which can also observed in

the simulation study of Abadir et al. (2009).

In a next step, we consider the potential losses in power arising from the use of the robust tEFB-

and tMAC-statistics when the additional �exibility is not needed, because the series does not have

long memory (d = 0). Results are presented in Figure 3. Since it is our objective to evaluate the

potential loss in power if one would generally use memory robust tests in practice, we consider

size-unadjusted power here. We compare the tHAC- and tMAC-tests in the top row and the tFB-

with the tEFB-statistics in the bottom row of Figure 3 under T ∈ {50, 250} and DGP1, setting

d = 0. Although as expected some power loss can be observed, the cost of using the long memory

robust procedures is more than acceptable, especially for T = 250.

Finally, we analyze the power of the tMAC- and tEFB-statistics under both DGPs, for the case

of d = 0.2. This setup matches the memory orders in our empirical application (cf. Section 6)

closely. With regard to the previous results, we chose the bandwidth parameter of b = 0.8 for the

extended �xed-b and m = bT 0.7c (m = bT 0.8c) for the MAC approach under DGP1 (DGP2). To

control for the increase in the variance of the process (which depends on the memory parameter

d), each loss di�erential series is standardized before the mean is added and the respective test

is applied. The results are shown in Figure 4. As expected, the power increases with the sample

size.
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With regard to the ranking, we observe that in case of DGP1 the tMAC-statistic clearly out-

performs the tEFB-statistics among which the one obtained using a Bartlett kernel performs

best. The tEFB-statistic obtained with the MQS kernel, on the other hand, has the lowest power

under both DGPs. Since the tMAC-statistic is clearly more liberal than its two competitors,

we also provide size-adjusted power curves in Figure 9 in the Appendix. Due to the di�erent

employment of the d estimator in both methods, such a comparison is only valid for known d.

For both DGPs, it can be clearly seen that the power advantages of the tMAC-statistic go beyond

the e�ect of the upward size distortion. Interestingly, further simulations have shown that these

power advantages tend to increase with increasing d.

By comparing the results for DGP1 with those of DGP2 in Figure 4, one can observe that the

power of both tests su�ers if short memory components are present. Di�erent from the size e�ect

of the short memory dynamics discussed above, simulations with known d show that this cannot

be explained by the e�ect of autoregressive dynamics on the estimation of d alone. Instead, the

presence of short memory dynamics increases the �nite-sample variance of the estimated means

- similar to the e�ect of an increase in d.

To robustify the procedures against the e�ect of short memory dynamics discussed above, one

could consider to apply the adaptive local polynomial Whittle (ALPW) estimator of Andrews

and Sun (2004). Figures 8 and 10 in the Appendix shows the results of this exercise. In smaller

samples, the size obtained using the ALPW estimator now becomes similarly liberal for all

procedures and both DGPs. In larger samples of T = 250, all tests reach a satisfactory size,

however, the size of the tEFB-statistic using the MQS kernel remains the best and the tMAC-

statistic performs better if a smaller bandwidth, say m = bT 0.55c is used. The power, on the

other hand, is remarkably reduced and the tEFB-statistic using the Bartlett kernel now has the

highest power.

We �nd that the tEFB-tests generally provide better size control than the tMAC-test, whereas

the latter has better power properties. Among the extended �xed-b procedures, the MQS kernel

has better size but less power compared to the Bartlett kernel. In presence of short memory

dynamics both procedures become quite conservative. This e�ect can be mitigated if the ALPW

estimator is employed for the plug-in estimation of the memory parameter d. However, this

comes at the cost of an additional loss in power.

Since there is no dominant procedure in terms of size control and power, we conclude that it

is bene�cial for forecast comparisons in practice to consider both statistics and to compare the

outcomes. This also applies to other inference problems involving the sample mean.

6 An Application to Realized Volatility Forecasting

Due to its relevance for risk management and derivative pricing, volatility forecasting is of vital

importance and is also one of the �elds in which long memory models are applied most often

(cf., e.g., Deo et al. (2006), Martens et al. (2009) and Chiriac and Voev (2011)). Since intraday

data on �nancial transactions has become widely available, the focus has shifted from GARCH-

type models to the direct modelling of realized volatility series. In particular the heterogeneous

autoregressive model (HAR-RV) of Corsi (2009) and its extensions have emerged as one of the
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Figure 5: Daily log-realized volatility of the S&P500 index and their autocorrelation function.

most popular approaches.

As an empirical application we therefore re-evaluate some recent results from the related literature

using traditional Diebold-Mariano tests as well as the long memory robust versions from Section

4. We use a data set of 5-minute log-returns of the S&P 500 Index from January 2, 1996

to August 31, 2015 and we include close-to-open returns. The raw data is obtained from the

Thomson Reuters Tick History Database.

Before we turn to the forecast evaluations in Sections 6.1 and 6.2, we use the remainder of this

section to de�ne the relevant volatility variables and to introduce the data and the employed time

series models. De�ne the j-th intraday return on day t by rt,j and let there be N intraday returns

per day, than following Andersen et al. (2001) and Barndor�-Nielsen and Shephard (2002) the

daily realized variance is de�ned as

RVt =
N∑
j=1

r2
t,j .

If rt,j is sampled with an ever-increasing frequency such that N →∞, RVt provides a consistent

estimate of the quadratic variation of the log-price process. Therefore, RVt is usually treated as

a direct observation of the stochastic volatility process. The HAR-RV model of Corsi (2009),

for example, explains log-realized variance by an autoregression involving overlapping averages

of past realized variances.

lnRV
(h)
t = α+ ρ22 lnRV

(22)
t−h + ρ5 lnRV

(5)
t−h + ρ1 lnRV

(1)
t−h + εt , (8)

where

RV
(M)
t =

22

M

M−1∑
j=0

RVt−j ,

and εt is a white noise process. Although this is formally not a long memory model, this

simple process provides a good approximation to the slowly decaying autocorrelation functions

of long memory processes in �nite samples. Forecast comparisons show that the HAR-RV model
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performs similar to ARFIMA models (cf. Corsi (2009)).

Motivated by developments in derivative pricing that highlighted the importance of jumps in

price processes, Andersen et al. (2007) extend the HAR-RV model to consider jump components

in realized volatility. Here, the underlying model for the continuous time log-price process p(t)

is given by

dp(t) = µ(t)dt+ σ(t)dW (t) + κ(t)dq(t) ,

where 0 ≤ t ≤ T , µ(t) has locally bounded variation, σ(t) is a strictly positive stochastic

volatility process that is càdlàg and W (t) is a standard Brownian motion. The counting process

q(t) takes the value dq(t) = 1, if a jump is realized and it is allowed to have time varying intensity.

Finally, the process κ(t) determines the size of discrete jumps, if these are realized. Therefore, the

quadratic variation of the cumulative return process can be decomposed into integrated volatility

plus the sum of squared jumps:

[r]t+ht =

ˆ t+h

t
σ2(s)ds+

∑
t<s≤t+h

κ2(s) .

In order to measure the integrated volatility component, Barndor�-Nielsen and Shephard (2004,

2006) introduce the concept of bipower variation (BPV) as an alternative estimator that is robust

to the presence of jumps. Here, we use threshold bipower variation (TBPV) as suggested by Corsi

et al. (2010), who showed that BPV can be severely biased in �nite samples. TBPV is de�ned

as follows:

TBPVt =
π

2

N∑
j=2

|rt,j ||rt,j−1|I(|rt,j |2 ≤ ζj)I(|rt,j−1|2 ≤ ζj−1) ,

where ζj is a strictly positive, random threshold function as speci�ed in Corsi et al. (2010) and

I(·) is an indicator function.6 Since

TBPVt
p→
ˆ t+1

t
σ2(s)ds

for N → ∞, one can decompose the realized volatility into the continuous integrated volatility

component Ct and the jump component Jt as

Jt = max {RVt − TBPVt, 0} I(C-Tz > 3.09) ,

Ct = RVt − Jt .

The argument of the indicator function I(C-Tz > 3.09) ensures that the jump component is

set to zero if it is insigni�cant at the nominal 0.1% level, so that Jt is not contaminated by

measurement error, see also Corsi and Renò (2012). For details on the C-Tz statistic, see Corsi

et al. (2010).

Di�erent from previous studies that �nd an insigni�cant or negative impact of jumps, Corsi et al.

6To calculate ζj , we closely follow Corsi et al. (2010).
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q d̂LW d̂HP s.e. W d̂(0,0) d̂(1,0) d̂(1,1)

0.55 0.554 0.493 (0.048) 0.438 0.613 (0.088) 0.612 (0.132) 0.689 (0.163)
0.60 0.553 0.522 (0.039) 0.568 0.567 (0.074) 0.577 (0.110) 0.692 (0.131)
0.65 0.573 0.573 (0.032) 0.544 0.573 (0.059) 0.570 (0.089) 0.570 (0.118)
0.70 0.549 0.532 (0.026) 0.449 0.573 (0.048) 0.578 (0.072) 0.588 (0.093)
0.75 0.539 0.518 (0.021) 0.515 0.564 (0.039) 0.574 (0.058) 0.593 (0.075)

Table 1: Long memory estimation and testing results for S&P 500 log-realized volatility. Local
Whittle estimates for the d parameter and results of the Qu (2011) test (W statistic) for true
versus spurious long memory are reported for various bandwidth choices md = bT qc. Critical
values are 1.118, 1.252 and 1.517 at the nominal signi�cance level of 10%, 5% and 1%, respec-
tively. Asymptotic standard errors for d̂LW and d̂HP are given in parentheses. The indices of
the LPWN estimators indicate the orders of the polynomials used. For details, see Frederiksen
et al. (2012).

(2010) show that the impact of jumps on future realized volatility is signi�cant and positive. Here,

we use the HAR-RV-TCJ model that is studied in Bekaert and Hoerova (2014):

lnRV
(h)
t = α+ ρ22 lnC

(22)
t−h + ρ5 lnC

(5)
t−h + ρ1 lnC

(1)
t−h

+$22 ln
(

1 + J
(22)
t−h

)
+$5 ln

(
1 + J

(5)
t−h

)
+$1 ln

(
1 + J

(1)
t−h

)
+ εt . (9)

The daily log-realized variance series (lnRVt) is depicted in Figure 5.7 It is common to use

log-realized variance to avoid non-negativity constraints on the parameters and to have a better

approximation to the normal distribution, as advocated by Andersen et al. (2001). As can be

seen from Figure 5, the series shows the typical features of a long memory time series, namely a

hyperbolically decaying autocorrelation function, as well as local trends.

Estimates of the memory parameter are shown in Table 1. Local Whittle estimates (d̂LW ) exceed

0.5 slightly and thus indicate non-stationarity. Since there is a large literature on the potential

of spurious long memory in volatility time series, we carry out the test of Qu (2011). To avoid

issues due to non-stationarity and to increase the power of the test, we follow Kruse (2015) and

apply the test to the fractional di�erence of the data. The necessary degree of di�erencing is

determined using the estimator by Hou and Perron (2014) (d̂HP ) that is robust to low-frequency

contaminations. As one can see, the memory estimates are fairly stable and the Qu test fails to

reject the null hypothesis of true long memory.

Since N is �nite in practice, RVt might contain a measurement error and is therefore often

modeled as the sum of the quadratic variation and an iid perturbation process such that

RVt = [r]t+1
t + ut, where ut ∼ iid(0, σ2

u). Furthermore, it is well known that local Whittle

estimates can be biased in presence of short run dynamics. We therefore also report results of

the local polynomial Whittle plus noise (LPWN) estimator of Frederiksen et al. (2012). Simi-

lar to the ALPW estimator of Andrews and Sun (2004), the LPWN estimator reduces the bias

due to short memory dynamics by approximating the log-spectral density of the short memory

7For a better comparison, all variables in this section are scaled towards a monthly basis.
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component with a polynomial, but it additionally includes a second polynomial to account for

the downward bias induced by perturbations. As one can see, the estimates remain remarkably

stable - irrespective of the choice of the estimator. The downward bias of the local Whittle

estimator due to the measurement error in realized variance is therefore moderate.

Altogether, the realized variance series appears to be a long memory process. Consequently,

if forecasts of the series are evaluated, a transmission of long range dependence to the loss

di�erentials as implied by Propositions 2, 3 and 4 can occur.

6.1 Predictive Ability of the VIX for Quadratic Variation
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Figure 6: Log squared implied volatility and log cumulative realized volatility of the S&P 500

(left panel) and variance risk premium V Pt = ln(V IX2
t /12)− lnRV

(22)
t+22 (right panel).

The predictive ability of implied volatility for future realized volatility is an issue that has received

a lot of attention in the related literature. The CBOE VIX represents the market expectation of

quadratic variation of the S&P 500 over the next month, derived under the assumption of risk

neutral pricing. Both, ln(V IX2
t /12) and lnRV

(22)
t+22 are depicted in Figure 6. As one can see,

both series behave fairly similar and are quite persistent. As for the log-realized volatility series,

the Qu (2011) test does not reject the null hypothesis of true long memory for the VIX after

appropriate fractional di�erencing following Kruse (2015).

Chernov (2007) investigates the role of a variance risk premium in the market for volatility fore-

casting. The variance risk premium is given by V Pt = ln(V IX2
t /12) − lnRV

(22)
t+22 and displayed

on the right hand side of Figure 6. The graph clearly suggests that the VIX tends to overestimate

the realized variance and the sample average of the variance risk premium is 0.623. Furthermore,

the linear combination of realized and implied volatility is rather persistent and has a signi�cant

memory of d̂LPWN = 0.2. This is consistent with the existence of a fractional cointegration rela-

tionship between ln (V IX2
t /12) and lnRV

(22)
t+22 which has been considered in several contributions

including Christensen and Nielsen (2006), Nielsen (2007) and Bollerslev et al. (2013). Bollerslev

et al. (2009), Bekaert and Hoerova (2014) and Bollerslev et al. (2013) additionally extend the

analysis towards the predictive ability of V Pt for stock returns.

While the aforementioned articles test the predictive ability of the VIX itself and the "implied-

realized-parity", there has also been a series of studies that analyze whether the inclusion of
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Models Summary statistics Short memory inference Long memory inference

tMAC tEFB
Model vs. Model+VIX z/σ̂z MSE1 MSE2 d̂LW d̂LPWN tDM tHAC tFB 0.7 0.75 0.8 0.2 0.4 0.6 0.8

HAR-RV 0.135 0.292 0.269 0.219∗ 0.234∗ 2.968 3.032 2.494 0.929 1.038 1.188 2.494 2.754 2.985 2.849
(3.404) (4.064) (4.750) (5.388)

HAR-RV-TCJ 0.109 0.285 0.268 0.175∗ 0.138 2.421 2.455 2.097 1.397 1.610 1.892 2.097 2.503 2.889 2.724
(2.610) (3.154) (3.693) (4.228)

HAR-RV-TCJ-L 0.082 0.282 0.269 0.182∗ 0.163 1.784 1.786 1.819 0.889 1.016 1.192 1.819 2.153 2.430 2.317
(1.645) (1.645) (2.092) (1.645) (3.404) (4.064) (4.750) (5.388)

Table 2: Predictive ability of the VIX for future RV. Models excluding the VIX are tested against
models including the VIX. Reported are the standardized mean (z/σ̂z) and estimated memory

parameter (d̂) of the forecast error loss di�erential. Furthermore, the respective out-of-sample
MSEs of the models and the results of various DM test statistics. Bold-faced values indicate
signi�cance at the nominal 5% level; an additional star indicates signi�cance at the nominal 1%
level. Critical values of the tests are given in parentheses.

implied volatility can improve model-based forecasts. On the one hand, Becker et al. (2007)

conclude that the VIX does not contain any incremental information on future volatility relative

to an array of forecasting models. On the other hand, Becker et al. (2009) show that the VIX

is found to subsume information on past jump activity and contains incremental information

on future jumps if continuous components and jump components are considered separately.

Similarly, Busch et al. (2011) study a HAR-RV model with continuous components and jumps

and propose a VecHAR-RV model. They �nd that the VIX has incremental information and

partially predicts jumps.

Motivated by these �ndings, we test whether the inclusion of ln(V IX2
t /12) improves model-

based forecasts from HAR-RV-type models, using Diebold-Mariano statistics. Since the VIX

can be seen as a forecast of future quadratic variation over the next month, we consider a 22-

step forecast horizon. Consecutive observations of multi-step forecasts of stock variables, such

as integrated realized volatility, can be expected to exhibit relatively persistent short memory

dynamics. The empirical autocorrelations of these loss di�erentials reveal an MA structure with

linearly decaying coe�cients. We therefore base all our robust statistics on the local polynomial

Whittle plus noise (LPWN) estimator of Frederiksen et al. (2012) discussed above.8 Since Chen

and Ghysels (2011) and Corsi and Renò (2012) show that leverage e�ects improve forecasts, we

also include a comparison of the HAR-RV-TCJ-L model and the HAR-RV-TCJ-L-VIX model.

For details on the HAR-RV-TCJ-L model, see Corsi and Renò (2012) and equation (2) in Bekaert

and Hoerova (2014).

Table 2 reports the results. Models are estimated using a rolling window of Tw = 1000 observa-

tions.9 All DM tests are conducted with one-sided alternatives. We test that a more complex

model outperforms its parsimonious version. For the sake of a better comparability, all kernel-

8We choose Ry = 1 and Rw = 0 concerning the polynomial degrees and a bandwidth md = bT 0.8c (see
Frederiksen et al. (2012) for details on the estimator).

9As a robustness check, we repeat the analysis for a larger window of 2500 observations and obtain qualitatively
similar results.
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based tests use the Bartlett kernel. In accordance with the previous literature, the tDM -statistic

is implemented using an MA approximation with 44 lags for the forecast horizon of 22 days,

c.f. for instance Bekaert and Hoerova (2014). For the tHAC-statistic we use an automatic band-

width selection procedure and the tFB-statistic is computed by using b = 0.2 which o�ers a good

trade-o� between size control and power, as con�rmed in the simulation studies of Sun et al.

(2008).

Table 2 reveals that the forecast error loss di�erentials have long memory with d parameters

between 0.138 and 0.234. The results are very similar for the local Whittle and the LPWN

estimator. Standard DM statistics (tDM , tHAC and tFB) reject the null hypothesis of equal

predictive ability, thereby con�rming the �ndings in the previous literature.

However, if the memory robust statistics in the right panel of Table 2 are taken into account,

all evidence for a superior predictive ability of models including the VIX vanishes. Therefore,

the previous rejections might be spurious and re�ect the theoretical �ndings in Proposition 5.

In regard of the persistence in the loss di�erential series the improvements are too small to be

considered signi�cant. These �ndings highlight the importance of long memory robust tests for

forecast comparisons in practice.

6.2 Separation of Continuous Components and Jump Components
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Figure 7: Log continuous component lnCt and jump component ln (1 + Jt) of RVt.

As a second empirical application, we revisit the question whether the HAR-RV-TCJ model

from equation (9) leads to a signi�cant improvement in forecast performance compared to the

standard HAR-RV-model (8) from a purely out-of-sample perspective.

The continuous components and jump components - separated using the approach described

above - are shown in Figure 7. The occurrence of jumps is often associated with macroeconomic

events (cf. Barndor�-Nielsen and Shephard (2006) and Andersen et al. (2007)) and they are

observed relatively frequently at about 40% of the days in the sample. The trajectory of the

log-continuous component closely follows that of the log-realized volatility series.

Table 3 shows the results of our forecasting exercise for h ∈ {1, 5, 22} steps. Similar to the

previous analysis, the tDM -statistic is implemented using an MA approximation including 5, 10

or 44 lags for forecast horizons h = 1, 5 and 22, respectively, as is customary in this literature.
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Models Summary statistics Short memory inference Long memory inference

tMAC tEFB
HAR-RV vs. z/σ̂z MSE1 MSE2 d̂LW d̂LPWN tDM tHAC tFB 0.7 0.75 0.8 0.2 0.4 0.6 0.8

HAR-RV-TCJ, h = 1 0.122 0.409 0.375 0.094∗ 0.127 6.932 7.631 3.995 3.243 3.144 3.091 3.995 4.068 4.468 4.947
(2.610) (3.154) (3.693) (4.228)

HAR-RV-TCJ, h = 5 0.092 0.263 0.247 0.072 0.009 3.666 3.790 2.789 3.620 3.853 4.277 2.789 3.981 5.093 5.848
(2.050) (2.522) (2.975) (3.386)

HAR-RV-TCJ, h = 22 0.045 0.292 0.285 0.359∗ 0.343∗ 0.776 0.912 0.666 0.140 0.152 0.171 0.666 0.925 1.064 1.164
(1.645) (1.645) (2.092) (1.645) (4.701) (5.551) (6.413) (7.281)

Table 3: Separation of Continuous and Jump Components. Reported are the standardized mean

(z/σ̂z) and estimated memory parameter (d̂) of the forecast error loss di�erential. Furthermore,
the respective out-of-sample MSEs of the models and the results of various DM test statistics.
Bold-faced values indicate signi�cance at the 5% level and an additional star indicates signi�cance
at the 1% level. Critical values of the tests are given in parentheses.

All other speci�cations are the same as before. As one can see, the standard tests (tDM , tHAC

and tFB) agree upon rejection of the null hypothesis of equal predictive ability in favour of a

better performance of the HAR-RV-TCJ model for h = 1 and h = 5, but not for h = 22.

If we consider estimates of the memory parameter, strong (stationary) long memory of 0.34 is

only found for h = 22. For smaller forecast horizons of h = 1 and h = 5, LPWN estimates

are no longer signi�cantly di�erent from zero, since the asymptotic variance is in�ated by a

multiplicative constant which is also larger for smaller values of d. However, local Whittle

estimates remain signi�cant at d̂LW = 0.094 and d̂LW = 0.070 which is qualitatively similar to

the results obtained using the LPWN estimator. Therefore, the rejections of equal predictive

accuracy obtained using standard tests might be spurious due to the neglected e�ect of long range

dependence. Nevertheless, the improvement in forecast accuracy is large enough, so that the long

memory robust tMAC- and tEFB-statistics reject across the board for h = 1 and h = 5. We can

therefore con�rm that the separation of continuous and jump components indeed improves the

forecast performance on daily to weekly horizons.

7 Conclusion

This paper deals with forecast evaluation under long range dependence. We show in Section 3

that long memory can be transmitted from the forecasts ŷit and the forecast objective yt to the

forecast error loss di�erential series zt. We demonstrate that the popular test of Diebold and

Mariano (1995) is invalidated in these cases. Rejections of the null hypothesis of equal predictive

accuracy might therefore be spurious if the series of interest has long memory.

Two methods to robustify DM tests against long memory are discussed in Section 4 - the MAC

estimator of Robinson (2005) and Abadir et al. (2009), as well as the extended �xed-b approach

of McElroy and Politis (2012).

The �nite sample performance of both of these methods is studied using Monte Carlo simulations.

While the extended �xed-b approach allows a better size control, the MAC performs better in
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terms of power. With regard to kernel and bandwidth choices for the tEFB-statistic, we �nd that

b = 0.8 gives good results and that the kernel choice has a larger impact on the size and power

of the procedure than the bandwidth selection. In general the MQS kernel gives a better size

control, whereas the Bartlett kernel is superior in terms of power. An important issue remains the

impact of short memory dynamics on the plug-in estimation of the memory parameter. However,

our results using the ALPW estimator of Andrews and Sun (2004) indicate that bias-corrected

local Whittle estimators successfully improve the results - at least in larger samples. As to be

expected, this comes at the price of a power loss.

An important example of long memory time series is the realized variance of the S&P 500. It

has been the subject of various forecasting exercises. We therefore consider this series in our

empirical application. In contrast to previous studies, we do not �nd statistical evidence for the

hypothesis that the inclusion of the VIX index in HAR-RV-type models leads to an improved

forecast performance. Taking the memory of the loss di�erentials into account reverses the test

decisions and suggests that the corresponding �ndings might be spurious. With regard to the

separation of continuous components and jump components, as suggested by Andersen et al.

(2007), on the other hand, the improvements in forecast accuracy remain signi�cant. These

examples stress the importance of long memory robust statistics in practice.
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Appendix

Proofs

Proof (Proposition 2). By de�ning a∗t = at−µa, for at ∈ {yt, ŷ1t, ŷ2t}, the loss di�erential zt in
(6) can be re-expressed as

zt =− 2yt(ŷ1t − ŷ2t) + ŷ2
1t − ŷ2

2t

=− 2(y∗t + µy)[ŷ
∗
1t + µ1 − ŷ∗2t − µ2] + (ŷ∗1t + µ1)2 − (ŷ∗2t + µ2)2

=− 2{y∗t ŷ∗1t + µ1y
∗
t − y∗t ŷ∗2t − y∗t µ2 + µyŷ

∗
1t + µyµ1 − ŷ∗2tµy − µ2µy}

+ ŷ∗
2

1t + 2ŷ∗1tµ1 + µ2
1 − ŷ∗

2

2t − 2ŷ∗2tµ2 − µ2
2

=−2[y∗t (µ1 − µ2) + ŷ∗1t(µy − µ1)− ŷ∗2t(µy − µ2)]︸ ︷︷ ︸
I

− 2[y∗t (ŷ
∗
1t − ŷ∗2t)]︸ ︷︷ ︸
II

+ ŷ∗
2

1t − ŷ∗
2

2t︸ ︷︷ ︸
III

+const. (10)

Proposition 3 in Chambers (1998) states that the memory of a linear combination of fractionally

integrated processes is equal to the maximum of the memory orders of the components. As

discussed in Leschinski (2016), this result also applies for long memory processes in general, since

the proof is only based on the long memory properties of the fractionally integrated processes. We

can therefore also apply it to (10). In order to determine the memory of the forecast error loss

di�erential zt, we have to determine the memory orders of the three individual components I, II

and III in the linear combination.

Regarding I, we have y∗t ∼ LM(dy), ŷ
∗
1t ∼ LM(d1) and ŷ∗2t ∼ LM(d2). For terms II and III,

we refer to Proposition 1 from Leschinski (2016). We thus have for i ∈ {1, 2}

y∗t ŷ
∗
it ∼

LM(max {dy + di − 1/2, 0}), if Sy,ŷi 6= 0

LM(dy + di − 1/2), if Sy,ŷi = 0
(11)

and ŷ∗
2

it ∼ LM(max {2di − 1/2, 0}). (12)

Further note that

dy > dy + di − 1/2 and di > dy + di − 1/2 (13)

and

di > 2di − 1/2, (14)

since 0 ≤ da < 1/2 for a ∈ {y, 1, 2}.

Using these properties, we can determine the memory dz in (10) via a case-by-case analysis.

1. First, if µ1 6= µ2 6= µy the memory of the original terms dominates because of (13) and

(14) and we obtain dz = max {dy, d1, d2}.

2. Second, if µ1 = µ2 6= µy, then y∗t drops out from (10), but the two forecasts ŷ1t and ŷ2t

remain. From (13) and (14), we have that d1 and d2 dominate their transformations leading
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to the result dz = max {d1, d2}.

3. Third, if µ1 = µy 6= µ2, the forecast ŷ∗1t vanishes and d2 and dy dominate their reduced

counterparts by (13) and (14), so that dz = max {2d1 − 1/2, d2, dy}.

4. Fourth, by the same arguments just as before, dz = max {2d2 − 1/2, d1, dy} if µ2 = µy 6=
µ1.

5. Finally, if µ1 = µ2 = µy, the forecast objective y∗t as well as both forecasts ŷ∗1t and ŷ∗2t
drop from (10). The memory of the loss di�erential is therefore the maximum of the

memory orders in the remaining four terms in II and III that are given in (11) and (12).

Furthermore, the memory of the squared series given in (12) is always non-negative from

Corollary 1 in Leschinski (2016) and a linear combination of an antipersistent process with

an LM(0) series is LM(0), from Proposition 3 of Chambers (1998). Therefore, the lower

bound for dz is zero and

dz = max {2 max {d1, d2} − 1/2, dy + max {d1, d2} − 1/2, 0} .

�

Proof (Proposition 3). For the case that common long memory is permitted, we consider three

possible situations: CLM between the forecasts ŷ1t and ŷ2t, CLM between the forecast objective yt

and one of the forecasts ŷ1t or ŷ2t and �nally CLM between yt and each ŷ1t and ŷ2t.

First, note that as a direct consequence of Assumption 3, we have

µi = βi + ξiµx (15)

and

µy = βy + ξyµx. (16)

We can now re-express the forecast error loss di�erential zt in (10) for each possible CLM rela-

tionship. In all cases, tedious algebraic steps are not reported to save space.

1. In the case of CLM between ŷ1t and ŷ2t, we have

zt =− 2{y∗t (µ1 − µ2) + x∗t [ξ1(µy − µ1)− ξ2(µy − µ2)] + x∗t y
∗
t (ξ1 − ξ2)− x∗t (ξ1ε1t − ξ2ε2t)

+ ε1t(µy − µ1)− ε2t(µy − µ2) + µx(ε1tξ1 − ε2tξ2) + y∗t (ε1t − ε2t)}

+ x∗
2

t (ξ2
1 − ξ2

2) + ε2
1t − ε2

2t + 2µx(ε1tξ1 − ε2tξ2) + const. (17)

2. If the forecast objective yt and one of the ŷit have CLM, we have for ŷ1t:

zt =− 2{x∗t [(µy − µ1)ξ1 + ξy(µ1 − µ2)]− ŷ∗2t[µy − µ2]− ξyx∗t ŷ∗2t + x∗t [ε1t(ξy − ξ1) + ξ1ηt]

+ ε1t(ξyµx − µ1) + ηt(µ1 − µ2) + ε1tηt − ŷ∗2tηt}

− (2ξ1ξy − ξ2
1)x∗

2

t + ε2
1t − ŷ∗

2

2t − 2βyε1t + const. (18)
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The result for CLM between yt and ŷ2t is entirely analogous, but with index �1� being re-

placed by �2�.

3. Finally, if yt has CLM with both ŷ1t and ŷ2t, we have:

zt =− 2
{
x∗t [ξ1(µy − µ1)− ξ2(µy − µ2) + ξy(µ1 − µ2)]

+ x∗t [(ξy − ξ1)ε1t − (ξy − ξ2)ε2t + (ξ1 − ξ2)ηt]

+ x∗2t [ξy(ξ1 − ξ2)− 1

2
(ξ2

1 − ξ2
2)]

+ ε1t(µy − µ1)− ε2t(µy + µ2) + µx(ξ1ε1t + ξ2ε2t) + ηt(ε1t − ε2t) + ηt[µ1 − µ2]
}

+ ε2
1t − ε2

2t + 2µx(ξ1ε1t − ξ2ε2t) + const. (19)

As in the proof of Proposition 2, we can now determine the memory orders of zt in (17), (18)

and (19) by �rst considering the memory of each term in each of the linear combinations and

then by applying Proposition 3 of Chambers (1998) thereafter. Note, however, that

y∗t (µ1 − µ2) + x∗t [ξ1(µy − µ1)− ξ2(µy − µ2)] in (17),

x∗t [(µy − µ1)ξ1 + ξy(µ1 − µ2)]− ŷ∗2t(µy − µ2) in (18)

and

x∗t [ξ1(µy − µ1)− ξ2(µy − µ2) + ξy(µ1 − µ2)] in (19)

have the same structure as

y∗t (µ1 − µ2) + ŷ∗1t(µy − µ1)− ŷ∗2t(µy − µ2) in (10)

and that all of the other non-constant terms in (17), (18) and (19) are either squares or products

of demeaned series, so that their memory is reduced according to Proposition 1 from Leschinski

(2016). From Assumption 3, x∗t is the common factor driving the series with CLM and from dx >

dε1 , dε2 , dη and the dominance of the largest memory in a linear combination from Proposition

3 in Chambers (1998), x∗t has the same memory as the series involved in the CLM relationship.

Now from (13) and (14), the reduced memory of the product series and the squared series is

dominated by that of either x∗t , y
∗
t , ŷ

∗
1t or ŷ

∗
2t. Therefore, whenever a bias term is non-zero, the

memory of the linear combination can be no smaller than that of the respective original series.

�
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Proof (Proposition 4). First note that under the assumptions of Proposition 3, (17) is reduced

to

zt = −2{−x∗t (ξ1ε1t − ξ2ε2t) + y∗t (ε1t − ε2t)}+ ε2
1t − ε2

2t + const, (20)

= −2{− ξ1x
∗
t ε1t︸ ︷︷ ︸
I

+ ξ2x
∗
t ε2t︸ ︷︷ ︸
II

+ y∗t ε1t︸ ︷︷ ︸
III

− y∗t ε2t︸ ︷︷ ︸
IV

}+ ε2
1t︸︷︷︸
V

− ε2
2t︸︷︷︸
V I

+const,

(18) becomes

zt = −2{−x∗t (ξy ŷ∗2t − ξ1ηt) + (ε1t − ŷ∗2t)ηt + ε1t(ξyµx − µ1)}+ ε21t − ŷ∗
2

2t − 2βyε1t − ξ1ξyx∗
2

t + const, (21)

= −2{− ξyx∗t ŷ∗2t︸ ︷︷ ︸
I

+ ξ1x
∗
t ηt︸ ︷︷ ︸
II

+ ε1tηt︸ ︷︷ ︸
III

− ŷ∗2tηt︸ ︷︷ ︸
IV

+ ε1t(ξyµx − µ1)︸ ︷︷ ︸
V

}+ ε21t︸︷︷︸
V I

− ŷ∗
2

2t︸︷︷︸
V II

− 2βyε1t︸ ︷︷ ︸
V III

− ξ1ξyx∗
2

t︸ ︷︷ ︸
IX

+const,

and �nally (19) is

zt = −2(ε1t − ε2t)ηt + ε2
1t − ε2

2t + const, (22)

= −2 ε1tηt︸︷︷︸
I

+ 2ε2tηt︸ ︷︷ ︸
II

+ ε2
1t︸︷︷︸
III

− ε2
2t︸︷︷︸
IV

+const.

We can now proceed as in the proof of Proposition 2 and infer the memory orders of each term

in the respective linear combination from Proposition 1 and then determine the maximum as in

Proposition 3 in Chambers (1998).

In the following, we label the terms appearing in each of the equations by consecutive letters with

the equation number as an index. For the terms in (20), we have

I20 ∼

LM(max {dx + dε1 − 1/2, 0}), if Sx,ε1 6= 0

LM(dx + dε1 − 1/2), if Sx,ε1 = 0

II20 ∼

LM(max {dx + dε2 − 1/2, 0}), if Sx,ε2 6= 0

LM(dx + dε2 − 1/2), if Sx,ε2 = 0

III20 ∼

LM(max {dy + dε1 − 1/2, 0}), if Sy,ε1 6= 0

LM(dy + dε1 − 1/2), if Sy,ε1 = 0

IV20 ∼

LM(max {dy + dε2 − 1/2, 0}), if Sy,ε2 6= 0

LM(dy + dε2 − 1/2), if Sy,ε2 = 0

V20 ∼ LM(max {2dε1 − 1/2, 0})

and V I20 ∼ LM(max {2dε2 − 1/2, 0}).

Since by de�nition dx > dεi , the memory of V20 and V I20 is always of a lower order than that of

I20 and II20. As in the proof of Proposition 2, the squares in terms V20 and V I20 establish zero

as the lower bound of dz. Therefore, we have

dz = max {max {dx, dy}+ max {dε1 , dε2} − 1/2, 0} .
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Similarly, in (21), we have

I21 ∼

LM(max {dx + d2 − 1/2, 0}), if Sx,ŷ2 6= 0

LM(dx + d2 − 1/2), if Sx,ŷ2 = 0

II21 ∼

LM(max {dx + dη − 1/2, 0}), if Sx,η 6= 0

LM(dx + dη − 1/2), if Sx,η = 0

III21 ∼

LM(max {dε1 + dη − 1/2, 0}), if Sε1,η 6= 0

LM(dε1 + dη − 1/2), if Sε1,η = 0

IV21 ∼

LM(max {d2 + dη − 1/2, 0}), if Sŷ2,η 6= 0

LM(d2 + dη − 1/2), if Sŷ2,η = 0

V21 ∼ LM(dε1)

V I21 ∼ LM(max {2dε1 − 1/2, 0})

V II21 ∼ LM(max {2d2 − 1/2, 0})

V III21 ∼ LM(dε1)

and IX21 ∼ LM(max {2dx − 1/2, 0}).

Here, V21 can be disregarded since it is of the same order as V III21. V III21 dominates V I21,

because dε1 < 1/2. Finally, as dε1 < dx holds by assumption, III21 is dominated by II21 and

dη < dx, so that IX21 dominates II21. Therefore,

dz = max {d2 + max {dx, dη} − 1/2, 2 max {dx, d2} − 1/2, dε1} .

As before, for the case of CLM between yt and ŷ2t, the proof is entirely analogous, but with index

”1” replaced by ”2” and vice versa.

Finally, in (22), we have

I22 ∼

LM(max {dη + dε1 − 1/2, 0}), if Sη,ε1 6= 0

LM(dη + dε1 − 1/2), if Sη,ε1 = 0

II22 ∼

LM(max {dη + dε2 − 1/2, 0}), if Sη,ε1 6= 0

LM(dη + dε2 − 1/2), if Sη,ε2 = 0

III22 ∼ LM(max {2dε1 − 1/2, 0})

IV22 ∼ LM(max {2dε2 − 1/2, 0}).

Here, no further simpli�cations can be made, since we do not impose restrictions on the relation-

ship between dη, dε1 and dε2, so that

dz = max {dη + max {dε1 , dε2} − 1/2, 2 max {dε1 , dε2} − 1/2, 0} ,

where again the zero is established as the lower bound by the squares in III22 and IV22.
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Proof (Proposition 5). First note that under short memory, the tHAC-statistic is given by

tHAC = T 1/2 z̄√
V̂HAC

,

with V̂HAC =
∑T−1

j=−T+1 k
(
j
B

)
γ̂z(j) and B being the bandwidth satisfying B → ∞ and B =

O(T 1−ε) for some ε > 0. From Abadir et al. (2009), the appropriately scaled long-run variance

estimator for a long memory processes is given by B−1−2d
∑B

i,j=1 γ̂z(|i−j|), see equation (2.2) in

Abadir et al. (2009). Corresponding long memory robust HAC-type estimators (with a Bartlett

kernel, for instance) take the form

V̂HAC,d = B−2d

γ̂z(0) + 2
B∑
j=1

(1− j/B)γ̂z(j)

 .

The long memory robust tHAC,d-statistic is then given by

tHAC,d = T 1/2−d z̄√
V̂HAC,d

.

We can therefore write

tHAC,d = T 1/2T−d
z̄√

B−2dV̂HAC

=
T−d

B−d
tHAC

and thus,

tHAC =
T d

Bd
tHAC,d.

The short memory tHAC-statistic is in�ated by the scaling factor T d/Bd = O(T dε). This leads

directly to the divergence of the HAC-statistic (tHAC →∞ as T →∞) which implies that

lim
T→∞

P (|tHAC | > c1−α/2,d) = 1

for all values of d ∈ (0, 1/4) ∪ (1/4, 1/2). For 0 < d < 1/4, c1−α/2,d is the critical value from

the N(0, 1)-distribution, while for 1/4 < d < 1/2, the critical value (depending with d) stems

from the well-de�ned Rosenblatt distribution, see Abadir et al. (2009). The proof is analogous

for other kernels and thus omitted. �
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Additional Simulation Results

●

●

●

●

●

●

●
●

●

Size ext. FB MQS, ALPW, T=50

d

R
ej

ec
tio

n 
fr

eq
ue

nc
y

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

0
0.

1
0.

2
0.

3

●
● ●

●
●

●

●

●

●

●
●

● ●

●
●

●

●

●

●

●

DGP1
DGP2
b = 0.1
b = 0.2
b = 0.3
b = 0.4
b = 0.5
b = 0.6
b = 0.7
b = 0.8
b = 0.9
b = 1

● ● ●
●

●
● ●

●

●

Size ext. FB MQS, ALPW, T=250

d

R
ej

ec
tio

n 
fr

eq
ue

nc
y

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

0
0.

1
0.

2
0.

3

● ●
●

● ● ● ●

●

●

● ● ● ● ●
●

●

●

●

●

●

DGP1
DGP2
b = 0.1
b = 0.2
b = 0.3
b = 0.4
b = 0.5
b = 0.6
b = 0.7
b = 0.8
b = 0.9
b = 1

●

● ● ●

●
●

●

●

●

Size ext. FB Bartlett, ALPW, T=50

d

R
ej

ec
tio

n 
fr

eq
ue

nc
y

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

0
0.

1
0.

2
0.

3

●

●
●

●

●

●
●

●

●

●
●

●
● ●

●
●

●

●

●

●

DGP1
DGP2
b = 0.1
b = 0.2
b = 0.3
b = 0.4
b = 0.5
b = 0.6
b = 0.7
b = 0.8
b = 0.9
b = 1

●
●

● ●
● ● ●

●

●

Size ext. FB Bartlett, ALPW, T=250

d

R
ej

ec
tio

n 
fr

eq
ue

nc
y

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

0
0.

1
0.

2
0.

3

● ● ●
● ● ● ●

●

●

● ●
● ●

●

●
●

●

●

●

●

DGP1
DGP2
b = 0.1
b = 0.2
b = 0.3
b = 0.4
b = 0.5
b = 0.6
b = 0.7
b = 0.8
b = 0.9
b = 1

●

●

●

●

●

●

●

●

●

Size MAC, ALPW, T=50

d

R
ej

ec
tio

n 
fr

eq
ue

nc
y

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

0
0.

1
0.

2
0.

3

●

DGP1
DGP2
q = 0.5
q = 0.55
q = 0.6
q = 0.65
q = 0.7
q = 0.75
q = 0.8

● ●
●

●
●

●
● ●

●

Size MAC, ALPW, T=250

d

R
ej

ec
tio

n 
fr

eq
ue

nc
y

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

0
0.

1
0.

2
0.

3

●

DGP1
DGP2
q = 0.5
q = 0.55
q = 0.6
q = 0.65
q = 0.7
q = 0.75
q = 0.8

Figure 8: Size of the tMAC- and tEFB-statistics for di�erent degrees of long memory d, sample
sizes T and bandwidth parameters q and b, if the ALPW estimator is used for the plug-in
estimation of d.
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Figure 9: Power comparison of the tMAC- and tEFB-statistics, for di�erent memory parameters
d and sample sizes T , adjusted for size and with known memory parameter d.
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Figure 10: Power comparison of the tMAC- and tEFB-statistics, for di�erent memory parameters
d and sample sizes T if the ALPW estimator is used for the plug-in estimation of d.
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